1
|
Schmidt CQ, Smith RJH. Protein therapeutics and their lessons: Expect the unexpected when inhibiting the multi-protein cascade of the complement system. Immunol Rev 2023; 313:376-401. [PMID: 36398537 PMCID: PMC9852015 DOI: 10.1111/imr.13164] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Over a century after the discovery of the complement system, the first complement therapeutic was approved for the treatment of paroxysmal nocturnal hemoglobinuria (PNH). It was a long-acting monoclonal antibody (aka 5G1-1, 5G1.1, h5G1.1, and now known as eculizumab) that targets C5, specifically preventing the generation of C5a, a potent anaphylatoxin, and C5b, the first step in the eventual formation of membrane attack complex. The enormous clinical and financial success of eculizumab across four diseases (PNH, atypical hemolytic uremic syndrome (aHUS), myasthenia gravis (MG), and anti-aquaporin-4 (AQP4) antibody-positive neuromyelitis optica spectrum disorder (NMOSD)) has fueled a surge in complement therapeutics, especially targeting diseases with an underlying complement pathophysiology for which anti-C5 therapy is ineffective. Intensive research has also uncovered challenges that arise from C5 blockade. For example, PNH patients can still face extravascular hemolysis or pharmacodynamic breakthrough of complement suppression during complement-amplifying conditions. These "side" effects of a stoichiometric inhibitor like eculizumab were unexpected and are incompatible with some of our accepted knowledge of the complement cascade. And they are not unique to C5 inhibition. Indeed, "exceptions" to the rules of complement biology abound and have led to unprecedented and surprising insights. In this review, we will describe initial, present and future aspects of protein inhibitors of the complement cascade, highlighting unexpected findings that are redefining some of the mechanistic foundations upon which the complement cascade is organized.
Collapse
Affiliation(s)
- Christoph Q. Schmidt
- Institute of Pharmacology of Natural Products and Clinical Pharmacology, Ulm University, Ulm, Germany
| | - Richard J. H. Smith
- Departments of Internal Medicine and Pediatrics, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
- Molecular Otolaryngology and Renal Research Laboratories, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| |
Collapse
|
2
|
The role of von Willebrand factor in thrombotic microangiopathy. Pediatr Nephrol 2018; 33:1297-1307. [PMID: 28748411 DOI: 10.1007/s00467-017-3744-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2017] [Revised: 06/05/2017] [Accepted: 06/21/2017] [Indexed: 01/09/2023]
Abstract
Thrombotic microangiopathy (TMA) is caused by thrombus formation in the microvasculature. The disease spectrum of TMA includes, amongst others, thrombotic thrombocytopenic purpura (TTP) and atypical haemolytic uraemic syndrome (aHUS). TTP is caused by defective cleavage of von Willebrand factor (VWF), whereas aHUS is caused by overshooting complement activation and subsequent endothelial cell (EC) injury. Despite their distinct pathophysiology, the clinical manifestation of TTP and aHUS consisting of microangiopathic haemolytic anaemia and thrombocytopenia is often similar and difficult to distinguish. Recent evidence hints at both a genetic and functional link between TTP and aHUS, especially between VWF and the complement system. There is novel in vitro evidence that complement activation not only results in VWF release from ECs, but that VWF also functions as a negative complement regulator, thus protecting the EC surface from ongoing complement attack. Although contrary to previous experimental work suggesting that complement can be activated on VWF multimers, there may be an explanation in vivo that rationalizes these apparently contradictory findings, whereby a system primarily meant to regulate becomes overwhelmed or pathologic in the disease state. The importance of unravelling these recent findings for our understanding of TMA pathology becomes even more evident considering that glomerular ECs express VWF in a heterogeneous pattern with an overall decreased expression level, thus potentially leaving the glomerular ECs vulnerable to complement-mediated injury. Taken together, these findings support the concept that TTP and aHUS represent two extreme ends of a TMA disease spectrum rather than isolated disease entities.
Collapse
|
3
|
Takehara E, Mandai S, Shikuma S, Akita W, Chiga M, Mori T, Oda T, Kuwahara M, Uchida S. Post-infectious Proliferative Glomerulonephritis with Monoclonal Immunoglobulin G Deposits Associated with Complement Factor H Mutation. Intern Med 2017; 56:811-817. [PMID: 28381748 PMCID: PMC5457925 DOI: 10.2169/internalmedicine.56.7778] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
A 55-year-old man developed rapidly progressive glomerulonephritis and nephrotic syndrome. A kidney biopsy specimen showed diffuse proliferative and crescentic glomerulonephritis with monoclonal IgG1κ, humps, and nephritis-associated plasmin receptor, indicating infection-associated proliferative glomerulonephritis with monoclonal immunoglobulin G deposits (PGNMID). Despite dialysis-dependent renal failure, symptomatic therapy resulted in spontaneous recovery of the renal function, mimicking post-infectious glomerulonephritis (PIGN). A heterozygous complement factor H mutation was detected by comprehensive genetic testing of alternative pathway regulatory genes, which might lead to persistent infection-triggered alternative pathway activation and account for severe glomerulonephritis. Post-infectious PGNMID and PIGN might share common clinical presentations and pathogenesis related to the complement pathway.
Collapse
Affiliation(s)
- Eriko Takehara
- Department of Nephrology, Shuuwa General Hospital, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
4
|
Vernon KA, Goicoechea de Jorge E, Hall AE, Fremeaux-Bacchi V, Aitman TJ, Cook HT, Hangartner R, Koziell A, Pickering MC. Acute presentation and persistent glomerulonephritis following streptococcal infection in a patient with heterozygous complement factor H-related protein 5 deficiency. Am J Kidney Dis 2012; 60:121-5. [PMID: 22503529 PMCID: PMC3382710 DOI: 10.1053/j.ajkd.2012.02.329] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2011] [Accepted: 02/08/2012] [Indexed: 11/11/2022]
Abstract
Acute poststreptococcal glomerulonephritis is a common cause of acute nephritis in children. Transient hypocomplementemia and complete recovery are typical, with only a minority developing chronic disease. We describe a young girl who developed persistent kidney disease and hypocomplementemia after a streptococcal throat infection. Kidney biopsy 1 year after presentation showed isolated glomerular complement C3 deposition, membranoproliferative changes, and subendothelial, intramembranous and occasional subepithelial electron-dense deposits consistent with C3 glomerulopathy. Complement gene screening revealed a heterozygous single nucleotide insertion in exon 4 of the complement factor H-related protein 5 gene (CFHR5), resulting in a premature stop codon. This variant was not detected in 198 controls. Serum CFHR5 levels were reduced. The mother and sister of the index patient were heterozygous for the sequence variant, with no overt evidence of kidney disease. We speculate that this heterozygous CFHR5 sequence variant is a risk factor for the development of chronic kidney disease after streptococcal infection.
Collapse
Affiliation(s)
- Katherine A Vernon
- Centre for Complement and Inflammation Research, Imperial College, London, United Kingdom
| | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Abstract
Hemolytic uremic syndrome (HUS) is defined by the triad of mechanical hemolytic anemia, thrombocytopenia and renal impairment. Atypical HUS (aHUS) defines non Shiga-toxin-HUS and even if some authors include secondary aHUS due to Streptococcus pneumoniae or other causes, aHUS designates a primary disease due to a disorder in complement alternative pathway regulation. Atypical HUS represents 5 -10% of HUS in children, but the majority of HUS in adults. The incidence of complement-aHUS is not known precisely. However, more than 1000 aHUS patients investigated for complement abnormalities have been reported. Onset is from the neonatal period to the adult age. Most patients present with hemolytic anemia, thrombocytopenia and renal failure and 20% have extra renal manifestations. Two to 10% die and one third progress to end-stage renal failure at first episode. Half of patients have relapses. Mutations in the genes encoding complement regulatory proteins factor H, membrane cofactor protein (MCP), factor I or thrombomodulin have been demonstrated in 20-30%, 5-15%, 4-10% and 3-5% of patients respectively, and mutations in the genes of C3 convertase proteins, C3 and factor B, in 2-10% and 1-4%. In addition, 6-10% of patients have anti-factor H antibodies. Diagnosis of aHUS relies on 1) No associated disease 2) No criteria for Shigatoxin-HUS (stool culture and PCR for Shiga-toxins; serology for anti-lipopolysaccharides antibodies) 3) No criteria for thrombotic thrombocytopenic purpura (serum ADAMTS 13 activity > 10%). Investigation of the complement system is required (C3, C4, factor H and factor I plasma concentration, MCP expression on leukocytes and anti-factor H antibodies; genetic screening to identify risk factors). The disease is familial in approximately 20% of pedigrees, with an autosomal recessive or dominant mode of transmission. As penetrance of the disease is 50%, genetic counseling is difficult. Plasmatherapy has been first line treatment until presently, without unquestionable demonstration of efficiency. There is a high risk of post-transplant recurrence, except in MCP-HUS. Case reports and two phase II trials show an impressive efficacy of the complement C5 blocker eculizumab, suggesting it will be the next standard of care. Except for patients treated by intensive plasmatherapy or eculizumab, the worst prognosis is in factor H-HUS, as mortality can reach 20% and 50% of survivors do not recover renal function. Half of factor I-HUS progress to end-stage renal failure. Conversely, most patients with MCP-HUS have preserved renal function. Anti-factor H antibodies-HUS has favourable outcome if treated early.
