1
|
Basu S, Liang HPH, Hernandez I, Zogg M, Fields B, May J, Ogoti Y, Wyseure T, Mosnier LO, Burns RT, Carlson K, Weiler H. Role of thrombomodulin expression on hematopoietic stem cells. J Thromb Haemost 2020; 18:123-135. [PMID: 31628891 PMCID: PMC6940513 DOI: 10.1111/jth.14663] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 09/23/2019] [Accepted: 10/10/2019] [Indexed: 12/15/2022]
Abstract
BACKGROUND Activation of protease-activated receptor 1 (PAR1) by either thrombin or activated protein C (aPC) differentially regulate the quiescence and bone marrow (BM) retention of hematopoietic stem cells (HSC). Murine HSC co-express THBD, PAR1, and endothelial protein C receptor (EPCR), suggesting that HSC sustain quiescence in a quasi-cell autonomous manner due to the binding of thrombin present in the microenvironment to THBD, activation of EPCR-bound protein C by the thrombin-THBD-complex, and subsequent activation of PAR1 by the aPC-EPCR complex. OBJECTIVE To determine the role of THBD expression on HSC for sustaining stem cell quiescence and BM retention under homeostatic conditions. METHODS Hematopoietic stem cell function was analyzed in mice with constitutive or temporally controlled complete THBD-deficiency by flow cytometry, functional assays, and single cell RNA profiling. RESULTS THBD was expressed in mouse, but not human, HSC, progenitors, and immature B cells. Expression in vascular endothelium was conserved in humans' BM. Mice with constitutive THBD deficiency had a normal peripheral blood profile, altered BM morphology, reduced numbers of progenitors and immature B cells, pronounced extramedullary hematopoiesis, increased HSC frequency, and marginally altered transcriptionally defined HSC stemness. Transplantation experiments indicated near normal engraftment and repopulating ability of THBD-deficient HSC. Transgenic aPC supplementation normalized BM histopathology and HSC abundance, and partially restored transcriptional stemness, but had no effect on B cell progenitors and extramedullary hematopoiesis. Temporally controlled THBD gene ablation in adult mice did not cause the above abnormalities. CONCLUSION THBD expression on HSPC has minor effects on homeostatic hematopoiesis in mice, and is not conserved in humans.
Collapse
Affiliation(s)
- Sreemanti Basu
- Blood Research Institute, BloodCenter of Wisconsin: Part of Versiti, Milwaukee, WI, USA
| | - Hai Po Helena Liang
- Blood Research Institute, BloodCenter of Wisconsin: Part of Versiti, Milwaukee, WI, USA
| | - Irene Hernandez
- Blood Research Institute, BloodCenter of Wisconsin: Part of Versiti, Milwaukee, WI, USA
| | - Mark Zogg
- Blood Research Institute, BloodCenter of Wisconsin: Part of Versiti, Milwaukee, WI, USA
| | - British Fields
- Blood Research Institute, BloodCenter of Wisconsin: Part of Versiti, Milwaukee, WI, USA
| | - Jennifer May
- Blood Research Institute, BloodCenter of Wisconsin: Part of Versiti, Milwaukee, WI, USA
| | - Yamini Ogoti
- Blood Research Institute, BloodCenter of Wisconsin: Part of Versiti, Milwaukee, WI, USA
| | - Tine Wyseure
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, USA
| | - Laurent O Mosnier
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, USA
| | - Robert T Burns
- Blood Research Institute, BloodCenter of Wisconsin: Part of Versiti, Milwaukee, WI, USA
| | - Karen Carlson
- Blood Research Institute, BloodCenter of Wisconsin: Part of Versiti, Milwaukee, WI, USA
- Division of Hematology and Oncology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Hartmut Weiler
- Blood Research Institute, BloodCenter of Wisconsin: Part of Versiti, Milwaukee, WI, USA
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI, USA
| |
Collapse
|
2
|
Kim H, Lee H, Shin KS. Intestinal immunostimulatory activity of neutral polysaccharide isolated from traditionally fermented Korean brown rice vinegar. Biosci Biotechnol Biochem 2016; 80:2383-2390. [PMID: 27684966 DOI: 10.1080/09168451.2016.1217149] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
In this study, diverse intestinal immunostimulatory activities were demonstrated for polysaccharides (KBV-CP) isolated from Korean brown rice vinegar. Monosaccharide composition analysis indicated that KBV-CP was composed mainly of neutral sugar units, primarily glucose and mannose. In vitro, KBV-CP significantly augmented the productions of immunoglobulin A (IgA) and IgA-related cytokines such as interleukin-6 (IL-6) and transforming growth factor-β (TGF-β) in a dose-dependent manner. Furthermore, results of an in vitro co-culture system of intestinal Caco-2 cells and RAW 264.7 macrophage cells suggested that KBV-CP is not only cytotoxic to Caco-2 cells but also capable of being transported across the small intestinal barrier. Oral administration of KBV-CP every other day for 20 days induced the IgA production by Peyer's patch cells as well as in intestinal fluid and fecal extract. In addition, the production of IgA-related cytokines such as TGF-β and IL-6, and granulocyte macrophage colony-stimulating factor was triggered.
