1
|
Angelakis GN, Psarologaki C, Pirintsos S, Kotzabasis K. Extremophiles and Extremophilic Behaviour-New Insights and Perspectives. Life (Basel) 2024; 14:1425. [PMID: 39598223 PMCID: PMC11595344 DOI: 10.3390/life14111425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 10/31/2024] [Accepted: 11/01/2024] [Indexed: 11/29/2024] Open
Abstract
Extremophiles, throughout evolutionary time, have evolved a plethora of unique strategies to overcome hardships associated with the environments they are found in. Modifying their genome, showing a bias towards certain amino acids, redesigning their proteins, and enhancing their membranes and other organelles with specialised chemical compounds are only some of those strategies. Scientists can utilise such attributes of theirs for a plethora of biotechnological and astrobiological applications. Moreover, the rigorous study of such microorganisms regarding their evolution and ecological niche can offer deep insight into science's most paramount inquiries such as how life originated on Earth and whether we are alone in the universe. The intensification of studies involving extremophiles in the future can prove to be highly beneficial for humanity, even potentially ameliorating modern problems such as those related to climate change while also expanding our knowledge about the complex biochemical reactions that ultimately resulted in life as we know it today.
Collapse
Affiliation(s)
- George N. Angelakis
- Department of Biology, University of Crete, Voutes University Campus, GR 70013 Heraklion, Crete, Greece
- Faculty of Geosciences, Utrecht University, 3508 TC Utrecht, The Netherlands
| | - Chrysianna Psarologaki
- Department of Biology, University of Crete, Voutes University Campus, GR 70013 Heraklion, Crete, Greece
- Faculty of Biology and Psychology, Georg-August University of Göttingen, Wilhelm-Weber-Straße 2, 37073 Göttingen, Germany
| | - Stergios Pirintsos
- Department of Biology, University of Crete, Voutes University Campus, GR 70013 Heraklion, Crete, Greece
- Botanical Garden, University of Crete, Gallos University Campus, GR 74100 Rethymnon, Crete, Greece
| | - Kiriakos Kotzabasis
- Department of Biology, University of Crete, Voutes University Campus, GR 70013 Heraklion, Crete, Greece
- Botanical Garden, University of Crete, Gallos University Campus, GR 74100 Rethymnon, Crete, Greece
| |
Collapse
|
2
|
Cuthbert BJ, Mendoza J, de Miranda R, Papavinasasundaram K, Sassetti CM, Goulding CW. The structure of Mycobacterium thermoresistibile MmpS5 reveals a conserved disulfide bond across mycobacteria. Metallomics 2024; 16:mfae011. [PMID: 38425033 PMCID: PMC10929441 DOI: 10.1093/mtomcs/mfae011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 02/10/2024] [Indexed: 03/02/2024]
Abstract
The tuberculosis (TB) emergency has been a pressing health threat for decades. With the emergence of drug-resistant TB and complications from the COVID-19 pandemic, the TB health crisis is more serious than ever. Mycobacterium tuberculosis (Mtb), the causative agent of TB, requires iron for its survival. Thus, Mtb has evolved several mechanisms to acquire iron from the host. Mtb produces two siderophores, mycobactin and carboxymycobactin, which scavenge for host iron. Mtb siderophore-dependent iron acquisition requires the export of apo-siderophores from the cytosol to the host environment and import of iron-bound siderophores. The export of Mtb apo-siderophores across the inner membrane is facilitated by two mycobacterial inner membrane proteins with their cognate periplasmic accessory proteins, designated MmpL4/MmpS4 and MmpL5/MmpS5. Notably, the Mtb MmpL4/MmpS4 and MmpL5/MmpS5 complexes have also been implicated in the efflux of anti-TB drugs. Herein, we solved the crystal structure of M. thermoresistibile MmpS5. The MmpS5 structure reveals a previously uncharacterized, biologically relevant disulfide bond that appears to be conserved across the Mycobacterium MmpS4/S5 homologs, and comparison with structural homologs suggests that MmpS5 may be dimeric.
Collapse
Affiliation(s)
- Bonnie J Cuthbert
- Department of Molecular Biology & Biochemistry, University of California Irvine, Irvine, CA 92697, USA
| | - Jessica Mendoza
- Department of Molecular Biology & Biochemistry, University of California Irvine, Irvine, CA 92697, USA
| | - Rodger de Miranda
- Department of Molecular Biology & Biochemistry, University of California Irvine, Irvine, CA 92697, USA
| | - Kadamba Papavinasasundaram
- Department of Microbiology and Physiological Systems, UMass Chan Medical School, Worcester, MA 01605, USA
| | - Christopher M Sassetti
- Department of Microbiology and Physiological Systems, UMass Chan Medical School, Worcester, MA 01605, USA
| | - Celia W Goulding
- Department of Molecular Biology & Biochemistry, University of California Irvine, Irvine, CA 92697, USA
- Department of Pharmaceutical Sciences, University of California, Irvine, Irvine, CA 92697, USA
| |
Collapse
|
3
|
Hirao K, Speciale I, Notaro A, Manabe Y, Teramoto Y, Sato T, Atomi H, Molinaro A, Ueda Y, De Castro C, Fukase K. Structural Determination and Chemical Synthesis of the N-Glycan from the Hyperthermophilic Archaeon Thermococcus kodakarensis. Angew Chem Int Ed Engl 2023; 62:e202218655. [PMID: 36719065 DOI: 10.1002/anie.202218655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 01/24/2023] [Accepted: 01/30/2023] [Indexed: 02/01/2023]
Abstract
Asparagine-linked protein glycosylations (N-glycosylations) are one of the most abundant post-translational modifications and are essential for various biological phenomena. Herein, we describe the isolation, structural determination, and chemical synthesis of the N-glycan from the hyperthermophilic archaeon Thermococcus kodakarensis. The N-glycan from the organism possesses a unique structure including myo-inositol, which has not been found in previously characterized N-glycans. In this structure, myo-inositol is highly glycosylated and linked with a disaccharide unit through a phosphodiester. The straightforward synthesis of this glycan was accomplished through diastereoselective phosphorylation and phosphodiester construction by SN 2 coupling. Considering the early divergence of hyperthermophilic organisms in evolution, this study can be expected to open the door to approaching the primitive function of glycan modification at the molecular level.
Collapse
Affiliation(s)
- Kohtaro Hirao
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka, 560-0043, Japan
| | - Immacolata Speciale
- Department of Agricultural Sciences, University of Napoli Federico II, Via Università 96, 80055, Portici, Naples, Italy
| | - Anna Notaro
- Department of Agricultural Sciences, University of Napoli Federico II, Via Università 96, 80055, Portici, Naples, Italy
| | - Yoshiyuki Manabe
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka, 560-0043, Japan.,Forefront Research Center, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka, 560-0043, Japan
| | - Yoshiaki Teramoto
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto, 615-8510, Japan
| | - Takaaki Sato
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto, 615-8510, Japan
| | - Haruyuki Atomi
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto, 615-8510, Japan
| | - Antonio Molinaro
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka, 560-0043, Japan.,Department of Chemical Sciences, University of Napoli Federico II, Via Cintia 4, 80126, Napoli, Italy
| | - Yoshihiro Ueda
- Institute for Chemical Research, Kyoto University Gokasho, Uji, Kyoto, 611-0011, Japan
| | - Cristina De Castro
- Department of Agricultural Sciences, University of Napoli Federico II, Via Università 96, 80055, Portici, Naples, Italy
| | - Koichi Fukase
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka, 560-0043, Japan.,Forefront Research Center, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka, 560-0043, Japan
| |
Collapse
|
4
|
Hait S, Basu S, Kundu S. Charge reversal mutations in mesophilic-thermophilic orthologous protein pairs and their role in enhancing coulombic interaction energy. J Biomol Struct Dyn 2023; 41:1745-1752. [PMID: 34996344 DOI: 10.1080/07391102.2021.2024258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Proteins from thermophilic organisms are a matter of immense interest for decades because of its application in fields like de-novo protein design, thermostable variants of biocatalysts etc. Previous studies have found several sequence and structural adaptations related to thermal stability, while charge reversal study remains ignored. Here we address whether charge reversal mutations naturally occur in mesophilic-thermophilic/hyperthermophilic orthologous proteins. Do they contribute to thermal stability? Our systematic study on 1550 mesophilic-thermophilic/hyperthermophilic orthologous protein pairs with remarkable structural and topological similarity, shows gain in coulombic interaction energy in thermophilic/hyperthermophilic proteins at short range associated with partially exposed and buried charge reversal mutations, which may enhance thermostability. Our findings call forth its application in future protein engineering studies. Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Suman Hait
- Department of Biophysics, Molecular Biology and Bioinformatics, University of Calcutta, Kolkata, India
| | - Sudipto Basu
- Department of Biophysics, Molecular Biology and Bioinformatics, University of Calcutta, Kolkata, India
| | - Sudip Kundu
- Department of Biophysics, Molecular Biology and Bioinformatics, University of Calcutta, Kolkata, India
| |
Collapse
|
5
|
Veiko VP, Antipov AN, Mordkovich NN, Okorokova NA, Safonova TN, Polyakov KM. The Thermostability of Nucleoside Phosphorylases from Prokaryotes. I. The Role of the Primary Structure of the N-terminal fragment of the Protein in the Thermostability of Uridine Phosphorylases. APPL BIOCHEM MICRO+ 2022. [DOI: 10.1134/s0003683822060151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Abstract
AbstractMutant uridine phosphorylase genes from Shewanella oneidensis MR-1 (S. oneidensis) were constructed by site-directed mutagenesis and strains-producers of the corresponding recombinant (F5I and F5G) proteins were obtained on the basis of Escherichia coli cells. The mutant proteins were purified and their physicochemical and enzymatic properties were studied. It was shown that the N-terminal fragment of uridine phosphorylase plays an important role in the thermal stabilization of the enzyme as a whole. The role of the aminoacid (a.a.) residue phenylalanine (F5) in the formation of thermotolerance of uridine phosphorylases from gamma-proteobacteria was revealed.
