1
|
Xu P, Lu J, Chen L, Chen X, Lu Z, Ye M, Wang X, Ouyang K, Yin Y, Chen Y, Wei Z, Huang W, Qin Y. Development of a chicken egg yolk antibody (IgY) could effectively prevent and treat goose astrovirus infection. Vaccine 2025; 56:127167. [PMID: 40267615 DOI: 10.1016/j.vaccine.2025.127167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2025] [Revised: 04/15/2025] [Accepted: 04/18/2025] [Indexed: 04/25/2025]
Abstract
Goose astrovirus (GAstV) is a major threat to the goose industry, with no effective drugs or vaccines available. Developing safe and effective prevention and treatment strategies is essential to reduce its impact. In our study, we used the GAstV GDCS strain as the vaccine antigen and found that a 1 ‰ formaldehyde concentration effectively inactivated the virus after 24 h at 37 °C. The inactivated virus antigen was subsequently emulsified with white oil to formulate the GAstV inactivated vaccine. This vaccine was administered four times to 22-week-old laying hens, and IgY was subsequently purified from the egg yolk using the polyethylene glycol (PEG) precipitation method. After the fourth immunization, IgY concentration was 3.133 mg/mL. SDS-PAGE showed IgY has a 65 kDa heavy chain and a 25 kDa light chain. The IgY effectively neutralized GAstV in vitro with a titer of up to 2^9.67. Administering IgY to goslings effectively prevents and treats GAstV infection by reducing symptoms, mortality, tissue damage, and viral load. These findings offer significant tools for the clinical prevention and management of GAstV infection.
Collapse
Affiliation(s)
- Pengju Xu
- Laboratory of Animal Infectious Diseases and Molecular Immunology, College of Animal Science and Technology, Guangxi University, Nanning 530004, China; Guangxi Zhuang Autonomous Region Engineering Research Center of Veterinary Biologics, Nanning 530004, China; Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, Nanning 530004, China
| | - Jiangao Lu
- Terrestrial Wildlife Rescue and Epidemic Diseases Surveillance Center of Guangxi, Nanning 530003, Guangxi, China
| | - Lijun Chen
- Technology Center of Nanning Customs, Nanning, Guangxi, China
| | - Xiaopeng Chen
- Laboratory of Animal Infectious Diseases and Molecular Immunology, College of Animal Science and Technology, Guangxi University, Nanning 530004, China; Guangxi Zhuang Autonomous Region Engineering Research Center of Veterinary Biologics, Nanning 530004, China; Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, Nanning 530004, China
| | - Zhipei Lu
- Laboratory of Animal Infectious Diseases and Molecular Immunology, College of Animal Science and Technology, Guangxi University, Nanning 530004, China; Guangxi Zhuang Autonomous Region Engineering Research Center of Veterinary Biologics, Nanning 530004, China; Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, Nanning 530004, China
| | - Maochun Ye
- Laboratory of Animal Infectious Diseases and Molecular Immunology, College of Animal Science and Technology, Guangxi University, Nanning 530004, China; Guangxi Zhuang Autonomous Region Engineering Research Center of Veterinary Biologics, Nanning 530004, China; Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, Nanning 530004, China
| | - Xuying Wang
- Laboratory of Animal Infectious Diseases and Molecular Immunology, College of Animal Science and Technology, Guangxi University, Nanning 530004, China; Guangxi Zhuang Autonomous Region Engineering Research Center of Veterinary Biologics, Nanning 530004, China; Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, Nanning 530004, China
| | - Kang Ouyang
- Laboratory of Animal Infectious Diseases and Molecular Immunology, College of Animal Science and Technology, Guangxi University, Nanning 530004, China; Guangxi Zhuang Autonomous Region Engineering Research Center of Veterinary Biologics, Nanning 530004, China; Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, Nanning 530004, China
| | - Yeshi Yin
- Laboratory of Animal Infectious Diseases and Molecular Immunology, College of Animal Science and Technology, Guangxi University, Nanning 530004, China; Guangxi Zhuang Autonomous Region Engineering Research Center of Veterinary Biologics, Nanning 530004, China; Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, Nanning 530004, China
| | - Ying Chen
- Laboratory of Animal Infectious Diseases and Molecular Immunology, College of Animal Science and Technology, Guangxi University, Nanning 530004, China; Guangxi Zhuang Autonomous Region Engineering Research Center of Veterinary Biologics, Nanning 530004, China; Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, Nanning 530004, China
| | - Zuzhang Wei
- Laboratory of Animal Infectious Diseases and Molecular Immunology, College of Animal Science and Technology, Guangxi University, Nanning 530004, China; Guangxi Zhuang Autonomous Region Engineering Research Center of Veterinary Biologics, Nanning 530004, China; Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, Nanning 530004, China
| | - Weijian Huang
- Laboratory of Animal Infectious Diseases and Molecular Immunology, College of Animal Science and Technology, Guangxi University, Nanning 530004, China; Guangxi Zhuang Autonomous Region Engineering Research Center of Veterinary Biologics, Nanning 530004, China; Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, Nanning 530004, China
| | - Yifeng Qin
- Laboratory of Animal Infectious Diseases and Molecular Immunology, College of Animal Science and Technology, Guangxi University, Nanning 530004, China; Guangxi Zhuang Autonomous Region Engineering Research Center of Veterinary Biologics, Nanning 530004, China; Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, Nanning 530004, China.
| |
Collapse
|
2
|
Guo H, Ding X, Hua D, Liu M, Yang M, Gong Y, Ye N, Chen X, He J, Zhang Y, Xu X, Li J. Enhancing Dengue Virus Production and Immunogenicity with Celcradle™ Bioreactor: A Comparative Study with Traditional Cell Culture Methods. Vaccines (Basel) 2024; 12:563. [PMID: 38932292 PMCID: PMC11209354 DOI: 10.3390/vaccines12060563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 05/12/2024] [Accepted: 05/13/2024] [Indexed: 06/28/2024] Open
Abstract
The dengue virus, the primary cause of dengue fever, dengue hemorrhagic fever, and dengue shock syndrome, is the most widespread mosquito-borne virus worldwide. In recent decades, the prevalence of dengue fever has increased markedly, presenting substantial public health challenges. Consequently, the development of an efficacious vaccine against dengue remains a critical goal for mitigating its spread. Our research utilized Celcradle™, an innovative tidal bioreactor optimized for high-density cell cultures, to grow Vero cells for dengue virus production. By maintaining optimal pH levels (7.0 to 7.4) and glucose concentrations (1.5 g/L to 3.5 g/L) during the proliferation of cells and viruses, we achieved a peak Vero cell count of approximately 2.46 × 109, nearly ten times the initial count. The use of Celcradle™ substantially decreased the time required for cell yield and virus production compared to conventional Petri dish methods. Moreover, our evaluation of the immunogenicity of the Celcradle™-produced inactivated DENV4 through immunization of mice revealed that sera from these mice demonstrated cross-reactivity with DENV4 cultured in Petri dishes and showed elevated antibody titers compared to those from mice immunized with virus from Petri dishes. These results indicate that the dengue virus cultivated using the Celcradle™ system exhibited enhanced immunogenicity relative to that produced in traditional methods. In conclusion, our study highlights the potential of the Celcradle™ bioreactor for large-scale production of inactivated dengue virus vaccines, offering significant promise for reducing the global impact of dengue virus infections and accelerating the development of effective vaccination strategies.
Collapse
Affiliation(s)
- Hongxia Guo
- Department of Biosafety, School of Basic Medicine, Army Medical University, Chongqing 400038, China; (H.G.); (X.D.); (D.H.); (M.L.); (M.Y.); (Y.G.); (N.Y.); (X.C.); (J.H.); (Y.Z.); (X.X.)
| | - Xiaoyan Ding
- Department of Biosafety, School of Basic Medicine, Army Medical University, Chongqing 400038, China; (H.G.); (X.D.); (D.H.); (M.L.); (M.Y.); (Y.G.); (N.Y.); (X.C.); (J.H.); (Y.Z.); (X.X.)
- Department of Pediatrics, Ludwig-Maximilians University of Munich, 80337 Munich, Germany
| | - Dong Hua
- Department of Biosafety, School of Basic Medicine, Army Medical University, Chongqing 400038, China; (H.G.); (X.D.); (D.H.); (M.L.); (M.Y.); (Y.G.); (N.Y.); (X.C.); (J.H.); (Y.Z.); (X.X.)
| | - Minchi Liu
- Department of Biosafety, School of Basic Medicine, Army Medical University, Chongqing 400038, China; (H.G.); (X.D.); (D.H.); (M.L.); (M.Y.); (Y.G.); (N.Y.); (X.C.); (J.H.); (Y.Z.); (X.X.)
| | - Maocheng Yang
- Department of Biosafety, School of Basic Medicine, Army Medical University, Chongqing 400038, China; (H.G.); (X.D.); (D.H.); (M.L.); (M.Y.); (Y.G.); (N.Y.); (X.C.); (J.H.); (Y.Z.); (X.X.)
| | - Yuanxin Gong
- Department of Biosafety, School of Basic Medicine, Army Medical University, Chongqing 400038, China; (H.G.); (X.D.); (D.H.); (M.L.); (M.Y.); (Y.G.); (N.Y.); (X.C.); (J.H.); (Y.Z.); (X.X.)
| | - Nan Ye
- Department of Biosafety, School of Basic Medicine, Army Medical University, Chongqing 400038, China; (H.G.); (X.D.); (D.H.); (M.L.); (M.Y.); (Y.G.); (N.Y.); (X.C.); (J.H.); (Y.Z.); (X.X.)
| | - Xiaozhong Chen
- Department of Biosafety, School of Basic Medicine, Army Medical University, Chongqing 400038, China; (H.G.); (X.D.); (D.H.); (M.L.); (M.Y.); (Y.G.); (N.Y.); (X.C.); (J.H.); (Y.Z.); (X.X.)
| | - Jiuxiang He
- Department of Biosafety, School of Basic Medicine, Army Medical University, Chongqing 400038, China; (H.G.); (X.D.); (D.H.); (M.L.); (M.Y.); (Y.G.); (N.Y.); (X.C.); (J.H.); (Y.Z.); (X.X.)
