1
|
Tobias J, Heinl S, Dendinovic K, Ramić A, Schmid A, Daniel C, Wiedermann U. The benefits of Lactiplantibacillus plantarum: From immunomodulator to vaccine vector. Immunol Lett 2025; 272:106971. [PMID: 39765312 DOI: 10.1016/j.imlet.2025.106971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 12/23/2024] [Accepted: 01/02/2025] [Indexed: 01/12/2025]
Abstract
Probiotics have been increasingly recognized for positively influencing many aspects of human health. Lactiplantibacillus plantarum (L. plantarum), a non-pathogenic bacterium, previously known as Lactobacillus plantarum, is one of the lactic acid bacteria commonly used in fermentation. The probiotic properties of L. plantarum have highlighted its health benefits to humans when consumed in adequate amounts. L. plantarum strains primarily enter the body orally and alter intestinal microflora and modulate the immune responses in their host; thereby benefiting human health. Furthermore, the use of L. plantarum as vaccine vectors delivering mucosal antigens has been shown to be a promising strategy. These aspects, from Immunomodulation to vaccine delivery by L. plantarum in preclinical settings, are highlighted in this review. Along these lines, construction of a recombinant L. plantarum strain expressing a B cell multi-peptide, as a future vaccine to modulate immunity and confer anti-tumor effect by targeting Her-2/neu-overexpressing cancers in local and distal sites, is also presented and discussed.
Collapse
Affiliation(s)
- Joshua Tobias
- Institute of Specific Prophylaxis and Tropical Medicine, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria.
| | - Stefan Heinl
- Institute of Molecular Biotechnology, Department of Biotechnology, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Kristina Dendinovic
- Institute of Specific Prophylaxis and Tropical Medicine, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Ajša Ramić
- Institute of Specific Prophylaxis and Tropical Medicine, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Anna Schmid
- Institute of Specific Prophylaxis and Tropical Medicine, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Catherine Daniel
- Univ. Lille, CNRS, INSERM, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 9017 - CIIL Center for Infection and Immunity of Lille, F-59000 Lille, France
| | - Ursula Wiedermann
- Institute of Specific Prophylaxis and Tropical Medicine, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
2
|
Adjuvant role of probiotics in allergen-specific immunotherapy. Clin Immunol 2022; 245:109164. [DOI: 10.1016/j.clim.2022.109164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 10/04/2022] [Accepted: 10/06/2022] [Indexed: 11/19/2022]
|
3
|
Sadeghi M, Asadirad A, Koushki K, Keshavarz Shahbaz S, Dehnavi S. Recent advances in improving intranasal allergen-specific immunotherapy; focus on delivery systems and adjuvants. Int Immunopharmacol 2022; 113:109327. [PMID: 36257257 DOI: 10.1016/j.intimp.2022.109327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 09/24/2022] [Accepted: 10/05/2022] [Indexed: 11/05/2022]
Abstract
Allergen-specific Immunotherapy (AIT) is the main therapeutic strategy to control and treat allergic disorders. Intranasal Immunotherapy (INIT) was introduced as a needle-free, noninvasive, and efficient approach among various routes of allergen administration. Since direct exposure of nasal mucosa to allergen extracts could induce local and systemic reactions, recent studies focus on establishing novel formulations using various delivery systems and adjuvants to improve INIT efficacy. This review categorizes and describes natural and synthetic micro/nanoparticles such as chitosan, PLGA, liposome, exosome, and nano-emulation droplets used as delivery systems or immunomodulatory and immune-regulatory agents. Also, multiple microbial agents, including probiotics, mycobacterial and viral components, TLR ligands, and biologic agents, i.e., antibody fragments, recombinant cytokines, vitamin A, and pulsed dendritic cells (DCs), are other platforms that are discussed. In addition, future perspectives and proposed strategies to help INIT were provided.
Collapse
Affiliation(s)
- Mahvash Sadeghi
- Department of Immunology, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran; Student Research Committee, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Ali Asadirad
- Department of Immunology, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran; Cancer, Petroleum, and Environmental Pollutants Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Khadijeh Koushki
- Department of Radiation Oncology, Mayo Clinic, Jacksonville, FL, USA
| | - Sanaz Keshavarz Shahbaz
- Cellular and Molecular Research Center, Research Institute for Prevention of Non-communicable Disease, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Sajad Dehnavi
- Department of Immunology, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran; Student Research Committee, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| |
Collapse
|
4
|
Uchida K, Iida K, Fujioka I, Hachimura S, Kaminuma O. Suppressive Effect of Lactococcus lactis subsp. cremoris YRC3780 on a Murine Model of Japanese Cedar Pollinosis. Pathogens 2022; 11:1347. [PMID: 36422599 PMCID: PMC9698324 DOI: 10.3390/pathogens11111347] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 11/01/2022] [Accepted: 11/12/2022] [Indexed: 11/18/2024] Open
Abstract
Accumulating evidence suggests that Lactococcus lactis subsp. cremoris YRC3780 isolated from kefir has the potential to alleviate allergic responses. Herein, we investigated the effect of YRC3780 on a murine model of Japanese cedar pollinosis (JCP). BALB/c mice immunized with cedar pollen extract (CPE) exhibited an increase in serum immunoglobulin E and developed nasal inflammatory responses including sneezing, nasal hyperresponsiveness, and nasal eosinophil accumulation upon intranasal allergen challenge. These responses were suppressed by the oral administration of YRC3780, although the effects on CPE-induced sneezing response and eosinophil infiltration were not statistically significant. Total fecal microbiota diversity was not affected by allergen immunization and challenge or by YRC3780 administration. However, the abundances of Bifidobacteriales, Veillonellaceae, Lactococcus, and Lactococcus lactis were larger and that of Bacteroides was smaller in YRC3780-treated mice compared with those in CPE-challenged and YRC3780-untreated mice. Our findings suggest the usefulness of YRC3780 for alleviating JCP.
Collapse
Affiliation(s)
- Kenji Uchida
- R&D Center, Yotsuba Milk Products Co., Ltd., Sapporo 061-1264, Japan
| | - Kenichi Iida
- R&D Center, Yotsuba Milk Products Co., Ltd., Sapporo 061-1264, Japan
| | - Ikumi Fujioka
- R&D Center, Yotsuba Milk Products Co., Ltd., Sapporo 061-1264, Japan
| | - Satoshi Hachimura
- Research Center for Food Safety, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo 113-8657, Japan
| | - Osamu Kaminuma
- Department of Disease Model, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima 734-8553, Japan
| |
Collapse
|
5
|
Liang H, Zhang Y, Miao Z, Cheng R, Jiang F, Ze X, Shen X, He F. Anti-allergic effects of two potential probiotic strains isolated from infant feces in China. J Funct Foods 2022. [DOI: 10.1016/j.jff.2022.105070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
|
6
|
Salomé-Desnoulez S, Poiret S, Foligné B, Muharram G, Peucelle V, Lafont F, Daniel C. Persistence and dynamics of fluorescent Lactobacillus plantarum in the healthy versus inflamed gut. Gut Microbes 2022; 13:1-16. [PMID: 33779491 PMCID: PMC8009120 DOI: 10.1080/19490976.2021.1897374] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The gastrointestinal tract is the main ecological niche in which Lactobacillus strains may provide health benefits in mammals. There is currently a need to characterize host-microbe interactions in space and time by tracking these bacteria in vivo. We combined noninvasive whole-body imaging with ex vivo fluorescence confocal microscopy imaging to monitor the impact of intestinal inflammation on the persistence of orally administered Lactobacillus plantarum NCIMB8826 in healthy and inflamed mouse colons. We developed fluorescent L. plantarum strains and demonstrated that mCherry is the best system for in vivo imaging and ex vivo fluorescence confocal microscopy of these bacteria. We also used whole-body imaging to show that this anti-inflammatory, orally administered strain persists for longer and at higher counts in the inflamed colon than in the healthy colon. We confirmed these results by the ex vivo confocal imaging of colons from mice with experimental colitis for 3 days after induction. Moreover, extended orthogonal view projections enabled us to localize individual L. plantarum in sites that differed for healthy versus inflamed guts. In healthy colons, orally administered bacteria were localized in the lumen (in close contact with commensal bacteria) and sometimes in the crypts (albeit very rarely in contact with intestinal cells). The bacteria were observed within and outside the mucus layer. In contrast, L. plantarum bacteria in the inflamed colon were mostly located in the lumen and (in less inflamed areas) within the mucus layer. In more intensely inflamed areas (i.e., where the colon had undergone structural damage), the L. plantarum were in direct contact with damaged epithelial cells. Taken as a whole, our results show that fluorescently labeled L. plantarum can be used to study the persistence of these bacteria in inflamed guts using both noninvasive whole-body imaging and ex vivo fluorescence confocal microscopy.
Collapse
Affiliation(s)
- Sophie Salomé-Desnoulez
- Univ. Lille, CNRS, INSERM, CHU Lille, Institut Pasteur de Lille, US 41 - UMS 2014 - PLBS, F-59000 Lille, France
| | - Sabine Poiret
- Univ. Lille, CNRS, INSERM, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 9017 – Center for Infection and Immunity of Lille, F-59000 Lille, France
| | - Benoit Foligné
- Univ. Lille, INSERM, CHU Lille, U1286 - Infinite - Institute for Translational Research in Inflammation, F-59000 Lille, France
| | - Ghaffar Muharram
- Univ. Lille, CNRS, INSERM, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 9017 – Center for Infection and Immunity of Lille, F-59000 Lille, France
| | - Véronique Peucelle
- Univ. Lille, CNRS, INSERM, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 9017 – Center for Infection and Immunity of Lille, F-59000 Lille, France
| | - Frank Lafont
- Univ. Lille, CNRS, INSERM, CHU Lille, Institut Pasteur de Lille, US 41 - UMS 2014 - PLBS, F-59000 Lille, France,Univ. Lille, CNRS, INSERM, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 9017 – Center for Infection and Immunity of Lille, F-59000 Lille, France
| | - Catherine Daniel
- Univ. Lille, CNRS, INSERM, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 9017 – Center for Infection and Immunity of Lille, F-59000 Lille, France,CONTACT Daniel C Center for Infection and Immunity of Lille, Institut Pasteur de Lille, 1 rue du Professeur Calmette- CS50447, 59021 Lille cedex, France
| |
Collapse
|
7
|
Boonpiyathad T, Lao-Araya M, Chiewchalermsri C, Sangkanjanavanich S, Morita H. Allergic Rhinitis: What Do We Know About Allergen-Specific Immunotherapy? FRONTIERS IN ALLERGY 2021; 2:747323. [PMID: 35387059 PMCID: PMC8974870 DOI: 10.3389/falgy.2021.747323] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 09/30/2021] [Indexed: 01/23/2023] Open
Abstract
Allergic rhinitis (AR) is an IgE-mediated disease that is characterized by Th2 joint inflammation. Allergen-specific immunotherapy (AIT) is indicated for AR when symptoms remain uncontrolled despite medication and allergen avoidance. AIT is considered to have been effective if it alleviated allergic symptoms, decreased medication use, improved the quality of life even after treatment cessation, and prevented the progression of AR to asthma and the onset of new sensitization. AIT can be administered subcutaneously or sublingually, and novel routes are still being developed, such as intra-lymphatically and epicutaneously. AIT aims at inducing allergen tolerance through modification of innate and adaptive immunologic responses. The main mechanism of AIT is control of type 2 inflammatory cells through induction of various functional regulatory cells such as regulatory T cells (Tregs), follicular T cells (Tfr), B cells (Bregs), dendritic cells (DCregs), innate lymphoid cells (IL-10+ ILCs), and natural killer cells (NKregs). However, AIT has a number of disadvantages: the long treatment period required to achieve greater efficacy, high cost, systemic allergic reactions, and the absence of a biomarker for predicting treatment responders. Currently, adjunctive therapies, vaccine adjuvants, and novel vaccine technologies are being studied to overcome the problems associated with AIT. This review presents an updated overview of AIT, with a special focus on AR.