Collapse
|
6
|
Dorawa S, Werbowy O, Plotka M, Kaczorowska AK, Makowska J, Kozlowski LP, Fridjonsson OH, Hreggvidsson GO, Aevarsson A, Kaczorowski T. Molecular Characterization of a DNA Polymerase from Thermus thermophilus MAT72 Phage vB_Tt72: A Novel Type-A Family Enzyme with Strong Proofreading Activity. Int J Mol Sci 2022; 23:ijms23147945. [PMID: 35887293 PMCID: PMC9324360 DOI: 10.3390/ijms23147945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 07/14/2022] [Accepted: 07/15/2022] [Indexed: 11/16/2022] Open
Abstract
We present a structural and functional analysis of the DNA polymerase of thermophilic Thermus thermophilus MAT72 phage vB_Tt72. The enzyme shows low sequence identity (<30%) to the members of the type-A family of DNA polymerases, except for two yet uncharacterized DNA polymerases of T. thermophilus phages: φYS40 (91%) and φTMA (90%). The Tt72 polA gene does not complement the Escherichia colipolA− mutant in replicating polA-dependent plasmid replicons. It encodes a 703-aa protein with a predicted molecular weight of 80,490 and an isoelectric point of 5.49. The enzyme contains a nucleotidyltransferase domain and a 3′-5′ exonuclease domain that is engaged in proofreading. Recombinant enzyme with His-tag at the N-terminus was overproduced in E. coli, subsequently purified by immobilized metal affinity chromatography, and biochemically characterized. The enzyme exists in solution in monomeric form and shows optimum activity at pH 8.5, 25 mM KCl, and 0.5 mM Mg2+. Site-directed analysis proved that highly-conserved residues D15, E17, D78, D180, and D184 in 3′-5′ exonuclease and D384 and D615 in the nucleotidyltransferase domain are critical for the enzyme’s activity. Despite the source of origin, the Tt72 DNA polymerase has not proven to be highly thermoresistant, with a temperature optimum at 55 °C. Above 60 °C, the rapid loss of function follows with no activity > 75 °C. However, during heat treatment (10 min at 75 °C), trehalose, trimethylamine N-oxide, and betaine protected the enzyme against thermal inactivation. A midpoint of thermal denaturation at Tm = 74.6 °C (ΔHcal = 2.05 × 104 cal mol−1) and circular dichroism spectra > 60 °C indicate the enzyme’s moderate thermal stability.
Collapse
Affiliation(s)
- Sebastian Dorawa
- Laboratory of Extremophiles Biology, Department of Microbiology, Faculty of Biology, University of Gdansk, 80-308 Gdansk, Poland; (S.D.); (O.W.); (M.P.)
| | - Olesia Werbowy
- Laboratory of Extremophiles Biology, Department of Microbiology, Faculty of Biology, University of Gdansk, 80-308 Gdansk, Poland; (S.D.); (O.W.); (M.P.)
| | - Magdalena Plotka
- Laboratory of Extremophiles Biology, Department of Microbiology, Faculty of Biology, University of Gdansk, 80-308 Gdansk, Poland; (S.D.); (O.W.); (M.P.)
| | - Anna-Karina Kaczorowska
- Collection of Plasmids and Microorganisms, Faculty of Biology, University of Gdansk, 80-308 Gdansk, Poland;
| | - Joanna Makowska
- Department of General and Inorganic Chemistry, Faculty of Chemistry, University of Gdansk, 80-308 Gdansk, Poland;
| | - Lukasz P. Kozlowski
- Institute of Informatics, Faculty of Mathematics, Informatics and Mechanics, University of Warsaw, 02-097 Warsaw, Poland;
| | | | - Gudmundur O. Hreggvidsson
- Matis, 113 Reykjavik, Iceland; (O.H.F.); (G.O.H.); (A.A.)
- Department of Biology, School of Engineering and Natural Sciences, University of Iceland, 102 Reykjavik, Iceland
| | | | - Tadeusz Kaczorowski
- Laboratory of Extremophiles Biology, Department of Microbiology, Faculty of Biology, University of Gdansk, 80-308 Gdansk, Poland; (S.D.); (O.W.); (M.P.)
- Correspondence:
| |
Collapse
|
7
|
Kumar S, Deshpande PA. Structural and thermodynamic analysis of factors governing the stability and thermal folding/unfolding of SazCA. PLoS One 2021; 16:e0249866. [PMID: 33857217 PMCID: PMC8049272 DOI: 10.1371/journal.pone.0249866] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 03/19/2021] [Indexed: 01/23/2023] Open
Abstract
Molecular basis of protein stability at different temperatures is a fundamental problem in protein science that is substantially far from being accurately and quantitatively solved as it requires an explicit knowledge of the temperature dependence of folding free energy of amino acid residues. In the present study, we attempted to gain insights into the thermodynamic stability of SazCA and its implications on protein folding/unfolding. We report molecular dynamics simulations of water solvated SazCA in a temperature range of 293-393 K to study the relationship between the thermostability and flexibility. Our structural analysis shows that the protein maintains the highest structural stability at 353 K and the protein conformations are highly flexible at temperatures above 353 K. Larger exposure of hydrophobic surface residues to the solvent medium for conformations beyond 353 K were identified from H-bond analysis. Higher number of secondary structure contents exhibited by SazCA at 353 K corroborated the conformations at 353 K to exhibit the highest thermal stability. The analysis of thermodynamics of protein stability revealed that the conformations that denature at higher melting temperatures tend to have greater maximum thermal stability. Our analysis shows that 353 K conformations have the highest melting temperature, which was found to be close to the experimental optimum temperature. The enhanced protein stability at 353 K due the least value of heat capacity at unfolding suggested an increase in folding. Comparative Gibbs free energy analysis and funnel shaped energy landscape confirmed a transition in folding/unfolding pathway of SazCA at 353 K.
Collapse
Affiliation(s)
- Shashi Kumar
- Quantum and Molecular Engineering Laboratory, Department of Chemical Engineering, Indian Institute of Technology Kharagpur, Kharagpur, India
| | - Parag A. Deshpande
- Quantum and Molecular Engineering Laboratory, Department of Chemical Engineering, Indian Institute of Technology Kharagpur, Kharagpur, India
| |
Collapse
|
8
|
Kumar S, Seth D, Deshpande PA. Molecular dynamics simulations identify the regions of compromised thermostability in SazCA. Proteins 2020; 89:375-388. [PMID: 33146427 DOI: 10.1002/prot.26022] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Revised: 09/14/2020] [Accepted: 10/16/2020] [Indexed: 11/09/2022]
Abstract
The present study examined the structure and dynamics of the most active and thermostable carbonic anhydrase, SazCA, probed using molecular dynamics simulations. The molecular system was described by widely used biological force-fields (AMBER, CHARMM22, CHARMM36, and OPLS-AA) in conjunction with TIP3P water model. The comparison of molecular dynamics simulation results suggested AMBER to be a suitable choice to describe the structure and dynamics of SazCA. In addition to this, we also addressed the effect of temperature on the stability of SazCA. We performed molecular dynamics simulations at 313, 333, 353, 373, and 393 K to study the relationship between thermostability and flexibility in SazCA. The amino acid residues VAL98, ASN99, GLY100, LYS101, GLU145, and HIS207 were identified as the most flexible residues from root-mean-square fluctuations. The salt bridge analysis showed that ion-pairs ASP113-LYS81, ASP115-LYS81, ASP115-LYS114, GLU144-LYS143, and GLU144-LYS206, were responsible for the compromised thermal stability of SazCA.
Collapse
Affiliation(s)
- Shashi Kumar
- Quantum and Molecular Engineering Laboratory, Department of Chemical Engineering, Indian Institute of Technology Kharagpur, Kharagpur, India
| | - Deepak Seth
- Quantum and Molecular Engineering Laboratory, Department of Chemical Engineering, Indian Institute of Technology Kharagpur, Kharagpur, India
| | - Parag Arvind Deshpande
- Quantum and Molecular Engineering Laboratory, Department of Chemical Engineering, Indian Institute of Technology Kharagpur, Kharagpur, India
| |
Collapse
|
9
|
Ban X, Dhoble AS, Li C, Gu Z, Hong Y, Cheng L, Holler TP, Kaustubh B, Li Z. Bacterial 1,4-α-glucan branching enzymes: characteristics, preparation and commercial applications. Crit Rev Biotechnol 2020; 40:380-396. [DOI: 10.1080/07388551.2020.1713720] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- Xiaofeng Ban
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, People’s Republic of China
| | - Abhishek S. Dhoble
- Department of Agricultural and Biological Engineering, University of Illinois at Urbana-Champaign, Urbana-Champaign, IL, USA
| | - Caiming Li
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, People’s Republic of China
| | - Zhengbiao Gu
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, People’s Republic of China
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, People’s Republic of China
- Collaborative Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, Jiangsu, People’s Republic of China
| | - Yan Hong
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, People’s Republic of China
| | - Li Cheng
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, People’s Republic of China
| | - Tod P. Holler
- Department of Medicinal Chemistry, University of Michigan, Ann Arbor, MI, USA
| | - Bhalerao Kaustubh
- Department of Agricultural and Biological Engineering, University of Illinois at Urbana-Champaign, Urbana-Champaign, IL, USA
| | - Zhaofeng Li
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, People’s Republic of China
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, People’s Republic of China
- Collaborative Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, Jiangsu, People’s Republic of China
| |
Collapse
|
10
|
Khan MF, Kundu D, Hazra C, Patra S. A strategic approach of enzyme engineering by attribute ranking and enzyme immobilization on zinc oxide nanoparticles to attain thermostability in mesophilic Bacillus subtilis lipase for detergent formulation. Int J Biol Macromol 2019; 136:66-82. [DOI: 10.1016/j.ijbiomac.2019.06.042] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2019] [Revised: 06/06/2019] [Accepted: 06/07/2019] [Indexed: 12/27/2022]
|
11
|
Liao ML, Zhang S, Zhang GY, Chu YM, Somero GN, Dong YW. Heat-resistant cytosolic malate dehydrogenases (cMDHs) of thermophilic intertidal snails (genus Echinolittorina): protein underpinnings of tolerance to body temperatures reaching 55°C. ACTA ACUST UNITED AC 2018; 220:2066-2075. [PMID: 28566358 DOI: 10.1242/jeb.156935] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Accepted: 03/20/2017] [Indexed: 01/07/2023]
Abstract
Snails of the genus Echinolittorina are among the most heat-tolerant animals; they experience average body temperatures near 41-44°C in summer and withstand temperatures up to at least 55°C. Here, we demonstrate that heat stability of function (indexed by the Michaelis-Menten constant of the cofactor NADH, KMNADH) and structure (indexed by rate of denaturation) of cytosolic malate dehydrogenases (cMDHs) of two congeners (E. malaccana and E. radiata) exceeds values previously found for orthologs of this protein from less thermophilic species. The ortholog of E. malaccana is more heat stable than that of E. radiata, in keeping with the congeners' thermal environments. Only two inter-congener differences in amino acid sequence in these 332 residue proteins were identified. In both cases (positions 48 and 114), a glycine in the E. malaccana ortholog is replaced by a serine in the E. radiata protein. To explore the relationship between structure and function and to characterize how amino acid substitutions alter stability of different regions of the enzyme, we used molecular dynamics simulation methods. These computational methods allow determination of thermal effects on fine-scale movements of protein components, for example, by estimating the root mean square deviation in atom position over time and the root mean square fluctuation for individual residues. The minor changes in amino acid sequence favor temperature-adaptive change in flexibility of regions in and around the active sites. Interspecific differences in effects of temperature on fine-scale protein movements are consistent with the differences in thermal effects on binding and rates of heat denaturation.
