1
|
Wang Y, Lu W, Chen ZH, Xiao Y, Wang Y, Gao W, Wang Z, Song R, Fang Z, Hu W, Tong X, Lee K, Pei Z, Xu M, Zhang F, Chen H, Feng Y. Molecular Imaging of Ovarian Follicles and Tumors With Near-Infrared II Bioconjugates. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2414129. [PMID: 39696888 DOI: 10.1002/adma.202414129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 10/22/2024] [Indexed: 12/20/2024]
Abstract
Follicular tracking is typically conducted using ultrasound technology, but its effectiveness is constrained by limited resolution. High-resolution imaging of deep tissues can be accomplished using luminescence imaging in the near-infrared II window (NIR-II, 1000-1700 nm); however, the contrast agents that are used lack specificity. Here, it is reported that the FDA-approved indocyanine green (ICG)-conjugated recombinant human chorionic gonadotropin (hCG) protein can target early follicles with long-term effectiveness. A novel high-resolution NIR-II imaging approach is developed for monitoring follicular development as well as ovulation using multi-color imaging of ovarian vessels with a combination of non-overlapping downconversion nanoparticles (DCNPs). The results showed that the ability to monitor early follicles of around 50 µm in diameter exceeded the spatial and temporal resolution of ultrasound or MRI without the reproductive damage associated with computed tomography radiation, and this enabled the clinical identification of the follicular reserve in patients with infertility diseases such as polycystic ovary syndrome (PCOS). In addition, NIR-II imaging clearly targeted ovarian tumors and showed micro-metastatic lesions, thus providing a new tool for monitoring tumors in vivo and guiding surgical resection.
Collapse
Affiliation(s)
- Yicong Wang
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Sciences, Shanghai Medical College, Brain Science Collaborative Innovation Center, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, 200032, China
- Shanghai Key Laboratory of Acupuncture Mechanism and Acupoint Function, Shanghai Institute of Acupuncture and Moxibustion, Shanghai, 200433, China
- Fudan Zhangjiang Institute, Shanghai, 201203, China
| | - Wenhan Lu
- Department of Ophthalmology & Visual Science, Eye & ENT Hospital, Shanghai Medical College, Fudan University, 83 Fenyang Road, Shanghai, 200031, China
| | - Zi-Han Chen
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers and iChem, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, 200433, China
| | - Yan Xiao
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Sciences, Shanghai Medical College, Brain Science Collaborative Innovation Center, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, 200032, China
- Shanghai Key Laboratory of Acupuncture Mechanism and Acupoint Function, Shanghai Institute of Acupuncture and Moxibustion, Shanghai, 200433, China
- Fudan Zhangjiang Institute, Shanghai, 201203, China
| | - Yu Wang
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Sciences, Shanghai Medical College, Brain Science Collaborative Innovation Center, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, 200032, China
- Shanghai Key Laboratory of Acupuncture Mechanism and Acupoint Function, Shanghai Institute of Acupuncture and Moxibustion, Shanghai, 200433, China
- Fudan Zhangjiang Institute, Shanghai, 201203, China
| | - Wenhao Gao
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Sciences, Shanghai Medical College, Brain Science Collaborative Innovation Center, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, 200032, China
- Shanghai Key Laboratory of Acupuncture Mechanism and Acupoint Function, Shanghai Institute of Acupuncture and Moxibustion, Shanghai, 200433, China
- Fudan Zhangjiang Institute, Shanghai, 201203, China
| | - Zhiming Wang
- State Key Laboratory of Drug Research, Molecular Imaging Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Ruihu Song
- State Key Laboratory of Drug Research, Molecular Imaging Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Zhao Fang
- State Key Laboratory of Drug Research, Molecular Imaging Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Wei Hu
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Sciences, Shanghai Medical College, Brain Science Collaborative Innovation Center, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, 200032, China
- Shanghai Key Laboratory of Acupuncture Mechanism and Acupoint Function, Shanghai Institute of Acupuncture and Moxibustion, Shanghai, 200433, China
- Fudan Zhangjiang Institute, Shanghai, 201203, China
| | - Xiaoyu Tong
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Sciences, Shanghai Medical College, Brain Science Collaborative Innovation Center, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, 200032, China
- Shanghai Key Laboratory of Acupuncture Mechanism and Acupoint Function, Shanghai Institute of Acupuncture and Moxibustion, Shanghai, 200433, China
- Fudan Zhangjiang Institute, Shanghai, 201203, China
| | - Kuinyu Lee
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Sciences, Shanghai Medical College, Brain Science Collaborative Innovation Center, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, 200032, China
- Shanghai Key Laboratory of Acupuncture Mechanism and Acupoint Function, Shanghai Institute of Acupuncture and Moxibustion, Shanghai, 200433, China
- Fudan Zhangjiang Institute, Shanghai, 201203, China
| | - Zhenle Pei
- Shanghai Ji Ai Genetics & IVF Institute, Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, 200011, China
| | - Minzhen Xu
- Department of Nuclear Medicine, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
| | - Fan Zhang
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers and iChem, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, 200433, China
| | - Hao Chen
- State Key Laboratory of Drug Research, Molecular Imaging Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Yi Feng
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Sciences, Shanghai Medical College, Brain Science Collaborative Innovation Center, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, 200032, China
- Shanghai Key Laboratory of Acupuncture Mechanism and Acupoint Function, Shanghai Institute of Acupuncture and Moxibustion, Shanghai, 200433, China
- Fudan Zhangjiang Institute, Shanghai, 201203, China
| |
Collapse
|
2
|
Sevilla A, Grichnik J. Therapeutic modulation of KIT ligand in melanocytic disorders with implications for mast cell diseases. Exp Dermatol 2024; 33:e15091. [PMID: 38711220 DOI: 10.1111/exd.15091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 04/18/2024] [Accepted: 04/19/2024] [Indexed: 05/08/2024]
Abstract
KIT ligand and its associated receptor KIT serve as a master regulatory system for both melanocytes and mast cells controlling survival, migration, proliferation and activation. Blockade of this pathway results in cell depletion, while overactivation leads to mastocytosis or melanoma. Expression defects are associated with pigmentary and mast cell disorders. KIT ligand regulation is complex but efficient targeting of this system would be of significant benefit to those suffering from melanocytic or mast cell disorders. Herein, we review the known associations of this pathway with cutaneous diseases and the regulators of this system both in skin and in the more well-studied germ cell system. Exogenous agents modulating this pathway will also be presented. Ultimately, we will review potential therapeutic opportunities to help our patients with melanocytic and mast cell disease processes potentially including vitiligo, hair greying, melasma, urticaria, mastocytosis and melanoma.