Collapse
Affiliation(s)
- Tadech Boonpiyathad
- Department of Medicine, Phramongkutklao Hospital, Bangkok, Thailand
- *Correspondence: Tadech Boonpiyathad
| | - Mongkol Lao-Araya
- Faculty of Medicine, Department of Pediatrics, Chiang Mai University, Chiang Mai, Thailand
| | - Chirawat Chiewchalermsri
- Department of Medicine, Panyananthaphikkhu Chonprathan Medical Center, Srinakharinwirot University, Nonthaburi, Thailand
| | - Sasipa Sangkanjanavanich
- Faculty of Medicine Ramathibodi Hospital, Department of Medicine, Mahidol University, Bangkok, Thailand
| | - Hideaki Morita
- Department of Allergy and Clinical Immunology, National Research Institute for Child Health and Development, Tokyo, Japan
- Allergy Center, National Center for Child Health and Development, Tokyo, Japan
| |
Collapse
|
8
|
Padayachee Y, Flicker S, Linton S, Cafferkey J, Kon OM, Johnston SL, Ellis AK, Desrosiers M, Turner P, Valenta R, Scadding GK. Review: The Nose as a Route for Therapy. Part 2 Immunotherapy. FRONTIERS IN ALLERGY 2021; 2:668781. [PMID: 35387044 PMCID: PMC8974912 DOI: 10.3389/falgy.2021.668781] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 05/28/2021] [Indexed: 12/12/2022] Open
Abstract
The nose provides a route of access to the body for inhalants and fluids. Unsurprisingly it has a strong immune defense system, with involvement of innate (e.g., epithelial barrier, muco- ciliary clearance, nasal secretions with interferons, lysozyme, nitric oxide) and acquired (e.g., secreted immunoglobulins, lymphocytes) arms. The lattice network of dendritic cells surrounding the nostrils allows rapid uptake and sampling of molecules able to negotiate the epithelial barrier. Despite this many respiratory infections, including SARS-CoV2, are initiated through nasal mucosal contact, and the nasal mucosa is a significant "reservoir" for microbes including Streptococcus pneumoniae, Neisseria meningitidis and SARS -CoV-2. This review includes consideration of the augmentation of immune defense by the nasal application of interferons, then the reduction of unnecessary inflammation and infection by alteration of the nasal microbiome. The nasal mucosa and associated lymphoid tissue (nasopharynx-associated lymphoid tissue, NALT) provides an important site for vaccine delivery, with cold-adapted live influenza strains (LAIV), which replicate intranasally, resulting in an immune response without significant clinical symptoms, being the most successful thus far. Finally, the clever intranasal application of antibodies bispecific for allergens and Intercellular Adhesion Molecule 1 (ICAM-1) as a topical treatment for allergic and RV-induced rhinitis is explained.
Collapse
Affiliation(s)
- Yorissa Padayachee
- Department of Respiratory Medicine, Faculty of Medicine, Imperial College Healthcare NHS Trust, Imperial College London, London, United Kingdom
| | - Sabine Flicker
- Center for Pathophysiology, Infectiology and Immunology, Institute of Pathophysiology and Allergy Research, Medical University of Vienna, Vienna, Austria
| | - Sophia Linton
- Division of Allergy and Immunology, Department of Medicine, Queen's University, Kingston, ON, Canada
- Allergy Research Unit, Kingston Health Sciences Centre (KHSC), Kingston, ON, Canada
| | - John Cafferkey
- Department of Respiratory Medicine, Faculty of Medicine, Imperial College Healthcare NHS Trust, Imperial College London, London, United Kingdom
| | - Onn Min Kon
- Faculty of Medicine, National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Sebastian L. Johnston
- Faculty of Medicine, National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Anne K. Ellis
- Division of Allergy and Immunology, Department of Medicine, Queen's University, Kingston, ON, Canada
| | - Martin Desrosiers
- Department of Otorhinolaryngologie, The University of Montreal Hospital Research Centre (CRCHUM), Montreal, QC, Canada
| | - Paul Turner
- Faculty of Medicine, National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Rudolf Valenta
- Division of Immunopathology, Medical University of Vienna, Vienna, Austria
| | - Glenis Kathleen Scadding
- Royal National Ear Nose and Throat Hospital, University College London Hospitals NHS Foundation Trust, London, United Kingdom
- Division of Infection and Immunity, Faculty of Medical Sciences, University College London, London, United Kingdom
| |
Collapse
|
9
|
Korb E, Drinić M, Wagner A, Geissler N, Inic-Kanada A, Peschke R, Joachim A, Wiedermann U, Schabussova I. Reduction of Allergic Lung Disease by Mucosal Application of Toxoplasma gondii-Derived Molecules: Possible Role of Carbohydrates. Front Immunol 2021; 11:612766. [PMID: 33776987 PMCID: PMC7988086 DOI: 10.3389/fimmu.2020.612766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 12/31/2020] [Indexed: 11/25/2022] Open
Abstract
Background The hygiene hypothesis suggests a link between parasitic infections and immune disorders, such as allergic diseases. We previously showed that infection with Toxoplasma gondii or systemic application of T. gondii tachyzoites lysate antigen (TLA) in a prophylactic, but not therapeutic protocol, prevented allergic airway inflammation in mice. Here we tested the effect of prophylactic and therapeutic application of TLA via the mucosal route. Methods Mice were intranasally treated with TLA either i) prior to sensitization, ii) during sensitization and challenge, or iii) after sensitization with ovalbumin (OVA). Recruitment of inflammatory cells to the lung, cytokine levels in restimulated lung and spleen cell cultures as well as levels of OVA-specific antibodies in serum were measured. In parallel, the effect of native TLA, heat-inactivated (hiTLA) or deglycosylated TLA (dgTLA) on sensitized splenocytes was evaluated ex vivo. Results When applied together with OVA i) during systemic sensitization and local challenge or ii) exclusively during local challenge, TLA reduced infiltration of eosinophils into the lung, OVA-specific type 2 cytokines in restimulated lung cell cultures, and partially, type 2 cytokines in restimulated spleen cell cultures in comparison to allergic controls. No beneficial effect was observed when TLA was applied prior to the start of sensitization. Analysis of epitope sugars on TLA indicated a high abundance of mannose, fucose, N-acetylglucosamine, and N-acetylgalactosamine. Deglycosylation of TLA, but not heat-inactivation, abolished the potential of TLA to reduce type 2 responses ex vivo, suggesting a significant role of carbohydrates in immunomodulation. Conclusion We showed that mucosal application of TLA reduced the development of experimental allergy in mice. The beneficial effects depended on the timing of the application in relation to the time point of sensitization. Not only co-application, but also therapy in sensitized/allergic animals with native TLA reduced local allergic responses. Furthermore, we show that TLA is highly glycosylated and glycoconjugates seem to play a role in anti-allergic effects. In summary, given the powerful modulatory effect that TLA exhibits, understanding its exact mechanisms of action may lead to the development of novel immunomodulators in clinical application.
Collapse
Affiliation(s)
- Elke Korb
- Institute of Specific Prophylaxis and Tropical Medicine, Medical University of Vienna, Vienna, Austria
| | - Mirjana Drinić
- Institute of Specific Prophylaxis and Tropical Medicine, Medical University of Vienna, Vienna, Austria
| | - Angelika Wagner
- Institute of Specific Prophylaxis and Tropical Medicine, Medical University of Vienna, Vienna, Austria
| | - Nora Geissler
- Institute of Specific Prophylaxis and Tropical Medicine, Medical University of Vienna, Vienna, Austria
| | - Aleksandra Inic-Kanada
- Institute of Specific Prophylaxis and Tropical Medicine, Medical University of Vienna, Vienna, Austria
| | - Roman Peschke
- Department of Pathobiology, Institute of Parasitology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Anja Joachim
- Department of Pathobiology, Institute of Parasitology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Ursula Wiedermann
- Institute of Specific Prophylaxis and Tropical Medicine, Medical University of Vienna, Vienna, Austria
| | - Irma Schabussova
- Institute of Specific Prophylaxis and Tropical Medicine, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
10
|
Cervantes-García D, Jiménez M, Rivas-Santiago CE, Gallegos-Alcalá P, Hernández-Mercado A, Santoyo-Payán LS, Loera-Arias MDJ, Saucedo-Cardenas O, Montes de Oca-Luna R, Salinas E. Lactococcus lactis NZ9000 Prevents Asthmatic Airway Inflammation and Remodelling in Rats through the Improvement of Intestinal Barrier Function and Systemic TGF-β Production. Int Arch Allergy Immunol 2020; 182:277-291. [PMID: 33147596 DOI: 10.1159/000511146] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 08/25/2020] [Indexed: 11/19/2022] Open
Abstract
INTRODUCTION The use of probiotics has been broadly popularized due to positive effects in the attenuation of aberrant immune responses such as asthma. Allergic asthma is a chronic respiratory disease characterized by airway inflammation and remodelling. OBJECTIVE This study was aimed to evaluate the effect of oral administration of Lactococcus lactis NZ9000 on asthmatic airway inflammation and lung tissue remodelling in rats and its relation to the maintenance of an adequate intestinal barrier. METHODS Wistar rats were ovalbumin (OVA) sensitized and challenged and orally treated with L. lactis. Lung inflammatory infiltrates and cytokines were measured, and remodelling was evaluated. Serum OVA-specific immunoglobulin (Ig) E levels were assessed. We also evaluated changes on intestinal environment and on systemic immune response. RESULTS L. lactis diminished the infiltration of proinflammatory leucocytes, mainly eosinophils, in the bronchoalveolar compartment, decreased lung IL-4 and IL-5 expression, and reduced the level of serum allergen-specific IgE. Furthermore, L. lactis prevented eosinophil influx, collagen deposition, and goblet cell hyperplasia in lung tissue. In the intestine, L. lactis-treated asthmatic rats increased Peyer's patch and goblet cell quantity and mRNA expression of IgA, MUC-2, and claudin. Additionally, intestinal morphological alterations were normalized by L. lactis administration. Splenocyte proliferative response to OVA was abolished, and serum levels of transforming growth factor (TGF)-β were increased by L. lactis treatment. CONCLUSIONS These findings suggest that L. lactis is a potential candidate for asthma prevention, and the effect is mediated by the improvement of intestinal barrier function and systemic TGF-β production.