Collapse
Affiliation(s)
- Ming-Ling Liao
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen 361102, China.,Fujian Collaborative Innovation Center for Exploitation and Utilization of Marine Biological Resources, Xiamen University, Xiamen 361102, China
| | - Shu Zhang
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen 361102, China.,Fujian Collaborative Innovation Center for Exploitation and Utilization of Marine Biological Resources, Xiamen University, Xiamen 361102, China
| | - Guang-Ya Zhang
- Department of Biotechnology and Engineering, Huaqiao University, Xiamen 361021, China
| | - Yun-Meng Chu
- Department of Biotechnology and Engineering, Huaqiao University, Xiamen 361021, China
| | - George N Somero
- Hopkins Marine Station, Department of Biology, Stanford University, Pacific Grove, CA 93940, USA
| | - Yun-Wei Dong
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen 361102, China .,Fujian Collaborative Innovation Center for Exploitation and Utilization of Marine Biological Resources, Xiamen University, Xiamen 361102, China
| |
Collapse
|
12
|
Okafor CD, Pathak MC, Fagan CE, Bauer NC, Cole MF, Gaucher EA, Ortlund EA. Structural and Dynamics Comparison of Thermostability in Ancient, Modern, and Consensus Elongation Factor Tus. Structure 2018; 26:118-129.e3. [PMID: 29276038 PMCID: PMC5785943 DOI: 10.1016/j.str.2017.11.018] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Revised: 10/18/2017] [Accepted: 11/27/2017] [Indexed: 01/07/2023]
Abstract
Rationally engineering thermostability in proteins would create enzymes and receptors that function under harsh industrial applications. Several sequence-based approaches can generate thermostable variants of mesophilic proteins. To gain insight into the mechanisms by which proteins become more stable, we use structural and dynamic analyses to compare two popular approaches, ancestral sequence reconstruction (ASR) and the consensus method, used to generate thermostable variants of Elongation Factor Thermo-unstable (EF-Tu). We present crystal structures of ancestral and consensus EF-Tus, accompanied by molecular dynamics simulations aimed at probing the strategies employed to enhance thermostability. All proteins adopt crystal structures similar to extant EF-Tus, revealing no difference in average structure between the methods. Molecular dynamics reveals that ASR-generated sequences retain dynamic properties similar to extant, thermostable EF-Tu from Thermus aquaticus, while consensus EF-Tu dynamics differ from evolution-based sequences. This work highlights the advantage of ASR for engineering thermostability while preserving natural motions in multidomain proteins.
Collapse
Affiliation(s)
- C. Denise Okafor
- Department of Biochemistry, Emory University School of Medicine, Atlanta, Georgia 30322 USA
| | - Manish C. Pathak
- Department of Biochemistry, Emory University School of Medicine, Atlanta, Georgia 30322 USA
| | - Crystal E. Fagan
- Department of Biochemistry, Emory University School of Medicine, Atlanta, Georgia 30322 USA
| | - Nicholas C. Bauer
- Department of Biochemistry, Emory University School of Medicine, Atlanta, Georgia 30322 USA
| | - Megan F. Cole
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia 30332 USA
| | - Eric A. Gaucher
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia 30332 USA
| | - Eric A. Ortlund
- Department of Biochemistry, Emory University School of Medicine, Atlanta, Georgia 30322 USA,Correspondence:
| |
Collapse
|
13
|
Geobacillus and Anoxybacillus spp. from Terrestrial Geothermal Springs Worldwide: Diversity and Biotechnological Applications. EXTREMOPHILES IN EURASIAN ECOSYSTEMS: ECOLOGY, DIVERSITY, AND APPLICATIONS 2018. [DOI: 10.1007/978-981-13-0329-6_5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
14
|
Ray NJ, Hall D, Carver JA. A structural and functional study of Gln147 deamidation in αA-crystallin, a site of modification in human cataract. Exp Eye Res 2017; 161:163-173. [DOI: 10.1016/j.exer.2017.05.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Accepted: 05/16/2017] [Indexed: 10/19/2022]
|
15
|
Goins CM, Dajnowicz S, Thanna S, Sucheck SJ, Parks JM, Ronning DR. Exploring Covalent Allosteric Inhibition of Antigen 85C from Mycobacterium tuberculosis by Ebselen Derivatives. ACS Infect Dis 2017; 3:378-387. [PMID: 28285521 DOI: 10.1021/acsinfecdis.7b00003] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Previous studies identified ebselen as a potent in vitro and in vivo inhibitor of the Mycobacterium tuberculosis (Mtb) antigen 85 (Ag85) complex, comprising three homologous enzymes required for the biosynthesis of the mycobacterial cell wall. In this study, the Mtb Ag85C enzyme was cocrystallized with azido and adamantyl ebselen derivatives, resulting in two crystallographic structures of 2.01 and 1.30 Å resolution, respectively. Both structures displayed the anticipated covalent modification of the solvent accessible, noncatalytic Cys209 residue forming a selenenylsulfide bond. Continuous difference density for both thiol modifiers allowed for the assessment of interactions that influence ebselen binding and inhibitor orientation that were unobserved in previous Ag85C ebselen structures. The kinact/KI values for ebselen, adamantyl ebselen, and azido ebselen support the importance of observed constructive chemical interactions with Arg239 for increased in vitro efficacy toward Ag85C. To better understand the in vitro kinetic properties of these ebselen derivatives, the energetics of specific protein-inhibitor interactions and relative reaction free energies were calculated for ebselen and both derivatives using density functional theory. These studies further support the different in vitro properties of ebselen and two select ebselen derivatives from our previously published ebselen library with respect to kinetics and protein-inhibitor interactions. In both structures, the α9 helix was displaced farther from the enzyme active site than the previous Ag85C ebselen structure, resulting in the restructuring of a connecting loop and imparting a conformational change to residues believed to play a role in substrate binding specific to Ag85C. These notable structural changes directly affect protein stability, reducing the overall melting temperature by up to 14.5 °C, resulting in the unfolding of protein at physiological temperatures. Additionally, this structural rearrangement due to covalent allosteric modification creates a sizable solvent network that encompasses the active site and extends to the modified Cys209 residue. In all, this study outlines factors that influence enzyme inhibition by ebselen and its derivatives while further highlighting the effects of the covalent modification of Cys209 by said inhibitors on the structure and stability of Ag85C. Furthermore, the results suggest a strategy for developing new classes of Ag85 inhibitors with increased specificity and potency.