Collapse
Affiliation(s)
- Alec Sevilla
- Department of Dermatology, New York Medical College, New York, New York, USA
- Department of Internal Medicine, Lakeland Regional Health, Lakeland, Florida, USA
| | - James Grichnik
- Department of Dermatology and Cutaneous Surgery, Morsani College of Medicine, University of South Florida, Tampa, Florida, USA
- Department of Cutaneous Oncology, Moffitt Cancer Center, Tampa, Florida, USA
| |
Collapse
|
3
|
Nie H, Xu Y, Zhang Y, Wen Y, Zhan J, Xia Y, Zhou Y, Wang R, Wu X. The effects of endogenous FSH and its receptor on oogenesis and folliculogenesis in female Alligator sinensis. BMC ZOOL 2023; 8:8. [PMID: 37403129 DOI: 10.1186/s40850-023-00170-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 06/26/2023] [Indexed: 07/06/2023] Open
Abstract
BACKGROUND The precise mechanisms of hormone action responsible for the full course of events modulating folliculogenesis in crocodilian have not been determined, although histological features have been identified. RESULTS The Alligator sinensis ovarian morphological characteristics observed at 1, 15, 30, 60, 90, and 300 days post hatching(dph) revealed that the dynamic changes in germ cells varied in different meiotic and developmental stages, confirming that the processes of folliculogenesis were protracted and asynchronous. The presence of endogenous follicle-stimulating hormone(FSH) mRNA and protein expression within the cerebrum at 1 dph, in parallel with the increase in germ cells within the germ cell nests(Nest) from 1 dph to 15 dph, suggested that endocrine regulation of the pituitary-gonad axis is an early event in oogonia division. Furthermore, the endogenous expression of FSH showed a trend of negative feedback augmentation accompanied by the exhaustion of maternal yolk E2 observed at 15 dph. Such significant elevation of endogenous FSH levels was observed to be related to pivotal events in the transition from mitosis to meiosis, as reflected by the proportion of oogonia during premeiosis interphase, with endogenous FSH levels reaching a peak at the earliest time step of 1 dph. In addition, the simultaneous upregulation of premeiotic marker STRA8 mRNA expression and the increase in endogenous FSH further verified the above speculation. The strongly FSHr-positive label in the oocytes within Pre-previtellogenic follicles was synchronized with the significant elevation of ovarian cAMP detected at 300 dph, which suggested that diplotene arrest maintenance during early vitellogenesis might be FSH dependent. In addition, preferential selection in asynchronous meiotic initiation has been supposed to act on somatic supportive cells and not directly on germ cells via regulation of FSH that in turn affects downstream estrogen levels. This suggestion was verified by the reciprocal stimulating effect of FSH and E2 on the accelerated meiotic marker SYCP3 and by the inhibited cell apoptosis demonstrated in ovarian cell culture in vitro. CONCLUSION The corresponding results contribute an expansion of the understanding of physiological processes and shed some light on the specific factors responsible for gonadotropin function in the early folliculogenesis of crocodilians.
Collapse
Affiliation(s)
- Haitao Nie
- Anhui Provincial Key Laboratory of the Conservation and Exploitation of Biological Resources, College of Life Sciences, Anhui Normal University, Wuhu, Anhui Province, 241000, People's Republic of China
| | - Yunlu Xu
- Anhui Provincial Key Laboratory of the Conservation and Exploitation of Biological Resources, College of Life Sciences, Anhui Normal University, Wuhu, Anhui Province, 241000, People's Republic of China
| | - Yuqian Zhang
- Anhui Provincial Key Laboratory of the Conservation and Exploitation of Biological Resources, College of Life Sciences, Anhui Normal University, Wuhu, Anhui Province, 241000, People's Republic of China
| | - Yue Wen
- Anhui Provincial Key Laboratory of the Conservation and Exploitation of Biological Resources, College of Life Sciences, Anhui Normal University, Wuhu, Anhui Province, 241000, People's Republic of China
| | - Jixiang Zhan
- Anhui Provincial Key Laboratory of the Conservation and Exploitation of Biological Resources, College of Life Sciences, Anhui Normal University, Wuhu, Anhui Province, 241000, People's Republic of China
| | - Yong Xia
- Anhui Provincial Key Laboratory of the Conservation and Exploitation of Biological Resources, College of Life Sciences, Anhui Normal University, Wuhu, Anhui Province, 241000, People's Republic of China
| | - Yongkang Zhou
- Alligator Research Center of Anhui Province, Xuanzhou, 242000, People's Republic of China
| | - Renping Wang
- Alligator Research Center of Anhui Province, Xuanzhou, 242000, People's Republic of China
| | - Xiaobing Wu
- Anhui Provincial Key Laboratory of the Conservation and Exploitation of Biological Resources, College of Life Sciences, Anhui Normal University, Wuhu, Anhui Province, 241000, People's Republic of China.
| |
Collapse
|
4
|
Peserico A, Di Berardino C, Capacchietti G, Camerano Spelta Rapini C, Liverani L, Boccaccini AR, Russo V, Mauro A, Barboni B. IVM Advances for Early Antral Follicle-Enclosed Oocytes Coupling Reproductive Tissue Engineering to Inductive Influences of Human Chorionic Gonadotropin and Ovarian Surface Epithelium Coculture. Int J Mol Sci 2023; 24:ijms24076626. [PMID: 37047595 PMCID: PMC10095509 DOI: 10.3390/ijms24076626] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/26/2023] [Accepted: 03/30/2023] [Indexed: 04/05/2023] Open
Abstract
In vitro maturation (IVM) is not a routine assisted reproductive technology (ART) for oocytes collected from early antral (EA) follicles, a large source of potentially available gametes. Despite substantial improvements in IVM in the past decade, the outcomes remain low for EA-derived oocytes due to their reduced developmental competences. To optimize IVM for ovine EA-derived oocytes, a three-dimensional (3D) scaffold-mediated follicle-enclosed oocytes (FEO) system was compared with a validated cumulus-oocyte complex (COC) protocol. Gonadotropin stimulation (eCG and/or hCG) and/or somatic cell coculture (ovarian vs. extraovarian-cell source) were supplied to both systems. The maturation rate and parthenogenetic activation were significantly improved by combining hCG stimulation with ovarian surface epithelium (OSE) cells coculture exclusively on the FEO system. Based on the data, the paracrine factors released specifically from OSE enhanced the hCG-triggering of oocyte maturation mechanisms by acting through the mural compartment (positive effect on FEO and not on COC) by stimulating the EGFR signaling. Overall, the FEO system performed on a developed reproductive scaffold proved feasible and reliable in promoting a synergic cytoplasmatic and nuclear maturation, offering a novel cultural strategy to widen the availability of mature gametes for ART.
Collapse
Affiliation(s)
- Alessia Peserico
- Department of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, 64100 Teramo, Italy
| | - Chiara Di Berardino
- Department of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, 64100 Teramo, Italy
| | - Giulia Capacchietti
- Department of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, 64100 Teramo, Italy
| | - Chiara Camerano Spelta Rapini
- Department of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, 64100 Teramo, Italy
| | - Liliana Liverani
- Institute of Biomaterials, Department of Materials Science and Engineering, Friedrich-Alexander University of Erlangen-Nuremberg, 91054 Erlangen, Germany
- DGS S.p.A., 00142 Rome, Italy
| | - Aldo Roberto Boccaccini
- Institute of Biomaterials, Department of Materials Science and Engineering, Friedrich-Alexander University of Erlangen-Nuremberg, 91054 Erlangen, Germany
| | - Valentina Russo
- Department of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, 64100 Teramo, Italy
| | - Annunziata Mauro
- Department of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, 64100 Teramo, Italy
| | - Barbara Barboni
- Department of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, 64100 Teramo, Italy
| |
Collapse
|
5
|
Tocci A. Reply: In response to: why double ovarian stimulation in an in vitro fertilization cycle is potentially unsafe? Hum Reprod 2022; 37:1947-1949. [DOI: 10.1093/humrep/deac128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|
6
|
Hsu CC, Hsu I, Lee LH, Hsueh YS, Lin CY, Chang HH. Intraovarian Injection of Recombinant Human Follicle-Stimulating Hormone for Luteal-Phase Ovarian Stimulation during Oocyte Retrieval Is Effective in Women with Impending Ovarian Failure and Diminished Ovarian Reserve. Biomedicines 2022; 10:biomedicines10061312. [PMID: 35740333 PMCID: PMC9219872 DOI: 10.3390/biomedicines10061312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 05/31/2022] [Accepted: 06/01/2022] [Indexed: 12/03/2022] Open
Abstract
It is a challenge to obtain sufficient eggs during in vitro fertilization (IVF) in women with impending ovarian failure (IOF)/diminished ovarian reserve (DOR). Although studies have suggested that more than one wave of follicle growth exists, the efficacy of controlled ovulation stimulation (COS) in both follicular and luteal phases of the same ovarian cycle (DuoStim) is not established in women with IOF/DOR. We investigated the efficacy of DuoStim using the intraovarian injection of recombinant human follicle-stimulating hormone (rhFSH) during oocyte retrieval in women with DOR. For luteal-phase stimulation, intraovarian (Group A, N = 28) or superficial subcutaneous (Group B, N = 18) injection of 300 IU rhFSH immediately after oocyte retrieval was administered as the first dose, and intermittent superficial subcutaneous addition of gonadotropins was employed accordingly for further COS in both groups. In Group A, significantly lower Gn doses, a shorter duration of COS, a greater number of antral follicle counts, and an increased number of retrieved mature and total oocytes were noted. Compared with the clinical outcomes of luteal-phase COS, the average daily doses of rhFSH used in Group A were significantly lower. In summary, the novel approach using intraovarian rhFSH injection provides an efficient treatment regimen in women with IOF/DOR.