Collapse
Affiliation(s)
- Hoon Kim
- a Department of Food Science and Biotechnology , Kyonggi University , Suwon , Republic of Korea.,b Department of Integrated Biomedical and Life Science , Korea University , Seoul , Republic of Korea
| | - Ho Lee
- a Department of Food Science and Biotechnology , Kyonggi University , Suwon , Republic of Korea
| | - Kwang-Soon Shin
- a Department of Food Science and Biotechnology , Kyonggi University , Suwon , Republic of Korea
| |
Collapse
|
3
|
Role of interleukin-6 in cancer progression and therapeutic resistance. Tumour Biol 2016; 37:11553-11572. [DOI: 10.1007/s13277-016-5098-7] [Citation(s) in RCA: 715] [Impact Index Per Article: 79.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Accepted: 05/22/2016] [Indexed: 02/07/2023] Open
|
4
|
Lee MY, Kim H, Shin KS. In vitro and in vivo effects of polysaccharides isolated from Korean persimmon vinegar on intestinal immunity. ACTA ACUST UNITED AC 2015. [DOI: 10.1007/s13765-015-0117-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
5
|
Peyer’s patch-mediated intestinal immune system modulating activity of pectic-type polysaccharide from peel of Citrus unshiu. Food Chem 2013; 138:1079-86. [DOI: 10.1016/j.foodchem.2012.11.091] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2012] [Revised: 10/24/2012] [Accepted: 11/20/2012] [Indexed: 11/21/2022]
|
6
|
Parathyroid hormone mediates hematopoietic cell expansion through interleukin-6. PLoS One 2010; 5:e13657. [PMID: 21048959 PMCID: PMC2965090 DOI: 10.1371/journal.pone.0013657] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2010] [Accepted: 09/08/2010] [Indexed: 11/19/2022] Open
Abstract
Parathyroid hormone (PTH) stimulates hematopoietic cells through mechanisms of action that remain elusive. Interleukin-6 (IL-6) is upregulated by PTH and stimulates hematopoiesis. The purpose of this investigation was to identify actions of PTH and IL-6 in hematopoietic cell expansion. Bone marrow cultures from C57B6 mice were treated with fms-like tyrosine kinase-3 ligand (Flt-3L), PTH, Flt-3L plus PTH, or vehicle control. Flt-3L alone increased adherent and non-adherent cells. PTH did not directly impact hematopoietic or osteoclastic cells but acted in concert with Flt-3L to further increase cell numbers. Flt-3L alone stimulated proliferation, while PTH combined with Flt-3L decreased apoptosis. Flt-3L increased blasts early in culture, and later increased CD45+ and CD11b+ cells. In parallel experiments, IL-6 acted additively with Flt-3L to increase cell numbers and IL-6-deficient bone marrow cultures (compared to wildtype controls) but failed to amplify in response to Flt-3L and PTH, suggesting that IL-6 mediated the PTH effect. In vivo, PTH increased Lin- Sca-1+c-Kit+ (LSK) hematopoietic progenitor cells after PTH treatment in wildtype mice, but failed to increase LSKs in IL-6-deficient mice. In conclusion, PTH acts with Flt-3L to maintain hematopoietic cells by limiting apoptosis. IL-6 is a critical mediator of bone marrow cell expansion and is responsible for PTH actions in hematopoietic cell expansion.