Collapse
Affiliation(s)
- Christopher M. Goins
- Department of Chemistry
and Biochemistry, University of Toledo, Toledo, Ohio 43606, United States
| | - Steven Dajnowicz
- Department of Chemistry
and Biochemistry, University of Toledo, Toledo, Ohio 43606, United States
- Biology and Soft Matter Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Sandeep Thanna
- Department of Chemistry
and Biochemistry, University of Toledo, Toledo, Ohio 43606, United States
| | - Steven J. Sucheck
- Department of Chemistry
and Biochemistry, University of Toledo, Toledo, Ohio 43606, United States
| | - Jerry M. Parks
- UT/ORNL Center for Molecular Biophysics,
Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Donald R. Ronning
- Department of Chemistry
and Biochemistry, University of Toledo, Toledo, Ohio 43606, United States
| |
Collapse
|
16
|
Li H, Dong W, Zhang Y, Liu K, Zhang W, Zhang M, Ma J, Jiang M. Enhanced catalytic efficiency of nitrilase from Acidovorax facilis 72W and application in bioconversion of 3-cyanopyridine to nicotinic acid. ACTA ACUST UNITED AC 2016. [DOI: 10.1016/j.molcatb.2017.03.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
17
|
Tych KM, Batchelor M, Hoffmann T, Wilson MC, Hughes ML, Paci E, Brockwell DJ, Dougan L. Differential Effects of Hydrophobic Core Packing Residues for Thermodynamic and Mechanical Stability of a Hyperthermophilic Protein. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2016; 32:7392-7402. [PMID: 27338140 DOI: 10.1021/acs.langmuir.6b01550] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Proteins from organisms that have adapted to environmental extremes provide attractive systems to explore and determine the origins of protein stability. Improved hydrophobic core packing and decreased loop-length flexibility can increase the thermodynamic stability of proteins from hyperthermophilic organisms. However, their impact on protein mechanical stability is not known. Here, we use protein engineering, biophysical characterization, single-molecule force spectroscopy (SMFS), and molecular dynamics (MD) simulations to measure the effect of altering hydrophobic core packing on the stability of the cold shock protein TmCSP from the hyperthermophilic bacterium Thermotoga maritima. We make two variants of TmCSP in which a mutation is made to reduce the size of aliphatic groups from buried hydrophobic side chains. In the first, a mutation is introduced in a long loop (TmCSP L40A); in the other, the mutation is introduced on the C-terminal β-strand (TmCSP V62A). We use MD simulations to confirm that the mutant TmCSP L40A shows the most significant increase in loop flexibility, and mutant TmCSP V62A shows greater disruption to the core packing. We measure the thermodynamic stability (ΔGD-N) of the mutated proteins and show that there is a more significant reduction for TmCSP L40A (ΔΔG = 63%) than TmCSP V62A (ΔΔG = 47%), as might be expected on the basis of the relative reduction in the size of the side chain. By contrast, SMFS measures the mechanical stability (ΔG*) and shows a greater reduction for TmCSP V62A (ΔΔG* = 8.4%) than TmCSP L40A (ΔΔG* = 2.5%). While the impact on the mechanical stability is subtle, the results demonstrate the power of tuning noncovalent interactions to modulate both the thermodynamic and mechanical stability of a protein. Such understanding and control provide the opportunity to design proteins with optimized thermodynamic and mechanical properties.
Collapse
Affiliation(s)
- Katarzyna M Tych
- School of Physics and Astronomy, ‡Astbury Centre for Structural and Molecular Biology, and §School of Molecular and Cellular Biology, University of Leeds , Leeds, LS2 9JT, United Kingdom
| | - Matthew Batchelor
- School of Physics and Astronomy, ‡Astbury Centre for Structural and Molecular Biology, and §School of Molecular and Cellular Biology, University of Leeds , Leeds, LS2 9JT, United Kingdom
| | - Toni Hoffmann
- School of Physics and Astronomy, ‡Astbury Centre for Structural and Molecular Biology, and §School of Molecular and Cellular Biology, University of Leeds , Leeds, LS2 9JT, United Kingdom
| | - Michael C Wilson
- School of Physics and Astronomy, ‡Astbury Centre for Structural and Molecular Biology, and §School of Molecular and Cellular Biology, University of Leeds , Leeds, LS2 9JT, United Kingdom
| | - Megan L Hughes
- School of Physics and Astronomy, ‡Astbury Centre for Structural and Molecular Biology, and §School of Molecular and Cellular Biology, University of Leeds , Leeds, LS2 9JT, United Kingdom
| | - Emanuele Paci
- School of Physics and Astronomy, ‡Astbury Centre for Structural and Molecular Biology, and §School of Molecular and Cellular Biology, University of Leeds , Leeds, LS2 9JT, United Kingdom
| | - David J Brockwell
- School of Physics and Astronomy, ‡Astbury Centre for Structural and Molecular Biology, and §School of Molecular and Cellular Biology, University of Leeds , Leeds, LS2 9JT, United Kingdom
| | - Lorna Dougan
- School of Physics and Astronomy, ‡Astbury Centre for Structural and Molecular Biology, and §School of Molecular and Cellular Biology, University of Leeds , Leeds, LS2 9JT, United Kingdom
| |
Collapse
|
18
|
An overview of siderophores for iron acquisition in microorganisms living in the extreme. Biometals 2016; 29:551-71. [PMID: 27457587 DOI: 10.1007/s10534-016-9949-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Accepted: 07/08/2016] [Indexed: 12/11/2022]
Abstract
Siderophores are iron-chelating molecules produced by microbes when intracellular iron concentrations are low. Low iron triggers a cascade of gene activation, allowing the cell to survive due to the synthesis of important proteins involved in siderophore synthesis and transport. Generally, siderophores are classified by their functional groups as catecholates, hydroxamates and hydroxycarboxylates. Although other chemical structural modifications and functional groups can be found. The functional groups participate in the iron-chelating process when the ferri-siderophore complex is formed. Classified as acidophiles, alkaliphiles, halophiles, thermophiles, psychrophiles, piezophiles, extremophiles have particular iron requirements depending on the environmental conditions in where they grow. Most of the work done in siderophore production by extremophiles is based in siderophore concentration and/or genomic studies determining the presence of siderophore synthesis and transport genes. Siderophores produced by extremophiles are not well known and more work needs to be done to elucidate chemical structures and their role in microorganism survival and metal cycling in extreme environments.
Collapse
|
19
|
Gomes E, de Souza AR, Orjuela GL, Da Silva R, de Oliveira TB, Rodrigues A. Applications and Benefits of Thermophilic Microorganisms and Their Enzymes for Industrial Biotechnology. Fungal Biol 2016. [DOI: 10.1007/978-3-319-27951-0_21] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
20
|
Lomonosova AV, Ovchinnikova EV, Kazakov AS, Denesyuk AI, Sofin AD, Mikhailov RV, Ulitin AB, Mirzabekov TA, Permyakov EA, Permyakov SE. Extremophilic 50S Ribosomal RNA-Binding Protein L35Ae as a Basis for Engineering of an Alternative Protein Scaffold. PLoS One 2015; 10:e0134906. [PMID: 26247602 PMCID: PMC4527664 DOI: 10.1371/journal.pone.0134906] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Accepted: 07/15/2015] [Indexed: 01/05/2023] Open
Abstract
Due to their remarkably high structural stability, proteins from extremophiles are particularly useful in numerous biological applications. Their utility as alternative protein scaffolds could be especially valuable in small antibody mimetic engineering. These artificial binding proteins occupy a specific niche between antibodies and low molecular weight substances, paving the way for development of innovative approaches in therapeutics, diagnostics, and reagent use. Here, the 50S ribosomal RNA-binding protein L35Ae from the extremophilic archaea Pyrococcus horikoshii has been probed for its potential to serve as a backbone in alternative scaffold engineering. The recombinant wild type L35Ae has a native-like secondary structure, extreme thermal stability (mid-transition temperature of 90°C) and a moderate resistance to the denaturation by guanidine hydrochloride (half-transition at 2.6 M). Chemical crosslinking and dynamic light scattering data revealed that the wild type L35Ae protein has a propensity for multimerization and aggregation correlating with its non-specific binding to a model cell surface of HEK293 cells, as evidenced by flow cytometry. To suppress these negative features, a 10-amino acid mutant (called L35Ae 10X) was designed, which lacks the interaction with HEK293 cells, is less susceptible to aggregation, and maintains native-like secondary structure and thermal stability. However, L35Ae 10X also shows lowered resistance to guanidine hydrochloride (half-transition at 2.0M) and is more prone to oligomerization. This investigation of an extremophile protein’s scaffolding potential demonstrates that lowered resistance to charged chemical denaturants and increased propensity to multimerization may limit the utility of extremophile proteins as alternative scaffolds.
Collapse
Affiliation(s)
- Anna V. Lomonosova
- Institute for Biological Instrumentation of the Russian Academy of Sciences, Institutskaya str., 7, Pushchino, Moscow region, 142290, Russia
| | - Elena V. Ovchinnikova
- Institute for Biological Instrumentation of the Russian Academy of Sciences, Institutskaya str., 7, Pushchino, Moscow region, 142290, Russia
| | - Alexei S. Kazakov
- Institute for Biological Instrumentation of the Russian Academy of Sciences, Institutskaya str., 7, Pushchino, Moscow region, 142290, Russia
| | - Alexander I. Denesyuk
- Institute for Biological Instrumentation of the Russian Academy of Sciences, Institutskaya str., 7, Pushchino, Moscow region, 142290, Russia
- Department of Biosciences, Åbo Akademi University, Turku, 20520, Finland
| | - Alexander D. Sofin
- Institute for Biological Instrumentation of the Russian Academy of Sciences, Institutskaya str., 7, Pushchino, Moscow region, 142290, Russia
| | - Roman V. Mikhailov
- Antherix, Institutskaya str., 7, Pushchino, Moscow region, 142290, Russia
| | - Andrei B. Ulitin
- Antherix, Institutskaya str., 7, Pushchino, Moscow region, 142290, Russia
| | - Tajib A. Mirzabekov
- Antherix, Institutskaya str., 7, Pushchino, Moscow region, 142290, Russia
- Biomirex Inc., 304 Pleasant Street, Watertown, Massachusetts, 02472, United States of America
| | - Eugene A. Permyakov
- Institute for Biological Instrumentation of the Russian Academy of Sciences, Institutskaya str., 7, Pushchino, Moscow region, 142290, Russia
| | - Sergei E. Permyakov
- Institute for Biological Instrumentation of the Russian Academy of Sciences, Institutskaya str., 7, Pushchino, Moscow region, 142290, Russia
- * E-mail:
| |
Collapse
|
21
|
Panja AS, Bandopadhyay B, Maiti S. Protein Thermostability Is Owing to Their Preferences to Non-Polar Smaller Volume Amino Acids, Variations in Residual Physico-Chemical Properties and More Salt-Bridges. PLoS One 2015; 10:e0131495. [PMID: 26177372 PMCID: PMC4503463 DOI: 10.1371/journal.pone.0131495] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Accepted: 06/01/2015] [Indexed: 01/08/2023] Open
Abstract
Introduction Protein thermostability is an important field for its evolutionary perspective of mesophilic versus thermophilic relationship and for its industrial/ therapeutic applications. Methods Presently, a total 400 (200 thermophilic and 200 mesophilic homologue) proteins were studied utilizing several software/databases to evaluate their amino acid preferences. Randomly selected 50 homologous proteins with available PDB-structure of each group were explored for the understanding of the protein charges, isoelectric-points, hydrophilicity, hydrophobicity, tyrosine phosphorylation and salt-bridge occurrences. These 100 proteins were further probed to generate Ramachandran plot/data for the gross secondary structure prediction in and comparison between the thermophilic and mesophilic proteins. Results Present results strongly suggest that nonpolar smaller volume amino acids Ala (χ2 = 238.54, p<0.001) and Gly (χ2 = 73.35, p<0.001) are highly and Val moderately (χ2 = 144.43, p<0.001) occurring in the 85% of thermophilic proteins. Phospho-regulated Tyr and redox-sensitive Cys are also moderately distributed (χ2~20.0, p<0.01) in a larger number of thermophilic proteins. A consistent lower distribution of thermophilicity and discretely higher distribution of hydrophobicity is noticed in a large number of thermophilic versus their mesophilic protein homolog. The mean differences of isoelectric points and charges are found to be significantly less (7.11 vs. 6.39, p<0.05 and 1 vs. -0.6, p<0.01, respectively) in thermophilic proteins compared to their mesophilic counterpart. The possible sites for Tyr phosphorylation are noticed to be 25% higher (p<0.05) in thermophilic proteins. The 60% thermophiles are found with higher number of salt bridges in this study. The average percentage of salt-bridge of thermophiles is found to be higher by 20% than their mesophilic homologue. The GLU-HIS and GLU-LYS salt-bridge dyads are calculated to be significantly higher (p<0.05 and p<0.001, respectively) in thermophilic and GLU-ARG is higher in the mesophilic proteins. The Ramachandran plot/ data suggest a higher abundance of the helix, left-handed helix, sheet, nonplanar peptide and lower occurrence of cis peptide, loop/ turn and outlier in thermophiles. Pearson’s correlation result suggests that the isoelectric points of mesophilic and thermophilic proteins are positively correlated (r = 0.93 and 0.84, respectively; p<0.001) to their corresponding charges. And their hydrophilicity is negatively associated with the corresponding hydrophobicity (r = -0.493, p<0.001 and r = -0.324, p<0.05) suggesting their reciprocal evolvement. Conclusions Present results for the first time with this large amount of datasets and multiple contributing factors suggest the greater occurrence of hydrophobicity, salt-bridges and smaller volume nonpolar residues (Gly, Ala and Val) and lesser occurrence of bulky polar residues in the thermophilic proteins. A more stoichiometric relationship amongst these factors minimized the hindrance due to side chain burial and increased compactness and secondary structural stability in thermophilic proteins.