Collapse
Affiliation(s)
- Daniel Cervantes-García
- National Council of Science and Technology, Mexico City, Mexico.,Department of Microbiology, Center of Basic Sciences, Autonomous University of Aguascalientes, Aguascalientes, Mexico
| | - Mariela Jiménez
- Department of Microbiology, Center of Basic Sciences, Autonomous University of Aguascalientes, Aguascalientes, Mexico
| | - César E Rivas-Santiago
- National Council of Science and Technology, Mexico City, Mexico.,Academic Unit of Biological Sciences, Autonomous University of Zacatecas, Zacatecas, Mexico
| | - Pamela Gallegos-Alcalá
- Department of Microbiology, Center of Basic Sciences, Autonomous University of Aguascalientes, Aguascalientes, Mexico
| | - Alicia Hernández-Mercado
- Department of Microbiology, Center of Basic Sciences, Autonomous University of Aguascalientes, Aguascalientes, Mexico
| | - Leslie S Santoyo-Payán
- Department of Microbiology, Center of Basic Sciences, Autonomous University of Aguascalientes, Aguascalientes, Mexico
| | | | - Odila Saucedo-Cardenas
- Department of Histology, Faculty of Medicine, Autonomous University of Nuevo Leon, Nuevo Leon, Mexico
| | | | - Eva Salinas
- Department of Microbiology, Center of Basic Sciences, Autonomous University of Aguascalientes, Aguascalientes, Mexico,
| |
Collapse
|
11
|
Eslami M, Bahar A, Keikha M, Karbalaei M, Kobyliak NM, Yousefi B. Probiotics function and modulation of the immune system in allergic diseases. Allergol Immunopathol (Madr) 2020; 48:771-788. [PMID: 32763025 DOI: 10.1016/j.aller.2020.04.005] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 04/25/2020] [Accepted: 04/27/2020] [Indexed: 02/08/2023]
Abstract
Allergic diseases have been a global problem over the past few decades. The effect of allergic diseases on healthcare systems and society is generally remarkable and is considered as one of the most common causes of chronic and hospitalized disease. The functional ability of probiotics to modulate the innate/acquired immune system leads to the initiation of mucosal/systemic immune responses. Gut microbiota plays a beneficial role in food digestion, development of the immune system, control/growth of the intestinal epithelial cells and their differentiation. Prescribing probiotics causes a significant change in the intestinal microflora and modulates cytokine secretion, including networks of genes, TLRs, signaling molecules and increased intestinal IgA responses. The modulation of the Th1/Th2 balance is done by probiotics, which suppress Th2 responses with shifts to Th1 and thereby prevent allergies. In general, probiotics are associated with a decrease in inflammation by increasing butyrate production and induction of tolerance with an increase in the ratio of cytokines such as IL-4, IL-10/IFN-γ, Treg/TGF-β, reducing serum eosinophil levels and the expression of metalloproteinase-9 which contribute to the improvement of the allergic disease's symptoms. Finally, it can be said that the therapeutic approach to immunotherapy and the reduction of the risk of side effects in the treatment of allergic diseases is the first priority of treatment and the final approach that completes the first priority in maintaining the condition and sustainability of the tolerance along with the recovery of the individual.
Collapse
Affiliation(s)
- M Eslami
- Cancer Research Center, Semnan University of Medical Sciences, Semnan, Iran
| | - A Bahar
- Student Research Committee, Semnan University of Medical Sciences, Semnan, Iran
| | - M Keikha
- Department of Microbiology and Virology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - M Karbalaei
- Department of Microbiology and Virology, School of Medicine, Jiroft University of Medical Sciences, Jiroft, Iran
| | - N M Kobyliak
- Department of Endocrinology, Bogomolets National Medical University, Kyiv, Ukraine
| | - B Yousefi
- Department of Immunology, Semnan University of Medical Sciences, Semnan, Iran.
| |
Collapse
|
12
|
Total RNA and genomic DNA of Lactobacillus gasseri OLL2809 induce interleukin-12 production in the mouse macrophage cell line J774.1 via toll-like receptors 7 and 9. BMC Microbiol 2020; 20:217. [PMID: 32689952 PMCID: PMC7372888 DOI: 10.1186/s12866-020-01900-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Accepted: 07/12/2020] [Indexed: 12/04/2022] Open
Abstract
Background Lactobacillus gasseri OLL2809 can highly induce interleukin (IL)-12 production in immune cells. Even though beneficial properties of this strain for both humans and animals have been reported, the mechanism by which the bacteria induces the production of IL-12 in immune cells remains elusive. In this study, we investigated the mechanism of induction of IL-12 using a mouse macrophage cell line J774.1. Results Inhibition of phagocytosis of L. gasseri OLL2809, and myeloid differentiation factor 88 and Toll-like receptors (TLRs) 7 and 9 signalling attenuated IL-12 production in J774.1 cells. Total RNA and genomic DNA of L. gasseri OLL2809, when transferred to the J774.1 cells, also induced IL-12 production. The difference in the IL-12-inducing activity of Lactobacilli is attributed to the susceptibility to phagocytosis, but not to a difference in the total RNA and genomic DNA of each strain. Conclusion We concluded that total RNA and genomic DNA of phagocytosed L. gasseri OLL2809 induce IL-12 production in J774.1 cell via TLRs 7 and 9, and the high IL-12-inducing activity of L. gasseri OLL2809 is due to its greater susceptibility to phagocytosis.
Collapse
|
13
|
Korb E, Bağcıoğlu M, Garner-Spitzer E, Wiedermann U, Ehling-Schulz M, Schabussova I. Machine Learning-Empowered FTIR Spectroscopy Serum Analysis Stratifies Healthy, Allergic, and SIT-Treated Mice and Humans. Biomolecules 2020; 10:biom10071058. [PMID: 32708591 PMCID: PMC7408032 DOI: 10.3390/biom10071058] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 07/13/2020] [Accepted: 07/14/2020] [Indexed: 12/17/2022] Open
Abstract
The unabated global increase of allergic patients leads to an unmet need for rapid and inexpensive tools for the diagnosis of allergies and for monitoring the outcome of allergen-specific immunotherapy (SIT). In this proof-of-concept study, we investigated the potential of Fourier-Transform Infrared (FTIR) spectroscopy, a high-resolution and cost-efficient biophotonic method with high throughput capacities, to detect characteristic alterations in serum samples of healthy, allergic, and SIT-treated mice and humans. To this end, we used experimental models of ovalbumin (OVA)-induced allergic airway inflammation and allergen-specific tolerance induction in BALB/c mice. Serum collected before and at the end of the experiment was subjected to FTIR spectroscopy. As shown by our study, FTIR spectroscopy, combined with deep learning, can discriminate serum from healthy, allergic, and tolerized mice, which correlated with immunological data. Furthermore, to test the suitability of this biophotonic method for clinical diagnostics, serum samples from human patients were analyzed by FTIR spectroscopy. In line with the results from the mouse models, machine learning-assisted FTIR spectroscopy allowed to discriminate sera obtained from healthy, allergic, and SIT-treated humans, thereby demonstrating its potential for rapid diagnosis of allergy and clinical therapeutic monitoring of allergic patients.
Collapse
Affiliation(s)
- Elke Korb
- Institute of Specific Prophylaxis and Tropical Medicine, Medical University of Vienna, 1090 Vienna, Austria; (E.K.); (E.G.-S.); (U.W.)
| | - Murat Bağcıoğlu
- Institute of Microbiology, Department of Pathobiology, University of Veterinary Medicine, 1210 Vienna, Austria;
| | - Erika Garner-Spitzer
- Institute of Specific Prophylaxis and Tropical Medicine, Medical University of Vienna, 1090 Vienna, Austria; (E.K.); (E.G.-S.); (U.W.)
| | - Ursula Wiedermann
- Institute of Specific Prophylaxis and Tropical Medicine, Medical University of Vienna, 1090 Vienna, Austria; (E.K.); (E.G.-S.); (U.W.)
| | - Monika Ehling-Schulz
- Institute of Microbiology, Department of Pathobiology, University of Veterinary Medicine, 1210 Vienna, Austria;
- Correspondence: (M.E.-S.); (I.S.); Tel.: +43-1-25077-2460 (M.E.-S.); +43-1-40160-38250 (I.S.)
| | - Irma Schabussova
- Institute of Specific Prophylaxis and Tropical Medicine, Medical University of Vienna, 1090 Vienna, Austria; (E.K.); (E.G.-S.); (U.W.)
- Correspondence: (M.E.-S.); (I.S.); Tel.: +43-1-25077-2460 (M.E.-S.); +43-1-40160-38250 (I.S.)
| |
Collapse
|
14
|
Gaudu P, Yamamoto Y, Jensen PR, Hammer K, Lechardeur D, Gruss A. Genetics of Lactococci. Microbiol Spectr 2019; 7:10.1128/microbiolspec.gpp3-0035-2018. [PMID: 31298208 PMCID: PMC10957224 DOI: 10.1128/microbiolspec.gpp3-0035-2018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Indexed: 11/20/2022] Open
Abstract
Lactococcus lactis is the best characterized species among the lactococci, and among the most consumed food-fermenting bacteria worldwide. Thanks to their importance in industrialized food production, lactococci are among the lead bacteria understood for fundamental metabolic pathways that dictate growth and survival properties. Interestingly, lactococci belong to the Streptococcaceae family, which includes food, commensal and virulent species. As basic metabolic pathways (e.g., respiration, metal homeostasis, nucleotide metabolism) are now understood to underlie virulence, processes elucidated in lactococci could be important for understanding pathogen fitness and synergy between bacteria. This chapter highlights major findings in lactococci and related bacteria, and covers five themes: distinguishing features of lactococci, metabolic capacities including the less known respiration metabolism in Streptococcaceae, factors and pathways modulating stress response and fitness, interbacterial dialogue via metabolites, and novel applications in health and biotechnology.
Collapse
Affiliation(s)
| | - Yuji Yamamoto
- Laboratory of Cellular Microbiology, School of Veterinary Medicine, Kitasato University, Towada, 034-8628, Aomori Japan
| | - Peter Ruhdal Jensen
- National Food Institute, Technical University of Denmark, DK-2800 Lyngby, Denmark
| | - Karin Hammer
- DTU Bioengineering, Technical University of Denmark, DK-2800 Kongens Lyngby, Denmark
| | | | | |
Collapse
|
15
|
Novik G, Savich V. Beneficial microbiota. Probiotics and pharmaceutical products in functional nutrition and medicine. Microbes Infect 2019; 22:8-18. [PMID: 31233819 DOI: 10.1016/j.micinf.2019.06.004] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Revised: 06/06/2019] [Accepted: 06/12/2019] [Indexed: 12/12/2022]
Abstract
The article is mainly devoted to such representatives of gut microbiota as lactic acid bacteria and bifidobacteria, with minor accent on less frequently used or new probiotic microorganisms. Positive effects in treatment and prevention of diseases by different microbial groups, their metabolites and mechanisms of action, management and market of probiotic products are considered.
Collapse
Affiliation(s)
- Galina Novik
- Belarusian Collection of Microorganisms, Institute of Microbiology, National Academy of Sciences of Belarus, 2 Academician V.F. Kuprevich Street, 220141 Minsk, the Republic of Belarus.
| | - Victoria Savich
- Belarusian Collection of Microorganisms, Institute of Microbiology, National Academy of Sciences of Belarus, 2 Academician V.F. Kuprevich Street, 220141 Minsk, the Republic of Belarus
| |
Collapse
|
16
|
E. coli Nissle 1917 is a safe mucosal delivery vector for a birch-grass pollen chimera to prevent allergic poly-sensitization. Mucosal Immunol 2019; 12:132-144. [PMID: 30242254 DOI: 10.1038/s41385-018-0084-6] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Revised: 07/27/2018] [Accepted: 08/25/2018] [Indexed: 02/04/2023]
Abstract
Allergic poly-sensitization affects a large number of allergic patients and poses a great challenge for their treatment. In this study we evaluated the effects of the probiotic Escherichia coli Nissle 1917 (EcN) expressing a birch and grass pollen allergen chimera 'Bet v 1, Phl p 1 and Phl p 5' (EcN-Chim) on allergy prevention after oral or intranasal application in poly-sensitized mice. In contrast to oral application, intranasal pretreatment with EcN-Chim prior to poly-sensitization led to a significant reduction of lung inflammation (eosinophils, IL-5, and IL-13 in bronchoalveolar lavage) along with suppressed levels of allergen-specific serum IgE. The suppression was associated with increased levels of allergen-specific IgA in lungs and serum IgG2a along with increased Foxp3, TGF-β, and IL-10 mRNA in bronchial lymph nodes. In vitro EcN induced high levels of IL-10 and IL-6 in both lung and intestinal epithelial cells. Importantly, using in vivo imaging techniques we demonstrated that intranasally applied EcN do not permanently colonize nose, lung, and gut and this strain might therefore be a safe delivery vector against allergy in humans. In conclusion, our data show that intranasal application of recombinant EcN expressing a multiallergen chimera presents a novel and promising treatment strategy for prevention of allergic poly-sensitization.