Collapse
|
6
|
Weiner DE, Tighiouart H, Reynolds R, Seddon JM. Kidney function, albuminuria and age-related macular degeneration in NHANES III. Nephrol Dial Transplant 2011; 26:3159-65. [PMID: 21339308 DOI: 10.1093/ndt/gfr022] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Age-related macular degeneration (AMD) and kidney disease may have shared risk factors, including cardiovascular disease risk factors; additionally AMD and dense deposit disease share a common causal link, with both associated with polymorphisms in the complement pathway. Accordingly, we explored a population-based cohort of US adults to examine if markers of kidney disease identify a higher risk population for prevalent AMD. METHODS A cross-sectional nested case-control study matching on age, sex and race was performed using data on adult participants in the Third National Health and Nutrition Examination Survey. Predictor variables included urine albumin-to-creatinine ratio and estimated glomerular filtration rate (eGFR). Study outcomes included late AMD, defined as neovascular disease or geographic atrophy (5:1 matching), and a composite of both early AMD, defined as soft drusen or pigment irregularities with or without any drusen, and late AMD (1:1 matching). RESULTS There were 51 participants with late AMD and 865 with any AMD. In conditional logistic regression adjusting for diabetes, hypertension and total cholesterol, lower eGFR was independently associated with late AMD [odds ratio (OR) = 3.05, 95% confidence interval (CI): 1.51-6.13], while albuminuria was not significant. For any AMD, neither albuminuria nor eGFR were significant in adjusted models. In sensitivity analyses excluding diabetics, albuminuria was associated with any AMD (OR = 1.56, 95% CI: 1.11-1.29 and 1.57, 95% CI: 0.61-3.69 for micro- and macroalbuminuria, respectively, P = 0.03). CONCLUSIONS Late AMD is more common among individuals with reduced kidney function. Whether this association reflects a common causal pathway or shared risk factors such as hypertension requires additional investigation.
Collapse
Affiliation(s)
- Daniel E Weiner
- Division of Nephrology, Department of Medicine, Tufts Medical Center and Tufts University School of Medicine, Boston, MA, USA.
| | | | | | | |
Collapse
|
7
|
Waters AM, Licht C. aHUS caused by complement dysregulation: new therapies on the horizon. Pediatr Nephrol 2011; 26:41-57. [PMID: 20556434 PMCID: PMC2991208 DOI: 10.1007/s00467-010-1556-4] [Citation(s) in RCA: 98] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2010] [Revised: 04/23/2010] [Accepted: 04/26/2010] [Indexed: 12/19/2022]
Abstract
Atypical hemolytic uremic syndrome (aHUS) is a heterogeneous disease that is caused by defective complement regulation in over 50% of cases. Mutations have been identified in genes encoding both complement regulators [complement factor H (CFH), complement factor I (CFI), complement factor H-related proteins (CFHR), and membrane cofactor protein (MCP)], as well as complement activators [complement factor B (CFB) and C3]. More recently, mutations have also been identified in thrombomodulin (THBD), an anticoagulant glycoprotein that plays a role in the inactivation of C3a and C5a. Inhibitory autoantibodies to CFH account for an additional 5-10% of cases and can occur in isolation or in association with mutations in CFH, CFI, CFHR 1, 3, 4, and MCP. Plasma therapies are considered the mainstay of therapy in aHUS secondary to defective complement regulation and may be administered as plasma infusions or plasma exchange. However, in certain cases, despite initiation of plasma therapy, renal function continues to deteriorate with progression to end-stage renal disease and renal transplantation. Recently, eculizumab, a humanized monoclonal antibody against C5, has been described as an effective therapeutic strategy in the management of refractory aHUS that has failed to respond to plasma therapy. Clinical trials are now underway to further evaluate the efficacy of eculizumab in the management of both plasma-sensitive and plasma-resistant aHUS.
Collapse
Affiliation(s)
- Aoife M. Waters
- Department of Nephrology, Great Ormond Street Hospital, London, WC1N 3JH UK ,University College London, Institute of Child Health, London, UK
| | - Christoph Licht
- Division of Nephrology, Hospital for Sick Children, Toronto, ON Canada ,Department of Paediatrics, University of Toronto, Toronto, ON Canada
| |
Collapse
|
8
|
Ferreira VP, Pangburn MK, Cortés C. Complement control protein factor H: the good, the bad, and the inadequate. Mol Immunol 2010; 47:2187-97. [PMID: 20580090 DOI: 10.1016/j.molimm.2010.05.007] [Citation(s) in RCA: 308] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The complement system is an essential component of the innate immune system that participates in elimination of pathogens and altered host cells and comprises an essential link between the innate and adaptive immune system. Soluble and membrane-bound complement regulators protect cells and tissues from unintended complement-mediated injury. Complement factor H is a soluble complement regulator essential for controlling the alternative pathway in blood and on cell surfaces. Normal recognition of self-cell markers (i.e. polyanions) and C3b/C3d fragments is necessary for factor H function. Inadequate recognition of host cell surfaces by factor H due to mutations and polymorphisms have been associated with complement-mediated tissue damage and disease. On the other hand, unwanted recognition of pathogens and altered self-cells (i.e. cancer) by factor H is used as an immune evasion strategy. This review will focus on the current knowledge related to these versatile recognition properties of factor H.
Collapse
Affiliation(s)
- Viviana P Ferreira
- Department of Medical Microbiology and Immunology, College of Medicine, University of Toledo, Toledo, OH 43614, United States.
| | | | | |
Collapse
|
9
|
Sánchez-Corral P, Melgosa M. Advances in understanding the aetiology of atypical Haemolytic Uraemic Syndrome. Br J Haematol 2010; 150:529-42. [PMID: 20629662 DOI: 10.1111/j.1365-2141.2010.08295.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Atypical Haemolytic Uraemic Syndrome (aHUS) is a thrombotic microangiopathy that often provokes irreversible renal damage and post-transplantation recurrence. Studies performed during the last decade have shown that 50-60% of aHUS patients present genetic or acquired defects in the complement system that enhance the initial endothelial damage and favour disease development. This review analyses the complement proteins and processes that are disturbed in aHUS patients, and outlines the relevance of a prompt genetic/molecular diagnosis for improving clinical management and prognosis.
Collapse
|
10
|
Abstract
In all three complement pathways, the central molecule is C3, which, upon activation cleavage, forms the major opsonin C3b - the key component of complement. C3b is also essential for propagation of the complement cascade to the stage of the lytic terminal complement complexes. In order to prevent damage to self cells and tissues and restrict overconsumption of the complement components, C3b molecules need to be controlled by factor H. Defect in C3 functions leads to compromised microbial defence and increased susceptibility to certain autoimmune diseases. Deficiency of factor H, or a functional defect in its N terminus, often leads to membranoproliferative glomerulonephritis and complement depletion, owing to continuous overconsumption of C3. Defect in the factor H C terminus leads to a dramatically increased risk of atypical hemolytic uremic syndrome. In addition, recently, a polymorphism in the middle part of factor H (Y402H) has been shown to be the major risk factor for the most common cause of blindness in the industrialized world: age-related macular degeneration. In future, analysis of patient samples for defects in these key complement components may prove useful in diagnosis of these diseases and new therapeutic targets will certainly be the aim for use in the recently recognized factor H-related diseases.
Collapse
Affiliation(s)
- T Sakari Jokiranta
- Department of Bacteriology and Immunology, Haartman Institute, University of Helsinki, Helsinki, Finland.
| |
Collapse
|
11
|
Abstract
Hemolytic uremic syndrome (HUS) is related to a renal thrombotic microangiopathy, inducing hypertension and acute renal failure (ARF). Its pathogenesis involves an activation/lesion of microvascular endothelial cells, mainly in the renal vasculature, secondary to bacterial toxins, drugs, or autoantibodies. An overactivation of the complement alternate pathway secondary to a heterozygote deficiency of regulatory proteins (factor H, factor I or MCP) or to an activating mutation of factor B or C3 can also result in HUS. Less frequently, renal microthrombi are due to an acquired or a constitutional deficiency in ADAMTS-13, the protease cleaving von Wilebrand factor. Hemolytic anemia with schistocytes, thrombocytopenia without evidence of disseminated intravascular coagulation, and renal failure are consistently found. In typical HUS, a prodromal diarrhea, with blood in the stools, is observed, related to pathogenic enterobacteria, most frequently E. Coli O157:H7. HUS may also occur in the post partum period, and is then related to a factor H or factor I deficiency. HUS may also occur after various treatments such as mitomycin C, gemcitabine, ciclosporin A, or tacrolimus, and as reported more recently bevacizumab, an anti VEGF antibody. Atypical HUS are not associated with diarrhea, may be sporadic or familial, and can be related to an overactivation of the complement alternate pathway. More recently, some of them have been related to a mutation of thrombomodulin, which also regulates the alternate pathway of complement. In adults, several HUS are encountered in the course of chronic nephropathies: nephroangiosclerosis, chronic glomerulonephritis, post irradiation nephropathy, scleroderma, disseminated lupus erythematosus, antiphospholipid syndrome. Overall the prognosis of HUS has improved, with a patient survival greater than 85% at 1 year. Chronic renal failure is observed as a sequella in 20 to 65% of the cases. Plasma infusions and plasma exchanges are effective in most of the cases to treat hemolysis and thrombocytopenia. Steroid therapy is debated, as well as immunosuppressive drugs, including rituximab, in autoimmune forms. A new monoclonal anti-C5 antibody is tested, and seems to be effective in atypical HUS with abnormal complement alternate pathway activation. If terminal renal failure occurs, renal transplantation can be performed but the risk of recurrence, which very low in post infectious forms of HUS, is about 70 to 80% in genetic forms of complement regulatory protein deficiency.