Collapse
Affiliation(s)
- Chao-Chin Hsu
- Taiwan United Birth-Promoting Experts Fertility Clinic, Tainan 710, Taiwan
- Department of Obstetrics and Gynecology, National Taiwan University Hospital, Taipei 100, Taiwan;
- Department of Obstetrics and Gynecology, National Cheng Kung University Hospital, Tainan 701, Taiwan
- Correspondence: (C.-C.H.); (H.H.C.); Tel.: +886-6-3128887 (C.-C.H.); +886-6-2353535 (ext. 5683) (H.H.C.)
| | - Isabel Hsu
- Department of Obstetrics and Gynecology, National Taiwan University Hospital, Taipei 100, Taiwan;
| | | | - Yuan-Shuo Hsueh
- Department of Medical Science Industries, College of Health Sciences, Chang Jung Christian University, Tainan 711, Taiwan;
| | - Chih-Ying Lin
- Institute of Clinical Pharmacy and Pharmaceutical Sciences, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan;
| | - Hui Hua Chang
- Institute of Clinical Pharmacy and Pharmaceutical Sciences, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan;
- School of Pharmacy, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan
- Department of Pharmacy, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan
- Department of Pharmacy, National Cheng Kung University Hospital, Dou-Liou Branch, Yunlin 640, Taiwan
- Correspondence: (C.-C.H.); (H.H.C.); Tel.: +886-6-3128887 (C.-C.H.); +886-6-2353535 (ext. 5683) (H.H.C.)
| |
Collapse
|
7
|
Haldar S, Agrawal H, Saha S, Straughn AR, Roy P, Kakar SS. Overview of follicle stimulating hormone and its receptors in reproduction and in stem cells and cancer stem cells. Int J Biol Sci 2022; 18:675-692. [PMID: 35002517 PMCID: PMC8741861 DOI: 10.7150/ijbs.63721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 10/21/2021] [Indexed: 11/05/2022] Open
Abstract
Follicle stimulating hormone (FSH) and its receptor (FSHR) have been reported to be responsible for several physiological functions and cancers. The responsiveness of stem cells and cancer stem cells towards the FSH-FSHR system make the function of FSH and its receptors more interesting in the context of cancer biology. This review is comprised of comprehensive information on FSH-FSHR signaling in normal physiology, gonadal stem cells, cancer cells, and potential options of utilizing FSH-FSHR system as an anti-cancer therapeutic target.
Collapse
Affiliation(s)
- Swati Haldar
- Molecular Endocrinology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Uttarakhand 247667, India.,Current address: Drug Discovery and Development Division, Patanjali Research Institute, Haridwar, Uttarakhand 249405
| | - Himanshu Agrawal
- Molecular Endocrinology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Uttarakhand 247667, India
| | - Sarama Saha
- Department of Biochemistry, All India Institute of Medical Sciences Rishikesh, Uttarakhand 249203, India
| | - Alex R Straughn
- Department of Physiology, James Graham Brown Cancer Center, University of Louisville, Louisville, KY 40202, USA
| | - Partha Roy
- Molecular Endocrinology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Uttarakhand 247667, India
| | - Sham S Kakar
- Department of Physiology, James Graham Brown Cancer Center, University of Louisville, Louisville, KY 40202, USA
| |
Collapse
|
8
|
Bhartiya D, Patel H. An overview of FSH-FSHR biology and explaining the existing conundrums. J Ovarian Res 2021; 14:144. [PMID: 34717708 PMCID: PMC8557046 DOI: 10.1186/s13048-021-00880-3] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Accepted: 09/12/2021] [Indexed: 12/23/2022] Open
Abstract
FSH was first identified in 1930 and is central to mammalian reproduction. It is indeed intriguing that despite being researched upon for about 90 years, there is still so much more to learn about FSH-FSHR biology. The purpose of this review is to provide an overview of current understanding of FSH-FSHR biology, to review published data on biological and clinical relevance of reported mutations, polymorphisms and alternately spliced isoforms of FSHR. Tissue-resident stem/progenitor cells in multiple adult tissues including ovaries, testes and uterus express FSHR and this observation results in a paradigm shift in the field. The results suggest a direct action of FSH on the stem cells in addition to their well-studied action on Granulosa and Sertoli cells in the ovaries and testes respectively. Present review further addresses various concerns raised in recent times by the scientific community regarding extragonadal expression of FSHR, especially in cancers affecting multiple organs. Similar population of primitive and pluripotent tissue-resident stem cells expressing FSHR exist in multiple adult tissues including bone marrow and reproductive tissues and help maintain homeostasis throughout life. Any dysfunction of these stem cells results in various pathologies and they also most likely get transformed into cancer stem cells and initiate cancer. This explains why multiple solid as well as liquid tumors express OCT-4 and FSHR. More research efforts need to be focused on alternately spliced FSHR isoforms.
Collapse
Affiliation(s)
- Deepa Bhartiya
- Stem Cell Biology Department, ICMR- National Institute for Research in Reproductive Health, Jehangir Merwanji Street, Maharashtra, 400012, Mumbai, India. .,Department of Ophthalmology and Visual Sciences, University of Nebraska Medical Center, Omaha, Nebraska, USA.