Collapse
|
7
|
Drucker C, Gewiese J, Malchow S, Scheller J, Rose-John S. Impact of interleukin-6 classic- and trans-signaling on liver damage and regeneration. J Autoimmun 2009; 34:29-37. [PMID: 19717281 DOI: 10.1016/j.jaut.2009.08.003] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2009] [Accepted: 08/09/2009] [Indexed: 12/28/2022]
Abstract
Interleukin-6 (IL-6) has been suggested to play a pivotal role in liver regeneration. IL-6 on target cells activates a receptor complex consisting of the IL-6 receptor (IL-6R) and the signal transducing receptor subunit gp130. Not all cells in the body express the IL-6R on the cell surface. IL-6 can signal via two different pathways: classical signaling via the membrane bound IL-6R and IL-6 trans-signaling via a naturally occurring soluble IL-6R (sIL-6R). This second pathway widens the scope of IL-6 signaling since also cells expressing no membrane bound IL-6R can be stimulated by the trans-signal pathway. Mimicking IL-6 trans-signaling via a designer molecule, Hyper-IL-6 has been shown to accelerate liver regeneration. Another designer molecule, sgp130Fc, specifically blocks IL-6 trans-signaling. Using these proteins we investigated the contribution of IL-6 classic- and trans-signaling in the liver. Here we review the role of IL-6 signaling in response to liver damage and during liver regeneration.
Collapse
Affiliation(s)
- Claudia Drucker
- Institute of Biochemistry, Christian-Albrechts-University of Kiel, Kiel, Germany
| | | | | | | | | |
Collapse
|
8
|
Ren X, Hu B, Colletti L. Stem cell factor and its receptor, c-kit, are important for hepatocyte proliferation in wild-type and tumor necrosis factor receptor-1 knockout mice after 70% hepatectomy. Surgery 2008; 143:790-802. [PMID: 18549896 PMCID: PMC2495772 DOI: 10.1016/j.surg.2008.03.021] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2007] [Accepted: 03/22/2008] [Indexed: 02/04/2023]
Abstract
BACKGROUND Stem cell factor (SCF) has well-known proliferative effects on hematopoietic cells. SCF also has effects on differentiation and proliferation in other cell types. Interleukin-6 (IL-6) and tumor necrosis factor (TNF)-alpha have proliferative effects in the liver. Recent studies in our laboratory have linked SCF's hepatoproliferative actions to those of IL-6, demonstrating that IL-6-induced hepatocyte proliferation depends, at least in part, on SCF. We now hypothesize that TNF-alpha's hepatoproliferative effects are also dependent on SCF. METHODS AND RESULTS In vitro studies using primary mouse hepatocytes show that SCF is induced by TNF-alpha; anti-SCF antibody treatment in this system inhibits TNF-alpha-induced hepatocyte proliferation, suggesting that TNF-alpha-induced hepatocyte proliferation is also SCF dependent. Additional in vivo experiments were performed in which wild type and/or TNF-alpha receptor-1 knockout mice (TNFR1(-/-)) were subjected to 70% hepatectomy or sham laparotomy. TNFR1(-/-) mice are known to have delayed hepatic regeneration after partial hepatectomy. Initial experiments demonstrated that the SCF receptor, c-kit, is upregulated after partial hepatectomy in wild-type mice, further emphasizing the importance of this system in the restoration of hepatic mass. SCF administration to TNFR1(-/-) mice in the context of partial hepatectomy restores hepatocyte proliferation to normal. Further, SCF administration to TNFR1(-/-) mice before hepatectomy increases phosphotyrosine signal transducer and activator (p-stat-3) levels, suggesting that SCF-induced increases in hepatocyte proliferation may also be stat-3 mediated. CONCLUSIONS These data suggest that TNF-alpha-induced hepatocyte proliferation depends, at least in part, on SCF and that SCF and its receptor, c-kit, are important for the liver's regenerative processes.