Collapse
Affiliation(s)
- Alexandre Hertig
- Service des urgences néphrologiques et transplantation rénale, hôpital Tenon, 4, rue de la Chine, 75020 Paris, France
| | | | | |
Collapse
|
12
|
Sethi SK, Marie-Agnes DD, Thaker N, Hari P, Bagga A. Hemolytic uremic syndrome due to homozygous factor H deficiency. Clin Exp Nephrol 2009; 13:526-530. [PMID: 19568827 DOI: 10.1007/s10157-009-0205-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2009] [Accepted: 06/01/2009] [Indexed: 10/20/2022]
Abstract
The majority of complement factor H mutations associated with atypical hemolytic uremic syndrome (HUS) are heterozygous. Homozygous mutations causing atypical hemolytic uremic syndrome are rare. We report a 7-month-old boy with HUS, severe hypocomplementemia (low C3 and normal C4 levels), and extremely low circulating levels of factor H. Genetic analysis showed homozygous 4 bp deletion in the gene encoding factor H in the patient, with his parents being carriers. The patient showed progression to end-stage renal disease and is presently on chronic ambulatory peritoneal dialysis.
Collapse
Affiliation(s)
- Sidharth Kumar Sethi
- Division of Pediatric Nephrology, Department of Pediatrics, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, 110029, India
| | - Dragon-Durey Marie-Agnes
- Laboratoire d'Immunologie, Hôpital Européen Georges Pompidou, Université Paris Descartes, Paris, France
| | - Neelam Thaker
- Division of Pediatric Nephrology, Department of Pediatrics, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, 110029, India
| | - Pankaj Hari
- Division of Pediatric Nephrology, Department of Pediatrics, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, 110029, India
| | - Arvind Bagga
- Division of Pediatric Nephrology, Department of Pediatrics, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, 110029, India.
| |
Collapse
|
13
|
Zipfel PF, Hallström T, Hammerschmidt S, Skerka C. The complement fitness factor H: role in human diseases and for immune escape of pathogens, like pneumococci. Vaccine 2009; 26 Suppl 8:I67-74. [PMID: 19388168 DOI: 10.1016/j.vaccine.2008.11.015] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Factor H is the central regulator of the alternative complement pathway and controls early activation of the complement cascade at the level of the C3 convertase. Mutations in the Factor H gene are associated with severe and diverse diseases including the rare renal disorders hemolytic uremic syndrome (HUS) and membranoproliferative glomerulonephritis (MPGN) also termed dense deposit disease (DDD), as well as the more frequent retinal disease age related macular degeneration (AMD). In addition, pathogenic microbes utilize host complement Factor H for immune evasion and these pathogens express specific surface receptors which bind host innate immune regulators. Sequence variations or mutations of one single gene, coding for the host regulator Factor H, form the basis for multiple, different disorders such as human renal and retinal diseases as well as infections. This association of Factor H but also of additional related complement components and regulators with the same diseases demonstrate an important role of complement, particularly of the alternative pathway, for tissue homeostasis. Disturbances of this central immune surveillance system lead to damage of autologous tissues and surfaces and result in autoimmune diseases. Remarkably, pathogenic microbes copy this mechanism of immune surveillance: they mimic the composition of host cell's, bind Factor H to their surface and engage acquired host Factor H for immune disguise.
Collapse
Affiliation(s)
- Peter F Zipfel
- Department of Infection Biology, Leibniz Institute for Natural Product Research and Infection Biology, Jena, Germany.
| | | | | | | |
Collapse
|
14
|
Pangburn MK, Rawal N, Cortes C, Alam MN, Ferreira VP, Atkinson MAL. Polyanion-induced self-association of complement factor H. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2009; 182:1061-8. [PMID: 19124749 PMCID: PMC2677913 DOI: 10.4049/jimmunol.182.2.1061] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Factor H is the primary soluble regulator of activation of the alternative pathway of complement. It prevents activation of complement on host cells and tissues upon association with C3b and surface polyanions such as sialic acids, heparin, and other glycosaminoglycans. Here we show that interaction with polyanions causes self-association forming tetramers of the 155,000 Da glycosylated protein. Monomeric human factor H is an extended flexible protein that exhibits an apparent size of 330,000 Da, relative to globular standards, during gel filtration chromatography in the absence of polyanions. In the presence of dextran sulfate (5000 Da) or heparin an intermediate species of apparent m.w. 700,000 and a limit species of m.w. 1,400,000 were observed by gel filtration. Sedimentation equilibrium analysis by analytical ultracentrifugation indicated a monomer Mr of 163,000 in the absence of polyanions and a Mr of 607,000, corresponding to a tetramer, in the presence of less than a 2-fold molar excess of dextran sulfate. Increasing concentrations of dextran sulfate increased binding of factor H to zymosan-C3b 4.5-fold. This result was accompanied by an increase in both the decay accelerating and cofactor activity of factor H on these cells. An expressed fragment encompassing the C-terminal polyanion binding site (complement control protein domains 18-20) also exhibited polyanion-induced self-association, suggesting that the C-terminal ends of factor H mediate self-association. The results suggest that recognition of polyanionic markers on host cells and tissues by factor H, and the resulting regulation of complement activation, may involve formation of dimers and tetramers of factor H.
Collapse
Affiliation(s)
- Michael K Pangburn
- Department of Biochemistry, Center for Biomedical Research, University of Texas Health Science Center, Tyler, TX 75708, USA.
| | | | | | | | | | | |
Collapse
|
15
|
|
16
|
Saland JM, Ruggenenti P, Remuzzi G. Liver-kidney transplantation to cure atypical hemolytic uremic syndrome. J Am Soc Nephrol 2008; 20:940-9. [PMID: 19092117 DOI: 10.1681/asn.2008080906] [Citation(s) in RCA: 124] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Atypical hemolytic uremic syndrome is often associated with mutations in genes encoding complement regulatory proteins and secondary disorders of complement regulation. Progression to kidney failure and recurrence with graft loss after kidney transplantation are frequent. The most common mutation is in the gene encoding complement factor H. Combined liver-kidney transplantation may correct this complement abnormality and prevent recurrence when the defect involves genes encoding circulating proteins that are synthesized in the liver, such as factor H or I. Good outcomes have been reported when surgery is associated with intensified plasma therapy. A consensus conference to establish treatment guidelines for atypical hemolytic uremic syndrome was held in Bergamo in December 2007. The recommendations in this article are the result of combined clinical experience, shared research expertise, and a review of the literature and registry information. This statement defines groups in which isolated kidney transplantation is extremely unlikely to be successful and a combined liver-kidney transplant is recommended and also defines those for whom kidney transplant remains a viable option. Although combined liver-kidney or isolated liver transplantation is the preferred therapeutic option in many cases, the gravity of risk associated with the procedure has not been eliminated completely, and assessment of risk and benefit requires careful and individual attention.
Collapse
Affiliation(s)
- Jeffrey M Saland
- Recanati/Miller, Mount Sinai Medical Center, New York, New York, USA
| | | | | | | |
Collapse
|
17
|
Abstract
Children with a history of recurrent or unusual infections present a diagnostic challenge. Differentiation between frequent infections caused by common risk factors, versus primary immune dysfunction should be based on a detailed history and physical examination and, if indicated, followed by appropriate laboratory studies. A high index of suspicion could lead to an early diagnosis and treatment of an underlying immune deficiency disease. This article presents to physicians an approach to the evaluation of children with recurrent infections. Important details from the history and physical examination, and an appropriate choice of screening laboratory test to be ordered in a given situation are discussed.
Collapse
Affiliation(s)
- Mark Ballow
- Division of Allergy/Clinical Immunology, Department of Pediatrics, Women & Children's Hospital of Buffalo, SUNY Buffalo School of Medicine and Biomedical Sciences, 219 Bryant Street, Buffalo, NY 14222, USA.
| |
Collapse
|
18
|
Zheng XL, Sadler JE. Pathogenesis of thrombotic microangiopathies. ANNUAL REVIEW OF PATHOLOGY-MECHANISMS OF DISEASE 2008; 3:249-77. [PMID: 18215115 DOI: 10.1146/annurev.pathmechdis.3.121806.154311] [Citation(s) in RCA: 158] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Profound thrombocytopenia and microangiopathic hemolytic anemia characterize thrombotic microangiopathy, which includes two major disorders: thrombotic thrombocytopenic purpura (TTP) and hemolytic uremic syndrome (HUS). TTP has at least three types: congenital or familial, idiopathic, and nonidiopathic. The congenital and idiopathic TTP syndromes are caused primarily by deficiency of ADAMTS13, owing to mutations in the ADAMTS13 gene or autoantibodies that inhibit ADAMTS13 activity. HUS is similar to TTP, but is associated with acute renal failure. Diarrhea-associated HUS accounts for more than 90% of cases and is usually caused by infection with Shiga-toxin-producing Escherichia coli (O157:H7). Diarrhea-negative HUS is associated with complement dysregulation in up to 50% of cases, caused by mutations in complement factor H, membrane cofactor protein, factor I or factor B, or by autoantibodies against factor H. The incomplete penetrance of mutations in either ADAMTS13 or complement regulatory genes suggests that precipitating events or triggers may be required to cause thrombotic microangiopathy in many patients.