| | - Hiren Patel
- Stem Cell Biology Department, ICMR- National Institute for Research in Reproductive Health, Jehangir Merwanji Street, Maharashtra, 400012, Mumbai, India.,Department of Ophthalmology and Visual Sciences, University of Nebraska Medical Center, Omaha, Nebraska, USA
| |
Collapse
|
9
|
Bhartiya D, Patel H, Kaushik A, Singh P, Sharma D. Endogenous, tissue-resident stem/progenitor cells in gonads and bone marrow express FSHR and respond to FSH via FSHR-3. J Ovarian Res 2021; 14:145. [PMID: 34717703 PMCID: PMC8556987 DOI: 10.1186/s13048-021-00883-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Accepted: 09/16/2021] [Indexed: 12/12/2022] Open
Abstract
Follicle stimulating hormone (FSH) is secreted by the anterior pituitary and acts on the germ cells indirectly through Granulosa cells in ovaries and Sertoli cells in the testes. Extragonadal action of FSH has been reported but is still debated. Adult tissues harbor two populations of stem cells including a reserve population of primitive, small-sized, pluripotent very small embryonic-like stem cells (VSELs) and slightly bigger, tissue-specific progenitors which include ovarian stem cells (OSCs) in ovaries, spermatogonial stem cells (SSCs) in testes, endometrial stem cells (EnSCs) in uterus and hematopoietic stem cells (HSCs) in the bone marrow. Data has accumulated in animal models showing FSHR expression on both VSELs and progenitors in ovaries, testes, uterus and bone marrow and eventually gets lost as the cells differentiate further. FSH exerts a direct action on the stem/progenitor cells via alternatively spliced FSHR-3 rather than the canonical FSHR-1. FSH stimulates VSELs to undergo asymmetrical cell divisions to self-renew and give rise to the progenitors that in turn undergo symmetrical cell divisions and clonal expansions followed by differentiation into specific cell types. Excessive self-renewal of VSELs results in cancer and this explains ubiquitous expression of embryonic markers including nuclear OCT-4 along with FSHR in cancerous tissues. Focus of this review is to compile published data to support this concept. FSHR expression in stem/progenitor cells was confirmed by immuno-fluorescence, Western blotting, in situ hybridization and by quantitative RT-PCR. Two different commercially available antibodies (Abcam, Santacruz) were used to confirm specificity of FSHR expression along with omission of primary antibody and pre-incubation of antibody with immunizing peptide as negative controls. Western blotting allowed detection of alternatively spliced FSHR isoforms. Oligoprobes and primers specific for Fshr-1 and Fshr-3 were used to study these alternately-sliced isoforms by in situ hybridization and their differential expression upon FSH treatment by qRT-PCR. To conclude, stem/progenitor cells in adult tissues express FSHR and directly respond to FSH via FSHR-3. These findings change the field of FSH-FSHR biology, call for paradigm shift, explain FSHR expression on cancer cells in multiple organs and provide straightforward explanations for various existing conundrums including extragonadal expression of FSHR.
Collapse
Affiliation(s)
- Deepa Bhartiya
- Stem Cell Biology Department, ICMR- National Institute for Research in Reproductive Health, Jehangir Merwanji Street, Parel, Mumbai, 400 012, India.
| | - Hiren Patel
- Stem Cell Biology Department, ICMR- National Institute for Research in Reproductive Health, Jehangir Merwanji Street, Parel, Mumbai, 400 012, India
- Present address: Department of Ophthalmology and Visual Sciences, University of Nebraska Medical Center, Omaha, NE, USA
| | - Ankita Kaushik
- Stem Cell Biology Department, ICMR- National Institute for Research in Reproductive Health, Jehangir Merwanji Street, Parel, Mumbai, 400 012, India
| | - Pushpa Singh
- Stem Cell Biology Department, ICMR- National Institute for Research in Reproductive Health, Jehangir Merwanji Street, Parel, Mumbai, 400 012, India
| | - Diksha Sharma
- Stem Cell Biology Department, ICMR- National Institute for Research in Reproductive Health, Jehangir Merwanji Street, Parel, Mumbai, 400 012, India
| |
Collapse
|
10
|
Li H, Liu Y, Wang Y, Zhao X, Qi X. Hormone therapy for ovarian cancer: Emphasis on mechanisms and applications (Review). Oncol Rep 2021; 46:223. [PMID: 34435651 PMCID: PMC8424487 DOI: 10.3892/or.2021.8174] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 08/04/2021] [Indexed: 02/05/2023] Open
Abstract
Ovarian cancer (OC) remains the leading cause of mortality due to gynecological malignancies. Epidemiological studies have demonstrated that steroid hormones released from the hypothalamic-pituitary-ovarian axis can play a role in stimulating or inhibiting OC progression, with gonadotropins, estrogens and androgens promoting OC progression, while gonadotropin-releasing hormone (GnRH) and progesterone may be protective factors in OC. Experimental studies have indicated that hormone receptors are expressed in OC cells and mediate the growth stimulatory or growth inhibitory effects of hormones on these cells. Hormone therapy agents have been evaluated in a number of clinical trials. The majority of these trials were conducted in patients with relapsed or refractory OC with average efficacy and limited side-effects. A better understanding of the mechanisms through which hormones affect cell growth may improve the efficacy of hormone therapy. In the present review article, the role of hormones (GnRH, gonadotropins, androgens, estrogens and progestins) and their receptors in OC tumorigenesis, and hormonal therapy in OC treatment is discussed and summarized.
Collapse
Affiliation(s)
- Hongyi Li
- Department of Gynecology and Obstetrics, Development and Related Diseases of Women and Children and Key Laboratory of Sichuan Province, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Yu Liu
- Department of Gynecology and Obstetrics, Development and Related Diseases of Women and Children and Key Laboratory of Sichuan Province, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Yang Wang
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Xia Zhao
- Department of Gynecology and Obstetrics, Development and Related Diseases of Women and Children and Key Laboratory of Sichuan Province, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Xiaorong Qi
- Department of Gynecology and Obstetrics, Development and Related Diseases of Women and Children and Key Laboratory of Sichuan Province, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| |
Collapse
|
11
|
Sp B, J P, Mp K, Im R. Long-term effect of repeated deslorelin acetate treatment in bitches for reproduction control. Theriogenology 2021; 173:73-82. [PMID: 34339906 DOI: 10.1016/j.theriogenology.2021.07.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 07/20/2021] [Accepted: 07/22/2021] [Indexed: 11/17/2022]
Abstract
Long-acting gonadotropin-releasing hormone (GnRH) analogs, which are approved for male dogs and ferrets, have been used off-label to suppress estrus in bitches predisposed to the side effects of spaying. Health data from the past 12 years were evaluated from bitches without progestogen pretreatment that received deslorelin acetate (DA) to suppress estrus for the first time before the age of 4.5 years. The study population included 32 client-owned bitches repeatedly treated with either 4.7 mg or 9.4 mg DA implants for a period of 5.3 ± 3.4 years (range 0.5-11.3 years). Follow-up information concerning immediate side effects of DA occurring within five months after the first DA treatment (n = 23) as well as long-term side effects of sustained gonadal suppression occurring after five months up to three years (n = 2), three years up to five years (n = 2) or more than five years (n = 8) were assessed through a questionnaire. Treatment was considered successful if no major side effects requiring medical treatment occurred, which applied to 26 out of 32 (81 %) bitches. In the six remaining bitches, the following major side effects led to treatment discontinuation: persistent urinary incontinence (n = 1), reoccurring induced heat (n = 1), uterine disease (n = 3) and/or ovarian tumor (n = 3). The bitches recovered completely after surgical spaying and/or DA implant removal. Minor side effects that did not require therapy or affect animal welfare included body weight changes (n = 18), subtle behavioral changes (n = 13), induced heat (n = 12), coat changes (n = 11), pseudocyesis (n = 6), transient urinary incontinence (n = 4), and/or temporary thickening of the uterine wall with little anechogenic content (n = 2). To examine a possible causal relationship between adverse side effects and DA treatment, further studies should compare the frequency of pathologies between groups of GnRH-treated, intact and spayed bitches of similar breeds and ages. Nevertheless, DA application before the age of 4.5 years may be a means of postponing surgical spaying for several years in breeds at high risk for developing urinary incontinence. Before DA is used in bitches, owners should be fully informed regarding possible side effects.