| | - Yu Zhang
- Department of Biosafety, School of Basic Medicine, Army Medical University, Chongqing 400038, China; (H.G.); (X.D.); (D.H.); (M.L.); (M.Y.); (Y.G.); (N.Y.); (X.C.); (J.H.); (Y.Z.); (X.X.)
| | - Xiaofeng Xu
- Department of Biosafety, School of Basic Medicine, Army Medical University, Chongqing 400038, China; (H.G.); (X.D.); (D.H.); (M.L.); (M.Y.); (Y.G.); (N.Y.); (X.C.); (J.H.); (Y.Z.); (X.X.)
| | - Jintao Li
- Department of Biosafety, School of Basic Medicine, Army Medical University, Chongqing 400038, China; (H.G.); (X.D.); (D.H.); (M.L.); (M.Y.); (Y.G.); (N.Y.); (X.C.); (J.H.); (Y.Z.); (X.X.)
| |
Collapse
|
3
|
Dong HL, He MJ, Wang QY, Cui JZ, Chen ZL, Xiong XH, Zhang LC, Cheng H, Xiong GQ, Hu A, Lu YY, Cheng CL, Meng ZX, Zhu C, Zhao G, Liu G, Chen HP. Rapid Generation of Recombinant Flaviviruses Using Circular Polymerase Extension Reaction. Vaccines (Basel) 2023; 11:1250. [PMID: 37515065 PMCID: PMC10383701 DOI: 10.3390/vaccines11071250] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 07/13/2023] [Accepted: 07/14/2023] [Indexed: 07/30/2023] Open
Abstract
The genus Flavivirus is a group of arthropod-borne single-stranded RNA viruses, which includes important human and animal pathogens such as Japanese encephalitis virus (JEV), Zika virus (ZIKV), Dengue virus (DENV), yellow fever virus (YFV), West Nile virus (WNV), and Tick-borne encephalitis virus (TBEV). Reverse genetics has been a useful tool for understanding biological properties and the pathogenesis of flaviviruses. However, the conventional construction of full-length infectious clones for flavivirus is time-consuming and difficult due to the toxicity of the flavivirus genome to E. coli. Herein, we applied a simple, rapid, and bacterium-free circular polymerase extension reaction (CPER) method to synthesize recombinant flaviviruses in vertebrate cells as well as insect cells. We started with the de novo synthesis of the JEV vaccine strain SA-14-14-2 in Vero cells using CPER, and then modified the CPER method to recover insect-specific flaviviruses (ISFs) in mosquito C6/36 cells. Chimeric Zika virus (ChinZIKV) based on the Chaoyang virus (CYV) backbone and the Culex flavivirus reporter virus expressing green fluorescent protein (CxFV-GFP) were subsequently rescued in C6/36 cells. CPER is a simple method for the rapid generation of flaviviruses and other potential RNA viruses. A CPER-based recovery system for flaviviruses of different host ranges was established, which would facilitate the development of countermeasures against flavivirus outbreaks in the future.
Collapse
Affiliation(s)
- Hao-Long Dong
- Academy of Military Medical Sciences, Beijing 100071, China
| | - Mei-Juan He
- Academy of Military Medical Sciences, Beijing 100071, China
| | - Qing-Yang Wang
- Academy of Military Medical Sciences, Beijing 100071, China
| | - Jia-Zhen Cui
- Academy of Military Medical Sciences, Beijing 100071, China
| | - Zhi-Li Chen
- Academy of Military Medical Sciences, Beijing 100071, China
| | | | | | - Hao Cheng
- Academy of Military Medical Sciences, Beijing 100071, China
| | - Guo-Qing Xiong
- Institutes of Physical Science and Information Technology, Anhui University, Hefei 230000, China
| | - Ao Hu
- Institutes of Physical Science and Information Technology, Anhui University, Hefei 230000, China
| | - Yuan-Yuan Lu
- Institutes of Physical Science and Information Technology, Anhui University, Hefei 230000, China
| | - Chun-Lin Cheng
- School of Life Science, Hebei University, Baoding 071000, China
| | - Zhi-Xin Meng
- School of Life Science, Hebei University, Baoding 071000, China
| | - Chen Zhu
- Academy of Military Medical Sciences, Beijing 100071, China
| | - Guang Zhao
- Academy of Military Medical Sciences, Beijing 100071, China
| | - Gang Liu
- Academy of Military Medical Sciences, Beijing 100071, China
| | - Hui-Peng Chen
- Academy of Military Medical Sciences, Beijing 100071, China
| |
Collapse
|
4
|
Amanova ZT, Sametova ZZ, Bulatov YA. [Adaptation of the sheep pox virus (Poxviridae: Capripoxvirus: Sheeppox virus) to African green monkey kidney cell line and evaluation of its immunobiological properties]. Vopr Virusol 2022; 67:450-458. [PMID: 36515290 DOI: 10.36233/0507-4088-137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Indexed: 12/07/2022]
Abstract
INTRODUCTION Outbreaks of infectious diseases seriously hinder the preservation and increase of the number of small ruminants. Such infections include sheep pox virus (SPPV). According to the OIE data of 2021, SPP outbreaks were registered in countries such as Turkey, Israel, China, Maldives, Mongolia, Thailand, Russia, Algeria, Kenya, and in 2019 in Mangistau and Atyrau regions. In Kazakhstan annually conducts routine immunization of sheep at risk with a live attenuated vaccine produced by RIBSP. MATERIALS AND METHODS The object of the study was the vaccine strain of NISHI and the virulent strain A of the sheep pox virus. The virus was propagated in Vero cells. To determine the harmlessness and immunogenicity, sheep of the Kazakh fine-wool breed aged from 6 to 12 months were used. Virological, serological and immunobiological methods were used in the study. RESULTS The results of the adaptation of the NISHI strain of SPPV to the Vero cell line are presented. Five passages in Vero cells resulted to the adaptation of the NISHI strain with the manifestation of a cytopathogenic effect specific to SPPV with a titer of 6.50 lg TCD50/ml. Following immunization, the formation of immunity was observed in animals on day 7 with an average protective titer 1.8 log2, which increased by day 21 to 4.33 log2. CONCLUSION It has been established that the NISHI strain of SPPV retains its virological and immunobiological properties during reproduction in a Vero cell line.
Collapse
Affiliation(s)
- Z T Amanova
- Research Institute for Biological Safety Problems of Ministry of Health of the Republic of Kazakhstan
| | - Z Z Sametova
- Research Institute for Biological Safety Problems of Ministry of Health of the Republic of Kazakhstan
| | - Y A Bulatov
- Research Institute for Biological Safety Problems of Ministry of Health of the Republic of Kazakhstan
| |
Collapse
|
5
|
Jiang H, Zhang Y, Wu Y, Cheng J, Feng S, Wang J, Wang X, Cheng M. Identification of Montelukast as flavivirus NS2B-NS3 protease inhibitor by inverse virtual screening and experimental validation. Biochem Biophys Res Commun 2022; 606:87-93. [PMID: 35339757 DOI: 10.1016/j.bbrc.2022.03.064] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 03/13/2022] [Indexed: 11/02/2022]
Abstract
Flavivirus, such as Dengue Virus (DENV) and Zika virus (ZIKV), infects millions of people and cause the death of thousands of people every year. Despite many efforts, there is no approved anti-flaviviral treatment available. In particular, some antiflavivirus compounds were investigated the cellular activities of DENV and ZIKV, but lacking the exploration of specific target enzyme, thereby resulting in the hindrance of structure-based drug design. One example is Montlukast, which was found to inhibit the replicon replication in DENV and ZIKV infected cells, with EC50 values as 1.03 μM (DENV) and 1.14 μM (ZIKV), while the underlying mechanism remains unclear. In our study, the inhibitory mechanisms of Montelukast against the replicon replication of DENV and ZIKV infected cells were studied by using in silico approaches including inverse virtual screening (IVS), molecular dynamics (MD) simulations and binding free energy calculation, and validated through in vitro protease assay, confirming Montelukast could bind to NS2B-NS3 proteases of DENV and ZIKV as a competitive inhibitor (IC50 for DENV: 25.65 μM, for ZIKV: 15.57 μM). Moreover, Montelukast has no potential off-target effect on NS2B-NS3 protease from thrombin and trypsin inhibitory assay. Overall, Montelukast may be used as a potential candidate to block NS2B-NS3 protease as well as lead for structural modification.
Collapse
Affiliation(s)
- Hailun Jiang
- Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China; Key Laboratory of Intelligent Drug Design and New Drug Discovery of Liaoning Province, Shenyang Pharmaceutical University, Shenyang, 110016, China; School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Yaoliang Zhang
- Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China; Key Laboratory of Intelligent Drug Design and New Drug Discovery of Liaoning Province, Shenyang Pharmaceutical University, Shenyang, 110016, China; School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Yuming Wu
- Department of Biotechnology, Beijing Institute of Radiation Medicine, Beijing, 100850, China
| | - Jiawei Cheng
- Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China; Key Laboratory of Intelligent Drug Design and New Drug Discovery of Liaoning Province, Shenyang Pharmaceutical University, Shenyang, 110016, China; School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Shasha Feng
- Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China; Key Laboratory of Intelligent Drug Design and New Drug Discovery of Liaoning Province, Shenyang Pharmaceutical University, Shenyang, 110016, China; School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Jian Wang
- Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China; Key Laboratory of Intelligent Drug Design and New Drug Discovery of Liaoning Province, Shenyang Pharmaceutical University, Shenyang, 110016, China; School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang, 110016, China.
| | - Xuejun Wang
- Department of Biotechnology, Beijing Institute of Radiation Medicine, Beijing, 100850, China.
| | - Maosheng Cheng
- Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China; Key Laboratory of Intelligent Drug Design and New Drug Discovery of Liaoning Province, Shenyang Pharmaceutical University, Shenyang, 110016, China; School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang, 110016, China.