Collapse
Affiliation(s)
- X Long Zheng
- Department of Pathology and Laboratory Medicine, The Children's Hospital of Philadelphia and The University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA.
| | | |
Collapse
|
19
|
Pickering MC, Cook HT. Translational mini-review series on complement factor H: renal diseases associated with complement factor H: novel insights from humans and animals. Clin Exp Immunol 2008; 151:210-30. [PMID: 18190458 PMCID: PMC2276951 DOI: 10.1111/j.1365-2249.2007.03574.x] [Citation(s) in RCA: 143] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/13/2007] [Indexed: 01/28/2023] Open
Abstract
Factor H is the major regulatory protein of the alternative pathway of complement activation. Abnormalities in factor H have been associated with renal disease, namely glomerulonephritis with C3 deposition including membranoproliferative glomerulonephritis (MPGN) and the atypical haemolytic uraemic syndrome (aHUS). Furthermore, a common factor H polymorphism has been identified as a risk factor for the development of age-related macular degeneration. These associations suggest that alternative pathway dysregulation is a common feature in the pathogenesis of these conditions. However, with respect to factor H-associated renal disease, it is now clear that distinct molecular defects in the protein underlie the pathogenesis of glomerulonephritis and HUS. In this paper we review the associations between human factor H dysfunction and renal disease and explore how observations in both spontaneous and engineered animal models of factor H dysfunction have contributed to our understanding of the pathogenesis of factor H-related renal disease.
Collapse
Affiliation(s)
- M C Pickering
- Molecular Genetics and Rheumatology Section, Faculty of Medicine, Imperial College, Hammersmith Campus, London, UK.
| | | |
Collapse
|
20
|
de Córdoba SR, de Jorge EG. Translational mini-review series on complement factor H: genetics and disease associations of human complement factor H. Clin Exp Immunol 2008; 151:1-13. [PMID: 18081690 PMCID: PMC2276932 DOI: 10.1111/j.1365-2249.2007.03552.x] [Citation(s) in RCA: 219] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/16/2007] [Indexed: 12/13/2022] Open
Abstract
Factor H is an abundant plasma glycoprotein that plays a critical role in the regulation of the complement system in plasma and in the protection of host cells and tissues from damage by complement activation. Several recent studies have described the association of genetic variations of the complement factor H gene (CFH) with atypical haemolytic uraemic syndrome (aHUS), age-related macular degeneration (AMD) and membranoproliferative glomerulonephritis (MPGN). This review summarizes our current knowledge of CFH genetics and examines the CFH genotype-phenotype correlations that are helping to understand the molecular basis underlying these renal and ocular pathologies.
Collapse
Affiliation(s)
- S Rodríguez de Córdoba
- Centro de Investigaciones Biológicas and Centro de Investigación Biomédica en Red de Enfermedades Raras, Madrid, Spain.
| | | |
Collapse
|
21
|
Larakeb A, Leroy S, Frémeaux-Bacchi V, Montchilova M, Pelosse B, Dunand O, Deschênes G, Bensman A, Ulinski T. Ocular involvement in hemolytic uremic syndrome due to factor H deficiency--are there therapeutic consequences? Pediatr Nephrol 2007; 22:1967-70. [PMID: 17619907 DOI: 10.1007/s00467-007-0540-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2007] [Revised: 05/21/2007] [Accepted: 05/22/2007] [Indexed: 10/23/2022]
Abstract
Factor H deficiency is responsible for thrombotic microangiopathy (TMA) via uncontrolled activation of the alternative pathway of the complement system. Ocular TMA has never been reported in patients with factor H abnormalities. A male patient with congenital homozygote factor H deficiency reached end-stage renal disease at the age of 10 years. Hemodialysis was uneventful for 3 years, when, suddenly, unilateral ocular pain and blurred vision occurred while he had febrile pharyngitis. Ophthalmologic examination found vitreous bleeding, elevated ocular pressure, choroidal hemorrhage (ultrasound biomicroscopy) and retinal ischemia (fluorescein angiography). C-reactive protein concentration was increased, while haptoglobin levels remained normal. We suspected that TMA due to factor H deficiency was responsible for the ocular manifestations and immediately initiated daily plasma exchanges (PEs) with fresh frozen plasma (FFP) for 10 days followed by three sessions per week. Factor H serum level increased from 6% to 82%, and C3 level normalized. Progressively, ocular pain decreased, and visual acuity and ophthalmologic findings showed improvement. When there is permanent activation of the alternative pathway in patients with end-stage renal disease (ESRD), the search for secondary targets might be of interest. In nephrectomized patients, no biological parameter can predict isolated ocular TMA. Early ophthalmologic investigation and substitution of factor H via FFP may avoid irreversible damage.
Collapse
Affiliation(s)
- Anis Larakeb
- Department of Pediatric Nephrology, Hôpital Trousseau, AP-HP & Université Paris VI, 26 Avenue du Docteur Arnold Netter, 75012 Paris, France
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Moake JL. Thrombotic Thrombocytopenic Purpura and the Hemolytic-Uremic Syndrome. Platelets 2007. [DOI: 10.1016/b978-012369367-9/50812-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
23
|
Ferreira VP, Herbert AP, Hocking HG, Barlow PN, Pangburn MK. Critical role of the C-terminal domains of factor H in regulating complement activation at cell surfaces. THE JOURNAL OF IMMUNOLOGY 2006; 177:6308-16. [PMID: 17056561 DOI: 10.4049/jimmunol.177.9.6308] [Citation(s) in RCA: 124] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
The plasma protein factor H primarily controls the activation of the alternative pathway of complement. The C-terminal of factor H is known to be involved in protection of host cells from complement attack. In the present study, we show that domains 19-20 alone are capable of discriminating between host-like and complement-activating cells. Furthermore, although factor H possesses three binding sites for C3b, binding to cell-bound C3b can be almost completely inhibited by the single site located in domains 19-20. All of the regulatory activities of factor H are expressed by the N-terminal four domains, but these activities toward cell-bound C3b are inhibited by isolated recombinant domains 19-20 (rH 19-20). Direct competition with the N-terminal site is unlikely to explain this because regulation of fluid phase C3b is unaffected by domains 19-20. Finally, we show that addition of isolated rH 19-20 to normal human serum leads to aggressive complement-mediated lysis of normally nonactivating sheep erythrocytes and moderate lysis of human erythrocytes, which possess membrane-bound regulators of complement. Taken together, the results highlight the importance of the cell surface protective functions exhibited by factor H compared with other complement regulatory proteins. The results may also explain why atypical hemolytic uremic syndrome patients with mutations affecting domains 19-20 can maintain complement homeostasis in plasma while their complement system attacks erythrocytes, platelets, endothelial cells, and kidney tissue.
Collapse
Affiliation(s)
- Viviana P Ferreira
- Department of Biochemistry, Center for Biomedical Research, University of Texas, Health Science Center, Tyler, TX 75708, USA
| | | | | | | | | |
Collapse
|
24
|
Ulinski T, Charpentier A, Colombat M, Desconclois C, Mougenot B, Fremaux-Bacchi V, Suberbielle C, Deschênes G, Bensman A, Veyradier A. From humoral rejection to generalized thrombotic microangiopathy--role of acquired ADAMTS13 deficiency in a renal allograft recipient. Am J Transplant 2006; 6:3030-6. [PMID: 17294528 DOI: 10.1111/j.1600-6143.2006.01574.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
A 9-year-old renal transplant recipient presented with elevated serum creatinine levels 4 years post-transplant renal biopsy revealed humoral rejection including lesions suggestive for thrombotic microangiopathy (TMA). He received methylprednisolone pulses followed by a normalization of serum creatinine. Two more steroid responsive acute rejection episodes occurred. Two months later he presented rapidly progressive life threatening symptoms including bilateral pyramidal syndrome and hemoptysis. Serum haptoglobin became undetectable at this time and platelet count decreased (70000/microl), suggesting TMA. Cerebral MRI revealed generalized ischemic white matter lesions. ADAMTS13 activity decreased to < 5%. Daily plasma exchanges (PE) resulted in immediate improvement. All attempts to discontinue PE were unsuccessful. Transplantectomy resulted in normalization of generalized symptoms, hemolysis and ADAMTS13 activity (110%). Multi-organ involvement has never been reported in acquired ADAMTS13 deficiency post-transplant. Rapid resolution after transplantectomy might suggest that renal TMA was responsible for acquired ADAMTS13 deficiency and thereby triggered the generalization of TMA lesions.