Collapse
Affiliation(s)
- Xiaodan Ren
- Department of Surgery, University of Michigan Medical School, Ann Arbor, Mich
| | | | | |
Collapse
|
9
|
The regulatory role of Hyper-IL-6 in the differentiation of myeloid and erythroid progenitors derived from human cord blood. Cell Immunol 2006; 241:32-7. [PMID: 16934790 DOI: 10.1016/j.cellimm.2006.07.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2006] [Revised: 07/15/2006] [Accepted: 07/18/2006] [Indexed: 02/01/2023]
Abstract
This study was designed to investigate the regulatory role of soluble interleukin-6 receptor (sIL-6R) and interleukin-6 (IL-6) fusion protein (Hyper-IL-6) in the differentiation of human myeloid and erythroid progenitors by a serum-free liquid suspension culture system, using the human cord blood-derived CD34(+)CD38(-) cells as a target. We found that Hyper-IL-6 promoted the generation of CD15(+) granulocytic and CD14(+) monocytic cells and suppressed that of CD14(-)CD1a(+) dendritic cells from CD36(-)CD15(-)CD14(-)CD1a(-)IL-6R(+) myeloid progenitors. Conversely, CD34(+)CD38(-) cell-derived early erythroid progenitors were negative for IL-6R expression. Hyper-IL-6 potentiated the generation of CD36(+)glycophorinA(high) mature erythroid cells from the IL-6R(-) early erythroid progenitors. Our results indicate that Hyper-IL-6 augments the generation of CD15(+) granulocytic, CD14(+) monocytic and CD36(+)glycophorinA(high) cell and suppresses that of CD14(-)CD1a(+) dendritic cells.
Collapse
|
10
|
Scheller J, Rose-John S. Interleukin-6 and its receptor: from bench to bedside. Med Microbiol Immunol 2006; 195:173-83. [PMID: 16741736 DOI: 10.1007/s00430-006-0019-9] [Citation(s) in RCA: 210] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2006] [Indexed: 11/26/2022]
Abstract
Interleukin-6 (IL-6) is an inflammatory cytokine with a well-documented role in inflammation and cancer. The cytokine binds to a membrane bound IL-6 receptor (IL-6R) and this complex associates with two molecules of the signal transducing protein gp130 thereby initiating intracellular signaling. While gp130 is present on most if not all cells of the body, the IL-6R is only present on some cells, mainly hepatocytes and several leukocytes. Cells, which only express gp130 and no IL-6R are refractory to IL-6 signals. We have shown earlier that the IL-6R can exist as a soluble protein generated by limited proteolysis of the membrane bound receptor or by translation from an alternatively spliced mRNA. This soluble IL-6R (sIL-6R) can bind the ligand IL-6 and the soluble complex of sIL-6R and IL-6 can bind to gp130 on cells which lack the membrane bound IL-6R and trigger gp130 signaling. We have named this process 'trans-signaling'. We will review data, which clearly show that IL-6 uses classical signaling via the membrane bound receptor and trans-signaling via the soluble receptor in various physiological and pathophysiological situations. Furthermore, we have developed designer cytokines, which can specifically enhance or inhibit IL-6 trans-signaling. These designer cytokines have been shown to be extremely useful to in therapeutic applications ranging from the long-term culture of stem cells and enhancing liver regeneration up to the blockade of chronic inflammation and cancer.
Collapse
Affiliation(s)
- Jürgen Scheller
- Institut für Biochemie, Christian-Albrechts-Universität zu Kiel, Olshausenstr 40, 24098 Kiel, Germany
| | | |
Collapse
|
11
|
Rose-John S. Designer Cytokines for Human Haematopoietic Progenitor Cell Expansion: Impact for Tissue Regeneration. Stem Cells 2006. [DOI: 10.1007/3-540-31265-x_10] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
|
12
|
Pramanik R, Jørgensen TN, Xin H, Kotzin BL, Choubey D. Interleukin-6 Induces Expression of Ifi202, an Interferon-inducible Candidate Gene for Lupus Susceptibility. J Biol Chem 2004; 279:16121-7. [PMID: 14764608 DOI: 10.1074/jbc.m313140200] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Systemic lupus erythematosus (SLE) is a prototype autoimmune disease. In human SLE patients, as well as in mouse models of SLE, the development of disease is associated with increased levels of pro-inflammatory cytokines, such as interleukin-6 (IL-6). However, IL-6 target genes contributing to the development of disease remain to be identified. Our previous studies of one mouse model of SLE identified an interferon-inducible gene, Ifi202, as a major contributor to the disease. We now report that IL-6 induces expression of the Ifi202 gene. We found that IL-6 treatment of mouse splenocytes increased levels of Ifi202 mRNA and p202 protein. Furthermore, IL-6 treatment of NIH 3T3 cells or expression of a constitutively active form of STAT3, a known mediator of IL-6 signaling, stimulated the activity of a 202-luc-reporter through a potential STAT3 DNA-binding site (the 202-SBS) present in the 5'-regulatory region of the Ifi202 gene. Moreover, treatment of cells with IL-6 stimulated binding of the transcription factor STAT3 to an oligonucleotide containing the 202-SBS in gel-mobility shift assays and to the 5'-regulatory region of the Ifi202 gene in chromatin immunoprecipitation assays. Importantly, site-directed mutagenesis of 202-SBS or expression of a dominant negative form of STAT3 significantly reduced constitutive as well as IL-6-stimulated activity of the 202-luc-reporter. Together, our observations support the idea that IL-6 stimulates transcription of the Ifi202 gene through STAT3 activation and predict that increased levels of IL-6 in lupus contribute to up-regulation of p202.