Collapse
Affiliation(s)
- Anindya Sundar Panja
- Post Graduate Department of Biotechnology, Oriental Institute of Science and Technology, Vidyasagar University, Midnapore, 721102, West Bengal, India
| | - Bidyut Bandopadhyay
- Post Graduate Department of Biotechnology, Oriental Institute of Science and Technology, Vidyasagar University, Midnapore, 721102, West Bengal, India
| | - Smarajit Maiti
- Post Graduate Department of Biochemistry and Biotechnology, Cell and Molecular Therapeutics Laboratory, Oriental Institute of Science and Technology, Vidyasagar University, Midnapore, 721102, West Bengal, India
- * E-mail:
| |
Collapse
|
22
|
Frappier V, Najmanovich R. Vibrational entropy differences between mesophile and thermophile proteins and their use in protein engineering. Protein Sci 2014; 24:474-83. [PMID: 25367089 DOI: 10.1002/pro.2592] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2014] [Revised: 10/16/2014] [Accepted: 10/17/2014] [Indexed: 11/10/2022]
Abstract
We recently introduced ENCoM, an elastic network atomic contact model, as the first coarse-grained normal mode analysis method that accounts for the nature of amino acids and can predict the effect of mutations on thermostability based on changes vibrational entropy. In this proof-of-concept article, we use pairs of mesophile and thermophile homolog proteins with identical structures to determine if a measure of vibrational entropy based on normal mode analysis can discriminate thermophile from mesophile proteins. We observe that in around 60% of cases, thermophile proteins are more rigid at equivalent temperatures than their mesophile counterpart and this difference can guide the design of proteins to increase their thermostability through series of mutations. We observe that mutations separating thermophile proteins from their mesophile orthologs contribute independently to a decrease in vibrational entropy and discuss the application and implications of this methodology to protein engineering.
Collapse
Affiliation(s)
- Vincent Frappier
- Department of Biochemistry, Faculty of Medicine and Health Sciences, University of Sherbrooke, J1H 5N4, Quebec, Canada
| | | |
Collapse
|
23
|
Mallik S, Kundu S. Molecular interactions within the halophilic, thermophilic, and mesophilic prokaryotic ribosomal complexes: clues to environmental adaptation. J Biomol Struct Dyn 2014; 33:639-56. [PMID: 24697502 DOI: 10.1080/07391102.2014.900457] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Using the available crystal structures of 50S ribosomal subunits from three prokaryotic species: Escherichia coli (mesophilic), Thermus thermophilus (thermophilic), and Haloarcula marismortui (halophilic), we have analyzed different structural features of ribosomal RNAs (rRNAs), proteins, and of their interfaces. We have correlated these structural features with the environmental adaptation strategies of the corresponding species. While dense intra-rRNA packing is observed in thermophilic, loose intra-rRNA packing is observed in halophilic (both compared to mesophilic). Interestingly, protein-rRNA interfaces of both the extremophiles are densely packed compared to that of the mesophilic. The intersubunit bridge regions are almost devoid of cavities, probably ensuring the proper formation of each bridge (by not allowing any loosely packed region nearby). During rRNA binding, the ribosomal proteins experience some structural transitions. Here, we have analyzed the intrinsically disordered and ordered regions of the ribosomal proteins, which are subjected to such transitions. The intrinsically disordered and disorder-to-order transition sites of the thermophilic and mesophilic ribosomal proteins are simultaneously (i) highly conserved and (ii) slowly evolving compared to rest of the protein structure. Although high conservation is observed at such sites of halophilic ribosomal proteins, but slow rate of evolution is absent. Such differences between thermophilic, mesophilic, and halophilic can be explained from their environmental adaptation strategy. Interestingly, a universal biophysical principle evident by a linear relationship between the free energy of interface formation, interface area, and structural changes of r-proteins during assembly is always maintained, irrespective of the environmental conditions.
Collapse
Affiliation(s)
- Saurav Mallik
- a Department of Biophysics, Molecular Biology and Bioinformatics , University of Calcutta , 92, APC Road, Kolkata 700009 , India
| | | |
Collapse
|
24
|
Horch M, Pinto AF, Utesch T, Mroginski MA, Romão CV, Teixeira M, Hildebrandt P, Zebger I. Reductive activation and structural rearrangement in superoxide reductase: a combined infrared spectroscopic and computational study. Phys Chem Chem Phys 2014; 16:14220-30. [DOI: 10.1039/c4cp00884g] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Local and global structural changes that enable reductive activation of superoxide reductase are revealed by a combined approach of infrared difference spectroscopy and computational methods.
Collapse
Affiliation(s)
- M. Horch
- Technische Universität Berlin
- Institut für Chemie
- 10623 Berlin, Germany
| | - A. F. Pinto
- Instituto de Tecnologia Química e Biológica António Xavier
- Universidade Nova de Lisboa
- Av. da República (EAN)
- P-2780-157 Oeiras, Portugal
| | - T. Utesch
- Technische Universität Berlin
- Institut für Chemie
- 10623 Berlin, Germany
| | - M. A. Mroginski
- Technische Universität Berlin
- Institut für Chemie
- 10623 Berlin, Germany
| | - C. V. Romão
- Instituto de Tecnologia Química e Biológica António Xavier
- Universidade Nova de Lisboa
- Av. da República (EAN)
- P-2780-157 Oeiras, Portugal
| | - M. Teixeira
- Instituto de Tecnologia Química e Biológica António Xavier
- Universidade Nova de Lisboa
- Av. da República (EAN)
- P-2780-157 Oeiras, Portugal
| | - P. Hildebrandt
- Technische Universität Berlin
- Institut für Chemie
- 10623 Berlin, Germany
| | - I. Zebger
- Technische Universität Berlin
- Institut für Chemie
- 10623 Berlin, Germany
| |
Collapse
|
25
|
Kumwenda B, Litthauer D, Bishop OT, Reva O. Analysis of protein thermostability enhancing factors in industrially important thermus bacteria species. Evol Bioinform Online 2013; 9:327-42. [PMID: 24023508 PMCID: PMC3762613 DOI: 10.4137/ebo.s12539] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Elucidation of evolutionary factors that enhance protein thermostability is a critical problem and was the focus of this work on Thermus species. Pairs of orthologous sequences of T. scotoductus SA-01 and T. thermophilus HB27, with the largest negative minimum folding energy (MFE) as predicted by the UNAFold algorithm, were statistically analyzed. Favored substitutions of amino acids residues and their properties were determined. Substitutions were analyzed in modeled protein structures to determine their locations and contribution to energy differences using PyMOL and FoldX programs respectively. Dominant trends in amino acid substitutions consistent with differences in thermostability between orthologous sequences were observed. T. thermophilus thermophilic proteins showed an increase in non-polar, tiny, and charged amino acids. An abundance of alanine substituted by serine and threonine, as well as arginine substituted by glutamine and lysine was observed in T. thermophilus HB27. Structural comparison showed that stabilizing mutations occurred on surfaces and loops in protein structures.