Collapse
|
17
|
Hajavi J, Esmaeili SA, Varasteh AR, Vazini H, Atabati H, Mardani F, Momtazi-Borojeni AA, Hashemi M, Sankian M, Sahebkar A. The immunomodulatory role of probiotics in allergy therapy. J Cell Physiol 2018; 234:2386-2398. [PMID: 30192002 DOI: 10.1002/jcp.27263] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Accepted: 07/24/2018] [Indexed: 12/14/2022]
Abstract
The increased incidence of allergic disorders may be the result of a relative fall in microbial induction in the intestinal immune system during infancy and early childhood. Probiotics have recently been proposed as viable microorganisms for the prevention and treatment of specific allergic diseases. Different mechanisms have been considered for this probiotic property, such as generation of cytokines from activated pro-T-helper type 1 after bacterial contact. However, the effects of its immunomodulatory potential require validation for clinical applications. This review will focus on the currently available data on the benefits of probiotics in allergy disease.
Collapse
Affiliation(s)
- Jafar Hajavi
- Department of Basic Sciences, Faculty of Allied Medicine, Gonabad University of Medical Sciences, Gonabad, Iran
| | - Seyed-Alireza Esmaeili
- Immunology Research Center, BuAli Research Institute, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.,Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Abdol-Reza Varasteh
- Allergy Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hossein Vazini
- Nursing Department, Basic Sciences Faculty, Hamedan Branch, Islamic Azad University, Hamedan, Iran
| | - Hadi Atabati
- Leishmaniasis Research Center, Sabzevar University of Medical Sciences, Sabzevar, Iran
| | - Fatemeh Mardani
- Immunology Research Center, BuAli Research Institute, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.,Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amir A Momtazi-Borojeni
- Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Medical Biotechnology, Nanotechnology Research Center, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Maryam Hashemi
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mojtaba Sankian
- Immunology Research Center, BuAli Research Institute, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.,Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
18
|
Zahirović A, Lunder M. Microbial Delivery Vehicles for Allergens and Allergen-Derived Peptides in Immunotherapy of Allergic Diseases. Front Microbiol 2018; 9:1449. [PMID: 30013543 PMCID: PMC6036130 DOI: 10.3389/fmicb.2018.01449] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Accepted: 06/11/2018] [Indexed: 12/13/2022] Open
Abstract
Allergen-specific immunotherapy represents the only available curative approach to allergic diseases. The treatment has proven effective, but it requires repetitive administrations of allergen extracts over 3-5 years and is often associated with adverse events. This implies the need for novel therapeutic strategies with reduced side effects and decreased treatment time, which would improve patients' compliance. Development of vaccines that are molecularly well defined and have improved safety profile in comparison to whole allergen extracts represents a promising approach. Molecular allergy vaccines are based on major allergen proteins or allergen-derived peptides. Often, such vaccines are associated with lower immunogenicity and stability and therefore require an appropriate delivery vehicle. In this respect, viruses, bacteria, and their protein components have been intensively studied for their adjuvant capacity. This article provides an overview of the microbial delivery vehicles that have been tested for use in allergy immunotherapy. We review in vitro and in vivo data on the immunomodulatory capacity of different microbial vehicles for allergens and allergen-derived peptides and evaluate their potential in development of allergy vaccines. We also discuss relevant aspects and challenges concerning the use of microbes and their components in immunotherapy of allergic diseases.
Collapse
Affiliation(s)
- Abida Zahirović
- Faculty of Pharmacy, University of Ljubljana, Ljubljana, Slovenia
| | - Mojca Lunder
- Faculty of Pharmacy, University of Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
19
|
Torkashvand A, Bahrami F, Adib M, Ajdary S. Mucosal and systemic immune responses elicited by recombinant Lactococcus lactis expressing a fusion protein composed of pertussis toxin and filamentous hemagglutinin from Bordetella pertussis. Microb Pathog 2018; 120:155-160. [PMID: 29738814 PMCID: PMC7125623 DOI: 10.1016/j.micpath.2018.05.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Revised: 05/03/2018] [Accepted: 05/04/2018] [Indexed: 01/30/2023]
Abstract
We constructed a food-grade expression system harboring a F1S1 fusion protein of Bordetella pertussis to be produced in Lactococcus lactis NZ3900 as a new oral vaccine model against whooping cough, caused by B. pertussis. F1S1 was composed of N-terminally truncated S1 subunit of pertussis toxin and type I immunodominant domain of filamentous hemagglutinin which are both known as protective immunogens against pertussis. The recombinant L. lactis was administered via oral or intranasal routes to BALB/c mice and the related specific systemic and mucosal immune responses were then evaluated. The results indicated significantly higher levels of specific IgA in the lung extracts and IgG in sera of mucosally-immunized mice, compared to their controls. It was revealed that higher levels of IgG2a, compared to IgG1, were produced in all mucosally-immunized mice. Moreover, immunized mice developed Th1 responses with high levels of IFN-γ production by the spleen cells. These findings provide evidence for L. lactis to be used as a suitable vehicle for expression and delivery of F1S1 fusion protein to mucosa and induction of appropriate systemic and mucosal immune responses against pertussis. Lactococcus lactis was used for expression of fusion protein from Bordetella pertussis. BALB/c mice were immunized via oral or intranasal routes with recombinant L. lactis. Strong mucosal and Th1 systemic immune responses were developed. L. lactis is a suitable vehicle for expression and delivery of B. pertussis fusion protein.
Collapse
Affiliation(s)
- Ali Torkashvand
- Department of Immunology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Islamic Republic of Iran
| | - Fariborz Bahrami
- Department of Immunology, Pasteur Institute of Iran, 69 Pasteur Ave., Tehran, 13169-43551, Islamic Republic of Iran
| | - Minoo Adib
- Department of Immunology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Islamic Republic of Iran
| | - Soheila Ajdary
- Department of Immunology, Pasteur Institute of Iran, 69 Pasteur Ave., Tehran, 13169-43551, Islamic Republic of Iran.
| |
Collapse
|
20
|
L. plantarum WCFS1 enhances Treg frequencies by activating DCs even in absence of sampling of bacteria in the Peyer Patches. Sci Rep 2018; 8:1785. [PMID: 29379071 PMCID: PMC5788989 DOI: 10.1038/s41598-018-20243-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Accepted: 01/15/2018] [Indexed: 12/14/2022] Open
Abstract
Probiotics such as L. plantarum WCFS1 can modulate immune responses in healthy subjects but how this occurs is still largely unknown. Immune-sampling in the Peyer Patches has been suggested to be one of the mechanisms. Here we studied the systemic and intestinal immune effects in combination with a trafficking study through the intestine of a well-established immunomodulating probiotic, i.e. L. plantarum WCFS1. We demonstrate that not more than 2–3 bacteria were sampled and in many animals not any bacterium could be found in the PP. Despite this, L. plantarum was associated with a strong increase in infiltration of regulatory CD103+ DCs and generation of regulatory T cells in the spleen. Also, a reduced splenic T helper cell cytokine response was observed after ex vivo restimulation. L. plantarum enhanced Treg cells and attenuated the T helper 2 response in healthy mice. We demonstrate that, in healthy mice, immune sampling is a rare phenomenon and not required for immunomodulation. Also in absence of any sampling immune activation was found illustrating that host-microbe interaction on the Peyer Patches was enough to induce immunomodulation of DCs and T-cells.
Collapse
|
21
|
Toxoplasma gondii tachyzoite-extract acts as a potent immunomodulator against allergic sensitization and airway inflammation. Sci Rep 2017; 7:15211. [PMID: 29123241 PMCID: PMC5680314 DOI: 10.1038/s41598-017-15663-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Accepted: 10/26/2017] [Indexed: 01/08/2023] Open
Abstract
Epidemiological and experimental studies have shown an inverse relationship between infections with certain parasites and a reduced incidence of allergic diseases. We and others have shown that infection with Toxoplasma gondii prevents the development of allergy in mice. To establish whether this beneficial effect could be recapitulated by soluble products of this parasite, we tested an extract derived from T. gondii tachyzoites. Immunization of BALB/c mice with tachyzoites lysate antigen (TLA) elicited mixed Th1/Th2 responses. When TLA was applied together with the sensitizing ovalbumin (OVA), the development of allergic airway inflammation was reduced, with decreased airway hyperresponsiveness associated with reduced peribronchial and perivascular cellular infiltration, reduced production of OVA-specific Th2 cytokines in lungs and spleens and reduced levels of serum OVA-specific IgG1 as well as IgE-dependent basophil degranulation. Of note, TLA retained its immunomodulatory properties, inducing high levels of IL-6, TNFα, IL-10 and IL-12p70 in bone marrow-derived dendritic cells after heat-inactivation or proteinase K-treatment for disruption of proteins, but not after sodium metaperiodate-treatment that degrades carbohydrate structures, suggesting that carbohydrates may play a role in immunomodulatory properties of TLA. Here we show that extracts derived from parasites may replicate the benefits of parasitic infection, offering new therapies for immune-mediated disorders.
Collapse
|
22
|
Moingeon P, Lombardi V, Baron-Bodo V, Mascarell L. Enhancing Allergen-Presentation Platforms for Sublingual Immunotherapy. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY-IN PRACTICE 2017; 5:23-31. [PMID: 28065340 DOI: 10.1016/j.jaip.2016.07.020] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Revised: 07/22/2016] [Accepted: 07/25/2016] [Indexed: 01/24/2023]
Abstract
Sublingual immunotherapy (SLIT) relies on high doses of allergens to treat patients with type I allergies. Although SLIT is commonly performed without any adjuvant or delivery system, allergen(s) could be further formulated with allergen-presentation platforms to better target oral dendritic cells eliciting regulatory immune responses. Improving the availability of allergens to the immune system should enhance SLIT efficacy, while allowing to decrease allergen dosing. Herein, we present an overview of adjuvants and vector systems that have been, or could be, considered as candidate allergen-presentation platforms for the sublingual route. Such platforms encompass adjuvants capable of stimulating allergen-specific TH1 and/or regulatory CD4+ T-cell responses, including 1,25-dihydroxy vitamin D3, glucocorticoids, Toll-like receptor ligands as well as selected bacterial probiotic strains. A limiting factor for SLIT efficacy is the number of dendritic cells capturing the allergens in the upper layers of oral tissues. Thus, adsorption or encapsulation of the allergen(s) within mucoadhesive particulate vector (or delivery) systems also has the potential to significantly enhance SLIT efficacy due to a facilitated allergen uptake by tolerogenic oral dendritic cells.
Collapse
Affiliation(s)
- P Moingeon
- Research and Development, Stallergenes Greer, Antony, France.
| | - V Lombardi
- Research and Development, Stallergenes Greer, Antony, France
| | - V Baron-Bodo
- Research and Development, Stallergenes Greer, Antony, France
| | - L Mascarell
- Research and Development, Stallergenes Greer, Antony, France
| |
Collapse
|
23
|
van Pijkeren JP, Barrangou R. Genome Editing of Food-Grade Lactobacilli To Develop Therapeutic Probiotics. Microbiol Spectr 2017; 5:10.1128/microbiolspec.BAD-0013-2016. [PMID: 28959937 PMCID: PMC5958611 DOI: 10.1128/microbiolspec.bad-0013-2016] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Indexed: 12/21/2022] Open
Abstract
Lactic acid bacteria have been used historically for food manufacturing mainly to ensure preservation via fermentation. More recently, lactic acid bacteria have been exploited to promote human health, and many strains serve as industrial workhorses. Recent advances in microbiology and molecular biology have contributed to understanding the genetic basis of many of their functional attributes. These include dissection of biochemical processes that drive food fermentation, and identification and characterization of health-promoting features that positively impact the composition and roles of microbiomes in human health. Recently, the advent of clustered regularly interspaced short palindromic repeat (CRISPR)-based technologies has revolutionized our ability to manipulate genomes, and we are on the cusp of a broad-scale genome editing revolution. Here, we discuss recent advances in genetic alteration of food-grade bacteria, with a focus on CRISPR-associated enzyme genome editing, single-stranded DNA recombineering, and the modification of bacteriophages. These tools open new avenues for the genesis of next-generation biotherapeutic agents with improved genotypes and enhanced health-promoting functional features.