Collapse
Affiliation(s)
- Rocky Pramanik
- Department of Radiation Oncology, Stritch School of Medicine, Loyola University Medical Center, Maywood, Illinois 60153, USA
| | | | | | | | | |
Collapse
|
13
|
Ren X, Hogaboam C, Carpenter A, Colletti L. Stem cell factor restores hepatocyte proliferation in IL-6 knockout mice following 70% hepatectomy. J Clin Invest 2003; 112:1407-18. [PMID: 14597766 PMCID: PMC228393 DOI: 10.1172/jci17391] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2002] [Accepted: 09/02/2003] [Indexed: 12/13/2022] Open
Abstract
Stem cell factor (SCF) is a molecule with known proliferative effects on hematopoietic cells. More recent studies suggest that this molecule may also have effects on cellular differentiation and proliferation in other types of cells. The current investigations demonstrate that there is a large reservoir of SCF in the liver, that hepatic SCF levels change dramatically following partial hepatectomy in mice, and that SCF blockade, either by administration of anti-SCF antibodies or by using genetically altered, SCF-deficient mice, inhibits hepatocyte proliferation after partial hepatectomy; if SCF is replaced in the genetically SCF-deficient mice after partial hepatectomy, hepatocyte proliferation is restored to that seen in WT animals. Furthermore, SCF administration to IL-6 knockout mice also restores hepatocyte proliferation to normal. In vitro studies using primary mouse hepatocytes demonstrate that SCF causes hepatocyte proliferation and is induced by IL-6 and that treatment with anti-SCF antibodies inhibits IL-6-induced hepatocyte proliferation. Further in vivo studies in IL-6 knockout mice demonstrate that SCF administration to these animals increases p-stat3 levels, suggesting that the SCF-induced increase in hepatocyte proliferation in this system is stat3-mediated.
Collapse
Affiliation(s)
- Xiaodan Ren
- Department of Surgery, University of Michigan, Medical School, Ann Arbor, Michigan 48109-0331, USA.
| | | | | | | |
Collapse
|
14
|
Lukashevich IS, Tikhonov I, Rodas JD, Zapata JC, Yang Y, Djavani M, Salvato MS. Arenavirus-mediated liver pathology: acute lymphocytic choriomeningitis virus infection of rhesus macaques is characterized by high-level interleukin-6 expression and hepatocyte proliferation. J Virol 2003; 77:1727-37. [PMID: 12525606 PMCID: PMC140927 DOI: 10.1128/jvi.77.3.1727-1737.2003] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2002] [Accepted: 10/22/2002] [Indexed: 11/20/2022] Open
Abstract
Lymphocytic choriomeningitis virus (LCMV) and Lassa virus can cause hemorrhagic fever and liver disease in primates. The WE strain of LCMV (LCMV-WE) causes a fatal Lassa fever-like disease in rhesus macaques and provides a model for arenavirus pathogenesis in humans. LCMV-WE delivered intravenously or intragastrically to rhesus macaques targets hepatocytes and induces high levels of liver enzymes, interleukin-6 (IL-6), soluble IL-6 receptor (sIL-6R), and soluble tumor necrosis factor receptors (sTNFRI and -II) in plasma during acute infection. Proinflammatory cytokines TNF-alpha and IL-1beta were not detected in plasma of infected animals, but increased plasma gamma interferon was noted in fatally infected animals. Immunohistochemistry of acute liver biopsies revealed that 25 to 40% of nuclei were positive for proliferation antigen Ki-67. The increases in IL-6, sIL-6R, sTNFR, and proliferation antigen that we observe are similar to the profile of incipient liver regeneration after surgical or toxic injury (N. Fausto, Am. J. Physiol. 277:G917-G921, 1999). Although IL-6 was not directly induced by virus infection in vitro, peripheral blood mononuclear cells from acutely infected monkeys produced higher levels of IL-6 upon lipopolysaccharide stimulation than did healthy controls. Our data confirm that acute infection is associated with weak inflammatory responses in tissues and initiates a program of liver regeneration in primates.