| |
Collapse
|
6
|
Zhang J, Han W, Xie C, Gao M, Wang X, Hu X, Zhang W, Cao S, Liu X, Cheng G, Gu C. Autophagy inhibitors alleviate Japanese encephalitis virus-induced cerebral inflammation in mice. Arch Virol 2022; 167:849-859. [PMID: 35119507 PMCID: PMC8814803 DOI: 10.1007/s00705-021-05283-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 09/08/2021] [Indexed: 11/18/2022]
Abstract
Japanese encephalitis (JE) is a zoonotic epidemic disease caused by Japanese encephalitis virus (JEV), and currently, no medicines are available to treat this disease. Autophagy modulators play an important role in the treatment of tumors, heart disease, and some viral diseases. The aim of this study was to investigate the effects of autophagy modulators on JEV infection and the host response in mice. The experimental mice were grouped as follows: DMEM (control), JEV, JEV+rapamycin (JEV+Rapa), JEV+wortmannin (JEV+Wort), JEV+chloroquine (JEV+CQ), Rapa, Wort, and CQ. The control group was treated with DMEM. The mice in other groups were infected with 105 PFU of JEV, and Rapa, Wort, and CQ were administered 2 h prior to JEV challenge and then administered daily for 10 consecutive days. All mice were monitored for neurological signs and survival. The damage of subcellular structures in the mouse brain was evaluated by transmission electron microscopy. The distribution of virus in the mouse brain was determined by RNAScope staining and immunohistochemical staining. The neuroinflammatory responses in the brain were examined via quantitative real-time PCR, and the signal pathways involved in neuroinflammation were identified by Western blot. The mice in the JEV+Wort and JEV+CQ groups showed milder neurological symptoms, less damage to the mitochondria in the brain tissue, and a higher survival rate than those in the JEV+Rapa and JEV groups. Compared with the JEV+Rapa and JEV groups, the distribution of JEV in the brain of mice in the JEV+Wort and JEV+CQ groups was lower, and the inflammatory response was weaker. No significant difference was observed in the expression of the PI3K/AKT/NF-κB pathway in mouse brain among the different groups. Our study suggests that the autophagy inhibitors Wort and CQ reduce JEV infection and weaken the inflammatory response, which does not depend on the PI3K/AKT/NF-κB pathway in mouse brain.
Collapse
Affiliation(s)
- Jinhua Zhang
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Wei Han
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Changqing Xie
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Mingxing Gao
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Xugang Wang
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Xueying Hu
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Wanpo Zhang
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Shengbo Cao
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China.,State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Xiaoli Liu
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Guofu Cheng
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Changqin Gu
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China.
| |
Collapse
|
7
|
Schroeder B, Demirel P, Fischer C, Masri E, Kallis S, Redl L, Rudolf T, Bergemann S, Arkona C, Nitsche C, Bartenschlager R, Rademann J. Nanoparticular Inhibitors of Flavivirus Proteases from Zika, West Nile and Dengue Virus Are Cell-Permeable Antivirals. ACS Med Chem Lett 2021; 12:1955-1961. [PMID: 34917260 DOI: 10.1021/acsmedchemlett.1c00515] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Accepted: 11/16/2021] [Indexed: 11/28/2022] Open
Abstract
Viral proteases have been established as drug targets in several viral diseases including human immunodeficiency virus and hepatitis C virus infections due to the essential role of these enzymes in virus replication. In contrast, no antiviral therapy is available to date against flaviviral infections including those by Zika virus (ZIKV), West Nile virus (WNV), or dengue virus (DENV). Numerous potent inhibitors of flaviviral proteases have been reported; however, a huge gap remains between the in vitro and intracellular activities, possibly due to low cellular uptake of the charged compounds. Here, we present an alternative, nanoparticular approach to antivirals. Conjugation of peptidomimetic inhibitors and cell-penetrating peptides to dextran yielded chemically defined nanoparticles that were potent inhibitors of flaviviral proteases. Peptide-dextran conjugates inhibited viral replication and infection in cells at nontoxic, low micromolar or even nanomolar concentrations. Thus, nanoparticular antivirals might be alternative starting points for the development of broad-spectrum antiflaviviral drugs.
Collapse
Affiliation(s)
- Barbara Schroeder
- Pharmaceutical and Medicinal Chemistry, Institute of Pharmacy, Freie Universität Berlin, Königin-Luise-Straße 2 + 4, 14195 Berlin, Germany
| | - Peter Demirel
- Pharmaceutical and Medicinal Chemistry, Institute of Pharmacy, Freie Universität Berlin, Königin-Luise-Straße 2 + 4, 14195 Berlin, Germany
| | - Christina Fischer
- Pharmaceutical and Medicinal Chemistry, Institute of Pharmacy, Freie Universität Berlin, Königin-Luise-Straße 2 + 4, 14195 Berlin, Germany
| | - Enaam Masri
- Pharmaceutical and Medicinal Chemistry, Institute of Pharmacy, Freie Universität Berlin, Königin-Luise-Straße 2 + 4, 14195 Berlin, Germany
| | - Stephanie Kallis
- Department for Infectious Diseases, Molecular Virology, Heidelberg University, Im Neuenheimer Feld 344, 69120 Heidelberg, Germany
- German Center for Infection Research (DZIF), Heidelberg partner site, 69120 Heidelberg, Germany
| | - Lisa Redl
- Pharmaceutical and Medicinal Chemistry, Institute of Pharmacy, Freie Universität Berlin, Königin-Luise-Straße 2 + 4, 14195 Berlin, Germany
| | - Thomas Rudolf
- Pharmaceutical and Medicinal Chemistry, Institute of Pharmacy, Freie Universität Berlin, Königin-Luise-Straße 2 + 4, 14195 Berlin, Germany
| | - Silke Bergemann
- Pharmaceutical and Medicinal Chemistry, Institute of Pharmacy, Freie Universität Berlin, Königin-Luise-Straße 2 + 4, 14195 Berlin, Germany
| | - Christoph Arkona
- Pharmaceutical and Medicinal Chemistry, Institute of Pharmacy, Freie Universität Berlin, Königin-Luise-Straße 2 + 4, 14195 Berlin, Germany
| | - Christoph Nitsche
- Research School of Chemistry, Australian National University, Canberra, ACT 2601, Australia
| | - Ralf Bartenschlager
- Department for Infectious Diseases, Molecular Virology, Heidelberg University, Im Neuenheimer Feld 344, 69120 Heidelberg, Germany
- German Center for Infection Research (DZIF), Heidelberg partner site, 69120 Heidelberg, Germany
| | - Jörg Rademann
- Pharmaceutical and Medicinal Chemistry, Institute of Pharmacy, Freie Universität Berlin, Königin-Luise-Straße 2 + 4, 14195 Berlin, Germany
| |
Collapse
|
8
|
Abstract
Although the culture of VERO cells in bioreactors is an important industrial bioprocess for the production of viruses and vaccines, surprisingly few reports on the analysis of the flux distribution in the cell metabolism have been published. In this study, an attempt is made to fill this gap by providing an analysis of relatively simple metabolic networks, which are constructed to describe the cell behavior in different culture conditions, e.g., the exponential growth phase (availability of glucose and glutamine), cell growth without glutamine, and cell growth without glucose and glutamine. The metabolic networks are kept as simple as possible in order to avoid underdeterminacy linked to the lack of extracellular measurements, and a unique flux distribution is computed in each case based on a mild assumption that the macromolecular composition of the cell is known. The result of this computation provides some insight into the metabolic changes triggered by the culture conditions, which could support the design of feedback control strategies in fed batch or perfusion bioreactors where the lactate concentration is measured online and regulated by controlling the delivery rates of glucose and, possibly, of some essential amino acids.
Collapse
|
9
|
Abstract
Japanese encephalitis (JE) is an endemic disease dominantly in the Asia-Pacific region with mortality rate varying between 3% and 30%. Long-term neuropsychiatric sequelae developed in 30–50% of the survivors. There is no available antiviral therapy for JE. JE vaccines play a major role in preventing this devastating disease. The incidence of JE declined over years and the age distribution shifted toward adults in countries where JE immunization program exists. Mouse brain–JE vaccine is currently replaced by inactivated Vero cell-derived vaccine and live-attenuated vaccine using SA14-14-2 strain, and live chimeric JE vaccines. These three types of JE vaccines are associated with favorable efficacy and safety profiles. Common adverse reactions include injection site reactions and fever, and severe adverse reactions are rare.
Collapse
Affiliation(s)
- Ya-Li Hu
- Department of Pediatrics, Cathay General Hospital, Taipei, Taiwan
| | - Ping-Ing Lee
- Department of Pediatrics, National Taiwan University Hospital, and National Taiwan University College of Medicine, Taipei, Taiwan
| |
Collapse
|
10
|
Bhattacharjee A, Chaudhuri R, Dash JJ, Saha M, Choudhury L, Roy S. Pre-treatment with Scopolamine Naturally Suppresses Japanese Encephalitis Viral Load in Embryonated Chick Through Regulation of Multiple Signaling Pathways. Appl Biochem Biotechnol 2021; 193:1654-1674. [PMID: 33620666 DOI: 10.1007/s12010-021-03526-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 02/07/2021] [Indexed: 11/30/2022]
Abstract
Suitable recognition of invasive microorganisms is a crucial factor for evoking a strong immune response that can combat the pathogen. Toll-like receptors (TLRs) play a pivotal role in the induction of this innate immune response through stimulation of interferons (IFNs) that control viral replication in the host via distinct signaling pathways. Though the antiviral property of Atropa belladonna has been established, yet the role of one of its active components scopolamine in modulating various factors of the innate immune branch has not yet been investigated until date. Thus, the present study was conducted to assess the antiviral effects of scopolamine and its immunomodulatory role against Japanese encephalitis virus (JEV) infections in embryonated chick. Pre-treatment with scopolamine hydrobromide showed a significant decrease in the viral loads of chorioallantoic membrane (CAM) and brain tissues. Molecular docking analysis revealed that scopolamine hydrobromide binds to the active site of non-structural protein 5 (NS5) that has enzymatic activities required for replication of JEV, making it a highly promising chemical compound against the virus. The binding contributions of different amino acid residues at or near the active site suggest a potential binding of this compound. Pre-treatment with the scopolamine hydrobromide showed significant upregulation of different TLRs like TLR3, TLR7, and TLR8, interleukins like IL-4, and IL-10, as well as IFNs and their regulatory factors. However, virus-infected tissues (direct infection group) exhibited higher TLR4 expression as compared to scopolamine hydrobromide pre-treated, virus-infected tissues (medicine pre-treated group). These results indicate that scopolamine hydrobromide contributes much to launch antiviral effects by remoulding the TLR and IFN signaling pathways that are involved in sensing and initiating the much-needed anti-JEV responses.