Collapse
Affiliation(s)
| | - Rodolphe Barrangou
- Department of Food, Bioprocessing, and Nutrition Sciences, North Carolina State University, Raleigh, NC 27695
| |
Collapse
|
24
|
Smole U, Schabussova I, Pickl WF, Wiedermann U. Murine models for mucosal tolerance in allergy. Semin Immunol 2017; 30:12-27. [PMID: 28807539 DOI: 10.1016/j.smim.2017.07.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Accepted: 07/21/2017] [Indexed: 02/07/2023]
Abstract
Immunity is established by a fine balance to discriminate between self and non-self. In addition, mucosal surfaces have the unique ability to establish and maintain a state of tolerance also against non-self constituents such as those represented by the large numbers of commensals populating mucosal surfaces and food-derived or air-borne antigens. Recent years have seen a dramatic expansion in our understanding of the basic mechanisms and the involved cellular and molecular players orchestrating mucosal tolerance. As a direct outgrowth, promising prophylactic and therapeutic models for mucosal tolerance induction against usually innocuous antigens (derived from food and aeroallergen sources) have been developed. A major theme in the past years was the introduction of improved formulations and novel adjuvants into such allergy vaccines. This review article describes basic mechanisms of mucosal tolerance induction and contrasts the peculiarities but also the interdependence of the gut and respiratory tract associated lymphoid tissues in that context. Particular emphasis is put on delineating the current prophylactic and therapeutic strategies to study and improve mucosal tolerance induction in allergy.
Collapse
Affiliation(s)
- Ursula Smole
- Institute of Immunology, Center for Pathophysiology, Infectiology, and Immunology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Irma Schabussova
- Institute of Specific Prophylaxis and Tropical Medicine, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Winfried F Pickl
- Institute of Immunology, Center for Pathophysiology, Infectiology, and Immunology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria.
| | - Ursula Wiedermann
- Institute of Specific Prophylaxis and Tropical Medicine, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
25
|
Shandilya UK, Sharma A, Kapila R, Kansal VK. Probiotic Dahi containing Lactobacillus acidophilus and Bifidobacterium bifidum modulates immunoglobulin levels and cytokines expression in whey proteins sensitised mice. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2016; 96:3180-3187. [PMID: 26459934 DOI: 10.1002/jsfa.7497] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Revised: 09/14/2015] [Accepted: 10/09/2015] [Indexed: 06/05/2023]
Abstract
BACKGROUND Cow milk allergy is the most common food allergy in children. So far, no effective treatment is available to prevent or cure food allergy. This study investigated whether orally administrated probiotics could suppress sensitisation in whey proteins (WP)-induced allergy mouse model. Two types of probiotic Dahi were prepared by co-culturing Dahi bacteria (Lactococcus lactis ssp. cremoris NCDC-86 and Lactococcus lactis ssp. lactis biovar diacetylactis NCDC-60) along with selected strain of Lactobacillus acidophilus LaVK2 and Bifidobacterium bifidum BbVK3. Mice were fed with probiotic Dahi (La-Dahi and LaBb-Dahi) from 7 days before sensitisation with WP, respectively, in addition to milk protein-free basal diet, and control group received no supplements. RESULTS Feeding of probiotic Dahi suppressed the elevation of whey proteins-specific IgE and IgG response of WP-sensitised mice. In addition, sIgA levels were significantly (P < 0.001) increased in intestinal fluid collected from mice fed with La-Dahi. Production of T helper (Th)-1 cell-specific cytokines, i.e. interferon-γ (IFN-γ), interleukin (IL)-12, and IL-10 increased, while Th2-specific cytokines, i.e. IL-4 decreased in the supernatant of cultured splenocytes collected from mice fed with probiotic Dahi as compared to the other groups. Moreover, the splenic mRNA levels of IFN-γ, interleukin-10 were found to be significantly increased, while that of IL-4 decreased significantly in La-Dahi groups, as compared to control groups. CONCLUSION Results of the present study indicate that probiotic Dahi skewed Th2-specific immune response towards Th1-specific response and suppressed IgE in serum. Collectively, this study shows the potential use of probiotics intervention in reducing the allergic response to whey proteins in mice. © 2015 Society of Chemical Industry.
Collapse
Affiliation(s)
- Umesh Kumar Shandilya
- Animal Biochemistry Division, National Dairy Research Institute, Karnal, 132001, India
| | | | - Rajeev Kapila
- Animal Biochemistry Division, National Dairy Research Institute, Karnal, 132001, India
| | - Vinod Kumar Kansal
- Animal Biochemistry Division, National Dairy Research Institute, Karnal, 132001, India
| |
Collapse
|
26
|
Moingeon P, Floch VBL, Airouche S, Baron-Bodo V, Nony E, Mascarell L. Allergen immunotherapy for birch pollen-allergic patients: recent advances. Immunotherapy 2016; 8:555-67. [DOI: 10.2217/imt-2015-0027] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
As of today, allergen immunotherapy is performed with aqueous natural allergen extracts. Recombinant allergen vaccines are not yet commercially available, although they could provide patients with well-defined and highly consistent drug substances. As Bet v 1 is the major allergen involved in birch pollen allergy, with more than 95% of patients sensitized to this allergen, pharmaceutical-grade recombinant Bet v 1-based vaccines were produced and clinically tested. Herein, we compare the clinical results and modes of action of treatments based on either a birch pollen extract or recombinant Bet v 1 expressed as hypoallergenic or natural-like molecules. We also discuss the future of allergen immunotherapy with improved drugs intended for birch pollen-allergic patients suffering from rhinoconjunctivitis.
Collapse
Affiliation(s)
- Philippe Moingeon
- Stallergenes Greer, Research Department, 6 rue Alexis de Tocqueville, 92183 Antony Cedex, France
| | | | - Sabi Airouche
- Stallergenes Greer, Research Department, 6 rue Alexis de Tocqueville, 92183 Antony Cedex, France
| | - Véronique Baron-Bodo
- Stallergenes Greer, Research Department, 6 rue Alexis de Tocqueville, 92183 Antony Cedex, France
| | - Emmanuel Nony
- Stallergenes Greer, Research Department, 6 rue Alexis de Tocqueville, 92183 Antony Cedex, France
| | - Laurent Mascarell
- Stallergenes Greer, Research Department, 6 rue Alexis de Tocqueville, 92183 Antony Cedex, France
| |
Collapse
|
27
|
Hendaus MA, Jomha FA, Ehlayel M. Allergic diseases among children: nutritional prevention and intervention. Ther Clin Risk Manag 2016; 12:361-72. [PMID: 27022267 PMCID: PMC4788360 DOI: 10.2147/tcrm.s98100] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Allergic diseases comprise a genetically heterogeneous group of chronic, immunomediated diseases. It has been clearly reported that the prevalence of these diseases has been on the rise for the last few decades, but at different rates, in various areas of the world. This paper discusses the epidemiology of allergic diseases among children and their negative impact on affected patients, their families, and societies. These effects include the adverse effects on quality of life and economic costs. Medical interest has shifted from tertiary or secondary prevention to primary prevention of these chronic diseases among high-risk infants in early life. Being simple, practical, and cost-effective are mandatory features for any candidate methods delivering these strategies. Dietary therapy fits this model well, as it is simple, practical, and cost-effective, and involves diverse methods. The highest priority strategy is feeding these infants breast milk. For those who are not breast-fed, there should be a strategy to maintain beneficial gut flora that positively influences intestinal immunity. We review the current use of probiotics, prebiotics, and synbiotics, and safety and adverse effects. Other dietary modalities of possible potential in achieving this primary prevention, such as a Mediterranean diet, use of milk formula with modified (hydrolyzed) proteins, and the role of micronutrients, are also explored. Breast-feeding is effective in reducing the risk of asthma, allergic rhinitis, and atopic eczema among children. In addition, breast milk constitutes a major source of support for gut microbe colonization, due to its bifidobacteria and galactooligosaccharide content. The literature lacks consensus in recommending the addition of probiotics to foods for prevention and treatment of allergic diseases, while prebiotics may prove to be effective in reducing atopy in healthy children. There is insufficient evidence to support soy formulas or amino acid formulas for prevention of allergic disease. A healthy diet, such as the Mediterranean diet, may have a protective effect on the development of asthma and atopy in children. In children with asthma and allergic diseases, vitamin D deficiency correlates strongly with asthma, allergic rhinitis, and wheezing.
Collapse
Affiliation(s)
- Mohamed A Hendaus
- Department of Pediatrics, Section of Academic General Pediatrics, Hamad Medical Corporation, Doha, Qatar
- Weill Cornell Medical College, Doha, Qatar
| | - Fatima A Jomha
- School of Pharmacy, Lebanese International University, Khiara, Lebanona
| | - Mohammad Ehlayel
- Weill Cornell Medical College, Doha, Qatar
- Department of Pediatrics, Section of Pediatric Allergy-Immunology, Hamad Medical Corporation, Doha, Qatar
| |
Collapse
|
28
|
Van Beek AA, Hoogerland JA, Belzer C, De Vos P, De Vos WM, Savelkoul HFJ, Leenen PJM. Interaction of mouse splenocytes and macrophages with bacterial strains in vitro: the effect of age in the immune response. Benef Microbes 2015; 7:275-87. [PMID: 26689225 DOI: 10.3920/bm2015.0094] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Probiotics influence the immune system, both at the local and systemic level. Recent findings suggest the relation between microbiota and the immune system alters with age. Our objective was to address direct effects of six bacterial strains on immune cells from young and aged mice: Lactobacillus plantarum WCFS1, Lactobacillus casei BL23, Lactococcus lactis MG1363, Bifidobacterium breve ATCC15700, Bifidobacterium infantis ATCC15697, and Akkermansia muciniphila ATCC BAA-835. We used splenocytes and naïve or interferon-γ-stimulated bone marrow-derived macrophages (BMDM) as responder populations. All tested bacterial strains induced phenotypic and cytokine responses in splenocytes and BMDM. Based on magnitude of the cellular inflammatory response and cytokine profiles, two subgroups of bacteria were identified, i.e. L. plantarum and L. casei versus B. breve, B. infantis, and A. muciniphila. The latter group of bacteria induced high levels of cytokines produced under inflammatory conditions, including tumour necrosis factor (TNF), interleukin (IL)-6 and IL-10. Responses to L. lactis showed features of both subgroups. In addition, we compared responses by splenocytes and BMDM derived from young mice to those of aged mice, and found that splenocytes and BMDM derived from aged mice had an increased IL-10 production and dysregulated IL-6 and TNF production compared to young immune cells. Overall, our study shows differential inflammatory responses to distinct bacterial strains, and profound age-dependent effects. These findings, moreover, support the view that immune environment importantly influences bacterial immune effects.