Collapse
Affiliation(s)
- Brändli Sp
- Clinic of Reproductive Medicine, Vetsuisse Faculty, University of Zurich, Winterthurerstrasse 260, 8057, Zurich, Switzerland
| | - Palm J
- Clinic of Reproductive Medicine, Vetsuisse Faculty, University of Zurich, Winterthurerstrasse 260, 8057, Zurich, Switzerland
| | - Kowalewski Mp
- Institute of Veterinary Anatomy, Vetsuisse Faculty, University of Zurich, Winterthurerstrasse 260, 8057, Zurich, Switzerland
| | - Reichler Im
- Clinic of Reproductive Medicine, Vetsuisse Faculty, University of Zurich, Winterthurerstrasse 260, 8057, Zurich, Switzerland.
| |
Collapse
|
12
|
Cheung J, Lokman NA, Abraham RD, Macpherson AM, Lee E, Grutzner F, Ghinea N, Oehler MK, Ricciardelli C. Reduced Gonadotrophin Receptor Expression Is Associated with a More Aggressive Ovarian Cancer Phenotype. Int J Mol Sci 2020; 22:ijms22010071. [PMID: 33374698 PMCID: PMC7793521 DOI: 10.3390/ijms22010071] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 12/11/2020] [Accepted: 12/18/2020] [Indexed: 12/18/2022] Open
Abstract
Follicle-stimulating hormone (FSH) and luteinising hormone (LH) play important roles in regulating cell growth and proliferation in the ovary. However, few studies have explored the expression of FSH and LH receptors (FSHR and LHCGR) in ovarian cancer, and their functional roles in cancer progression remain inconclusive. This study investigated the potential impact of both mRNA (FSHR, LHCGR) and protein (FSHR, LHCGR) expression on ovarian cancer progression using publicly available online databases, qRT-PCR (high grade serous ovarian cancers, HGSOC, n = 29 and benign ovarian tumors, n = 17) and immunohistochemistry (HGSOC, n = 144). In addition, we investigated the effect of FSHR and LHCGR siRNA knockdown on the pro-metastatic behavior of serous ovarian cancer cells in vitro. High FSHR or high LHCGR expression in patients with all subtypes of high-grade ovarian cancer was significantly associated with longer progression-free survival (PFS) and overall survival (OS). High FSHR protein expression was associated with increased PFS (p = 0.050) and OS (p = 0.025). HGSOC patients with both high FSHR and high LHCGR protein levels had the best survival outcome, whilst both low FSHR and low LHCGR expression was associated with poorest survival (p = 0.019). Knockdown of FSHR significantly increased the invasion of serous ovarian cancer cells (OVCAR3 and COV362) in vitro. LHCGR knockdown also promoted invasion of COV362 cells. This study highlights that lower FSHR and LHCGR expression is associated with a more aggressive epithelial ovarian cancer phenotype and promotes pro-metastatic behaviour.
Collapse
MESH Headings
- Biomarkers, Tumor/genetics
- Biomarkers, Tumor/metabolism
- Cell Line, Tumor
- Female
- Humans
- Middle Aged
- Neoplasms, Cystic, Mucinous, and Serous/genetics
- Neoplasms, Cystic, Mucinous, and Serous/metabolism
- Neoplasms, Cystic, Mucinous, and Serous/pathology
- Ovarian Neoplasms/genetics
- Ovarian Neoplasms/metabolism
- Ovarian Neoplasms/pathology
- Phenotype
- Receptors, FSH/genetics
- Receptors, FSH/metabolism
- Receptors, LH/genetics
- Receptors, LH/metabolism
Collapse
Affiliation(s)
- Janelle Cheung
- Adelaide Medical School, Robinson Research Institute, University of Adelaide, Adelaide, SA 5000, Australia; (J.C.); (N.A.L.); (R.D.A.); (A.M.M.); (M.K.O.)
| | - Noor A. Lokman
- Adelaide Medical School, Robinson Research Institute, University of Adelaide, Adelaide, SA 5000, Australia; (J.C.); (N.A.L.); (R.D.A.); (A.M.M.); (M.K.O.)
| | - Riya D. Abraham
- Adelaide Medical School, Robinson Research Institute, University of Adelaide, Adelaide, SA 5000, Australia; (J.C.); (N.A.L.); (R.D.A.); (A.M.M.); (M.K.O.)
| | - Anne M. Macpherson
- Adelaide Medical School, Robinson Research Institute, University of Adelaide, Adelaide, SA 5000, Australia; (J.C.); (N.A.L.); (R.D.A.); (A.M.M.); (M.K.O.)
| | - Eunice Lee
- School of Biological Science, Robinson Research Institute, University of Adelaide, Adelaide, SA 5005, Australia; (E.L.); (F.G.)
| | - Frank Grutzner
- School of Biological Science, Robinson Research Institute, University of Adelaide, Adelaide, SA 5005, Australia; (E.L.); (F.G.)
| | - Nicolae Ghinea
- Curie Institute, Research Center, Translational Research Department, Tumor Angiogenesis Team, 75005 Paris, France;
| | - Martin K. Oehler
- Adelaide Medical School, Robinson Research Institute, University of Adelaide, Adelaide, SA 5000, Australia; (J.C.); (N.A.L.); (R.D.A.); (A.M.M.); (M.K.O.)
- Royal Adelaide Hospital, Adelaide, SA 5000, Australia
| | - Carmela Ricciardelli
- Adelaide Medical School, Robinson Research Institute, University of Adelaide, Adelaide, SA 5000, Australia; (J.C.); (N.A.L.); (R.D.A.); (A.M.M.); (M.K.O.)
- Correspondence:
| |
Collapse
|
13
|
Progranulin expression induced by follicle-stimulating hormone in ovarian cancer cell lines depends on the histological subtype. Med Oncol 2020; 37:59. [PMID: 32474861 DOI: 10.1007/s12032-020-01383-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 05/23/2020] [Indexed: 10/24/2022]
Abstract
Epithelial ovarian cancer (EOC) is a heterogeneous disease that can be categorized into four major histological subtypes. Its etiology remains poorly understood due mainly to this heterogeneity. Follicle-stimulating hormone (FSH) has been implicated as a risk factor in EOC and has been suggested that may influence the development of specific subtypes. In addition, FSH regulates different aspects of ovarian cancer tumorigenesis. FSH downstream target genes in EOC have not been fully identified. Progranulin (PGRN) overexpression is associated with cell proliferation, invasion, chemoresistance, and shortened overall survival in ovarian cancer. Recently, we demonstrated that PGRN expression is regulated through the PI3K signaling pathway in clear cell ovarian carcinoma (CCOC) cells. In contrast, we also demonstrated that PGRN synthesis in serous ovarian cancer (SOC) cells is regulated via PKC but not by the PI3K signaling pathway. Several studies have demonstrated that FSH induces PKC and PI3K activation. Thus, this study was to investigate the effect of FSH on PGRN production in the CCOC cell line TOV-21G as compared to the SOC cell lines SKOV3 and OVCAR3. Cultured TOV-21G, SKOV3, and OVCAR3 cells were incubated with different concentrations of FSH for 48 h. PGRN mRNA and protein expression were assessed by RT-PCR and Western blotting, while PGRN secretion was measured by ELISA. PGRN mRNA and protein expression, as well as PGRN secretion, significantly increased after FSH stimulation in TOV-21G but not in SKOV3 and OVCAR3 cells. These data indicate that FSH induces PGRN expression and secretion only in CCOC cells. Establishing specific features for CCOC could reveal potential diagnostic and therapeutic targets.