Collapse
Affiliation(s)
- Arghyadeep Bhattacharjee
- Department of Biotechnology, National Institute of Technology Durgapur, Durgapur, West Bengal, India
| | - Rajarshi Chaudhuri
- Department of Biotechnology, Regional Centre for Biotechnology, Faridabad, Haryana, India
| | - Jiban Jyoti Dash
- Department of Botany, Berhampur University, Berhampur, Odisha, India
| | - Manish Saha
- Department of Cardiology, R.G Kar Medical College & Hospital, Kolkata, West Bengal, India
| | | | - Souvik Roy
- Post-Graduate Department of Biotechnology, St. Xavier's College (Autonomous), Kolkata, West Bengal, India.
| |
Collapse
|
11
|
Pach S, Sarter TM, Yousef R, Schaller D, Bergemann S, Arkona C, Rademann J, Nitsche C, Wolber G. Catching a Moving Target: Comparative Modeling of Flaviviral NS2B-NS3 Reveals Small Molecule Zika Protease Inhibitors. ACS Med Chem Lett 2020; 11:514-520. [PMID: 32292558 DOI: 10.1021/acsmedchemlett.9b00629] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 03/03/2020] [Indexed: 02/06/2023] Open
Abstract
The pivotal role of viral proteases in virus replication has already been successfully exploited in several antiviral drug design campaigns. However, no efficient antivirals are currently available against flaviviral infections. In this study, we present lead-like small molecule inhibitors of the Zika Virus (ZIKV) NS2B-NS3 protease. Since only few nonpeptide competitive ligands are known, we take advantage of the high structural similarity with the West Nile Virus (WNV) NS2B-NS3 protease. A comparative modeling approach involving our in-house software PyRod was employed to systematically analyze the binding sites and develop molecular dynamics-based 3D pharmacophores for virtual screening. The identified compounds were biochemically characterized revealing low micromolar affinity for both ZIKV and WNV proteases. Their lead-like properties together with rationalized binding modes represent valuable starting points for future lead optimization. Since the NS2B-NS3 protease is highly conserved among flaviviruses, these compounds may also drive the development of pan-flaviviral antiviral drugs.
Collapse
Affiliation(s)
- Szymon Pach
- Pharmaceutical and Medicinal Chemistry, Institute of Pharmacy, Freie Universität Berlin, Königin-Luise-Straße 2+4, Berlin 14195, Germany
| | - Tim M. Sarter
- Research School of Chemistry, Australian National University, Canberra, ACT 2601, Australia
| | - Rafe Yousef
- Pharmaceutical and Medicinal Chemistry, Institute of Pharmacy, Freie Universität Berlin, Königin-Luise-Straße 2+4, Berlin 14195, Germany
| | - David Schaller
- Pharmaceutical and Medicinal Chemistry, Institute of Pharmacy, Freie Universität Berlin, Königin-Luise-Straße 2+4, Berlin 14195, Germany
| | - Silke Bergemann
- Pharmaceutical and Medicinal Chemistry, Institute of Pharmacy, Freie Universität Berlin, Königin-Luise-Straße 2+4, Berlin 14195, Germany
| | - Christoph Arkona
- Pharmaceutical and Medicinal Chemistry, Institute of Pharmacy, Freie Universität Berlin, Königin-Luise-Straße 2+4, Berlin 14195, Germany
| | - Jörg Rademann
- Pharmaceutical and Medicinal Chemistry, Institute of Pharmacy, Freie Universität Berlin, Königin-Luise-Straße 2+4, Berlin 14195, Germany
| | - Christoph Nitsche
- Research School of Chemistry, Australian National University, Canberra, ACT 2601, Australia
| | - Gerhard Wolber
- Pharmaceutical and Medicinal Chemistry, Institute of Pharmacy, Freie Universität Berlin, Königin-Luise-Straße 2+4, Berlin 14195, Germany
| |
Collapse
|
12
|
Flavivirus infection—A review of immunopathogenesis, immunological response, and immunodiagnosis. Virus Res 2019; 274:197770. [DOI: 10.1016/j.virusres.2019.197770] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 09/20/2019] [Accepted: 09/23/2019] [Indexed: 12/20/2022]
|
13
|
Japanese encephalitis virus: Associated immune response and recent progress in vaccine development. Microb Pathog 2019; 136:103678. [DOI: 10.1016/j.micpath.2019.103678] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 08/19/2019] [Accepted: 08/19/2019] [Indexed: 11/17/2022]
|
14
|
Hills SL, Walter EB, Atmar RL, Fischer M. Japanese Encephalitis Vaccine: Recommendations of the Advisory Committee on Immunization Practices. MMWR Recomm Rep 2019; 68:1-33. [PMID: 31518342 PMCID: PMC6659993 DOI: 10.15585/mmwr.rr6802a1] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
This report updates the 2010 recommendations from the CDC Advisory Committee on Immunization Practices (ACIP) regarding prevention of Japanese encephalitis (JE) among U.S. travelers and laboratory workers (Fischer M, Lindsey N, Staples JE, Hills S. Japanese encephalitis vaccines: recommendations of the Advisory Committee on Immunization Practices (ACIP). MMWR Recomm Rep 2010;59[No. RR-1]). The report summarizes the epidemiology of JE, describes the JE vaccine that is licensed and available in the United States, and provides recommendations for its use among travelers and laboratory workers.JE virus, a mosquitoborne flavivirus, is the most common vaccine-preventable cause of encephalitis in Asia. JE occurs throughout most of Asia and parts of the western Pacific. Approximately 20%-30% of patients die, and 30%-50% of survivors have neurologic, cognitive, or behavioral sequelae. No antiviral treatment is available.Inactivated Vero cell culture-derived JE vaccine (Ixiaro [JE-VC]) is the only JE vaccine that is licensed and available in the United States. In 2009, the U.S. Food and Drug Administration (FDA) licensed JE-VC for use in persons aged ≥17 years; in 2013, licensure was extended to include children aged ≥2 months.Most travelers to countries where the disease is endemic are at very low risk for JE. However, some travelers are at increased risk for infection on the basis of their travel plans. Factors that increase the risk for JE virus exposure include 1) traveling for a longer period; 2) travel during the JE virus transmission season; 3) spending time in rural areas; 4) participating in extensive outdoor activities; and 5) staying in accommodations without air conditioning, screens, or bed nets. All travelers to countries where JE is endemic should be advised to take precautions to avoid mosquito bites to reduce the risk for JE and other vectorborne diseases. For some persons who might be at increased risk for JE, the vaccine can further reduce the risk for infection. The decision about whether to vaccinate should be individualized and consider the 1) risks related to the specific travel itinerary, 2) likelihood of future travel to countries where JE is endemic, 3) high morbidity and mortality of JE, 4) availability of an effective vaccine, 5) possibility (but low probability) of serious adverse events after vaccination, and 6) the traveler's personal perception and tolerance of risk.JE vaccine is recommended for persons moving to a JE-endemic country to take up residence, longer-term (e.g., ≥1 month) travelers to JE-endemic areas, and frequent travelers to JE-endemic areas. JE vaccine also should be considered for shorter-term (e.g., <1 month) travelers with an increased risk for JE on the basis of planned travel duration, season, location, activities, and accommodations and for travelers to JE-endemic areas who are uncertain about their specific travel duration, destinations, or activities. JE vaccine is not recommended for travelers with very low-risk itineraries, such as shorter-term travel limited to urban areas or outside of a well-defined JE virus transmission season.
Collapse
|
15
|
Karthikeyan A, Shanmuganathan S, Pavulraj S, Prabakar G, Pavithra S, Porteen K, Elaiyaraja G, Malik YS. JAPANESE ENCEPHALITIS, RECENT PERSPECTIVES ON VIRUS GENOME, TRANSMISSION, EPIDEMIOLOGY, DIAGNOSIS AND PROPHYLACTIC INTERVENTIONS. ACTA ACUST UNITED AC 2017. [DOI: 10.18006/2017.5(6).730.748] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
16
|
Poore EA, Slifka DK, Raué HP, Thomas A, Hammarlund E, Quintel BK, Torrey LL, Slifka AM, Richner JM, Dubois ME, Johnson LP, Diamond MS, Slifka MK, Amanna IJ. Pre-clinical development of a hydrogen peroxide-inactivated West Nile virus vaccine. Vaccine 2016; 35:283-292. [PMID: 27919629 DOI: 10.1016/j.vaccine.2016.11.080] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Revised: 11/17/2016] [Accepted: 11/18/2016] [Indexed: 02/08/2023]
Abstract
West Nile virus (WNV) is a mosquito-transmitted pathogen with a wide geographical range that can lead to long-term disability and death in some cases. Despite the public health risk posed by WNV, including an estimated 3 million infections in the United States alone, no vaccine is available for use in humans. Here, we present a scaled manufacturing approach for production of a hydrogen peroxide-inactivated whole virion WNV vaccine, termed HydroVax-001WNV. Vaccination resulted in robust virus-specific neutralizing antibody responses and protection against WNV-associated mortality in mice or viremia in rhesus macaques (RM). A GLP-compliant toxicology study performed in rats demonstrated an excellent safety profile with clinical findings limited to minor and transient irritation at the injection site. An in vitro relative potency (IVRP) assay was developed and shown to correlate with in vivo responses following forced degradation studies. Long-term in vivo potency comparisons between the intended storage condition (2-8°C) and a thermally stressed condition (40±2°C) demonstrated no loss in vaccine efficacy or protective immunity over a 6-month span of time. Together, the positive pre-clinical findings regarding immunogenicity, safety, and stability indicate that HydroVax-001WNV is a promising vaccine candidate.