Collapse
Affiliation(s)
- A A Van Beek
- 1 Top Institute Food and Nutrition, Nieuwe Kanaal 9A, 6709 PA Wageningen, the Netherlands.,2 Cell Biology and Immunology Group, Wageningen University, De Elst 1, 6709 PG Wageningen, the Netherlands.,3 Department of Immunology, Erasmus University Medical Center, Wytemaweg 80, 3015 CN Rotterdam, the Netherlands
| | - J A Hoogerland
- 1 Top Institute Food and Nutrition, Nieuwe Kanaal 9A, 6709 PA Wageningen, the Netherlands.,2 Cell Biology and Immunology Group, Wageningen University, De Elst 1, 6709 PG Wageningen, the Netherlands.,3 Department of Immunology, Erasmus University Medical Center, Wytemaweg 80, 3015 CN Rotterdam, the Netherlands
| | - C Belzer
- 4 Laboratory of Microbiology, Wageningen University, Dreijenplein 10, 6703 HB Wageningen, the Netherlands
| | - P De Vos
- 1 Top Institute Food and Nutrition, Nieuwe Kanaal 9A, 6709 PA Wageningen, the Netherlands.,5 University of Groningen, Pathology and Medical Biology, Hanzeplein 1, 9713 GZ Groningen, the Netherlands
| | - W M De Vos
- 4 Laboratory of Microbiology, Wageningen University, Dreijenplein 10, 6703 HB Wageningen, the Netherlands
| | - H F J Savelkoul
- 2 Cell Biology and Immunology Group, Wageningen University, De Elst 1, 6709 PG Wageningen, the Netherlands
| | - P J M Leenen
- 3 Department of Immunology, Erasmus University Medical Center, Wytemaweg 80, 3015 CN Rotterdam, the Netherlands
| |
Collapse
|
29
|
Srutkova D, Schwarzer M, Hudcovic T, Zakostelska Z, Drab V, Spanova A, Rittich B, Kozakova H, Schabussova I. Bifidobacterium longum CCM 7952 Promotes Epithelial Barrier Function and Prevents Acute DSS-Induced Colitis in Strictly Strain-Specific Manner. PLoS One 2015. [PMID: 26218526 PMCID: PMC4517903 DOI: 10.1371/journal.pone.0134050] [Citation(s) in RCA: 134] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Reduced microbial diversity has been associated with inflammatory bowel disease (IBD) and probiotic bacteria have been proposed for its prevention and/or treatment. Nevertheless, comparative studies of strains of the same subspecies for specific health benefits are scarce. Here we compared two Bifidobacterium longum ssp. longum strains for their capacity to prevent experimental colitis. METHODS Immunomodulatory properties of nine probiotic bifidobacteria were assessed by stimulation of murine splenocytes. The immune responses to B. longum ssp. longum CCM 7952 (Bl 7952) and CCDM 372 (Bl 372) were further characterized by stimulation of bone marrow-derived dendritic cell, HEK293/TLR2 or HEK293/NOD2 cells. A mouse model of dextran sulphate sodium (DSS)-induced colitis was used to compare their beneficial effects in vivo. RESULTS The nine bifidobacteria exhibited strain-specific abilities to induce cytokine production. Bl 372 induced higher levels of both pro- and anti-inflammatory cytokines in spleen and dendritic cell cultures compared to Bl 7952. Both strains engaged TLR2 and contain ligands for NOD2. In a mouse model of DSS-induced colitis, Bl 7952, but not Bl 372, reduced clinical symptoms and preserved expression of tight junction proteins. Importantly, Bl 7952 improved intestinal barrier function as demonstrated by reduced FITC-dextran levels in serum. CONCLUSIONS We have shown that Bl 7952, but not Bl 372, protected mice from the development of experimental colitis. Our data suggest that although some immunomodulatory properties might be widespread among the genus Bifidobacterium, others may be rare and characteristic only for a specific strain. Therefore, careful selection might be crucial in providing beneficial outcome in clinical trials with probiotics in IBD.
Collapse
Affiliation(s)
- Dagmar Srutkova
- Laboratory of Gnotobiology, Institute of Microbiology of the Czech Academy of Sciences, v.v.i., Novy Hradek, Czech Republic
| | - Martin Schwarzer
- Laboratory of Gnotobiology, Institute of Microbiology of the Czech Academy of Sciences, v.v.i., Novy Hradek, Czech Republic
| | - Tomas Hudcovic
- Laboratory of Gnotobiology, Institute of Microbiology of the Czech Academy of Sciences, v.v.i., Novy Hradek, Czech Republic
| | - Zuzana Zakostelska
- Laboratory of Cellular and Molecular Immunology, Institute of Microbiology of the Czech Academy of Sciences, v.v.i., Prague, Czech Republic
| | - Vladimir Drab
- Dairy Research Institute Ltd., Prague, Czech Republic
| | - Alena Spanova
- Brno University of Technology, Faculty of Chemistry, Brno, Czech Republic
| | - Bohuslav Rittich
- Brno University of Technology, Faculty of Chemistry, Brno, Czech Republic
| | - Hana Kozakova
- Laboratory of Gnotobiology, Institute of Microbiology of the Czech Academy of Sciences, v.v.i., Novy Hradek, Czech Republic
- * E-mail:
| | - Irma Schabussova
- Institute of Specific Prophylaxis and Tropical Medicine, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
30
|
Minic R, Gavrovic-Jankulovic M, Petrusic V, Zivkovic I, Eijsink VG, Dimitrijevic L, Mathiesen G. Effects of orally applied Fes p1-displaying L. plantarum WCFS1 on Fes p1 induced allergy in mice. J Biotechnol 2015; 199:23-8. [DOI: 10.1016/j.jbiotec.2015.01.028] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2014] [Revised: 12/08/2014] [Accepted: 01/14/2015] [Indexed: 12/15/2022]
|
31
|
Ivanovic N, Minic R, Dimitrijevic L, Radojevic Skodric S, Zivkovic I, Djordjevic B. Lactobacillus rhamnosus LA68 and Lactobacillus plantarum WCFS1 differently influence metabolic and immunological parameters in high fat diet-induced hypercholesterolemia and hepatic steatosis. Food Funct 2015; 6:558-65. [DOI: 10.1039/c4fo00843j] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
TwoLactobacillusstrains were evaluated for their effects on high fat diet induced pathology in mice.
Collapse
Affiliation(s)
- Nevena Ivanovic
- Department of Bromatology
- Faculty of Pharmacy
- University of Belgrade
- Belgrade
- Serbia
| | - Rajna Minic
- Department of Research and Development
- Institute of Virology
- Belgrade
- Serbia
| | | | | | - Irena Zivkovic
- Department of Research and Development
- Institute of Virology
- Belgrade
- Serbia
| | - Brizita Djordjevic
- Department of Bromatology
- Faculty of Pharmacy
- University of Belgrade
- Belgrade
- Serbia
| |
Collapse
|
32
|
Abstract
Peanut allergy is an IgE-mediated, persisting immune disorder that is of major concern worldwide. Currently, no routine immunotherapy is available to treat this often severe and sometimes fatal food allergy. Traditional subcutaneous allergen immunotherapy with crude peanut extracts has proven not feasible due to the high risk of severe systemic side effects. The allergen-specific approaches under preclinical and clinical investigation comprise subcutaneous, oral, sublingual and epicutaneous immunotherapy with whole-peanut extracts as well as applications of hypoallergenic peanut allergens or T cell epitope peptides. Allergen-nonspecific approaches include monoclonal anti-IgE antibodies, TCM herbal formulations and Toll-like receptor 9-based immunotherapy. The potential of genetically engineered plants with reduced allergen levels is being explored as well as the beneficial influence of lactic acid bacteria and soybean isoflavones on peanut allergen-induced symptoms. Although the underlying mechanisms still need to be elucidated, several of these strategies hold great promise. It can be estimated that individual strategies or a combination thereof will result in a successful immunotherapy regime for peanut-allergic individuals within the next decade.
Collapse
Affiliation(s)
- Merima Bublin
- Department of Pathophysiology and Allergy Research, Medical University of Vienna, Vienna, Austria
| | | |
Collapse
|
33
|
Robert S, Steidler L. Recombinant Lactococcus lactis can make the difference in antigen-specific immune tolerance induction, the Type 1 Diabetes case. Microb Cell Fact 2014; 13 Suppl 1:S11. [PMID: 25185797 PMCID: PMC4155828 DOI: 10.1186/1475-2859-13-s1-s11] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Especially in western civilizations, immune diseases that are driven by innocuous (auto- or allo-) antigens are gradually evolving to become pandemic threats. A particularly poignant example is type 1 diabetes, where young children are confronted with the perspective and consequences of total pancreatic β-cell destruction. Along these disquieting observations we find ourselves equipped with impressively accumulating molecular immunological knowledge on the ins and outs of these pathologies. Often, however, it is difficult to translate this wealth into efficacious medicines. The molecular understanding, the concept of oral tolerance induction, the benefit of using recombinant Lactococcus lactis therein and recent openings towards their clinical use may well enable turning all colors to their appropriate fields on this Rubik's cube.
Collapse
Affiliation(s)
- Sofie Robert
- Clinical and Experimental Endocrinology (CEE), KU Leuven, 3000, Leuven, Belgium
| | | |
Collapse
|
34
|
Distinct immunomodulation of bone marrow-derived dendritic cell responses to Lactobacillus plantarum WCFS1 by two different polysaccharides isolated from Lactobacillus rhamnosus LOCK 0900. Appl Environ Microbiol 2014; 80:6506-16. [PMID: 25107979 DOI: 10.1128/aem.02104-14] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The structures of polysaccharides (PS) isolated from Lactobacillus rhamnosus LOCK 0900 and results from stimulation of mouse bone marrow-derived dendritic cells (BM-DC) and human embryonal kidney (HEK293) cells stably transfected with Toll-like receptors (TLR) upon exposure to these antigens were studied. L. rhamnosus LOCK 0900 produces PS that differ greatly in their structure. The polymer L900/2, with a high average molecular mass of 830 kDa, is a branched heteropolysaccharide with a unique repeating unit consisting of seven sugar residues and pyruvic acid, whereas L900/3 has a low average molecular mass of 18 kDa and contains a pentasaccharide repeating unit and phosphorus. Furthermore, we found that both described PS neither induce cytokine production and maturation of mouse BM-DC nor induce signaling through TLR2/TLR4 receptors. However, they differ profoundly in their abilities to modulate the BM-DC immune response to the well-characterized human isolate Lactobacillus plantarum WCFS1. Exposure to L900/2 enhanced interleukin-10 (IL-10) production induced by L. plantarum WCFS1, while in contrast, L900/3 enhanced the production of IL-12p70. We conclude that PS, probably due to their chemical features, are able to modulate the immune responses to third-party antigens. The ability to induce regulatory IL-10 by L900/2 opens up the possibility to use this PS in therapy of inflammatory conditions, such as inflammatory bowel disease, whereas L900/3 might be useful in reverting the antigen-dependent Th2-skewed immune responses in allergies.
Collapse
|
35
|
In vitro assessment of agave fructans (Agave salmiana) as prebiotics and immune system activators. Int J Biol Macromol 2014; 63:181-7. [DOI: 10.1016/j.ijbiomac.2013.10.039] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2013] [Revised: 10/20/2013] [Accepted: 10/26/2013] [Indexed: 01/18/2023]
|
36
|
Schwarzer M, Srutkova D, Schabussova I, Hudcovic T, Akgün J, Wiedermann U, Kozakova H. Neonatal colonization of germ-free mice with Bifidobacterium longum prevents allergic sensitization to major birch pollen allergen Bet v 1. Vaccine 2013; 31:5405-12. [PMID: 24055352 DOI: 10.1016/j.vaccine.2013.09.014] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2013] [Revised: 08/19/2013] [Accepted: 09/06/2013] [Indexed: 12/19/2022]
Abstract
The main goal in reversing the allergy epidemic is the development of effective prophylactic strategies. We investigated the prophylactic effect of neonatal mother-to-offspring mono-colonization with Bifidobacterium longum ssp. longum CCM 7952 on subsequent allergic sensitization. Adult male and female germ-free (GF) mice were mono-colonized with B. longum, mated and their offspring, as well as age-matched GF controls, were sensitized with the major birch pollen allergen Bet v 1. Furthermore, signaling pathways involved in the recognition of B. longum were investigated in vitro. Neonatal mono-colonization of GF mice with B. longum suppressed Bet v 1-specific IgE-dependent β-hexosaminidase release as well as levels of total IgE and allergen-specific IgG2a in serum compared to sensitized GF controls. Accordingly, Bet v 1-induced production of both Th1- and Th2-associated cytokines in spleen cell cultures was significantly reduced in these mice. The general suppression of Bet v 1-specific immune responses in B. longum-colonized mice was associated with increased levels of regulatory cytokines IL-10 and TGF-β in serum. In vitro, B. longum induced low maturation status of bone marrow-derived dendritic cells and production of IL-10 in TLR2-, MyD88-, and MAPK-dependent manner. Our data demonstrate that neonatal mono-colonization with B. longum reduces allergic sensitization, likely by activation of regulatory responses via TLR2, MyD88, and MAPK signaling pathways. Thus, B. longum might be a promising candidate for perinatal intervention strategies against the onset of allergic diseases in humans.