Collapse
Affiliation(s)
- T Ulinski
- Department of Pediatric Nephrology, Hôpital Trousseau; AP-HP & Université Paris VI, 75012 Paris, France.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Sudour H, Rouabah M, Mansuy L, Bordigoni P, Hascoet JM. [Thrombotic thrombocytopenic purpura in a newborn]. Arch Pediatr 2006; 14:39-42. [PMID: 17137768 DOI: 10.1016/j.arcped.2006.10.016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2005] [Accepted: 10/13/2006] [Indexed: 11/21/2022]
Abstract
A newborn presented with haemolytic anemia, thrombocytopenia, hyperbilirubinemia and renal failure as early as the first hours of life. An early plasmatherapy was undertaken, followed by good outcome. The specific von Willebrand factor-cleaving protease (ADAMTS 13) was found at less than 5%. This is the specific biologic diagnostic element of congenital thrombotic thrombocytopenic purpura or Upshaw-Schulman syndrome. This disease of constitutional thrombotic microangiopathy was well identified and understood only few years ago. It's a rare disease which early diagnosis and treatment are crucial in order to preserve functional and vital capacities of the patient.
Collapse
Affiliation(s)
- H Sudour
- Service de néonatologie-soins intensifs et réanimation néonatales, maternité régionale et universitaire de Nancy, 54042 Nancy, France
| | | | | | | | | |
Collapse
|
26
|
Abstract
Knowledge of the genetic mutations of primary immune deficiency syndromes has grown significantly over the last 30 years. In this article the authors present an overview of the clinical aspects, laboratory evaluation, and genetic defects of primary immunodeficiencies, with an emphasis on the pathophysiology of the known molecular defects. This article is designed to give the primary pediatrician a general knowledge of this rapidly expanding field.
Collapse
Affiliation(s)
- James W Verbsky
- Division of Rheumatology, Department of Pediatrics, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA
| | | |
Collapse
|
27
|
Finer G, Shalev H, Landau D. Genetic kidney diseases in the pediatric population of southern Israel. Pediatr Nephrol 2006; 21:910-6. [PMID: 16773401 DOI: 10.1007/s00467-006-0142-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2006] [Revised: 02/28/2006] [Accepted: 02/28/2006] [Indexed: 12/20/2022]
Abstract
Genetic kidney diseases (GKDs) are an important and well-known entity in pediatric nephrology. In the past decade advances in genetic and molecular approaches have enabled elucidation of the underlying molecular defects in many of these disorders. Herein we summarize the progress that has been made over the past decade in disclosing the molecular basis of several novel GKDs, which were characterized in our area and include Bartter syndrome type IV, type II Bartter syndrome and transient neonatal hyperkalemia, cystinuria and mental retardation, familial hypomagnesemia with secondary hypocalcemia, infantile nephronophthisis, familial hemolytic uremic syndrome with factor H deficiency, and non-cystic autosomal dominant nephropathy. Retrospective analysis of our data reveals that GKDs are over-represented among the pediatric population in southern Israel. GKDs are seen four-times more often than end-stage renal disease (ESRD) and comprise 38% of all cases of ESRD in our area. This high rate of GKDs is mainly due to the high frequency of consanguineous marriages that prevails in this area. Understanding of the genetic and molecular background of these diseases is a result of a fruitful collaboration between the pediatric nephrologists and scientists, and has a direct implication on the diagnosis and treatment of the affected families.
Collapse
Affiliation(s)
- Gal Finer
- Department of Pediatrics, Soroka University Medical Center, Ben-Gurion University of the Negev, P.O. Box 151, Beer-Sheva, 84101, Israel
| | | | | |
Collapse
|
28
|
S Reis E, Falcão DA, Isaac L. Clinical aspects and molecular basis of primary deficiencies of complement component C3 and its regulatory proteins factor I and factor H. Scand J Immunol 2006; 63:155-68. [PMID: 16499568 DOI: 10.1111/j.1365-3083.2006.01729.x] [Citation(s) in RCA: 134] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The complement system participates in both innate and acquired immune responses. Deficiencies in any of the protein components of this system are generally uncommon and require specialized services for diagnosis. Consequently, complement deficiencies are clinically underscored and may be more common than is normally estimated. As C3 is the major complement component and participates in all three pathways of activation, it is fundamental to understand all the clinical consequences observed in patients for which this protein is below normal concentration or absent in the serum. C3 deficiencies are generally associated with higher susceptibility to severe infections and in some cases with autoimmune diseases such as systemic lupus erythematosus. Here, we review the main clinical aspects and the molecular basis of primary C3 deficiency as well as the mutations in the regulatory proteins factor I and factor H that result in secondary C3 deficiencies. We also discuss the use of animal models to study these deficiencies.
Collapse
Affiliation(s)
- E S Reis
- Department of Immunology, Institute of Biomedical Sciences, University of Sao Paulo, SP, Brazil
| | | | | |
Collapse
|
29
|
Abstract
Thrombotic thrombocytopenic purpura (TTP) is a rare multi-system disease characterised by the pentad of microangiopathic haemolytic anaemia, thrombocytopenia, renal dysfunction, fever and neurologic changes. A hereditary form of recurrent familial TTP has been described, which usually presents in adolescence or early adulthood and can lead to recurrent or chronic relapsing TTP. Genetic analyses of patients with familial TTP have linked the disease to chromosome 9q34, and an increased incidence is seen in people with HLA-B40 group antigens. We describe here an 11-year-old Egyptian girl with no significant past medical history who presented with new onset of bruising, petechial rash, fatigue and fevers and was diagnosed with familial TTP. Further testing revealed that both the patient and her father had the HLA-B40 group antigen and also had ADAMTS-13 von Willebrand factor-cleaving protease deficiency as well as factor-H deficiency.
Collapse
Affiliation(s)
- R G Rodrigues
- Department of Pediatrics, Penn State Milton S. Hershey Medical Center, Hershey, PA 17033, USA.
| |
Collapse
|
30
|
Dragon-Durey MA, Frémeaux-Bacchi V. Atypical haemolytic uraemic syndrome and mutations in complement regulator genes. ACTA ACUST UNITED AC 2005; 27:359-74. [PMID: 16189652 DOI: 10.1007/s00281-005-0003-2] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2005] [Accepted: 04/19/2005] [Indexed: 10/25/2022]
Abstract
Haemolytic uraemic syndrome (HUS) is a thrombotic microangiopathy (TMA) disorder characterised by the association of haemolytic anaemia, thrombocytopenia and acute renal failure. Atypical forms (non-related to shigatoxin) may be familial or sporadic, with frequent recurrences and most of them lead to end stage renal failure. During the last years, different groups have demonstrated genetic predisposition of atypical HUS involving complement components factor H (FH), CD46 [or membrane co-factor protein (MCP)] and factor I. These three proteins are involved in the regulation of the alternative pathway of the complement system. Several series have reported mutations in the FH gene (called HF1) in between 10 and 22% of atypical HUS patients. At this time, four pedigrees corresponding to 13 cases have been reported with an MCP mutation and four cases with a sporadic disease presented factor I mutation. Whereas FH mutations were reported in both familial and sporadic forms of HUS, CD46 mutations were restricted to familial HUS, and factor I mutations were only observed in cases of sporadic HUS. We speculate that the penetrance of the disease may be variable regarding the identified susceptibility factors. Recently, the analysis of single nucleotide polymorphisms in both HF1 and MCP in three large cohorts of HUS patients identified significant association between atypical HUS and HF1 and MCP particular alleles. All these results, together with the finding of anti-FH antibodies in some atypical HUS patients, strongly suggest that an abnormality in the regulation of the alternative pathway participates in the patho-physiological mechanisms of atypical HUS. The recent progress made in the determination of susceptibility factors for atypical HUS has permitted the development of new diagnostic tests and may eventually lead to new specific treatments to block the pathological process.
Collapse
Affiliation(s)
- Marie-Agnès Dragon-Durey
- Service d'Immunologie Biologique, Hôpital Européen Georges Pompidou, AP-HP, 20 rue Leblanc, 75015, Paris, France
| | | |
Collapse
|
31
|
Shibagaki Y, Fujita T. Thrombotic microangiopathy in malignant hypertension and hemolytic uremic syndrome (HUS)/ thrombotic thrombocytopenic purpura (TTP): can we differentiate one from the other? Hypertens Res 2005; 28:89-95. [PMID: 15969259 DOI: 10.1291/hypres.28.89] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Patients with malignant hypertension sometimes exhibit microangiopathic hemolytic anemia/thrombocytopenia known as thrombotic microangiopathy (TMA). On the other hand, severe hypertension is sometimes associated with hemolytic uremic syndrome (HUS)/thrombotic thrombocytopenic purpura (TTP). Because the clinical features of the two entities overlap significantly, it is sometimes difficult to distinguish one from the other. However, such differentiation is indispensable, since early performance of plasmapheresis is critical in HUS/TTP. It has been suggested that severe thrombocytopenia is one of the most useful differential points in diagnosing HUS/TTP from malignant hypertension caused by other etiologies. Early performance of plasmapheresis can be justified in the presence of both TMA and thrombocytopenia. However, thrombocytopenia can be seen in the cases with malignant hypertension from etiologies other than HUS/TTP, and in these particular cases, plasmapheresis is useless and can be harmful. Recently, the plasma level of ADAMTS13 (a disintegrin and metalloprotease domain, with thrombospondin type 1 motif 13), which is a von Willebrand Factor cleaving protease, has been shown to be very low in familial or some of the sporadic cases of TTP, and a low level of ADAMTS13 is very specific to TTP. Some reports have shown that patients with a very low plasma level of ADAMTS13 respond very well to plasmapheresis. We recently experienced two cases with TMA. Although both of our patients had severe hypertension with TMA, different therapeutic strategies ameliorated their illness: symptomatic treatment was effective in case 1, which showed normal ADAMTS13 activity, whereas plasma infusion was necessary to save case 2, which showed low ADAMTS13 activity. Thus, patients with a low level of ADAMTS13 activity might respond well to plasmapheresis or plasma infusion. When presented with patients with severe hypertension and thrombotic microangiopathy, ADAMTS13 activity may prove to be a promising adjunctive tool in differentiating TTP from TMA due to other etiologies, but in the meantime, we should make the choice of whether or not to perform plasmapheresis based on the degree of thrombocytopenia.