Collapse
Affiliation(s)
| | | | - Hans-Peter Raué
- Division of Neuroscience, Oregon National Primate Research Center, Department of Molecular Microbiology and Immunology, Oregon Health & Science University, Beaverton, OR, USA
| | - Archana Thomas
- Division of Neuroscience, Oregon National Primate Research Center, Department of Molecular Microbiology and Immunology, Oregon Health & Science University, Beaverton, OR, USA
| | - Erika Hammarlund
- Division of Neuroscience, Oregon National Primate Research Center, Department of Molecular Microbiology and Immunology, Oregon Health & Science University, Beaverton, OR, USA
| | | | | | | | - Justin M Richner
- Departments of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | | | | | - Michael S Diamond
- Departments of Medicine, Washington University School of Medicine, St. Louis, MO, USA; Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, USA; Pathology & Immunology, Washington University School of Medicine, St. Louis, MO, USA; The Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine, St. Louis, MO, USA
| | - Mark K Slifka
- Najít Technologies, Inc, Beaverton, OR, USA; Division of Neuroscience, Oregon National Primate Research Center, Department of Molecular Microbiology and Immunology, Oregon Health & Science University, Beaverton, OR, USA
| | | |
Collapse
|
17
|
Abstract
Japanese encephalitis virus, as the most important vaccine-preventable cause of viral encephalitis in Asia, is estimated to cause over 68,000 clinical cases yearly. In endemic areas, most Japanese encephalitis infections occur in children younger than 10 y and clinical manifestation of this disease is critical, because there is no effective treatment available. As JEV infections are regarded as one of the most serious viral causes of encephalitis and mass immunization programmes are generally recommended for residents in endemic areas, a safe and effective JEV vaccine was needed to protect them as well as others at risk. Due to the safety concerns with the mouse brain derived vaccine, second generation vaccines against JE produced in cell culture like Vero cells were developed. IXIARO® is a purified, inactivated aluminum-adjuvanted JE vaccine, based on the SA14-14-2 virus strain, and is available in North America, Europe, Canada, Switzerland, Singapore, Hong Kong and Israel as well as in Australia & New Zealand (as JESPECT®).The safety, tolerability and immunogenicity profile of IXIARO® is well established through a number of clinical studies comparing IXIARO® with placebo as well as mouse brain derived vaccine. Recent data show that the global incidence of JE remains substantial, especially young children in endemic areas are most susceptible. As vaccination is the most feasible, reliable and cost effective tool for JE control, IXIARO® with confirmed excellent safety profile is highly recommendable, in particular for vaccination of children at risk. The European Commission as well as the FDA approved the extension of indication of IXIARO® to the pediatric segment (2 months of age and older) based on these data.
Collapse
Affiliation(s)
- Christa Firbas
- a Department of Clinical Pharmacology; Medical University of Vienna ; Vienna , Austria
| | | |
Collapse
|
18
|
Nedjadi T, El-Kafrawy S, Sohrab SS, Desprès P, Damanhouri G, Azhar E. Tackling dengue fever: Current status and challenges. Virol J 2015; 12:212. [PMID: 26645066 PMCID: PMC4673751 DOI: 10.1186/s12985-015-0444-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Accepted: 12/01/2015] [Indexed: 12/22/2022] Open
Abstract
According to recent statistics, 96 million apparent dengue infections were estimated worldwide in 2010. This figure is by far greater than the WHO prediction which indicates the rapid spread of this disease posing a growing threat to the economy and a major challenge to clinicians and health care services across the globe particularly in the affected areas.This article aims at bringing to light the current epidemiological and clinical status of the dengue fever. The relationship between genetic mutations, single nucleotide polymorphism (SNP) and the pathophysiology of disease progression will be put into perspective. It will also highlight the recent advances in dengue vaccine development.Thus far, a significant progress has been made in unraveling the risk factors and understanding the molecular pathogenesis associated with the disease. However, further insights in molecular features of the disease and the development of animal models will enormously help improving the therapeutic interventions and potentially contribute to finding new preventive measures for population at risk.
Collapse
Affiliation(s)
- Taoufik Nedjadi
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia.
| | - Sherif El-Kafrawy
- Special Infectious Agents Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia.
| | - Sayed S Sohrab
- Special Infectious Agents Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia.
| | - Philippe Desprès
- UMR PIMIT (I2T team), University of Reunion island, INSERM U1187, CNRS 9192, IRD 249, Technology Platform CYROI, 2 rue Maxime Rivière Saint-Clotilde, La Reunion, 97491, France.
| | - Ghazi Damanhouri
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia.
| | - Esam Azhar
- Special Infectious Agents Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia.
| |
Collapse
|
19
|
Influence of elemental impurities in aluminum hydroxide adjuvant on the stability of inactivated Japanese Encephalitis vaccine, IXIARO®. Vaccine 2015; 33:5989-96. [DOI: 10.1016/j.vaccine.2015.05.103] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2015] [Revised: 05/27/2015] [Accepted: 05/28/2015] [Indexed: 11/21/2022]
|
20
|
Erra EO, Kantele A. The Vero cell-derived, inactivated, SA14-14-2 strain-based vaccine (Ixiaro) for prevention of Japanese encephalitis. Expert Rev Vaccines 2015; 14:1167-79. [PMID: 26162529 DOI: 10.1586/14760584.2015.1061939] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
With an estimated 68,000 cases each year, Japanese encephalitis (JE) is the leading cause of viral encephalitis in Asia. Vaccination against the disease is recommended for endemic populations and also for travelers at risk. Recently, a Vero cell-derived, inactivated, SA14-14-2 strain-based JE vaccine (JE-VC) became available for travelers from non-endemic regions, replacing the traditional mouse brain-derived vaccines. First licensed in 2009, JE-VC is currently available in Europe, the USA, Canada, Australia and several other countries. In 2013, the vaccine was approved by the European Medicines Agency and the US Food and Drug Administration for use in children. This review summarizes current data on the immunogenicity, safety and clinical use of JE-VC.
Collapse
Affiliation(s)
- Elina O Erra
- Haartman Institute, University of Helsinki, Helsinki, Finland
| | | |
Collapse
|
21
|
Chowdhury P, Ahmed Khan S, Topno R, Dutta P, Yadav RNS, Mahanta J. Immunogenic potential and protective efficacy of formalin inactivated circulating Indian strain of West Nile virus. ASIAN PAC J TROP MED 2014; 7:946-51. [PMID: 25479622 DOI: 10.1016/s1995-7645(14)60167-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2014] [Revised: 10/15/2014] [Accepted: 11/15/2014] [Indexed: 11/29/2022] Open
Abstract
OBJECTIVE To assess the best suitable condition for virus inactivation, and to study the immunogenic potential and protective efficacy of a circulating West Nile virus (WNV) strain in Assam. METHODS Bulk preparation of circulating WNV: WNIRGC07 (GeneBank ID: HQ246154), was undertaken in a bioreactor using cytodex-1. Virus Inactivation was done in three different conditions; 22 °C, 4 °C and room temperature. The virus preparations were evaluated for antigenicity by ELISA and toxicity by cell proliferation kit. Virus efficacy was done in-vivo on swiss albino mice against standard Indian WNV and Japanese encephalitis virus (JEV) strain. Humoral and cell mediated immune response was evaluated in mice sera by ELISA and neutralization assay. RESULTS Inactivation at 22 °C was found to be more suitable in terms of less toxicity and high antigenicity. The same was selected to study the immune response and efficacy in mice. It induced neutralizing antibody titre of 1: 625 and high IgG response. In vivo experiment showed 100% protective efficacy against WNV and 20.8% cross protective efficacy against JEV. Further assessment of cellular immunity through immunized mice revealed augmentation of high levels of pro-inflammatory cytokines and moderate levels of anti-cytokines indicating a mixed balance of Th1 and Th2 response. CONCLUSIONS Findings suggest that formalin inactivated Indian WNV strain has a good immunogenic potential. This is the first study on assessment of immunogenic potential of a lineage 5 strain of WNV. Our study reveals that it would be a promising and effective candidate for vaccine studies which warrants further evaluation.
Collapse
Affiliation(s)
- Pritom Chowdhury
- Regional Medical Research Centre, ICMR (NE Region), Dibrugarh, Assam, India; Centre for studies in Biotechnology, Dibrugarh University, Dibrugarh-786004, Assam, India
| | - Siraj Ahmed Khan
- Regional Medical Research Centre, ICMR (NE Region), Dibrugarh, Assam, India.
| | - Rashmee Topno
- Regional Medical Research Centre, ICMR (NE Region), Dibrugarh, Assam, India; Centre for studies in Biotechnology, Dibrugarh University, Dibrugarh-786004, Assam, India
| | - Prafulla Dutta
- Regional Medical Research Centre, ICMR (NE Region), Dibrugarh, Assam, India
| | - R N S Yadav
- Centre for studies in Biotechnology, Dibrugarh University, Dibrugarh-786004, Assam, India
| | - Jagadish Mahanta
- Regional Medical Research Centre, ICMR (NE Region), Dibrugarh, Assam, India
| |
Collapse
|
22
|
Trabelsi K, Majoul S, Rourou S, Kallel H. Process intensification for an enhanced replication of a newly adapted RM-65 sheep pox virus strain in Vero cells grown in stirred bioreactor. Biochem Eng J 2014. [DOI: 10.1016/j.bej.2014.06.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
23
|
A poorly neutralizing IgG2a/c response elicited by a DNA vaccine protects mice against Japanese encephalitis virus. J Gen Virol 2014; 95:1983-1990. [DOI: 10.1099/vir.0.067280-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
We demonstrated previously that immunization with a DNA vaccine expressing the Japanese encephalitis virus (JEV) envelope (E) protein conferred a high level of protection through a poorly neutralizing antibody response. Here, we further investigated the role of the IgG subclass in this antibody-dependent protection using cytokine co-immunization and cytokine-deficient mice. A significant difference in IgG2a/c but not IgG1 was observed between mice that survived or died following a lethal challenge. Correspondingly, the IgG2a/c response and protection increased in IL-4-deficient mice but decreased in IFN-γ-deficient mice, highlighting the importance of IgG2a/c. In addition, the restoration of protection and E-specific IgG2a/c production in IFN-γ-deficient mice by a T helper (Th) type 1-biased intramuscular immunization suggested that IgG2a/c but not IFN-γ was the major component for protection. The failure of protection against a direct intracranial challenge indicated that IgG2a/c-mediated protection was restricted to outside the central nervous system. Consistent with this conclusion, passive transfer of E-specific antisera conferred protection only pre-exposure to JEV. Therefore, our data provided evidence that the IgG subclass plays an important role in protection against JEV, particular in poorly neutralizing E-specific antibodies, and Th1-biased IgG2a/c confers better protection than Th2-biased IgG1 against JEV.