Collapse
Affiliation(s)
- Benjamin Kumwenda
- Bioinformatics and Computational Biology Unit, Department of Biochemistry, University of Pretoria, South Africa
| | | | | | | |
Collapse
|
26
|
Mallik S, Kundu S. A comparison of structural and evolutionary attributes of Escherichia coli and Thermus thermophilus small ribosomal subunits: signatures of thermal adaptation. PLoS One 2013; 8:e69898. [PMID: 23940533 PMCID: PMC3734280 DOI: 10.1371/journal.pone.0069898] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2013] [Accepted: 06/16/2013] [Indexed: 12/04/2022] Open
Abstract
Here we compare the structural and evolutionary attributes of Thermus thermophilus and Escherichia coli small ribosomal subunits (SSU). Our results indicate that with few exceptions, thermophilic 16S ribosomal RNA (16S rRNA) is densely packed compared to that of mesophilic at most of the analogous spatial regions. In addition, we have located species-specific cavity clusters (SSCCs) in both species. E. coli SSCCs are numerous and larger compared to T. thermophilus SSCCs, which again indicates densely packed thermophilic 16S rRNA. Thermophilic ribosomal proteins (r-proteins) have longer disordered regions than their mesophilic homologs and they experience larger disorder-to-order transitions during SSU-assembly. This is reflected in the predicted higher conformational changes of thermophilic r-proteins compared to their mesophilic homologs during SSU-assembly. This high conformational change of thermophilic r-proteins may help them to associate with the 16S ribosomal RNA with high complementary interfaces, larger interface areas, and denser molecular contacts, compared to those of mesophilic. Thus, thermophilic protein-rRNA interfaces are tightly associated with 16S rRNA than their mesophilic homologs. Densely packed 16S rRNA interior and tight protein-rRNA binding of T. thermophilus (compared to those of E. coli) are likely the signatures of its thermal adaptation. We have found a linear correlation between the free energy of protein-RNA interface formation, interface size, and square of conformational changes, which is followed in both prokaryotic and eukaryotic SSU. Disorder is associated with high protein-RNA interface polarity. We have found an evolutionary tendency to maintain high polarity (thereby disorder) at protein-rRNA interfaces, than that at rest of the protein structures. However, some proteins exhibit exceptions to this general trend.
Collapse
Affiliation(s)
- Saurav Mallik
- Department of Biophysics, Molecular Biology and Bioinformatics, University of Calcutta, Kolkata, India
| | - Sudip Kundu
- Department of Biophysics, Molecular Biology and Bioinformatics, University of Calcutta, Kolkata, India
| |
Collapse
|
27
|
Pack SP, Kang TJ, Yoo YJ. Protein Thermostabilizing Factors: High Relative Occurrence of Amino Acids, Residual Properties, and Secondary Structure Type in Different Residual State. Appl Biochem Biotechnol 2013; 171:1212-26. [DOI: 10.1007/s12010-013-0195-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2012] [Accepted: 03/12/2013] [Indexed: 11/29/2022]
|
28
|
Manjunath K, Kanaujia SP, Kanagaraj S, Jeyakanthan J, Sekar K. Structure of SAICAR synthetase from Pyrococcus horikoshii OT3: Insights into thermal stability. Int J Biol Macromol 2013; 53:7-19. [DOI: 10.1016/j.ijbiomac.2012.10.028] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2012] [Revised: 10/25/2012] [Accepted: 10/26/2012] [Indexed: 10/27/2022]
|
29
|
Enhancing the functional properties of thermophilic enzymes by chemical modification and immobilization. Enzyme Microb Technol 2011; 49:326-46. [PMID: 22112558 DOI: 10.1016/j.enzmictec.2011.06.023] [Citation(s) in RCA: 226] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2011] [Revised: 06/28/2011] [Accepted: 06/29/2011] [Indexed: 12/20/2022]
Abstract
The immobilization of proteins (mostly typically enzymes) onto solid supports is mature technology and has been used successfully to enhance biocatalytic processes in a wide range of industrial applications. However, continued developments in immobilization technology have led to more sophisticated and specialized applications of the process. A combination of targeted chemistries, for both the support and the protein, sometimes in combination with additional chemical and/or genetic engineering, has led to the development of methods for the modification of protein functional properties, for enhancing protein stability and for the recovery of specific proteins from complex mixtures. In particular, the development of effective methods for immobilizing large multi-subunit proteins with multiple covalent linkages (multi-point immobilization) has been effective in stabilizing proteins where subunit dissociation is the initial step in enzyme inactivation. In some instances, multiple benefits are achievable in a single process. Here we comprehensively review the literature pertaining to immobilization and chemical modification of different enzyme classes from thermophiles, with emphasis on the chemistries involved and their implications for modification of the enzyme functional properties. We also highlight the potential for synergies in the combined use of immobilization and other chemical modifications.
Collapse
|
30
|
Purohit MK, Singh SP. Comparative analysis of enzymatic stability and amino acid sequences of thermostable alkaline proteases from two haloalkaliphilic bacteria isolated from Coastal region of Gujarat, India. Int J Biol Macromol 2011; 49:103-12. [DOI: 10.1016/j.ijbiomac.2011.04.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2011] [Revised: 04/01/2011] [Accepted: 04/04/2011] [Indexed: 10/18/2022]
|
31
|
Large-scale experimental studies show unexpected amino acid effects on protein expression and solubility in vivo in E. coli. MICROBIAL INFORMATICS AND EXPERIMENTATION 2011; 1:6. [PMID: 22587847 PMCID: PMC3372292 DOI: 10.1186/2042-5783-1-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/17/2011] [Accepted: 06/27/2011] [Indexed: 11/10/2022]
Abstract
The biochemical and physical factors controlling protein expression level and solubility in vivo remain incompletely characterized. To gain insight into the primary sequence features influencing these outcomes, we performed statistical analyses of results from the high-throughput protein-production pipeline of the Northeast Structural Genomics Consortium. Proteins expressed in E. coli and consistently purified were scored independently for expression and solubility levels. These parameters nonetheless show a very strong positive correlation. We used logistic regressions to determine whether they are systematically influenced by fractional amino acid composition or several bulk sequence parameters including hydrophobicity, sidechain entropy, electrostatic charge, and predicted backbone disorder. Decreasing hydrophobicity correlates with higher expression and solubility levels, but this correlation apparently derives solely from the beneficial effect of three charged amino acids, at least for bacterial proteins. In fact, the three most hydrophobic residues showed very different correlations with solubility level. Leu showed the strongest negative correlation among amino acids, while Ile showed a slightly positive correlation in most data segments. Several other amino acids also had unexpected effects. Notably, Arg correlated with decreased expression and, most surprisingly, solubility of bacterial proteins, an effect only partially attributable to rare codons. However, rare codons did significantly reduce expression despite use of a codon-enhanced strain. Additional analyses suggest that positively but not negatively charged amino acids may reduce translation efficiency in E. coli irrespective of codon usage. While some observed effects may reflect indirect evolutionary correlations, others may reflect basic physicochemical phenomena. We used these results to construct and validate predictors of expression and solubility levels and overall protein usability, and we propose new strategies to be explored for engineering improved protein expression and solubility.
Collapse
|
32
|
Abstract
Background There is a considerable literature on the source of the thermostability of proteins from thermophilic organisms. Understanding the mechanisms for this thermostability would provide insights into proteins generally and permit the design of synthetic hyperstable biocatalysts. Results We have systematically tested a large number of sequence and structure derived quantities for their ability to discriminate thermostable proteins from their non-thermostable orthologs using sets of mesophile-thermophile ortholog pairs. Most of the quantities tested correspond to properties previously reported to be associated with thermostability. Many of the structure related properties were derived from the Delaunay tessellation of protein structures. Conclusions Carefully selected sequence based indices discriminate better than purely structure based indices. Combined sequence and structure based indices improve performance somewhat further. Based on our analysis, the strongest contributors to thermostability are an increase in ion pairs on the protein surface and a more strongly hydrophobic interior.
Collapse
|
33
|
Distance-dependent statistical potentials for discriminating thermophilic and mesophilic proteins. Biochem Biophys Res Commun 2010; 396:736-41. [PMID: 20451495 DOI: 10.1016/j.bbrc.2010.05.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2010] [Accepted: 05/02/2010] [Indexed: 11/22/2022]
Abstract
Identification of the characteristic structural patterns responsible for protein thermostability is theoretically important and practically useful but largely remains an open problem. These patterns may be revealed through comparative study on thermophilic and mesophilic proteins that have distinct thermostability. In this study, we constructed several distance-dependant potentials from thermophilic and mesophilic proteins. These potentials were then used to evaluate the structural difference between thermophilic and mesophilic proteins. We found that using the subtraction or division of the potentials derived from thermophilic and mesophilic proteins can dramatically increase the discriminatory ability. This approach revealed that the ability to distinct the subtle structural features responsible for protein thermostability may be effectively enhanced through rationally designed comparative study.
Collapse
|
34
|
Morshedi D, Ebrahim-Habibi A, Moosavi-Movahedi AA, Nemat-Gorgani M. Chemical modification of lysine residues in lysozyme may dramatically influence its amyloid fibrillation. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2010; 1804:714-22. [DOI: 10.1016/j.bbapap.2009.11.012] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2009] [Revised: 10/31/2009] [Accepted: 11/12/2009] [Indexed: 12/20/2022]
|
35
|
Production and biochemical characterization of a novel cellulase-poor alkali-thermo-tolerant xylanase from Coprinellus disseminatus SW-1 NTCC 1165. World J Microbiol Biotechnol 2010. [DOI: 10.1007/s11274-010-0307-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
36
|
Contributions of the C-terminal helix to the structural stability of a hyperthermophilic Fe-superoxide dismutase (TcSOD). Int J Mol Sci 2009; 10:5498-5512. [PMID: 20054483 PMCID: PMC2802007 DOI: 10.3390/ijms10125498] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2009] [Revised: 12/16/2009] [Accepted: 12/17/2009] [Indexed: 11/17/2022] Open
Abstract
Hyperthermophilic superoxide dismutases (SODs) are of particular interest due to their potential industrial importance and scientific merit in studying the molecular mechanisms of protein folding and stability. Compared to the mesophilic SODs, the hyperthermostable Fe-SODs (TcSOD and ApSOD) have an extended C-terminal helix, which forms an additional ion-pairing network. In this research, the role of the extended C-terminus in the structural stability of TcSOD was studied by investigating the properties of two deletion mutants. The results indicated that the ion-pairing network at the C-terminus had limited contributions to the stability of TcSOD against heat- and GdnHCl-induced inactivation. The intactness of the C-terminal helix had dissimilar impact on the two stages of TcSOD unfolding induced by guanidinium chloride. The mutations slightly decreased the Gibbs free energy of the dissociation of the tetrameric enzymes, while greatly affected the stability of the molten globule-like intermediate. These results suggested that the additional ion-pairing network mainly enhanced the structural stability of TcSOD by stabilizing the monomers.