Collapse
Affiliation(s)
- Yugo Shibagaki
- Department of Nephrology and Endocrinology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan.
| | | |
Collapse
|
32
|
Abstract
This overview summarizes the history of thrombotic thrombocytopenic purpura (TTP) from its initial recognition in 1924 as a most often fatal disease to the discovery in 1997 of ADAMTS-13 deficiency as a major risk factor for acute disease manifestation. The cloning of the metalloprotease, ADAMTS-13, an essential regulator of the extremely adhesive unusually large von Willebrand factor (VWF) multimers secreted by endothelial cells, as well as ADAMTS-13 structure and function are reviewed. The complex, initially devised assays for ADAMTS-13 activity and the possible limitations of static in vitro assays are described. A new, simple assay using a recombinant 73-amino acid VWF peptide as substrate will hopefully be useful. Hereditary TTP caused by homozygous or double heterozygous ADAMTS-13 mutations and the nature of the mutations so far identified are discussed. Recognition of this condition by clinicians is of utmost importance, because it can be easily treated and--if untreated--frequently results in death. Acquired TTP is often but not always associated with severe, autoantibody-mediated ADAMTS-13 deficiency. The pathogenesis of cases without severe deficiency of the VWF-cleaving protease remains unknown, affected patients cannot be distinguished clinically from those with severely decreased ADAMTS-13 activity. Survivors of acute TTP, especially those with autoantibody-induced ADAMTS-13 deficiency, are at a high risk for relapse, as are patients with hereditary TTP. Patients with thrombotic microangiopathies (TMA) associated with hematopoietic stem cell transplantation, neo-plasia and several drugs, usually have normal or only moderately reduced ADAMTS-13 activity, with the exception of ticlopidine-induced TMA. Diarrhea-positive-hemolytic uremic syndrome (D+ HUS), mainly occurring in children is due to enterohemorrhagic Escherichia coli infection, and cases with atypical, D- HUS may be associated with factor H abnormalities. Treatment of acquired idiopathic TTP involves plasma exchange with fresh frozen plasma (FFP), and probably immunosuppression with corticosteroids is indicated. We believe that, at present, patients without severe acquired ADAMTS-13 deficiency should be treated with plasma exchange as well, until better strategies become available. Constitutional TTP can be treated by simple FFP infusion that rapidly reverses acute disease and--given prophylactically every 2-3 weeks--prevents relapses. There remains a large research agenda to improve diagnosis of TMA, gain further insight into the pathophysiology of the various TMA and to improve and possibly tailor the management of affected patients.
Collapse
Affiliation(s)
- B Lämmle
- Department of Hematology and Central Hematology Laboratory, Inselspital, University Hospital, Bern, Switzerland.
| | | | | |
Collapse
|
33
|
Affiliation(s)
- Marina Noris
- Transplant Research Center, Chiara Cucchi de Alessandri e Gilberto Crespi, Villa Camozzi, Via Camozzi, 3 24020, Ranica (BG), Italy.
| | | |
Collapse
|
34
|
Vaziri-Sani F, Hellwage J, Zipfel PF, Sjöholm AG, Iancu R, Karpman D. Factor H binds to washed human platelets. J Thromb Haemost 2005; 3:154-62. [PMID: 15634279 DOI: 10.1111/j.1538-7836.2004.01010.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
BACKGROUND Factor H regulates the alternative pathway of complement. The protein has three heparin-binding sites, is synthesized primarily in the liver and copurifies from platelets with thrombospondin-1. Factor H mutations at the C-terminus are associated with atypical hemolytic uremic syndrome, a condition in which platelets are consumed. Objectives The aim of this study was to investigate if factor H interacts with platelets. METHODS Binding of factor H, recombinant C- or N-terminus constructs and a C-terminus mutant to washed (plasma and complement-free) platelets was analyzed by flow cytometry. Binding of factor H and constructs to thrombospondin-1 was measured by surface plasmon resonance. RESULTS Factor H bound to platelets in a dose-dependent manner. The major binding site was localized to the C-terminus. The interaction was partially blocked by heparin. Inhibition with anti-GPIIb/IIIa, or with fibrinogen, suggested that the platelet GPIIb/IIIa receptor is involved in factor H binding. Factor H binds to thrombospondin-1. Addition of thrombospondin-1 increased factor H binding to platelets. Factor H mutated at the C-terminus also bound to platelets, albeit to a significantly lesser degree. CONCLUSIONS This study reports a novel property of factor H, i.e. binding to platelets, either directly via the GPIIb/IIIa receptor or indirectly via thrombospondin-1, in the absence of complement. Binding to platelets was mostly mediated by the C-terminal region of factor H and factor H mutated at the C-terminus exhibited reduced binding.
Collapse
Affiliation(s)
- F Vaziri-Sani
- Department of Pediatrics, Lund University, Lund, Sweden
| | | | | | | | | | | |
Collapse
|
35
|
Dragon-Durey MA, Loirat C, Cloarec S, Macher MA, Blouin J, Nivet H, Weiss L, Fridman WH, Frémeaux-Bacchi V. Anti-Factor H autoantibodies associated with atypical hemolytic uremic syndrome. J Am Soc Nephrol 2004; 16:555-63. [PMID: 15590760 DOI: 10.1681/asn.2004050380] [Citation(s) in RCA: 355] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Several studies have demonstrated genetic predisposition in non-shigatoxin-associated hemolytic uremic syndrome (HUS), involving regulatory proteins of the complement alternative pathway: Factor H (FH) and membrane co-factor protein (CD46). Regarding the observations of thrombotic thrombocytopenic purpura patients, in whom a von Willebrand factor protease (ADAMST-13) deficiency may be inherited or acquired secondary to IgG antibodies, it was speculated that HUS might occur in a context of an autoimmune disease with the development of anti-FH antibodies leading to an acquired FH deficiency. The presence of FH autoantibodies was investigated by an ELISA method using coated purified human FH in a series of 48 children who presented with atypical HUS and were recruited from French university hospitals. Anti-FH IgG antibodies were detected in the plasma of three children who presented with recurrent HUS. The anti-FH specificity was conserved by the Fab'2 fraction. The plasma FH activity was found to be decreased, whereas plasma FH antigenic levels and FH gene analysis were normal, indicating that the presence of anti-FH antibodies led to an acquired functional FH deficiency. This report supports for the first time that HUS may occur in a context of an autoimmune disease with the development of anti-FH-specific antibody leading to an acquired FH deficiency. This new mechanism of functional FH deficiency may lead to the design of new approaches of diagnosis and treatment with a particular interest in plasma exchanges or immunosuppressive therapies.
Collapse
Affiliation(s)
- Marie-Agnès Dragon-Durey
- Service d'Immunologie Biologique, Hôpital Européen Georges Pompidou, 20 rue Leblanc, 75015 Paris, France.
| | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Cooper M, McGraw ME, Unsworth DJ, Mathieson P. Familial mesangio-capillary glomerulonephritis with initial presentation as haemolytic uraemic syndrome. Nephrol Dial Transplant 2004; 19:230-3. [PMID: 14671063 DOI: 10.1093/ndt/gfg470] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
37
|
Goodship THJ, Liszewski MK, Kemp EJ, Richards A, Atkinson JP. Mutations in CD46, a complement regulatory protein, predispose to atypical HUS. Trends Mol Med 2004; 10:226-31. [PMID: 15121049 DOI: 10.1016/j.molmed.2004.03.006] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Membrane cofactor protein (MCP, CD46) is a widely expressed transmembrane complement regulator. As does the soluble regulator factor H, it inhibits complement activation by inactivating the C3b that is deposited on target membranes. Factor H mutations have been described in 15-30% of patients with atypical haemolytic uraemic syndrome (HUS). Recent studies have identified mutations in the MCP gene in four families. In one, a heterozygous deletion resulted in the intracellular retention of the mutant protein. In another, a different heterozygous deletion led to a premature stop codon and the loss of the C-terminus. In the other two, a substitution (S206P) resulted in cell-surface expression but inefficient inactivation of surface-bound C3b. These findings provide further evidence that complement dysregulation predisposes to the development of HUS.
Collapse
|
38
|
Abstract
Our body is in constant interaction with the environment. Some of the interactions involve the recognition and disposal of foreign substances that may harm the delicate balance between health and disease. The foreign elements, or antigens, include infectious organisms and lifeless macromolecules. The ability of the body to recognize what is dangerous and what is inconsequential, and to refrain from damaging what is perceived as self, are the main functions of the immune system. One important component of the innate immune response is the complement system. This article describes the different mechanisms of how complement is activated and the consequence of this activation, followed by a characterization of the complement's role in inflammation and autoimmunity, and the therapeutic considerations emanating from these studies.