Collapse
|
24
|
Jelinek T. IXIARO updated: overview of clinical trials and developments with the inactivated vaccine against Japanese encephalitis. Expert Rev Vaccines 2014; 12:859-69. [PMID: 23984958 DOI: 10.1586/14760584.2013.835638] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The mosquito-borne Japanese encephalitis virus causes an estimated 50,000 cases in Asia, accounting for at least 10,000 deaths and 15,000 cases of neuropsychiatric sequelae. IXIARO (Intercell AG, Vienna, Austria), an inactivated, Vero cell-derived vaccine against Japanese encephalitis was introduced in 2009. The vaccine is highly immunogenic, showing significantly higher geometric mean antibody titers compared with previous, mouse brain-derived vaccines. Postmarketing studies have confirmed the excellent safety profile. Studies on children aged 2 months to 18 years have been published. Based on these data, positive opinion from the EMA for vaccination of children has recently been given. Since a safe and effective vaccine against Japanese encephalitis is now available, outdated guidelines and recommendations have to be revised: travelers to rural areas of Asia should generally be recommended vaccination.
Collapse
Affiliation(s)
- Tomas Jelinek
- Berlin Center for Travel and Tropical Medicine, Jägerstrasse 67-69, 10117 Berlin, Germany.
| |
Collapse
|
25
|
Abstract
Japanese encephalitis (JE) is the most common form of viral encephalitis that appears in the form of frequent epidemics of brain fever throughout Southeast Asia, China and India. The disease is caused by a Flavivirus named Japanese encephalitis virus that is spread to humans by mosquitoes. An internationally approved mouse brain-derived inactivated vaccine has been available that is relatively expensive, gives immunity of uncertain duration and is not completely safe. Cell culture-derived inactivated and attenuated JE vaccines are in use in China, but these are not produced as per the norms acceptable in most countries. Several new promising JE vaccine candidates have been developed, some of which are under different stages of clinical evaluation. These new candidate JE vaccines have the potential to generate long-lasting immunity at low cost.
Collapse
Affiliation(s)
- Kaushik Bharati
- Virology laboratory, National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi, 110 067, India.
| | | |
Collapse
|
26
|
Halstead SB, Thomas SJ. New Japanese encephalitis vaccines: alternatives to production in mouse brain. Expert Rev Vaccines 2014; 10:355-64. [DOI: 10.1586/erv.11.7] [Citation(s) in RCA: 95] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
27
|
Abstract
Japanese encephalitis is a disease of the CNS, endemic in Asia and Oceania. The disease is refractory to drug treatments and whilst the rural economies remain heavily dependent on agriculture, conditions for propagation of the disease will persist. Thus, there is a need for effective vaccines. Although some currently exist, they have their shortcomings. ChimeriVax-JE (Acambis Inc.) is a chimeric, live attenuated vaccine which expresses protective Japanese encephalitis antigens and to date has proven to be safe, effective and well-tolerated in clinical trials. It therefore appears to be a cost-effective prophylactic vaccine against this debilitating disease.
Collapse
Affiliation(s)
- Taff Jones
- ID Biomedical Corp. of Quebec, 7150 Frederick Banting, Montreal H4S 2A1, Quebec, Canada.
| |
Collapse
|
28
|
|
29
|
Yun SI, Lee YM. Japanese encephalitis: the virus and vaccines. Hum Vaccin Immunother 2013; 10:263-79. [PMID: 24161909 PMCID: PMC4185882 DOI: 10.4161/hv.26902] [Citation(s) in RCA: 196] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2013] [Revised: 10/14/2013] [Accepted: 10/22/2013] [Indexed: 12/11/2022] Open
Abstract
Japanese encephalitis (JE) is an infectious disease of the central nervous system caused by Japanese encephalitis virus (JEV), a zoonotic mosquito-borne flavivirus. JEV is prevalent in much of Asia and the Western Pacific, with over 4 billion people living at risk of infection. In the absence of antiviral intervention, vaccination is the only strategy to develop long-term sustainable protection against JEV infection. Over the past half-century, a mouse brain-derived inactivated vaccine has been used internationally for active immunization. To date, however, JEV is still a clinically important, emerging, and re-emerging human pathogen of global significance. In recent years, production of the mouse brain-derived vaccine has been discontinued, but 3 new cell culture-derived vaccines are available in various parts of the world. Here we review current aspects of JEV biology, summarize the 4 types of JEV vaccine, and discuss the potential of an infectious JEV cDNA technology for future vaccine development.
Collapse
Affiliation(s)
- Sang-Im Yun
- Department of Animal, Dairy, and Veterinary Sciences; Utah Science Technology and Research; College of Agriculture and Applied Sciences; Utah State University; Logan, UT USA
| | - Young-Min Lee
- Department of Animal, Dairy, and Veterinary Sciences; Utah Science Technology and Research; College of Agriculture and Applied Sciences; Utah State University; Logan, UT USA
| |
Collapse
|
30
|
Li J, Chen H, Wu N, Fan D, Liang G, Gao N, An J. Characterization of immune responses induced by inactivated, live attenuated and DNA vaccines against Japanese encephalitis virus in mice. Vaccine 2013; 31:4136-42. [PMID: 23845821 DOI: 10.1016/j.vaccine.2013.06.099] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2013] [Revised: 05/20/2013] [Accepted: 06/25/2013] [Indexed: 10/26/2022]
Abstract
Vaccination is the most effective countermeasure for protecting individuals from Japanese encephalitis virus (JEV) infection. There are two types of JEV vaccines currently used in China: the Vero cell-derived inactivated vaccine and the live attenuated vaccine. In this study, we characterized the immune response and protective efficacy induced in mice by the inactivated vaccine, live attenuated vaccine and the DNA vaccine candidate pCAG-JME, which expresses JEV prM-E proteins. We found that the live attenuated vaccine conferred 100% protection and resulted in the generation of high levels of specific anti-JEV antibodies and cytokines. The pCAG-JME vaccine induced protective immunity as well as the live attenuated vaccine. Unexpectedly, immunization with the inactivated vaccine only induced a limited immune response and partial protection, which may be due to the decreased activity of dendritic cells and the expansion of CD4+CD25+Foxp3+ regulatory T cells observed in these mice. Altogether, our results suggest that the live attenuated vaccine is more effective in providing protection against JEV infection than the inactivated vaccine and that pCAG-JME will be a potential JEV vaccine candidate.
Collapse
Affiliation(s)
- Jieqiong Li
- Department of Microbiology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, PR China
| | | | | | | | | | | | | |
Collapse
|
31
|
Jelinek T. IXIARO ® updated: overview of clinical trials and developments with the inactivated vaccine against Japanese encephalitis. Expert Rev Vaccines 2013:1-11. [PMID: 23718271 DOI: 10.1586/erv.13.53] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
The mosquito-borne Japanese encephalitis virus causes an estimated 50,000 cases in Asia, accounting for at least 10,000 deaths and 15,000 cases of neuropsychiatric sequelae. IXIARO® (Intercell AG, Vienna, Austria), an inactivated, Vero cell-derived vaccine against Japanese encephalitis was introduced in 2009. The vaccine is highly immunogenic, showing significantly higher geometric mean antibody titers compared with previous, mouse brain-derived vaccines. Postmarketing studies have confirmed the excellent safety profile. Studies on children aged 2 months to 18 years have been published. Based on these data, positive opinion from the EMA for vaccination of children has recently been given. Since a safe and effective vaccine against Japanese encephalitis is now available, outdated guidelines and recommendations have to be revised: travelers to rural areas of Asia should generally be recommended vaccination.
Collapse
Affiliation(s)
- Tomas Jelinek
- Berlin Center for Travel and Tropical Medicine, Jägerstrasse 67-69, 10117 Berlin, Germany.
| |
Collapse
|
32
|
|
33
|
Tiwari S, Singh RK, Tiwari R, Dhole TN. Japanese encephalitis: a review of the Indian perspective. Braz J Infect Dis 2012; 16:564-73. [PMID: 23141974 DOI: 10.1016/j.bjid.2012.10.004] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2012] [Accepted: 07/11/2012] [Indexed: 11/30/2022] Open
Abstract
Japanese encephalitis virus (JEV) causes Japanese encephalitis, which is a leading form of viral encephalitis in Asia, with around 50,000 cases and 10,000 deaths per year in children below 15 years of age. The JEV has shown a tendency to extend to other geographic regions. Case fatality averages 30% and a high percentage of the survivors are left with permanent neuropsychiatric sequelae. Currently, there is no cure for JEV, and treatment is mainly supportive. Patients are not infectious, but should avoid further mosquito bites. A number of antiviral agents have been investigated; however, none of these have convincingly been shown to improve the outcome of JEV. In this review, the current knowledge of the epidemiology and the pathogenesis of this deadly disease have been summarized.
Collapse
Affiliation(s)
- Sarika Tiwari
- Department of Microbiology, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Lucknow, Uttar Pradesh, India
| | | | | | | |
Collapse
|
34
|
Development of a new hydrogen peroxide–based vaccine platform. Nat Med 2012; 18:974-9. [PMID: 22635006 DOI: 10.1038/nm.2763] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2011] [Accepted: 10/25/2011] [Indexed: 01/04/2023]
Abstract
Safe and effective vaccines are crucial for maintaining public health and reducing the global burden of infectious disease. Here we introduce a new vaccine platform that uses hydrogen peroxide (H(2)O(2)) to inactivate viruses for vaccine production. H(2)O(2) rapidly inactivates both RNA and DNA viruses with minimal damage to antigenic structure or immunogenicity and is a highly effective method when compared with conventional vaccine inactivation approaches such as formaldehyde or β-propiolactone. Mice immunized with H(2)O(2)-inactivated lymphocytic choriomeningitis virus (LCMV) generated cytolytic, multifunctional virus-specific CD8(+) T cells that conferred protection against chronic LCMV infection. Likewise, mice vaccinated with H(2)O(2)-inactivated vaccinia virus or H(2)O(2)-inactivated West Nile virus showed high virus-specific neutralizing antibody titers and were fully protected against lethal challenge. Together, these studies demonstrate that H(2)O(2)-based vaccines are highly immunogenic, provide protection against a range of viral pathogens in mice and represent a promising new approach to future vaccine development.