Collapse
|
14
|
Xiong S, Mhawech-Fauceglia P, Tsao-Wei D, Roman L, Gaur RK, Epstein AL, Pinski J. Expression of the luteinizing hormone receptor (LHR) in ovarian cancer. BMC Cancer 2019; 19:1114. [PMID: 31729966 PMCID: PMC6857310 DOI: 10.1186/s12885-019-6153-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Accepted: 09/11/2019] [Indexed: 11/10/2022] Open
Abstract
We investigated the association of LHR expression in epithelial ovarian cancer (OC) with clinical and pathologic characteristics of patients. LHR expression was examined immunohistochemically using tissue microarrays (TMAs) of specimens from 232 OC patients. Each sample was scored quantitatively evaluating LHR staining intensity (LHR-I) and percentage of LHR (LHR-P) staining cells in tumor cells examined. LHR-I was assessed as no staining (negative), weak (+ 1), moderate (+ 2), and strong positive (+ 3). LHR-P was measured as 1 to 5, 6 to 50% and > 50% of the tumor cells examined. Positive LHR staining was found in 202 (87%) patients' tumor specimens and 66% patients had strong intensity LHR expression. In 197 (85%) of patients, LHR-P was measured in > 50% of tumor cells. LHR-I was significantly associated with pathologic stage (p = 0.007). We found that 72% of stage III or IV patients expressed strong LHR-I in tumor cells. There were 87% of Silberberg's grade 2 or 3 patients compared to 70% of grade 1 patients with LHR expression observed in > 50% of tumor cells, p = 0.037. Tumor stage was significantly associated with overall survival and recurrence free survival, p < 0.001 for both analyses, even after adjustment for age, tumor grade and whether patient had persistent disease after therapy or not. Our study demonstrates that LHR is highly expressed in the majority of OC patients. Both LHR-I and LHR-P are significantly associated with either the pathologic stage or tumor grade.
Collapse
Affiliation(s)
- Shigang Xiong
- Department of Medicine/Medical Oncology Division, University of Southern California, 1441 Eastlake Ave, Los Angeles, CA, 90033, USA
| | - Paulette Mhawech-Fauceglia
- Aurora Diagnostics, Department of Pathology, Gynecologic Pathology Consultant, San Antonio, TX, 78209, USA
| | - Denice Tsao-Wei
- University of Southern California, Norris Comprehensive Cancer Center, 1441 Eastlake Avenue, Los Angeles, CA, 90033, USA
| | - Lynda Roman
- Department of Obstetrics & Gynecology, University of Southern California Keck School of Medicine, Los Angeles, CA, 90033, USA
| | - Rajesh K Gaur
- Department of Medicine/Medical Oncology Division, University of Southern California, 1441 Eastlake Ave, Los Angeles, CA, 90033, USA
| | - Alan L Epstein
- Department of Pathology, University of Southern California, HMR 2011 Zonal Ave, Los Angeles, CA, 90033, USA
| | - Jacek Pinski
- Department of Medicine/Medical Oncology Division, University of Southern California, 1441 Eastlake Ave, Los Angeles, CA, 90033, USA. .,University of Southern California, Norris Comprehensive Cancer Center, 1441 Eastlake Avenue, Los Angeles, CA, 90033, USA.
| |
Collapse
|
15
|
de Sousa Cunha F, Dos Santos Pereira LN, de Costa E Silva TP, de Sousa Luz RA, Nogueira Mendes A. Development of nanoparticulate systems with action in breast and ovarian cancer: nanotheragnostics. J Drug Target 2018; 27:732-741. [PMID: 30207742 DOI: 10.1080/1061186x.2018.1523418] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The use of nanoparticulate systems with action in breast and ovarian cancer has been highlighted in recent years as an alternative to increasing the therapeutic index of conventional anticancer drugs. Thus, nanoparticles have advantageous characteristics in the treatment of cancer. Several nanocarriers of drugs and nanoparticles are described in the literature. The pharmacokinetics of the drugs can be modified by the use of nanocarriers, which in turn facilitate the specific delivery of the drug to the tumour cell. Therefore, the present work is a review that examines some nanosystems with nanoparticles for action in the treatment of breast cancer and ovarian cancer.
Collapse
Affiliation(s)
- Fabiana de Sousa Cunha
- a Departamento de Química, Campus Poeta Torquato Neto , Universidade Estadual do Piauí , Teresina , Brazil
| | - Laise Nayra Dos Santos Pereira
- b Departamento de Química, Centro de Ciências da Natureza , Universidade Federal do Piauí, Campus Universitário Ministro Petrônio Portella, Ininga , Teresina , Brazil
| | - Thâmara Pryscilla de Costa E Silva
- b Departamento de Química, Centro de Ciências da Natureza , Universidade Federal do Piauí, Campus Universitário Ministro Petrônio Portella, Ininga , Teresina , Brazil
| | - Roberto Alves de Sousa Luz
- b Departamento de Química, Centro de Ciências da Natureza , Universidade Federal do Piauí, Campus Universitário Ministro Petrônio Portella, Ininga , Teresina , Brazil
| | - Anderson Nogueira Mendes
- b Departamento de Química, Centro de Ciências da Natureza , Universidade Federal do Piauí, Campus Universitário Ministro Petrônio Portella, Ininga , Teresina , Brazil.,c Departamento de Biofísica e Fisiologia, Centro de Ciências em Saúde , Universidade Federal do Piauí, Campus Universitário Ministro Petrônio Portella, Ininga , Teresina , Brazil
| |
Collapse
|
16
|
Zhao R, Zhang T, Xi W, Sun X, Zhou L, Guo Y, Zhao C, Bao Y. Human chorionic gonadotropin promotes cell proliferation through the activation of c-Met in gastric cancer cells. Oncol Lett 2018; 16:4271-4278. [PMID: 30197669 PMCID: PMC6126336 DOI: 10.3892/ol.2018.9215] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Accepted: 06/15/2018] [Indexed: 12/14/2022] Open
Abstract
Hormones and their receptors affect the development process of gastric cancer. Previous studies have revealed that human chorionic gonadotropin (hCG) is expressed in gastric cancer tissue. However, the mechanism by which hCG exerts its effects on gastric cancer cells had not been reported. In the present study, the expression of hCG and its receptor was detected in gastric cancer tissues and para-carcinoma tissues of 62 patients with gastric carcinoma. Following the treatment of gastric cancer cells SGC-7901 with hCG, a cell counting kit-8 assay, flow cytometry, a colony formation assay and a xenograft tumor model in nude mice were used to detect the effect of hCG on cell proliferation; and the expression of c-Met was determined by western blot analysis. The expression of hCG and its receptor were significantly higher in gastric cancer tissues compared with that of the matched para-carcinoma tissue (P<0.01). Proliferation of SGC-7901 cells treated with hCG was significant higher and the number of cells at the G2/M phase of the cell cycle increased compared with the control cells. Hepatocyte growth factor transmembrane protein receptor expression was increased in hCG-treated cells compared with the control cells, which relies on the protein kinase A signaling pathway. The present study revealed the potential function of hCG in the development of gastric cancer, suggesting that hCG may be a molecular marker and potential drug target in gastric cancer.