Collapse
|
37
|
alpha-Amylase: an ideal representative of thermostable enzymes. Appl Biochem Biotechnol 2009; 160:2401-14. [PMID: 19763902 DOI: 10.1007/s12010-009-8735-4] [Citation(s) in RCA: 94] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2009] [Accepted: 07/28/2009] [Indexed: 10/20/2022]
Abstract
The conditions prevailing in the industrial applications in which enzymes are used are rather extreme, especially with respect to temperature and pH. Therefore, there is a continuing demand to improve the stability of enzymes and to meet the requirements set by specific applications. In this respect, thermostable enzymes have been proposed to be industrially relevant. In this review, alpha-amylase, a well-established representative of thermostable enzymes, providing an attractive model for the investigation of the structural basis of thermostability of proteins, has been discussed.
Collapse
|
38
|
Canals A, Coll M. Cloning, expression, purification and crystallization of the Rho transcription termination factor from Thermotoga maritima. Protein Expr Purif 2009; 65:174-8. [PMID: 19297693 DOI: 10.1016/j.pep.2009.01.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Rho is an essential ATP-dependent homohexameric helicase that is found in the vast majority of bacterial species. It is responsible for transcription termination at factor-dependent terminators. Rho binds to a specific region of the newly-synthesised mRNA and translocates along the chain until it reaches and disassembles the transcription complex. Basically, two crystallographic structures of Rho hexamer from Escherichia coli have been reported: an open ring with RNA (or ssDNA) bound to the RNA-binding domain, and a closed ring with the RNA bound to both the RNA-binding domain and the ATP-ase domain. The structure of the protein free from RNA is still unknown, but thermophilic bacteria enable an alternative approach to its characterization as their proteins often crystallize more easily than those of their mesophilic homologs. We report here the heterologous expression in E. coli of full-length Rho from the thermophile Thermotoga maritima, a simple protocol for the purification of its hexameric nucleic acid-free form, and the obtainment of 2.4 A-diffracting crystals.
Collapse
Affiliation(s)
- Albert Canals
- Institute for Research in Biomedicine and Institut de Biologia Molecular de Barcelona (CSIC), Barcelona Science Park, Baldiri Reixac 10-12, 08028 Barcelona, Spain.
| | | |
Collapse
|
39
|
Brindley AA, Pickersgill RW, Partridge JC, Dunstan DJ, Hunt DM, Warren MJ. Enzyme sequence and its relationship to hyperbaric stability of artificial and natural fish lactate dehydrogenases. PLoS One 2008; 3:e2042. [PMID: 18446214 PMCID: PMC2323112 DOI: 10.1371/journal.pone.0002042] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2008] [Accepted: 03/11/2008] [Indexed: 11/18/2022] Open
Abstract
The cDNAs of lactate dehydrogenase b (LDH-b) from both deep-sea and shallow living fish species, Corphaenoides armatus and Gadus morhua respectively, have been isolated, sequenced and their encoded products overproduced as recombinant enzymes in E. coli. The proteins were characterised in terms of their kinetic and physical properties and their ability to withstand high pressures. Although the two proteins are very similar in terms of their primary structure, only 21 differences at the amino acid level exist between them, the enzyme from the deep-sea species has a significantly increased tolerance to pressure and a higher thermostability. It was possible to investigate whether the changes in the N-terminal or C-terminal regions played a greater role in barophilic adaptation by the construction of two chimeric enzymes by use of a common restriction site within the cDNAs. One of these hybrids was found to have even greater pressure stability than the recombinant enzyme from the deep-living fish species. It was possible to conclude that the major adaptive changes to pressure tolerance must be located in the N-terminal region of the protein. The types of changes that are found and their spatial location within the protein structure are discussed. An analysis of the kinetic parameters of the enzymes suggests that there is clearly a trade off between Km and kcat values, which likely reflects the necessity of the deep-sea enzyme to operate at low temperatures.
Collapse
Affiliation(s)
- Amanda A Brindley
- Department of Biosciences, University of Kent, Canterbury, Kent, United Kingdom.
| | | | | | | | | | | |
Collapse
|
40
|
Protein dynamics and stability: the distribution of atomic fluctuations in thermophilic and mesophilic dihydrofolate reductase derived using elastic incoherent neutron scattering. Biophys J 2008; 94:4812-8. [PMID: 18310248 DOI: 10.1529/biophysj.107.121418] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The temperature dependence of the dynamics of mesophilic and thermophilic dihydrofolate reductase is examined using elastic incoherent neutron scattering. It is demonstrated that the distribution of atomic displacement amplitudes can be derived from the elastic scattering data by assuming a (Weibull) functional form that resembles distributions seen in molecular dynamics simulations. The thermophilic enzyme has a significantly broader distribution than its mesophilic counterpart. Furthermore, although the rate of increase with temperature of the atomic mean-square displacements extracted from the dynamic structure factor is found to be comparable for both enzymes, the amplitudes are found to be slightly larger for the thermophilic enzyme. Therefore, these results imply that the thermophilic enzyme is the more flexible of the two.
Collapse
|
41
|
Merz T, Wetzel SK, Firbank S, Plückthun A, Grütter MG, Mittl PR. Stabilizing Ionic Interactions in a Full-consensus Ankyrin Repeat Protein. J Mol Biol 2008; 376:232-40. [DOI: 10.1016/j.jmb.2007.11.047] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2007] [Revised: 09/28/2007] [Accepted: 11/16/2007] [Indexed: 11/26/2022]
|
42
|
Gubernator B, Bartoszewski R, Kroliczewski J, Wildner G, Szczepaniak A. Ribulose-1,5-bisphosphate carboxylase/oxygenase from thermophilic cyanobacterium Thermosynechococcus elongatus. PHOTOSYNTHESIS RESEARCH 2008; 95:101-109. [PMID: 17922215 DOI: 10.1007/s11120-007-9240-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2007] [Accepted: 09/06/2007] [Indexed: 05/25/2023]
Abstract
Ribulose-1,5-bisphosphate carboxylase/oxygenase (rubisco) can be divided into two branches: the "red-like type" of marine algae and the "green-like type" of cyanobacteria, green algae, and higher plants. We found that the "green-like type" rubisco from the thermophilic cyanobacterium Thermosynechococcus elongatus has an almost 2-fold higher specificity factor compared with rubiscos of mesophilic cyanobacteria, reaching the values of higher plants, and simultaneously revealing an improvement in enzyme thermostability. The difference in the activation energies at the transition stages between the oxygenase and carboxylase reactions for Thermosynechococcus elongatus rubisco is very close to that of Galdieria partita and significantly higher than that of spinach. This is the first characterization of a "green-like type" rubisco from thermophilic organism.
Collapse
Affiliation(s)
- Beata Gubernator
- Department of Biotechnology, University of Wroclaw, Przybyszewskiego 63/77, Wroclaw, 51-148, Poland
| | | | | | | | | |
Collapse
|
43
|
Goldstein RA. Amino-acid interactions in psychrophiles, mesophiles, thermophiles, and hyperthermophiles: insights from the quasi-chemical approximation. Protein Sci 2007; 16:1887-95. [PMID: 17766385 PMCID: PMC2206978 DOI: 10.1110/ps.072947007] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
We investigate the mechanisms used by proteins to maintain thermostability throughout a wide range of temperatures. We use the quasi-chemical approximation to estimate interaction strengths for psychrophiles, mesophiles, thermophiles, and hyperthermophiles. Our results highlight the importance of core packing in thermophilic stability. Although we observed an increase in the number of charged residues, the contribution of salt bridges appears to be relatively modest by comparison. We observed results consistent with a gradual loosening of structure in psychrophiles, including a weakening of almost all types of interactions.
Collapse
Affiliation(s)
- Richard A Goldstein
- Mathematical Biology, National Institute of Medical Research, Mill Hill, London NW7 1AA, United Kingdom.
| |
Collapse
|
44
|
Zhou XX, Wang YB, Pan YJ, Li WF. Differences in amino acids composition and coupling patterns between mesophilic and thermophilic proteins. Amino Acids 2007; 34:25-33. [PMID: 17710363 DOI: 10.1007/s00726-007-0589-x] [Citation(s) in RCA: 94] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2007] [Accepted: 07/12/2007] [Indexed: 10/22/2022]
Abstract
Thermophilic proteins show substantially higher intrinsic thermal stability than their mesophilic counterparts. Amino acid composition is believed to alter the intrinsic stability of proteins. Several investigations and mutagenesis experiment have been carried out to understand the amino acid composition for the thermostability of proteins. This review presents some generalized features of amino acid composition found in thermophilic proteins, including an increase in residue hydrophobicity, a decrease in uncharged polar residues, an increase in charged residues, an increase in aromatic residues, certain amino acid coupling patterns and amino acid preferences for thermophilic proteins. The differences of amino acids composition between thermophilic and mesophilic proteins are related to some properties of amino acids. These features provide guidelines for engineering mesophilic protein to thermophilic protein.