Collapse
|
35
|
Poly-γ-glutamic acid nanoparticles and aluminum adjuvant used as an adjuvant with a single dose of Japanese encephalitis virus-like particles provide effective protection from Japanese encephalitis virus. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2011; 19:17-22. [PMID: 22089248 DOI: 10.1128/cvi.05412-11] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
To maintain immunity against Japanese encephalitis virus (JEV), a formalin-inactivated Japanese encephalitis (JE) vaccine should be administered several times. The repeated vaccination is not helpful in the case of a sudden outbreak of JEV or when urgent travel to a high-JEV-risk region is required; however, there are few single-injection JE vaccine options. In the present study, we investigated the efficacy of a single dose of a new effective JE virus-like particle preparation containing the JE envelope protein (JE-VLP). Although single administration with JE-VLP protected less than 50% of mice against lethal JEV infection, adding poly(γ-glutamic acid) nanoparticles (γ-PGA-NPs) or aluminum adjuvant (alum) to JE-VLP significantly protected more than 90% of the mice. A single injection of JE-VLP with either γ-PGA-NPs or alum induced a significantly greater anti-JEV neutralizing antibody titer than JE-VLP alone. The enhanced titers were maintained for more than 6 months, resulting in long-lasting protection of 90% of the immunized mice. Although the vaccine design needs further modification to reach 100% protection, a single dose of JE-VLP with γ-PGA-NPs may be a useful step in developing a next-generation vaccine to stop a JE outbreak or to immunize travelers or military personnel.
Collapse
|
36
|
Isaeva EI, Mazurkova NA, Skarnovich MO, Troshkova GP, Shishkina LN, Podchernyayeva RY. Optimization of roller culturing of influenza virus vaccine strains in MDCK and Vero cell cultures using plant origin components. APPL BIOCHEM MICRO+ 2011. [DOI: 10.1134/s0003683811080059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
37
|
Van Gessel Y, Klade CS, Putnak R, Formica A, Krasaesub S, Spruth M, Cena B, Tungtaeng A, Gettayacamin M, Dewasthaly S. Correlation of protection against Japanese encephalitis virus and JE vaccine (IXIARO(®)) induced neutralizing antibody titers. Vaccine 2011; 29:5925-31. [PMID: 21723353 DOI: 10.1016/j.vaccine.2011.06.062] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2011] [Revised: 06/10/2011] [Accepted: 06/15/2011] [Indexed: 11/26/2022]
Abstract
Immune sera from volunteers vaccinated in a blinded Phase 3 clinical trial with JE-VAX(®) and a new Japanese encephalitis virus (JEV) vaccine (IC51 or IXIARO), were tested for the ability to protect mice against lethal JEV challenge. Sera from IXIARO vaccinated subjects were pooled into four batches based on neutralizing antibody measured by plaque reduction neutralization test (PRNT(50) titer): high (∼200), medium (∼40-50), low (∼20) and negative (<10). Pooled sera from JE-VAX(®) vaccinated subjects (PRNT(50) titer∼55) and pooled JEV antibody negative pre-vaccination sera were used as controls. Groups of ten 6- to 7-week-old female ICR mice were injected intraperitoneally with 0.5 ml of each serum pool diluted 1:2 or 1:10, challenged approximately 18 h later with a lethal dose of either JEV strain SA14 (genotype III) or strain KE-093 (genotype I) and observed for 21 days. All mice in the non-immune serum groups developed clinical signs consistent with JEV infection or died, whereas high titer sera from both IXIARO and JE-VAX(®) sera protected 90-100% of the animals. Statistical tests showed similar protection against both JEV strains SA14 and KE-093 and protection correlated with the anti-JEV antibody titer of IXIARO sera as measured by PRNT(50). Ex vivo neutralizing antibody titers showed that almost all mice with a titer of 10 or greater were fully protected. In a separate study, analysis of geometric mean titers (GMTs) of the groups of mice vaccinated with different doses of IXIARO and challenged with JEV SA14 provided additional evidence that titers≥10 were protective.
Collapse
Affiliation(s)
- Yvonne Van Gessel
- Department of Veterinary Medicine, United States Army Medical Component-Armed Forces Research Institute of Medical Sciences (USAMC-AFRIMS), Bangkok, Thailand
| | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Unni SK, Růžek D, Chhatbar C, Mishra R, Johri MK, Singh SK. Japanese encephalitis virus: from genome to infectome. Microbes Infect 2011; 13:312-21. [DOI: 10.1016/j.micinf.2011.01.002] [Citation(s) in RCA: 112] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2010] [Revised: 12/30/2010] [Accepted: 01/03/2011] [Indexed: 11/24/2022]
|
39
|
Ishikawa T, Konishi E. Combating Japanese encephalitis: Vero-cell derived inactivated vaccines and the situation in Japan. Future Virol 2010. [DOI: 10.2217/fvl.10.55] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Japanese encephalitis (JE) is a major public health threat in Asia, because of its high mortality and high incidence of psychoneurological sequelae in survivors. It is caused by JE virus (JEV) infection, transmitted by vector mosquitoes. The disease is vaccine preventable and has been well controlled in some countries. Since no specific antivirals have been approved, prevention with vaccine is important in this disease. This article provides a general overview of JE and JEV, but special focus has been put on recently developed Vero cell-derived formalin-inactivated JE vaccines, and the situation in Japan relating to these vaccines. In Japan, where JE has been well controlled, the strong governmental recommendation of the mouse brain-derived vaccine for routine immunization was suspended in 2005, owing to a patient suffering severe postvaccination events. In 2010, the recommendation was reinstated, targeting a limited population utilizing a Vero cell-derived vaccine.
Collapse
Affiliation(s)
- Tomohiro Ishikawa
- Department of International Health, Kobe University Graduate School of Health Sciences, 7-10-2 Tomogaoka, Suma-ku, Kobe 654-0142, Japan
| | | |
Collapse
|
40
|
Kröber T, Knöchlein A, Eisold K, Kalbfuß-Zimmermann B, Reichl U. DNA Depletion by Precipitation in the Purification of Cell Culture-Derived Influenza Vaccines. Chem Eng Technol 2010. [DOI: 10.1002/ceat.200900534] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
41
|
|
42
|
Lobigs M, Pavy M, Hall RA, Lobigs P, Cooper P, Komiya T, Toriniwa H, Petrovsky N. An inactivated Vero cell-grown Japanese encephalitis vaccine formulated with Advax, a novel inulin-based adjuvant, induces protective neutralizing antibody against homologous and heterologous flaviviruses. J Gen Virol 2010; 91:1407-17. [PMID: 20130134 PMCID: PMC2888167 DOI: 10.1099/vir.0.019190-0] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Advax is a polysaccharide-based adjuvant that potently stimulates vaccine immunogenicity without the increased reactogenicity seen with other adjuvants. This study investigated the immunogenicity of a novel Advax-adjuvanted Vero cell culture candidate vaccine against Japanese encephalitis virus (JEV) in mice and horses. The results showed that, in mice, a two-immunization, low-dose (50 ng JEV antigen) regimen with adjuvanted vaccine produced solid neutralizing immunity comparable to that elicited with live ChimeriVax-JE immunization and superior to that elicited with tenfold higher doses of a traditional non-adjuvanted JEV vaccine (JE-VAX; Biken Institute) or a newly approved alum-adjuvanted vaccine (Jespect; Novartis). Mice vaccinated with the Advax-adjuvanted, but not the unadjuvanted vaccine, were protected against live JEV challenge. Equine immunizations against JEV with Advax-formulated vaccine similarly showed enhanced vaccine immunogenicity, confirming that the adjuvant effects of Advax are not restricted to rodent models. Advax-adjuvanted JEV vaccine elicited a balanced T-helper 1 (Th1)/Th2 immune response against JEV with protective levels of cross-neutralizing antibody against other viruses belonging to the JEV serocomplex, including Murray Valley encephalitis virus (MVEV). The adjuvanted JEV vaccine was well tolerated with minimal reactogenicity and no systemic toxicity in immunized animals. The cessation of manufacture of traditional mouse brain-derived unadjuvanted JEV vaccine in Japan has resulted in a JEV vaccine shortage internationally. There is also an ongoing lack of human vaccines against other JEV serocomplex flaviviruses, such as MVEV, making this adjuvanted, cell culture-grown JEV vaccine a promising candidate to address both needs with one vaccine.
Collapse
Affiliation(s)
- Mario Lobigs
- John Curtin School of Medical Research, The Australian National University, Canberra, ACT 2601, Australia.
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Kollaritsch H, Paulke-Korinek M, Dubischar-Kastner K. IC51 Japanese encephalitis vaccine. Expert Opin Biol Ther 2009; 9:921-31. [PMID: 19527110 DOI: 10.1517/14712590903042282] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Japanese encephalitis is the leading cause of viral encephalitis in Asia. Every year 30,000 - 50,000 cases and 10,000 deaths from Japanese encephalitis are reported, and underreporting has been suggested. No effective antiviral therapy exists to treat this mosquito-borne flavivirus infection. For active immunization vaccines are available. The manufacturing of the only vaccine that was internationally licensed, JE-VAX, was ceased in 2005. Therefore a shortage of Japanese encephalitis vaccines might occur before new generation vaccines based on cell culture technology will be available. A promising new vaccine candidate is the inactivated whole-virus vaccine IXIARO (Strain SA(14)-14-2), developed by Intercell AG. Which was licensed in Europe, the USA and Australia in spring 2009. Recently, successful Phase III immunogenicity and tolerability studies were published, indicating that this vaccine will be an acceptable approach to active immunization against Japanese encephalitis. Cell-culture-based vaccines will not only be used in the population living in endemic areas where the risk of infection is high, but also by travelers and military personnel.