Collapse
Affiliation(s)
- Rui Zhao
- Department of Endoscopy Center, Sichuan Cancer Hospital, Chengdu, Sichuan 610041, P.R. China
| | - Tongtong Zhang
- Medical Research Center, The Third People's Hospital of Chengdu, Chengdu, Sichuan 610031, P.R. China
| | - Weidong Xi
- Department of Gastroenterology, The Third People's Hospital of Chengdu, Chengdu, Sichuan 610031, P.R. China
| | - Xiaobin Sun
- Department of Gastroenterology, The Third People's Hospital of Chengdu, Chengdu, Sichuan 610031, P.R. China
| | - Lingxiao Zhou
- Department of Endoscopy Center, Sichuan Cancer Hospital, Chengdu, Sichuan 610041, P.R. China
| | - Yuanbiao Guo
- Medical Research Center, The Third People's Hospital of Chengdu, Chengdu, Sichuan 610031, P.R. China
| | - Cong Zhao
- Department of Gastroenterology, The Third People's Hospital of Chengdu, Chengdu, Sichuan 610031, P.R. China
| | - Yu Bao
- Department of Endoscopy Center, Sichuan Cancer Hospital, Chengdu, Sichuan 610041, P.R. China
| |
Collapse
|
17
|
Marlicz W, Poniewierska-Baran A, Rzeszotek S, Bartoszewski R, Skonieczna-Żydecka K, Starzyńska T, Ratajczak MZ. A novel potential role of pituitary gonadotropins in the pathogenesis of human colorectal cancer. PLoS One 2018; 13:e0189337. [PMID: 29494614 PMCID: PMC5832186 DOI: 10.1371/journal.pone.0189337] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Accepted: 01/29/2018] [Indexed: 12/18/2022] Open
Abstract
Background Colorectal cancer (CRC) is a leading cause of death in the western world, and its incidence increases with patient age. It is also known that with age there occur changes in the levels of certain hormones, including an increase in the secretion of pituitary gonadotropins (PtGs) as a result of the loss of gonadal hormone feedback. We recently reported that functional PtG receptors are expressed in human lung cancer cells, rhabdomyosarcoma cells, and malignant hematopoietic stem cells. Findings Here we report for the first time that the receptors for follicle-stimulating hormone (FSH) and luteinizing hormone (LH) are expressed in primary tumor samples isolated from CRC patients as well as in the established human CRC cell lines HTC116 and HTB37. Moreover, we also report that PtGs stimulate chemotaxis, adhesion, and proliferation of these cell lines. Conclusions Our results suggest that PtGs play an important and underappreciated role in CRC pathogenesis, and we call for further studies to better define their role in gastrointestinal malignancies and their direct effect on putative CRC cancer stem cells.
Collapse
Affiliation(s)
- Wojciech Marlicz
- Department of Gastroenterology, Pomeranian Medical University, Szczecin, Poland
- * E-mail: (WM); (AP)
| | - Agata Poniewierska-Baran
- Department of Physiology, Pomeranian Medical University in Szczecin, Szczecin, Poland
- Department of Immunology, Faculty of Biology, University of Szczecin, Szczecin, Poland
- * E-mail: (WM); (AP)
| | - Sylwia Rzeszotek
- Department of Histology and Embryology, Pomeranian Medical University, Szczecin, Poland
| | - Rafał Bartoszewski
- Department of Biology and Pharmaceutical Botany, Medical University of Gdansk, Gdansk, Poland
| | | | - Teresa Starzyńska
- Department of Gastroenterology, Pomeranian Medical University, Szczecin, Poland
| | - Mariusz Z. Ratajczak
- Stem Cell Institute, James Graham Brown Cancer Center, University of Louisville, Louisville, United States of America
- Department of Regenerative Medicine, Warsaw Medical University, Warsaw, Poland
| |
Collapse
|
18
|
Patel H, Bhartiya D, Parte S. Further characterization of adult sheep ovarian stem cells and their involvement in neo-oogenesis and follicle assembly. J Ovarian Res 2018; 11:3. [PMID: 29304868 PMCID: PMC5755409 DOI: 10.1186/s13048-017-0377-5] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Accepted: 12/26/2017] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Stem cells in the ovary comprise of two distinct populations including very small embryonic-like stem cells (VSELs) and slightly bigger progenitors termed ovarian stem cells (OSCs). They are lodged in ovary surface epithelium (OSE) and are expected to undergo neo-oogenesis and primordial follicle (PF) assembly in adult ovaries. The ovarian stem cells express follicle stimulating hormone (FSH) receptors and are directly activated by FSH resulting in formation of germ cell nests (GCN) in vitro. Present study was undertaken to further characterize adult sheep OSCs and to understand their role during neo-oogenesis and PF assembly. METHODS Stem cells were collected by gently scraping the OSE cells and were characterized by H&E staining, immuno-localization, immuno-phenotyping and RT-PCR studies. Expression of FSH receptors and markers specific for stem cells (OCT-4, SSEA-4) and proliferation (PCNA) were studied on stem/progenitor cells in OSE culture and on adult sheep ovarian cortical tissue sections. Effect of FSH on stem cells was also studied in vitro. Asymmetric cell division (ACD) was monitored by studying expression of OCT-4 and NUMB. RESULTS Additional evidence was generated on the presence of two populations of stem cells in the OSE including VSELs and OSCs. FSHR expression was observed on both VSELs and OSCs by immuno-localization and immuno-phenotyping studies. FSH treatment in vitro stimulated VSELs that underwent ACD to self-renew and give rise to OSCs which divided rapidly by symmetric cell divisions (SCD) and clonal expansion with incomplete cytokinesis to form GCN. ACD was further confirmed by differential expression of OCT-4 in VSELs and NUMB in the OSCs. Immuno-histochemical expression of OCT-4, PCNA and FSHR was noted on stem cells located in the OSE in sheep ovarian sections. GCN and cohort of PF were observed in the ovarian cortex and provided evidence in support of neo-oogenesis from the stem cells. CONCLUSION Results of present study provide further evidence in support of two stem cells populations in adult sheep ovary. Both VSELs, OSCs and GCN express FSH receptors and FSH possibly regulates their function to undergo neo-oogenesis and primordial follicle assembly.
Collapse
Affiliation(s)
- Hiren Patel
- Stem Cell Biology Department, ICMR-National Institute for Research in Reproductive Health, Jehangir Merwanji Street, Parel, Mumbai, 400 012 India
| | - Deepa Bhartiya
- Stem Cell Biology Department, ICMR-National Institute for Research in Reproductive Health, Jehangir Merwanji Street, Parel, Mumbai, 400 012 India
| | - Seema Parte
- Stem Cell Biology Department, ICMR-National Institute for Research in Reproductive Health, Jehangir Merwanji Street, Parel, Mumbai, 400 012 India
| |
Collapse
|
19
|
Chung HH, Lee JC, Minn I. Follicle-stimulating hormone receptor in gynecological cancers. Mol Cell Toxicol 2018. [DOI: 10.1007/s13273-018-0001-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
20
|
Papadimitriou K, Kountourakis P, Kottorou AE, Antonacopoulou AG, Rolfo C, Peeters M, Kalofonos HP. Follicle-Stimulating Hormone Receptor (FSHR): A Promising Tool in Oncology? Mol Diagn Ther 2017; 20:523-530. [PMID: 27392476 DOI: 10.1007/s40291-016-0218-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
The cellular pathway of follicle-stimulating hormone (FSH) and its receptor (FSHR) is typically involved in reproduction in mammals. In humans, the FSHR is normally found in cells of the testis and the ovary, while it is scarcely expressed in other normal tissues. The expression of FSH/FSHR is studied in prostate, thyroid, and ovarian cancer tissues. Recently, the expression of FSHR was uniformly documented in malignant vascular endothelial cells from different tumor types, while in normal or inflammatory tissues its expression was scarce, suggesting a potential role of a pan-receptor in cancer. Subsequent studies have attempted to verify this unique specificity of this molecule and further define its features in malignant microenvironments but have had conflicting results, mostly because of differing techniques and immaturity of antibodies. Still, the lack of FSHR expression in most non-cancerous cells, in contrast to its specific correlation with the malignant tissue microenvironment, implies a potential role as both a diagnostic and a therapeutic tool. FSHR might also have a very specific role in malignancies, such as angiogenic and/or growth factor malignancies, but this is yet to be validated. Moreover, the expression of FSHR in endothelial malignant cells could have a predictive impact on disease progression, especially in relation to therapies targeting the tumor vasculature. In this review we look deep into the physiology of the FSH/FSHR pathway and evaluate the potential of FSHR as a predictive and prognostic tool in oncology.