Collapse
Affiliation(s)
- X-X Zhou
- Institute of Chemical Biology and Pharmaceutical Chemistry, Zhejiang University, Hangzhou, China
| | | | | | | |
Collapse
|
45
|
Mateo C, Palomo JM, Fernandez-Lorente G, Guisan JM, Fernandez-Lafuente R. Improvement of enzyme activity, stability and selectivity via immobilization techniques. Enzyme Microb Technol 2007. [DOI: 10.1016/j.enzmictec.2007.01.018] [Citation(s) in RCA: 2543] [Impact Index Per Article: 141.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
46
|
Mechanisms for stabilisation and the maintenance of solubility in proteins from thermophiles. BMC STRUCTURAL BIOLOGY 2007; 7:18. [PMID: 17394655 PMCID: PMC1851960 DOI: 10.1186/1472-6807-7-18] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2006] [Accepted: 03/29/2007] [Indexed: 01/26/2023]
Abstract
Background The database of protein structures contains representatives from organisms with a range of growth temperatures. Various properties have been studied in a search for the molecular basis of protein adaptation to higher growth temperature. Charged groups have emerged as key distinguishing factors for proteins from thermophiles and mesophiles. Results A dataset of 291 thermophile-derived protein structures is compared with mesophile proteins. Calculations of electrostatic interactions support the importance of charges, but indicate that increases in charge contribution to folded state stabilisation do not generally correlate with the numbers of charged groups. Relative propensities of charged groups vary, such as the substitution of glutamic for aspartic acid sidechains. Calculations suggest an energetic basis, with less dehydration for longer sidechains. Most other properties studied show weak or insignificant separation of proteins from moderate thermophiles or hyperthermophiles and mesophiles, including an estimate of the difference in sidechain rotameric entropy upon protein folding. An exception is increased burial of alanine and proline residues and decreased burial of phenylalanine, methionine, tyrosine and tryptophan in hyperthermophile proteins compared to those from mesophiles. Conclusion Since an increase in the number of charged groups for hyperthermophile proteins is separable from charged group contribution to folded state stability, we hypothesise that charged group propensity is important in the context of protein solubility and the prevention of aggregation. Accordingly we find some separation between mesophile and hyperthermophile proteins when looking at the largest surface patch that does not contain a charged sidechain. With regard to our observation that aromatic sidechains are less buried in hyperthermophile proteins, further analysis indicates that the placement of some of these groups may facilitate the reduction of folding fluctuations in proteins of the higher growth temperature organisms.
Collapse
|
47
|
Zhang W, Mullaney EJ, Lei XG. Adopting selected hydrogen bonding and ionic interactions from Aspergillus fumigatus phytase structure improves the thermostability of Aspergillus niger PhyA phytase. Appl Environ Microbiol 2007; 73:3069-76. [PMID: 17351092 PMCID: PMC1892878 DOI: 10.1128/aem.02970-06] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Although it has been widely used as a feed supplement to reduce manure phosphorus pollution of swine and poultry, Aspergillus niger PhyA phytase is unable to withstand heat inactivation during feed pelleting. Crystal structure comparisons with its close homolog, the thermostable Aspergillus fumigatus phytase (Afp), suggest associations of thermostability with several key residues (E35, S42, R168, and R248) that form a hydrogen bond network in the E35-to-S42 region and ionic interactions between R168 and D161 and between R248 and D244. In this study, loss-of-function mutations (E35A, R168A, and R248A) were introduced singularly or in combination into seven mutants of Afp. All seven mutants displayed decreases in thermostability, with the highest loss (25% [P<0.05]) in the triple mutant (E35A R168A R248A). Subsequently, a set of corresponding substitutions were introduced into nine mutants of PhyA to strengthen the hydrogen bonding and ionic interactions. While four mutants showed improved thermostability, the best response came from the quadruple mutant (A58E P65S Q191R T271R), which retained 20% greater (P<0.05) activity after being heated at 80 degrees C for 10 min and had a 7 degrees C higher melting temperature than that of wild-type PhyA. This study demonstrates the functional importance of the hydrogen bond network and ionic interaction in supporting the high thermostability of Afp and the feasibility of adopting these structural units to improve the thermostability of a homologous PhyA phytase.
Collapse
Affiliation(s)
- Wanming Zhang
- Department of Animal Science, 252 Morrison Hall, Cornell University, Ithaca, NY 14853, USA
| | | | | |
Collapse
|
48
|
Garip S, Bozoglu F, Severcan F. Differentiation of mesophilic and thermophilic bacteria with fourier transform infrared spectroscopy. APPLIED SPECTROSCOPY 2007; 61:186-92. [PMID: 17331310 DOI: 10.1366/000370207779947486] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
In the present study the characterization and differentiation of mesophilic and thermophilic bacteria were investigated by using Fourier transform infrared (FT-IR) spectroscopy. Our results showed significant differences between the FT-IR spectra of mesophilic and thermophilic bacteria. The protein-to-lipid ratio was significantly higher for thermophiles compared to mesophiles. The absorption intensity of the CH(3) asymmetric stretching vibration was higher in thermophilic bacteria, indicating a change in the composition of the acyl chains. The higher intensity/area observed in the CH(2) symmetric stretching mode at 2857 cm(-1), and the CH(2) bending vibration band at 1452 cm(-1), indicated a higher amount of saturated lipids in thermophilic bacteria. The lipid C=O stretching vibration at 1739 cm(-1), which was observed in the mesophilic group, was not observed clearly in the thermophilic group, indicating a difference in packing that is presumably due to the decreased proportion of unsaturated acyl chains in thermophilic bacteria. In addition, the carbonyl groups become hydrogen bonded and the cellular DNA content was lower in thermophilic bacteria. Moreover, in the 1000-400 cm(-1) frequency region, the spectra of each bacterial species belonging to both the mesophilic and thermophilic bacterial groups, showed characteristic differences that were discriminated via dendrogram using cluster analysis. The current study implies that FT-IR spectroscopy could be successfully applied for the rapid comparison of bacterial groups and species to establish either similarities or discrepancies, as well as to confirm biochemical or physiological characteristics.
Collapse
Affiliation(s)
- Sebnem Garip
- Department of Biology, Middle East Technical University, 06531 Ankara, Turkey
| | | | | |
Collapse
|
49
|
Luke K, Wittung-Stafshede P. Folding and assembly pathways of co-chaperonin proteins 10: Origin of bacterial thermostability. Arch Biochem Biophys 2006; 456:8-18. [PMID: 17084377 DOI: 10.1016/j.abb.2006.10.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2006] [Accepted: 10/03/2006] [Indexed: 11/30/2022]
Abstract
To compare folding/assembly processes of heptameric co-chaperonin proteins 10 (cpn10) from different species and search for the origin of thermostability in hyper-thermostable Aquifex aeolicus cpn10 (Aacpn10), we have studied two bacterial variants-Aacpn10 and Escherichia coli cpn10 (GroES)-and compared the results to data on Homo sapiens cpn10 (hmcpn10). Equilibrium denaturation of GroES by urea, guanidine hydrochloride (GuHCl) and temperature results in coupled heptamer-to-monomer transitions in all cases. This is similar to the behavior of Aacpn10 but differs from hmcpn10 denaturation in urea. Time-resolved experiments reveal that GroES unfolds before heptamer dissociation, whereas refolding/reassembly begins with folding of individual monomers; these assemble in a slower step. The sequential folding/assembly mechanism for GroES is rather similar to that observed for Aacpn10 but contradicts the parallel paths of hmcpn10. We reveal that Aacpn10's stability profile is shifted upwards, broadened, and also moved horizontally to higher temperatures, as compared to that of GroES.
Collapse
Affiliation(s)
- Kathryn Luke
- Department of Biochemistry and Cell Biology, Rice University, 6100 Main Street, Houston, TX 77251, USA
| | | |
Collapse
|
50
|
Yu Z, Lansdon EB, Segel IH, Fisher AJ. Crystal structure of the bifunctional ATP sulfurylase-APS kinase from the chemolithotrophic thermophile Aquifex aeolicus. J Mol Biol 2006; 365:732-43. [PMID: 17095009 DOI: 10.1016/j.jmb.2006.10.035] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2006] [Revised: 10/06/2006] [Accepted: 10/10/2006] [Indexed: 11/21/2022]
Abstract
The thermophilic chemolithotroph, Aquifex aeolicus, expresses a gene product that exhibits both ATP sulfurylase and adenosine-5'-phosphosulfate (APS) kinase activities. These enzymes are usually segregated on two separate proteins in most bacteria, fungi, and plants. The domain arrangement in the Aquifex enzyme is reminiscent of the fungal ATP sulfurylase, which contains a C-terminal domain that is homologous to APS kinase yet displays no kinase activity. Rather, in the fungal enzyme, the motif serves as a sulfurylase regulatory domain that binds the allosteric effector 3'-phosphoadenosine-5'-phosphosulfate (PAPS), the product of true APS kinase. Therefore, the Aquifex enzyme may represent an ancestral homolog of a primitive bifunctional enzyme, from which the fungal ATP sulfurylase may have evolved. In heterotrophic sulfur-assimilating organisms such as fungi, ATP sulfurylase catalyzes the first committed step in sulfate assimilation to produce APS, which is subsequently metabolized to generate all sulfur-containing biomolecules. In contrast, ATP sulfurylase in sulfur chemolithotrophs catalyzes the reverse reaction to produce ATP and sulfate from APS and pyrophosphate. Here, the 2.3 A resolution X-ray crystal structure of Aquifex ATP sulfurylase-APS kinase bifunctional enzyme is presented. The protein dimerizes through its APS kinase domain and contains ADP bound in all four active sites. Comparison of the Aquifex ATP sulfurylase active site with those from sulfate assimilators reveals similar dispositions of the bound nucleotide and nearby residues. This suggests that minor perturbations are responsible for optimizing the kinetic properties for the physiologically relevant direction. The APS kinase active-site lid adopts two distinct conformations, where one conformation is distorted by crystal contacts. Additionally, a disulfide bond is observed in one ATP-binding P-loop of the APS kinase active site. This linkage accounts for the low kinase activity of the enzyme under oxidizing conditions. The thermal stability of the Aquifex enzyme can be explained by the 43% decreased cavity volume found within the protein core.
Collapse
Affiliation(s)
- Zhihao Yu
- Department of Chemistry, University of California-Davis, One Shields Avenue, Davis, CA 95616, USA
| | | | | | | |
Collapse
|