Collapse
Affiliation(s)
- Martin Schwarzer
- Department of Immunology and Gnotobiology, Institute of Microbiology of the Academy of Sciences of the Czech Republic, v. v. i., Novy Hradek, Czech Republic.
| | | | | | | | | | | | | |
Collapse
|
37
|
Ming M, Li C, Luo Z, Lv S. Effect of inhaled inactivated Mycobacterium phlei in children with moderate asthma. Immunotherapy 2013; 5:191-7. [PMID: 23413910 DOI: 10.2217/imt.12.156] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Bacillus Calmette-Guérin and other mycobacterial vaccines are important therapeutic methods in a series of chronic inflammatory disorders characterized by Th1/Th2 imbalance in which Th2 type cells and cytokines often increase. However, few studies have investigated whether it can reduce or prevent the symptoms and attacks in children with asthma. This study evaluated the effect of inactivated Mycobacterium phlei inhaled by an atomizing device placed on asthmatic children. In this randomized, single-center, Seretide-controlled study, children aged 4-12 years with newly diagnosed, moderate, persistent asthma were treated with either inhaled inactivated M. phlei or inhaled Seretide patch. The efficacy of inhaled inactivated M. phlei was related with the alleviation of asthma symptoms, improvement of lung function and reduction of bronchial hyper-responsiveness and total serum IgE, which was similar with Seretide. These findings may have important clinical value in confirming inhaled inactivated M. phlei as a new therapeutic method in moderately asthmatic children.
Collapse
Affiliation(s)
- Moyu Ming
- Department of Respiratory Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, Guangxi, China
| | | | | | | |
Collapse
|
38
|
Probiotics, prebiotics and immunomodulation of gut mucosal defences: homeostasis and immunopathology. Nutrients 2013; 5:1869-912. [PMID: 23760057 PMCID: PMC3725482 DOI: 10.3390/nu5061869] [Citation(s) in RCA: 311] [Impact Index Per Article: 25.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2013] [Revised: 05/08/2013] [Accepted: 05/09/2013] [Indexed: 12/13/2022] Open
Abstract
Probiotics are beneficial microbes that confer a realistic health benefit on the host, which in combination with prebiotics, (indigestible dietary fibre/carbohydrate), also confer a health benefit on the host via products resulting from anaerobic fermentation. There is a growing body of evidence documenting the immune-modulatory ability of probiotic bacteria, it is therefore reasonable to suggest that this is potentiated via a combination of prebiotics and probiotics as a symbiotic mix. The need for probiotic formulations has been appreciated for the health benefits in "topping up your good bacteria" or indeed in an attempt to normalise the dysbiotic microbiota associated with immunopathology. This review will focus on the immunomodulatory role of probiotics and prebiotics on the cells, molecules and immune responses in the gut mucosae, from epithelial barrier to priming of adaptive responses by antigen presenting cells: immune fate decision-tolerance or activation? Modulation of normal homeostatic mechanisms, coupled with findings from probiotic and prebiotic delivery in pathological studies, will highlight the role for these xenobiotics in dysbiosis associated with immunopathology in the context of inflammatory bowel disease, colorectal cancer and hypersensitivity.
Collapse
|
39
|
Osmanagaoglu O, Kiran F, Yagci FC, Gursel I. Immunomodulatory function and in vivo properties of Pediococcus pentosaceus OZF, a promising probiotic strain. ANN MICROBIOL 2012. [DOI: 10.1007/s13213-012-0590-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
40
|
Schabussova I, Hufnagl K, Tang MLK, Hoflehner E, Wagner A, Loupal G, Nutten S, Zuercher A, Mercenier A, Wiedermann U. Perinatal maternal administration of Lactobacillus paracasei NCC 2461 prevents allergic inflammation in a mouse model of birch pollen allergy. PLoS One 2012; 7:e40271. [PMID: 22792257 PMCID: PMC3391241 DOI: 10.1371/journal.pone.0040271] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2012] [Accepted: 06/04/2012] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND The hygiene hypothesis implies that microbial agents including probiotic bacteria may modulate foetal/neonatal immune programming and hence offer effective strategies for primary allergy prevention; however their mechanisms of action are poorly understood. We investigated whether oral administration of Lactobacillus paracasei NCC 2461 to mothers during gestation/lactation can protect against airway inflammation in offspring in a mouse model of birch pollen allergy, and examined the immune mechanisms involved. METHODS BALB/c mice were treated daily with L. paracasei in drinking water or drinking water alone in the last week of gestation and during lactation. Their offspring were sensitized with recombinant Bet v 1, followed by aerosol challenge with birch pollen extract. RESULTS Maternal exposure to L. paracasei prevented the development of airway inflammation in offspring, as demonstrated by attenuation of eosinophil influx in the lungs; reduction of IL-5 levels in bronchoalveolar lavage, and in lung and mediastinal lymph node cell cultures; and reduced peribronchial inflammatory infiltrate and mucus hypersecretion. While allergen-specific IgE and IgG antibody levels remained unchanged by the treatment, IL-4 and IL-5 production in spleen cell cultures were significantly reduced upon allergen stimulation in offspring of L. paracasei treated mice. Offspring of L. paracasei supplemented mothers had significantly reduced Bet v 1-specific as well as Concanavalin A-induced responses in spleen and mesenteric lymph node cell cultures, suggesting the modulation of both antigen-specific and mitogen-induced immune responses in offspring. These effects were associated with increased Foxp3 mRNA expression in the lungs and increased TGF-beta in serum. CONCLUSION Our data show that in a mouse model of birch pollen allergy, perinatal administration of L. paracasei NCC 2461 to pregnant/lactating mothers protects against the development of airway inflammation in offspring by activating regulatory pathways, likely through TLR2/4 signalling.
Collapse
Affiliation(s)
- Irma Schabussova
- Institute of Specific Prophylaxis and Tropical Medicine, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Karin Hufnagl
- Institute of Specific Prophylaxis and Tropical Medicine, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Mimi L. K. Tang
- Department of Allergy and Immunology, Royal Children’s Hospital, The University of Melbourne, Melbourne, Australia
- Department of Allergy and Immune Disorders, Murdoch Children’s Research Institute, Melbourne, Australia
- Department of Paediatrics, Royal Children’s Hospital, The University of Melbourne, Melbourne, Australia
| | - Elisabeth Hoflehner
- Institute of Specific Prophylaxis and Tropical Medicine, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Angelika Wagner
- Institute of Specific Prophylaxis and Tropical Medicine, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Gerhard Loupal
- Department of Pathobiology, Institute of Pathology and Forensic Veterinary Medicine, The University of Veterinary Medicine Vienna, Vienna, Austria
| | - Sophie Nutten
- Nutrition and Health Department, Nestlé Research Center, Lausanne, Switzerland
| | | | - Annick Mercenier
- Nutrition and Health Department, Nestlé Research Center, Lausanne, Switzerland
| | - Ursula Wiedermann
- Institute of Specific Prophylaxis and Tropical Medicine, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
41
|
Zhu L, Shimada T, Chen R, Lu M, Zhang Q, Lu W, Yin M, Enomoto T, Cheng L. Effects of lysed Enterococcus faecalis FK-23 on experimental allergic rhinitis in a murine model. J Biomed Res 2012; 26:226-34. [PMID: 23554753 PMCID: PMC3596073 DOI: 10.7555/jbr.26.20120023] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2012] [Revised: 04/03/2012] [Accepted: 04/14/2012] [Indexed: 12/20/2022] Open
Abstract
In the current study, we sought to investigate whether lysed Enterococcus faecalis FK-23 (LFK), a heat-killed probiotic preparation, attenuated eosinophil influx into the upper airway and had immunomodulatory activity in a murine allergic rhinitis model. Eighteen BALB/c mice were divided into three groups; the ovalbumin (OVA)-sensitized/challenged group, which received saline orally for 6 weeks (OVA group), the OVA-sensitized/challenged group, which received LFK orally for 6 weeks (LFK-fed group), and the non-sensitized group, which received saline for 6 weeks (saline control group). Nasal rubbing and sneezing were monitored during the study. After the final challenge, interleukin (IL)-4, interferon (IFN)-γ, and OVA-specific IgE levels in the sera and splenocyte culture supernatants were determined, eosinophilic infiltrate into the upper airway was quantified, and splenic CD4+CD25+ regulatory T cells (Tregs) were examined by flow cytometry. We found that nasal rubbing was significantly reduced in LFK-fed mice compared to the OVA group on d 27 and 35, and sneezing was significantly inhibited by LFK administration for 35 d. LFK-fed mice had significantly less eosinophil influx into the nasal mucosa than the OVA group. There were no significant differences between the LFK-fed group and OVA group in the serum and splenocyte culture supernatant levels of IL-4, IFN-γ, and OVA-specific IgE. Interestingly, the LFK-fed mice had a significantly greater percentage of splenic CD4+CD25+ Tregs than OVA group. Our results indicate that oral administration of LFK may alleviate nasal symptoms, reduce nasal eosinophilia, and increase the percentage of CD4+CD25+ Tregs in experimental allergic rhinitis.
Collapse
Affiliation(s)
- Luping Zhu
- Department of Otorhinolaryngology, the First Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Jounai K, Ikado K, Sugimura T, Ano Y, Braun J, Fujiwara D. Spherical lactic acid bacteria activate plasmacytoid dendritic cells immunomodulatory function via TLR9-dependent crosstalk with myeloid dendritic cells. PLoS One 2012; 7:e32588. [PMID: 22505996 PMCID: PMC3323594 DOI: 10.1371/journal.pone.0032588] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2011] [Accepted: 01/30/2012] [Indexed: 01/04/2023] Open
Abstract
Plasmacytoid dendritic cells (pDC) are a specialized sensor of viral and bacterial nucleic acids and a major producer of IFN-α that promotes host defense by priming both innate and acquired immune responses. Although synthetic Toll-like receptor (TLR) ligands, pathogenic bacteria and viruses activate pDC, there is limited investigation of non-pathogenic microbiota that are in wide industrial dietary use, such as lactic acid bacteria (LAB). In this study, we screened for LAB strains, which induce pDC activation and IFN-α production using murine bone marrow (BM)-derived Flt-3L induced dendritic cell culture. Microbial strains with such activity on pDC were absent in a diversity of bacillary strains, but were observed in certain spherical species (Lactococcus, Leuconostoc, Streptococcus and Pediococcus), which was correlated with their capacity for uptake by pDC. Detailed study of Lactococcus lactis subsp. lactis JCM5805 and JCM20101 revealed that the major type I and type III interferons were induced (IFN-α, -β, and λ). IFN-α induction was TLR9 and MyD88-dependent; a slight impairment was also observed in TLR4-/- cells. While these responses occurred with purified pDC, IFN-α production was synergistic upon co-culture with myeloid dendritic cells (mDC), an interaction that required direct mDC-pDC contact. L. lactis strains also stimulated expression of immunoregulatory receptors on pDC (ICOS-L and PD-L1), and accordingly augmented pDC induction of CD4+CD25+FoxP3+ Treg compared to the Lactobacillus strain. Oral administration of L. lactis JCM5805 induced significant activation of pDC resident in the intestinal draining mesenteric lymph nodes, but not in a remote lymphoid site (spleen). Taken together, certain non-pathogenic spherical LAB in wide dietary use has potent and diverse immunomodulatory effects on pDC potentially relevant to anti-viral immunity and chronic inflammatory disease.