Collapse
Affiliation(s)
- Igor S Lukashevich
- Institute of Human Virology, University of Maryland Biotechnology Institute, Baltimore, Maryland 21201, USA.
| | | | | | | | | | | | | |
Collapse
|
15
|
Miyakuni Y, Takafuji S, Nakagawa T. Effects of Th2 cytokines and eosinophils on stem cell factor production by lung fibroblasts. Allergol Int 2003. [DOI: 10.1046/j.1440-1592.2003.00273.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
16
|
Jones SA, Rose-John S. The role of soluble receptors in cytokine biology: the agonistic properties of the sIL-6R/IL-6 complex. BIOCHIMICA ET BIOPHYSICA ACTA 2002; 1592:251-63. [PMID: 12421670 DOI: 10.1016/s0167-4889(02)00319-1] [Citation(s) in RCA: 199] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Cytokines perform ever-increasing roles in both, the regulation of general homeostasis and in orchestrating the immune response during disease. To ensure that control of the cytokine network is tightly regulated, nature has developed a series of systems designed for this purpose. In this respect, researchers have placed considerable emphasis on identifying and characterising the regulatory properties of soluble cytokine receptors. These proteins bind their ligands with similar affinities to those of their cognate transmembrane receptors and are effective at prolonging the circulating half-life of cytokines they bind. However, it is the individual capacity of these soluble receptors to act as either antagonists or agonists which has been the principal focus of most research studies. This review provides an overview of the activities of soluble cytokine receptors, but primarily concentrates on those that possess agonistic properties.
Collapse
Affiliation(s)
- Simon A Jones
- Molecular Cell Biology Research Group, Cardiff School of Biosciences, Biomedical Sciences Building, Cardiff University, Wales, UK.
| | | |
Collapse
|
17
|
Tanavde VM, Malehorn MT, Lumkul R, Gao Z, Wingard J, Garrett ES, Civin CI. Human stem-progenitor cells from neonatal cord blood have greater hematopoietic expansion capacity than those from mobilized adult blood. Exp Hematol 2002; 30:816-23. [PMID: 12135681 DOI: 10.1016/s0301-472x(02)00818-4] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
OBJECTIVE In this study we compared the hematopoietic capacity of CD34+ cell preparations from neonatal cord blood (CB) vs adult mobilized peripheral blood (PBSC) before and after ex vivo culture. METHODS CD34+ cell preparations purified from CB or PBSC were cultured in serum-free medium containing FKT: FLT-3 ligand (FL), KIT ligand (KL), and thrombopoietin (TPO). RESULTS After 1-4 weeks ex vivo culture, CB CD34+ cell preparations had greatly increased numbers of total cells, CD34+ cells, and colony-forming cells (CFC). In contrast, ex vivo-cultured PBSC CD34+ cell preparations generated far less in vitro assessed hematopoietic capacity. Nonobese diabetic severe combined immunodeficient mouse (NOD/SCID) engrafting potential (SEP) was maintained in ex vivo-cultured CB CD34+ cell preparations, whereas ex vivo-cultured PBSC lost SEP. CB CD34+ cells continued to proliferate throughout 3 weeks ex vivo, whereas after 1 week, no additional cell divisions were detected in PBSC CD34+ cells. After 3 weeks in culture, the average CB CD34+ cell had divided more than 5 times, as compared to only 2 times for the average PBSC CD34+ cell. CONCLUSION CB CD34+ cell preparations generated massively increased in vitro assessed hematopoietic capacity and maintained SEP during 1- to 4-week ex vivo cultures. In contrast, ex vivo-cultured PBSC CD34+ cell preparations generated far less in vitro assessed hematopoietic capacity and decreased SEP. The differences in the in vitro proliferative indices of membrane dye-labeled CD34+ cells from CB vs PBSC correlated with these functional differences.
Collapse
Affiliation(s)
- Vivek M Tanavde
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | | | | | | | | | | | | |
Collapse
|