Collapse
Affiliation(s)
- Herwig Kollaritsch
- Medical University Vienna, Centre for Physiology and Pathophysiology, Institute of Specific Prophylaxis and Tropical Medicine, Kinderspitalgasse 15, A-1090 Vienna, Austria.
| | | | | |
Collapse
|
44
|
Takahashi H, Ohtaki N, Maeda-Sato M, Tanaka M, Tanaka K, Sawa H, Ishikawa T, Takamizawa A, Takasaki T, Hasegawa H, Sata T, Hall WW, Kurata T, Kojima A. Effects of the number of amino acid residues in the signal segment upstream or downstream of the NS2B-3 cleavage site on production and secretion of prM/M-E virus-like particles of West Nile virus. Microbes Infect 2009; 11:1019-28. [PMID: 19647801 DOI: 10.1016/j.micinf.2009.07.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2009] [Revised: 07/08/2009] [Accepted: 07/24/2009] [Indexed: 11/28/2022]
Abstract
Expression of genes for precursor M (prM) and envelope (E) proteins of West Nile virus (WNV) leads to the production of small, capsidless, and non-infectious virus-like particles (VLPs) possessing the E antigen which is responsible for viral entry and immune protection. It has been reported that processing of the secretion signal affects viral release. We examined the secretion efficiency of VLPs into the culture medium from RK13 or 293T cells transfected with expression vectors for prM and E proteins of WNV which were constructed to comprise different lengths of signal peptides upstream of the prM-E domain. The number of amino acid residues present in the segment markedly affected the production, processing, and secretion of VLPs. Secreted VLPs possessed both the processed M protein and the glycosylated E protein. In addition, immunization with VLPs induced neutralizing antibodies in C3H/HeN mice. These results indicate that the number of amino acid residues comprising the N-terminus of the signal segment controls the efficiency of assembly, maturation, and release of VLPs in the absence of viral protease, which in turn indicates the potential of VLPs as a candidate for an effective WNV subunit vaccine.
Collapse
Affiliation(s)
- Hidehiro Takahashi
- Department of Pathology, National Institute of Infectious Diseases, Toyama 1-23-1, Shinjuku-ku, Tokyo 162-8640, Japan.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Barrett PN, Mundt W, Kistner O, Howard MK. Vero cell platform in vaccine production: moving towards cell culture-based viral vaccines. Expert Rev Vaccines 2009; 8:607-18. [PMID: 19397417 DOI: 10.1586/erv.09.19] [Citation(s) in RCA: 199] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The development of cell culture systems for virus propagation has led to major advances in virus vaccine development. Primary and diploid cell culture systems are now being replaced by the use of continuous cell lines (CCLs). These substrates are gaining increasing acceptance from regulatory authorities as improved screening technologies remove fears regarding their potential oncogenic properties. The Vero cell line is the most widely accepted CCL by regulatory authorities and has been used for over 30 years for the production of polio and rabies virus vaccines. The recent licensure of a Vero cell-derived live virus vaccine (ACAM2000, smallpox vaccine) has coincided with an explosion in the development of a range of new viral vaccines, ranging from live-attenuated pediatric vaccines against rotavirus infections to inactivated whole-virus vaccines against H5N1 pandemic influenza. These developments have illustrated the value of this cell culture platform in the rapid development of vaccines against a range of virus diseases.
Collapse
Affiliation(s)
- P Noel Barrett
- Baxter BioScience, Biomedical Research Centre, Orth/Donau, Austria.
| | | | | | | |
Collapse
|
46
|
Tiwari M, Parida M, Santhosh SR, Khan M, Dash PK, Rao PVL. Assessment of immunogenic potential of Vero adapted formalin inactivated vaccine derived from novel ECSA genotype of Chikungunya virus. Vaccine 2009; 27:2513-22. [PMID: 19368794 DOI: 10.1016/j.vaccine.2009.02.062] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2008] [Revised: 02/07/2009] [Accepted: 02/12/2009] [Indexed: 10/21/2022]
Abstract
The recent resurgence of Chikungunya virus (CHIKV) in India and Indian Ocean Islands with unusual clinical severity is a matter of great public health concern. Despite the fact that CHIKV resurgence is associated with epidemic of unprecedented magnitude, no approved licensed vaccine is currently available. In the present study, a Vero cell adapted purified formalin inactivated prototype vaccine candidate was prepared using a current Indian strain implicated with the explosive epidemic during 2006. The bulk preparation of the vaccine candidate was undertaken in microcarrier based spinner culture using cytodex-1 in virus production serum free medium. The inactivation of the virus was accomplished through standard formalin inactivation protocol. The mice were immunized subcutaneously with alhydrogel gel formulation of inactivated virus preparation. The assessment of both humoral and cell-mediated immune response was accomplished through ELISA, plaque reduction neutralization test (PRNT), microcytotoxicity assay and cytokine production assay. The results revealed that formalin inactivated vaccine candidate induced both high titered ELISA (1:51,200) and plaque reduction neutralizing antibodies (1:6400) with peak antibody titer being observed during 6 -- 8 weeks of post-vaccination. In the absence of suitable murine challenge model, the protective efficacy was established by both in vitro and in vivo neutralization tests. Further assessment of cellular immunity through in vitro stimulation of spleenocytes from immunized mice revealed augmentation of high levels of both pro- and anti-inflammatory cytokines, indicating a mixed balance of Th1 and Th2 response. These findings suggest that the formalin inactivated Chikungunya vaccine candidate reported in this study has very good immunogenic potential to neutralize the virus infectivity by augmenting both humoral and cell-mediated immune response.
Collapse
Affiliation(s)
- Mugdha Tiwari
- Defence Research & Development Establishment, Gwalior, M.P., India
| | | | | | | | | | | |
Collapse
|
47
|
Widman DG, Frolov I, Mason PW. Third-generation flavivirus vaccines based on single-cycle, encapsidation-defective viruses. Adv Virus Res 2009; 72:77-126. [PMID: 19081489 DOI: 10.1016/s0065-3527(08)00402-8] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Flaviviruses are arthropod-borne pathogens that cause significant disease on all continents of the world except Antarctica. Flavivirus diseases are particularly important in tropical regions where arthropod vectors are abundant. Live-attenuated virus vaccines (LAVs) and inactivated virus vaccines (INVs) exist for some of these diseases. LAVs are economical to produce and potent, but are not suitable for use in the immunocompromised. INVs are safer, but are more expensive to produce and less potent. Despite the success of both classes of these first-generation flavivirus vaccines, problems associated with their use indicate a need for improved products. Furthermore, there are no suitable vaccines available for important emerging flavivirus diseases, notably dengue and West Nile encephalitis (WNE). To address these needs, new products, including LAVs, INVs, viral-vectored, genetically engineered LAVs, naked DNA, and subunit vaccines are in various stages of development. Here we describe the current state of these first- and second-generation vaccine candidates, and compare these products to our recently described single-cycle, encapsidation defective flavivirus vaccine: RepliVAX. RepliVAX can be propagated in C-expressing cells (or as a unique two-component virus) using methods similar to those used to produce today's economical and potent LAVs. However, due to deletion of most of the gene for the C protein, RepliVAX cannot spread between normal cells, and is unable to cause disease in vaccinated animals. Nevertheless, RepliVAX is potent and efficacious in animal models for WNE and Japanese encephalitis, demonstrating its utility as a third-generation flavivirus vaccine that should be potent, economical to produce, and safe in the immunocompromised.
Collapse
Affiliation(s)
- Douglas G Widman
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas 77555, USA
| | | | | |
Collapse
|
48
|
van den Hurk AF, Ritchie SA, Mackenzie JS. Ecology and geographical expansion of Japanese encephalitis virus. ANNUAL REVIEW OF ENTOMOLOGY 2009; 54:17-35. [PMID: 19067628 DOI: 10.1146/annurev.ento.54.110807.090510] [Citation(s) in RCA: 340] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Japanese encephalitis virus (JEV) (Flavivirus: Flaviviridae) is a leading cause of encephalitis in eastern and southern Asia. The virus is maintained in a zoonotic cycle between ardeid wading birds and/or pigs and Culex mosquitoes. The primary mosquito vector of JEV is Culex tritaeniorhynchus, although species such as Cx. gelidus, Cx. fuscocephala, and Cx. annulirostris are important secondary or regional vectors. Control of JEV is achieved through human and/or swine vaccination, changes in animal husbandry, mosquito control, or a combination of these strategies. This review outlines the ecology of JEV and examines the recent expansion of its geographical range, before assessing its ability to emerge in new regions, using the hypothetical establishment in the United States as a case study.
Collapse
Affiliation(s)
- Andrew F van den Hurk
- Virology, Queensland Health Forensic and Scientific Services, Archerfield, Queensland 4108, Australia.
| | | | | |
Collapse
|
49
|
|
50
|
Saxena V, Dhole TN. Preventive strategies for frequent outbreaks of Japanese encephalitis in Northern India. J Biosci 2008; 33:505-14. [PMID: 19208976 DOI: 10.1007/s12038-008-0069-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Japanese encephalitis (JE) remains the most important cause of acute viral encephalitis and continues to spread to hitherto unaffected regions like Indonesia, Pakistan and Australia. Approximately 60% of the world population inhabits JE endemic areas. Despite its restricted range mostly in the developing countries,a high annual incidence of 50,000 cases and about 10,000 deaths has been reported. Disease can be fatal in 25% ases. Magnitude of the problem is even more alarming since the survivors are left with serious long-term neuropsychiatric sequelae. Almost every two years,epidemics of JE occur in Indian subcontinent with a high mortality. JE virus infection results in different disease manifestations in host from mild subclinical febrile illness to clinical infections leading to encephalitis. No antiviral treatment is so far available for JE. The prevention of JE can be achieved by controlling the vector or by immunization regime. The vector control in the rural areas,which are the worst affected ones,is practically almost impossible. Three vaccines that have been implicated against JE include inactivated mouse brain derived, inactivated cell culture derived and cell culture derived live attenuated JE vaccine. But each has its own limitation. Currently,attempts to synthesize recombinant DNA vaccine are being made. New therapeutics are on the way of development like use of minocycline, short interfering RNA, arctigenin, rosmarinic acid, DNAzymes etc. However,the immune mechanisms that lead to JE are complex and need to be elucidated further for the development of therapeutics as well as safe and efficacious JE vaccines.
Collapse
Affiliation(s)
- Vandana Saxena
- Department of Microbiology,Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow 226 014,India
| | | |
Collapse
|