Collapse
Affiliation(s)
- Kenta Jounai
- Central Laboratories for Frontier Technology, Kirin Holdings Co., Ltd., Kanazawa, Yokohama, Japan
| | | | | | | | | | | |
Collapse
|
43
|
Wells J. Mucosal vaccination and therapy with genetically modified lactic acid bacteria. Annu Rev Food Sci Technol 2012; 2:423-45. [PMID: 22129390 DOI: 10.1146/annurev-food-022510-133640] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Lactic acid bacteria (LAB) have proved to be effective mucosal delivery vehicles that overcome the problem of delivering functional proteins to the mucosal tissues. By the intranasal route, both live and killed LAB vaccine strains have been shown to elicit mucosal and systemic immune responses that afford protection against infectious challenges. To be effective via oral administration, frequent dosing over several weeks is required but new targeting and adjuvant strategies have clearly demonstrated the potential to increase the immunogenicity and protective immunity of LAB vaccines. Oral administration of Lactococcus lactis has been shown to induce antigen-specific oral tolerance (OT) to secreted recombinant antigens. LAB delivery is more efficient at inducing OT than the purified antigen, thus avoiding the need for purification of large quantities of antigen. This approach holds promise for new therapeutic interventions in allergies and antigen-induced autoimmune diseases. Several clinical and research reports demonstrate considerable progress in the application of genetically modified L. lactis for the treatment of inflammatory bowel disease (IBD). New medical targets are on the horizon, and the approval by several health authorities and biosafety committees of a containment system for a genetically modified L. lactis that secretes Il-10 should pave the way for new LAB delivery applications in the future.
Collapse
Affiliation(s)
- Jerry Wells
- Host-Microbe-Interactomics, University of Wageningen, Animal Sciences Department, 6700 AH, Wageningen, The Netherlands.
| |
Collapse
|
44
|
Moussu H, Van Overtvelt L, Horiot S, Tourdot S, Airouche S, Zuercher A, Holvoet S, Prioult G, Nutten S, Mercenier A, Mascarell L, Moingeon P. Bifidobacterium bifidum NCC 453 Promotes Tolerance Induction in Murine Models of Sublingual Immunotherapy. Int Arch Allergy Immunol 2012; 158:35-42. [DOI: 10.1159/000330101] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2010] [Accepted: 06/15/2011] [Indexed: 01/04/2023] Open
|
45
|
Treg-inducing membrane vesicles from Bifidobacterium bifidum LMG13195 as potential adjuvants in immunotherapy. Vaccine 2012; 30:825-9. [DOI: 10.1016/j.vaccine.2011.11.115] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2011] [Revised: 11/23/2011] [Accepted: 11/30/2011] [Indexed: 12/31/2022]
|
46
|
Lee P. Biocontainment strategies for live lactic acid bacteria vaccine vectors. Bioeng Bugs 2011; 1:75-7. [PMID: 21327129 DOI: 10.4161/bbug.1.1.10594] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2009] [Accepted: 11/11/2009] [Indexed: 11/19/2022] Open
Abstract
Stability is an important issue when engineering bacteria for use as live vaccine vectors. For the majority of live bacterial vaccines, the antigen-encoding gene is either plasmid located or integrated into the chromosome. Regardless, several safety concerns can be raised for both instances. One concern when using plasmid-encoded antigens is the transfer of antibiotic resistance markers. Alternatively, for chromosomal integrated antigens however, the concern focuses on the spread and possible release of genetically-modified microorganisms (GMM) into the environment, which is problematic. Their recombinant nature calls for a proper bio-containment strategy to be implemented or in place before any realistic attempt at releasing a live bacterial vaccine. No examples of human bacterial vaccines causing problems among animals have been found in the literature but the possibility exists and has to be both tested and evaluated before release of a live bacterial vaccine. The ideal GMM for use in humans should therefore contain the minimal amount of foreign DNA and must not include an antibiotic resistance marker. Furthermore, the possibilities of transgene horizontal transfer must be minimized, and GMM lethality for biocontainment should be achieved in an unconfined environment.
Collapse
Affiliation(s)
- Peter Lee
- Department of Veterinary Science, School of Veterinary Medicine, Nippon Veterinary and Life Science University, Musashino, Tokyo, Japan.
| |
Collapse
|
47
|
Vintiñi EO, Medina MS. Host immunity in the protective response to nasal immunization with a pneumococcal antigen associated to live and heat-killed Lactobacillus casei. BMC Immunol 2011; 12:46. [PMID: 21834957 PMCID: PMC3169484 DOI: 10.1186/1471-2172-12-46] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2011] [Accepted: 08/11/2011] [Indexed: 01/09/2023] Open
Abstract
Background At present, available pneumococcal vaccines have failed to eradicate infections caused by S. pneumoniae. Search for effective vaccine continues and some serotype independent pneumococcal proteins are considered as candidates for the design of new vaccines, especially a mucosal vaccine, since pneumococci enter the body through mucosal surfaces. Selection of the appropriate adjuvant is important for mucosal vaccines, and lactic acid bacteria (LAB) with immunostimulant properties are promissory candidates. In this work, we assessed the adjuvant effect of a probiotic strain, Lactobacillus casei (L. casei), when nasally administered with a pneumococcal antigen (pneumococcal protective protein A: PppA) for the prevention of pneumococcal infection. Adjuvanticity of both live (LcV) and heat-killed (LcM) was evaluated and humoral and cellular antigen-specific immune response was assessed in mucosal and systemic compartments. The potential mechanisms induced by nasal immunization were discussed. Results Nasal immunization of young mice with PppA+LcV and PppA+LcM induced anti-PppA IgA and IgG antibodies in mucosal and systemic compartments and levels of these specific antibodies remained high even at day 45 after the 3rd Immunization (3rd I). These results were correlated with IL-4 induction by the mixture of antigen plus LcV and LcM. Also, PppA+Lc (V and M) induced stimulation of Th1 and Th17 cells involved in the defence against pneumococci. The protection against pneumococcal respiratory challenge at day 30 after the 3rd I showed that PppA+LcV and PppA+LcM immunizations significantly reduced pathogen counts in nasal lavages while prventing their passage into lung and blood. Survival of mice immunized with the co-application of PppA plus LcV and LcM was significantly higher than in mice immunized with PppA alone and control mice when intraperitoneal challenge was performed. No significant differences between the treatments involving LcV and LcM were found. Conclusions Live and heat-killed L. casei enhanced the antigen-specific immune response when administered nasally with a pneumococcal antigen. Considering the potential risk associated with live bacteria, the design of a nasal vaccine based on pneumococcal antigens and heat-killed L. casei emerges as a safe and effective strategy for the prevention of pneumococcal infections and opens new possibilities of application of dead LAB as adjuvants in vaccine formulations against other pathogens.
Collapse
Affiliation(s)
- Elisa O Vintiñi
- Laboratorio de Bioquímica y Clínica Experimental, Centro de Referencia para Lactobacilos (CERELA-CONICET), Chacabuco 145, Tucumán, Argentina
| | | |
Collapse
|
48
|
Huang YS, Fisher M, Nasrawi Z, Eichenbaum Z. Defense from the Group A Streptococcus by active and passive vaccination with the streptococcal hemoprotein receptor. J Infect Dis 2011; 203:1595-601. [PMID: 21592989 DOI: 10.1093/infdis/jir149] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND The worldwide burden of the Group A Streptococcus (GAS) primary infection and sequelae is considerable, although immunization programs with broad coverage of the hyper variable GAS are still missing. We evaluate the streptococcal hemoprotein receptor (Shr), a conserved streptococcal protein, as a vaccine candidate against GAS infection. METHODS Mice were immunized intraperitoneally with purified Shr or intranasally with Shr-expressing Lactococcus lactis. The resulting humoral response in serum and secretions was determined. We evaluated protection from GAS infection in mice after active or passive vaccination with Shr, and Shr antiserum was tested for bactericidal activity. RESULTS A robust Shr-specific immunoglobulin (Ig) G response was observed in mouse serum after intraperitoneal vaccination with Shr. Intranasal immunization elicited both a strong IgG reaction in the serum and a specific IgA reaction in secretions. Shr immunization in both models allowed enhanced protection from systemic GAS challenge. Rabbit Shr antiserum was opsonizing, and mice that were administrated with Shr antiserum prior to the infection demonstrated a significantly higher survival rate than did mice treated with normal rabbit serum. CONCLUSIONS Shr is a promising vaccine candidate that is capable of eliciting bactericidal antibody response and conferring immunity against systemic GAS infection in both passive and active vaccination models.
Collapse
Affiliation(s)
- Ya-Shu Huang
- Biology Department, Georgia State University, Atlanta, GA 30302-4010, USA
| | | | | | | |
Collapse
|
49
|
Abstract
Incidences of allergic disease have recently increased worldwide. Allergen-specific immunotherapy (SIT) has long been a controversial treatment for allergic diseases. Although beneficial effects on clinically relevant outcomes have been demonstrated in clinical trials by subcutaneous immunotherapy (SCIT), there remains a risk of severe and sometimes fatal anaphylaxis. Mucosal immunotherapy is one advantageous choice because of its non-injection routes of administration and lower side-effect profile. This study reviews recent progress in mucosal immunotherapy for allergic diseases. Administration routes, antigen quality and quantity, and adjuvants used are major considerations in this field. Also, direct uses of unique probiotics, or specific cytokines, have been discussed. Furthermore, some researchers have reported new therapeutic ideas that combine two or more strategies. The most important strategy for development of mucosal therapies for allergic diseases is the improvement of antigen formulation, which includes continuous searching for efficient adjuvants, collecting more information about dominant T-cell epitopes of allergens, and having the proper combination of each. In clinics, when compared to other mucosal routes, sublingual immunotherapy (SLIT) is a preferred choice for therapeutic administration, although local and systemic side effects have been reported. Additionally, not every allergen has the same beneficial effect. Further studies are needed to determine the benefits of mucosal immunotherapy for different allergic diseases after comparison of the different administration routes in children and adults. Data collected from large, well-designed, double-blind, placebo-controlled, and randomized trials, with post-treatment follow-up, can provide robust substantiation of current evidence.
Collapse
|
50
|
Schwarzer M, Repa A, Daniel C, Schabussova I, Hrncir T, Pot B, Stepankova R, Hudcovic T, Pollak A, Tlaskalova-Hogenova H, Wiedermann U, Kozakova H. Neonatal colonization of mice with Lactobacillus plantarum producing the aeroallergen Bet v 1 biases towards Th1 and T-regulatory responses upon systemic sensitization. Allergy 2011; 66:368-75. [PMID: 20880132 DOI: 10.1111/j.1398-9995.2010.02488.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
BACKGROUND The use of recombinant lactic acid bacteria (LAB) as vehicles for mucosal delivery of recombinant allergens is an attractive concept for antigen-defined allergy prevention/treatment. Interventions with LAB are of increasing interest early in life when immune programming is initiated. Here, we investigated the effect of neonatal colonization with a recombinant LAB producing the major birch pollen allergen Bet v 1 in a murine model of type I allergy. METHODS We constructed a recombinant Lactobacillus (L.) plantarum NCIMB8826 strain constitutively producing Bet v 1 to be used for natural mother-to-offspring mono-colonization of germ-free BALB/c mice. Allergen-specific immunomodulatory effects of the colonization on humoral and cellular immune responses were investigated prior and after sensitization to Bet v 1. RESULTS Mono-colonization with the Bet v 1 producing L. plantarum induced a Th1-biased immune response at the cellular level, evident in IFN-γ production of splenocytes upon stimulation with Bet v 1. After sensitization with Bet v 1 these mice displayed suppressed IL-4 and IL-5 production in spleen and mesenteric lymph node cell cultures as well as decreased allergen-specific antibody responses (IgG1, IgG2a, and IgE) in sera. This suppression was associated with a significant up-regulation of the regulatory marker Foxp3 at the mRNA level in the spleen cells. CONCLUSION Intervention at birth with a live recombinant L. plantarum producing a clinically relevant allergen reduces experimental allergy and might therefore become an effective strategy for early intervention against the onset of allergic diseases.
Collapse
Affiliation(s)
- M Schwarzer
- Department of Immunology and Gnotobiology, Institute of Microbiology of the Academy of Sciences of the Czech Republic, v. v. i., Novy Hradek, Czech Republic
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|