Collapse
Affiliation(s)
- Hector Molina
- Division of Rheumatology, Department of Medicine, Washington University School of Medicine, Box 8045, CSRB 6604, 4940 Parkview Place, St. Louis, MO 63110, USA.
| |
Collapse
|
39
|
Affiliation(s)
- Alain Bonnardeaux
- Service de néphrologie, Hôpital Maisonneuve-Rosemont, Université de Montréal, Quebec, H1T 2M4, Montréal, Canada.
| | | |
Collapse
|
40
|
Abstract
PURPOSE OF REVIEW Haemolytic uraemic syndrome (HUS) is a disease of diverse origin. The last year has witnessed the identification of a novel genetic marker of this disease, the description of the frequency of the factor H associated form of HUS in a registry of over 100 patients and a better understanding of the pathophysiology of the disease. RECENT FINDINGS In patients with atypical HUS, heterozygous mutations in the gene coding for the soluble complement regulator factor H are reported and most of the mutations cluster in the C-terminal recognition domain of the protein. A novel genetic marker for HUS has also been identified. Mutations occurring in the gene of the von Willebrand factor cleaving protease, ADAMTS13, which were previously linked to thrombotic thrombocytopenic purpura have now been identified in HUS patients. The frequency of factor H-associated HUS was established as 14% in a registry of German speaking countries and also 16 novel disease associated mutations were reported. The pathophysiology of factor H-associated HUS was analysed. Three analysed mutant proteins show normal complement regulatory activities but display defective recognition functions: reduced binding to surface attached C3b, to heparin/polyanions and to endothelial cells. SUMMARY The identification of effector molecules of the complement as well as the coagulation cascade as disease associated molecules indicate a regulatory protein network, which maintains integrity of endothelial cells during stress or infection. Defining the individual components and how their functional interaction causes microangiopathies will identify additional disease markers and will allow the design of proper diagnostic and therapeutic approaches.
Collapse
Affiliation(s)
- Peter F Zipfel
- Department of Infection Biology, Hans Knoell Institute for Natural Products Research, Jena, Germany.
| | | | | |
Collapse
|
41
|
Caprioli J, Castelletti F, Bucchioni S, Bettinaglio P, Bresin E, Pianetti G, Gamba S, Brioschi S, Daina E, Remuzzi G, Noris M. Complement factor H mutations and gene polymorphisms in haemolytic uraemic syndrome: the C-257T, the A2089G and the G2881T polymorphisms are strongly associated with the disease. Hum Mol Genet 2003; 12:3385-95. [PMID: 14583443 DOI: 10.1093/hmg/ddg363] [Citation(s) in RCA: 241] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Mutations in complement factor H (HF1) gene have been reported in non-Shiga toxin-associated and diarrhoea-negative haemolytic uraemic syndrome (D-HUS). We analysed the complete HF1 in 101 patients with HUS, in 32 with thrombotic thrombocytopenic purpura (TTP) and in 106 controls to evaluate the frequency of HF1 mutations, the clinical outcome in mutation and non-mutation carriers and the role of HF1 polymorphisms in the predisposition to HUS. We found 17 HF1 mutations (16 heterozygous, one homozygous) in 33 HUS patients. Thirteen mutations were located in exons XXII and XXIII. No TTP patient carried HF1 mutations. The disease manifested earlier and the mortality rate was higher in mutation carriers than in non-carriers. Kidney transplants invariably failed for disease recurrences in patients with HF1 mutations, while in non-mutated patients half of the grafts were functioning after 1 year. Three HF1 polymorphic variants were strongly associated with D-HUS: -257T (promoter region), 2089G (exonXIV, silent) and 2881T (963Asp, SCR16). The association was stronger in patients without HF1 mutations. Two or three disease-associated variants led to a higher risk of HUS than a single one. Analysis of available relatives of mutated patients revealed a penetrance of 50%. In 5/9 families the proband inherited the mutation from one parent and two disease-associated variants from the other, while unaffected carriers inherited the protective variants. In conclusion HF1 mutations are frequent in patients with D-HUS (24%). Common polymorphisms of HF1 may contribute to D-HUS manifestation in subjects with and without HF1 mutations.
Collapse
Affiliation(s)
- Jessica Caprioli
- Mario Negri Institute for Pharmacological Research, Clinical Research Center for Rare Diseases 'Aldo e Cele Daccò', Villa Camozzi, Via Camozzi 3, 24020 Ranica, Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Artz MA, Steenbergen EJ, Hoitsma AJ, Monnens LAH, Wetzels JFM. Renal transplantation in patients with hemolytic uremic syndrome: high rate of recurrence and increased incidence of acute rejections. Transplantation 2003; 76:821-6. [PMID: 14501861 DOI: 10.1097/01.tp.0000085083.74065.1b] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND The reported outcome of renal transplantation in patients with the hemolytic uremic syndrome (HUS) varies greatly, probably related to the diverse causes of HUS. In this single-center retrospective study, we have analyzed the recurrence rate, the incidence of acute rejections, and graft survival in patients suffering from adult-onset and childhood-onset HUS. METHODS The medical records of 35 patients with end-stage renal disease caused by HUS, who received 50 renal allografts, were reviewed. A definite recurrence of HUS was diagnosed if both clinical and histologic signs of thrombotic microangiopathy (TMA) were present in the absence of any endovasculitis. If there were signs of mild endovasculitis, a probable recurrence was diagnosed. RESULTS After first renal transplantation, 0 definite and 1 (6%) probable recurrence occurred in 18 patients with childhood-onset HUS, as opposed to 7 (41%) definite and 3 (18%) probable recurrences in 17 adult-onset HUS patients (odds ratio [OR], 13.4; 95% confidence interval [CI], 1.7-105.7). In the latter patients, early use of cyclosporine A increased the risk for recurrence. The incidence of acute rejections was increased compared with matched controls (OR, 1.52; 95% CI, 1.05-2.19 for adult-onset HUS and OR, 1.88; 95% CI, 1.34-2.62 for childhood-onset HUS). One-year graft survival in adult-onset HUS was poor (29%), whereas 1-year graft survival in childhood-onset HUS was comparable to matched controls. CONCLUSIONS In adult-onset HUS, the recurrence rate and the incidence of acute rejections are high, resulting in a detrimental graft survival. In childhood-onset HUS, the recurrence rate is low, but the posttransplantation course is complicated by an increased incidence of acute rejections.
Collapse
Affiliation(s)
- Marika A Artz
- Department of Nephrology, University Medical Center St. Radboud, Nijmegen, The Netherlands.
| | | | | | | | | |
Collapse
|
43
|
Neumann HPH, Salzmann M, Bohnert-Iwan B, Mannuelian T, Skerka C, Lenk D, Bender BU, Cybulla M, Riegler P, Königsrainer A, Neyer U, Bock A, Widmer U, Male DA, Franke G, Zipfel PF. Haemolytic uraemic syndrome and mutations of the factor H gene: a registry-based study of German speaking countries. J Med Genet 2003; 40:676-81. [PMID: 12960213 PMCID: PMC1735586 DOI: 10.1136/jmg.40.9.676] [Citation(s) in RCA: 171] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
BACKGROUND The aetiology of atypical haemolytic uraemic syndrome (aHUS) is, in contrast to classical, Shiga-like toxin induced HUS in children, largely unknown. Deficiency of human complement factor H and familial occurrence led to identification of the factor H gene (FH1) as the susceptibility gene, but the frequency and relevance of FH1 mutations are unknown. METHODS We established a German registry for aHUS and analysed in all patients and 100 controls the complete FH1 gene by single strand confirmational polymorphism and DNA sequencing. In addition, complement C3 and factor H serum levels were assayed. Demographic data at onset of aHUS and follow up were compared for the mutation positive and negative groups. RESULTS Of 111 patients with aHUS (68 female, 43 male, mean age 33 years) 14% had FH1 germline mutations, including two of eight patients with familial aHUS. For each of these eight patients, both parents were tested, and we were able to trace the mutation for five cases. In the other three cases (one with the mutation 3749 C/T, one with 3200 T/C, and one with 3566+1 G/A), we could not detect the mutation in either parent, although paternity was proven by genetic fingerprinting, suggesting that these subjects have new mutations. C3 was decreased in five mutation carriers but also in two non-carriers, and factor H was decreased in none of the carriers, but elevated in six carriers and 15 non-carriers. Clinical parameters including associated medications and diseases, and outcome of aHUS and of post-aHUS kidney transplantation were similar in the mutation positive and negative groups. CONCLUSION FH1 germline mutations occur with considerable frequency in patients with aHUS. Hypocomplementaemia is not regularly associated with a germline mutation, and factor H serum levels can even be elevated. Screening for FH1 mutations contributes to the classification of aHUS.
Collapse
Affiliation(s)
- H P H Neumann
- Department of Nephrology, Albert-Ludwigs-University, Freiburg, Germany.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
McLeod BC. Thrombotic microangiopathies in bone marrow and organ transplant patients. J Clin Apher 2003; 17:118-23. [PMID: 12378546 DOI: 10.1002/jca.10030] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Bruce C McLeod
- Rush Medical College and Rush Presbyterian St Luke's Medical Center, Chicago, Illinois 60612, USA.
| |
Collapse
|
45
|
Hegasy GA, Manuelian T, Hogasen K, Jansen JH, Zipfel PF. The molecular basis for hereditary porcine membranoproliferative glomerulonephritis type II: point mutations in the factor H coding sequence block protein secretion. THE AMERICAN JOURNAL OF PATHOLOGY 2002; 161:2027-34. [PMID: 12466119 PMCID: PMC1850924 DOI: 10.1016/s0002-9440(10)64481-1] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Porcine membranoproliferative glomerulonephritis type II in piglets of the Norwegian Yorkshire breed is considered the first animal model of human dense deposit disease. Porcine dense deposit disease is caused by the absence of the complement regulator factor H in plasma. Here we report the molecular basis for this absence. Single nucleotide exchanges at position C1590G and T3610G in the coding region of the factor H gene result in amino acid exchanges at nonframework residues L493V and I1166R that are located within SCR 9 and SCR 20, respectively. Apparently the L493V mutation represents a polymorphism whereas the I1166R causes the physiological consequences a block in protein secretion. Expression analysis shows comparable mRNA levels for factor H in liver tissue derived from both affected and healthy animals. In affected piglets, factor H protein is detected in increased amounts in liver cells. Factor H accumulates inside the hepatocytes and is not released as shown by Western blot analysis and immunohistochemistry. These data demonstrate that single amino acid exchanges of two nonframework amino acids either alone or in combination block protein secretion of factor H. This observation is also of interest for other human diseases in which factor H is involved, such as human factor H-associated form of hemolytic uremic syndrome.
Collapse
Affiliation(s)
- Guido A Hegasy
- Research Group for Biomolecular Medicine, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | | | | | | | | |
Collapse
|
46
|
Sánchez-Corral P, Pérez-Caballero D, Huarte O, Simckes AM, Goicoechea E, López-Trascasa M, de Córdoba SR. Structural and functional characterization of factor H mutations associated with atypical hemolytic uremic syndrome. Am J Hum Genet 2002; 71:1285-95. [PMID: 12424708 PMCID: PMC378565 DOI: 10.1086/344515] [Citation(s) in RCA: 176] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2002] [Accepted: 08/28/2002] [Indexed: 01/15/2023] Open
Abstract
Genetic studies have demonstrated the involvement of the complement regulator factor H in nondiarrheal, nonverocytotoxin (i.e., atypical) cases of hemolytic uremic syndrome. Different factor H mutations have been identified in 10%-30% of patients with atypical hemolytic uremic syndrome (aHUS), and most of these mutations alter single amino acids in the C-terminal region of factor H. Although these mutations are considered to be responsible for the disease, the precise role that factor H plays in the pathogenesis of aHUS is unknown. We report here the structural and functional characterization of three different factor H proteins purified from the plasma of patients with aHUS who carry the factor H mutations W1183L, V1197A, or R1210C. Structural anomalies in factor H were found only in R1210C carriers; these individuals show, in their plasma, a characteristic high-molecular-weight factor H protein that results from the covalent interaction between factor H and human serum albumin. Most important, all three aHUS-associated factor H proteins have a normal cofactor activity in the proteolysis of fluid-phase C3b by factor I but show very low binding to surface-bound C3b. This functional impairment was also demonstrated in recombinant mutant factor H proteins expressed in COS7 cells. These data support the hypothesis that patients with aHUS carry a specific dysfunction in the protection of cellular surfaces from complement activation, offering new possibilities to improve diagnosis and develop appropriate therapies.
Collapse
Affiliation(s)
- Pilar Sánchez-Corral
- Departamento de Inmunología, Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | | | | | | | | | | | | |
Collapse
|
47
|
Pangburn MK. Cutting edge: localization of the host recognition functions of complement factor H at the carboxyl-terminal: implications for hemolytic uremic syndrome. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2002; 169:4702-6. [PMID: 12391176 DOI: 10.4049/jimmunol.169.9.4702] [Citation(s) in RCA: 106] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Incidents of hemolytic uremic syndrome (HUS) include a subset of patients that exhibit mutations in C factor H. These mutations cluster in the C-terminal domains of factor H where previous reports have identified polyanion and C3b-binding sites. In this study, we show that recombinant human factor H with deletions at the C-terminal end of the protein loses the ability to control the spontaneous activation of the alternative C pathway on host-like surfaces. For the pathology of HUS, the findings imply that mutations that disrupt the normal functions of the C-terminal domains prevent host polyanion recognition. The resulting uncontrolled activation of complement on susceptible host tissues appears to be the initiating event behind the acute renal failure of familial HUS patients.
Collapse
Affiliation(s)
- Michael K Pangburn
- Department of Biochemistry, University of Texas Health Science Center, Tyler 75708, USA.
| |
Collapse
|
48
|
Abstract
Hemolytic uremic syndrome (HUS) in children follows a diarrheal prodrome (D+) approximately 90% of the time, and recurrence due to enteric reinfection with Shiga toxin producing E. coli (e.g., O157:H7) can occur but is rare. It is not well recognized that nondiarrheal (D-) recurrences can also follow an episode of D+ HUS; we report 2 unrelated females who experienced multiple D- episodes following an initial episode of D+ HUS. We also present an HUS classification system that includes recurrence risk. It illustrates that recurrence is seen most frequently with familial HUS but can also occur in cases that are secondary to drugs, cancer, and pregnancy.
Collapse
|
49
|
Pickering MC, Cook HT, Warren J, Bygrave AE, Moss J, Walport MJ, Botto M. Uncontrolled C3 activation causes membranoproliferative glomerulonephritis in mice deficient in complement factor H. Nat Genet 2002; 31:424-8. [PMID: 12091909 DOI: 10.1038/ng912] [Citation(s) in RCA: 375] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The alternative pathway of complement is activated continuously in vivo through the C3 'tick-over' pathway. This pathway is triggered by the hydrolysis of C3, resulting in the formation of C3 convertase. This, in turn, generates C3b, which mediates many of the biological functions of complement. Factor H, the main regulator of this activation, prevents formation and promotes dissociation of the C3 convertase enzyme, and, together with factor I, mediates the proteolytic inactivation of C3b. Factor H deficiency, described in 29 individuals from 12 families and in pigs, allows unhindered activation of fluid-phase C3 and severe depletion of plasma C3 (ref. 11). Membranoproliferative glomerulonephritis (MPGN) occurs in factor H-deficient humans and pigs. Although MPGN has been reported in other conditions in which uncontrolled activation of C3 occurs, the role of C3 dysregulation in the pathogenesis of MPGN is not understood. Here we show that mice deficient in factor H (Cfh(-/-) mice) develop MPGN spontaneously and are hypersensitive to developing renal injury caused by immune complexes. Introducing a second mutation in the gene encoding complement factor B, which prevents C3 turnover in vivo, obviates the phenotype of Cfh(-/-) mice. Thus, uncontrolled C3 activation in vivo is essential for the development of MPGN associated with deficiency of factor H.
Collapse
Affiliation(s)
- Matthew C Pickering
- Rheumatology Section, Faculty of Medicine, Imperial College, Hammersmith Campus, Du Cane Road, London W12 0NN, UK
| | | | | | | | | | | | | |
Collapse
|
50
|
Richards A, Goodship JA, Goodship THJ. The genetics and pathogenesis of haemolytic uraemic syndrome and thrombotic thrombocytopenic purpura. Curr Opin Nephrol Hypertens 2002; 11:431-5. [PMID: 12105394 DOI: 10.1097/00041552-200207000-00010] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
PURPOSE OF REVIEW In recent years there has been a substantial increase in the understanding of the genetics and pathogenesis of haemolytic uraemic syndrome and thrombotic thrombocytopenic purpura. RECENT FINDINGS In diarrhoeal associated haemolytic uraemic syndrome it has been established that the virulence of Escherichia coli O157 is related to intimin adhesion and the transport of verocytotoxin on polymorphonuclear cells. It has been shown that early changes in the coagulation pathway predate the onset of diarrhoeal haemolytic uraemic syndrome. Mutations in factor H, a fluid-phase regulator of the alternative complement pathway, have been identified in 10-20% of patients with both familial and sporadic (non-diarrhoeal-associated) haemolytic uraemic syndrome. The mutations mainly cluster in the C terminal part of factor H, a region that is important for both binding to C3b and also polyanionic structures on cell surfaces. The identification of antibodies against a plasma metalloproteinase responsible for cleaving ultralarge von Willebrand factor multimers in thrombotic thrombocytopenic purpura has been followed by the elucidation of the identity of the proteinase. It has been shown to be a member of the ADAMTS family, and mutations have been identified in the gene in families with inherited thrombotic thrombocytopenic purpura. SUMMARY The molecular pathogenesis of haemolytic uraemic syndrome and thrombotic thrombocytopenic purpura is an exciting and rapidly evolving field. These recent advances will lead to logical, targetted changes in the management of these conditions.
Collapse
Affiliation(s)
- Anna Richards
- The Institute of Human Genetics and School of Clinical Medical Sciences, University of Newcastle upon Tyne, Newcastle upon Tyne NE1 4LP, UK
| | | | | |
Collapse
|