Collapse
Affiliation(s)
| | | | | | | | - Christian Rolfo
- Department of Medical Oncology, University Hospital of Antwerp, 10 Wilrijksraat, 2650, Edegem, Belgium
| | - Marc Peeters
- Department of Medical Oncology, University Hospital of Antwerp, 10 Wilrijksraat, 2650, Edegem, Belgium
| | | |
Collapse
|
21
|
Figueira MI, Cardoso HJ, Correia S, Maia CJ, Socorro S. The stem cell factor (SCF)/c-KIT system in carcinogenesis of reproductive tissues: What does the hormonal regulation tell us? Cancer Lett 2017; 405:10-21. [PMID: 28751268 DOI: 10.1016/j.canlet.2017.07.017] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Revised: 07/15/2017] [Accepted: 07/17/2017] [Indexed: 12/13/2022]
|
22
|
Guo J, Xu N, Yao Y, Lin J, Li R, Li JW. Efficient expression of recombinant human heavy chain ferritin (FTH1) with modified peptides. Protein Expr Purif 2017; 131:101-108. [DOI: 10.1016/j.pep.2016.06.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2016] [Revised: 05/27/2016] [Accepted: 06/13/2016] [Indexed: 11/26/2022]
|
23
|
Bhartiya D, Shaikh A, Anand S, Patel H, Kapoor S, Sriraman K, Parte S, Unni S. Endogenous, very small embryonic-like stem cells: critical review, therapeutic potential and a look ahead. Hum Reprod Update 2016; 23:41-76. [PMID: 27614362 DOI: 10.1093/humupd/dmw030] [Citation(s) in RCA: 87] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Revised: 07/27/2016] [Accepted: 08/04/2016] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Both pluripotent very small embryonic-like stem cells (VSELs) and induced pluripotent stem (iPS) cells were reported in 2006. In 2012, a Nobel Prize was awarded for iPS technology whereas even today the very existence of VSELs is not well accepted. The underlying reason is that VSELs exist in low numbers, remain dormant under homeostatic conditions, are very small in size and do not pellet down at 250-280g. The VSELs maintain life-long tissue homeostasis, serve as a backup pool for adult stem cells and are mobilized under stress conditions. An imbalance in VSELs function (uncontrolled proliferation) may result in cancer. SEARCH METHODS The electronic database 'Medline/Pubmed' was systematically searched with the subject heading term 'very small embryonic-like stem cells'. OBJECTIVE AND RATIONALE The most primitive stem cells that undergo asymmetric cell divisions to self-renew and give rise to progenitors still remain elusive in the hematopoietic system and testes, while the presence of stem cells in ovary is still being debated. We propose to review the available literature on VSELs, the methods of their isolation and characterization, their ontogeny, how they compare with embryonic stem (ES) cells, primordial germ cells (PGCs) and iPS cells, and their role in maintaining tissue homeostasis. The review includes a look ahead on how VSELs will result in paradigm shifts in basic reproductive biology. OUTCOMES Adult tissue-specific stem cells including hematopoietic, spermatogonial, ovarian and mesenchymal stem cells have good proliferation potential and are indeed committed progenitors (with cytoplasmic OCT-4), which arise by asymmetric cell divisions of pluripotent VSELs (with nuclear OCT-4). VSELs are the most primitive stem cells and postulated to be an overlapping population with the PGCs. Rather than migrating only to the gonads, PGCs migrate and survive in various adult body organs throughout life as VSELs. VSELs express both pluripotent and PGC-specific markers and are epigenetically and developmentally more mature compared with ES cells obtained from the inner cell mass of a blastocyst-stage embryo. As a result, VSELs readily differentiate into three embryonic germ layers and spontaneously give rise to both sperm and oocytes in vitro. Like PGCs, VSELs do not divide readily in culture, nor produce teratoma or integrate in the developing embryo. But this property of being relatively quiescent allows endogenous VSELs to survive various kinds of toxic insults. VSELs that survive oncotherapy can be targeted to induce endogenous regeneration of non-functional gonads. Transplanting healthy niche (mesenchymal) cells have resulted in improved gonadal function and live births. WIDER IMPLICATIONS Being quiescent, VSELs possibly do not accumulate genomic (nuclear or mitochondrial) mutations and thus may be ideal endogenous, pluripotent stem cell candidates for regenerative and reproductive medicine. The presence of VSELs in adult gonads and the fact that they survive oncotherapy may obviate the need to bank gonadal tissue for fertility preservation prior to oncotherapy. VSELs and their ability to undergo spermatogenesis/neo-oogenesis in the presence of a healthy niche will help identify newer strategies toward fertility restoration in cancer survivors, delaying menopause and also enabling aged mothers to have better quality eggs.
Collapse
Affiliation(s)
- Deepa Bhartiya
- Stem Cell Biology Department, National Institute for Research in Reproductive Health (Indian Council of Medical Research), Jehangir Merwanji Street, Parel, Mumbai 400 012, India
| | - Ambreen Shaikh
- Stem Cell Biology Department, National Institute for Research in Reproductive Health (Indian Council of Medical Research), Jehangir Merwanji Street, Parel, Mumbai 400 012, India
| | - Sandhya Anand
- Stem Cell Biology Department, National Institute for Research in Reproductive Health (Indian Council of Medical Research), Jehangir Merwanji Street, Parel, Mumbai 400 012, India
| | - Hiren Patel
- Stem Cell Biology Department, National Institute for Research in Reproductive Health (Indian Council of Medical Research), Jehangir Merwanji Street, Parel, Mumbai 400 012, India
| | - Sona Kapoor
- Stem Cell Biology Department, National Institute for Research in Reproductive Health (Indian Council of Medical Research), Jehangir Merwanji Street, Parel, Mumbai 400 012, India
| | - Kalpana Sriraman
- Stem Cell Biology Department, National Institute for Research in Reproductive Health (Indian Council of Medical Research), Jehangir Merwanji Street, Parel, Mumbai 400 012, India.,The Foundation for Medical Research, 84-A, RG Thadani Marg, Worli, Mumbai 400018, India
| | - Seema Parte
- Stem Cell Biology Department, National Institute for Research in Reproductive Health (Indian Council of Medical Research), Jehangir Merwanji Street, Parel, Mumbai 400 012, India.,Department of Physiology, James Graham Brown Cancer Centre, University of Louisville School of Medicine, 2301 S 3rd St, Louisville, KY 40202, USA
| | - Sreepoorna Unni
- Stem Cell Biology Department, National Institute for Research in Reproductive Health (Indian Council of Medical Research), Jehangir Merwanji Street, Parel, Mumbai 400 012, India.,Inter Disciplinary Studies Department, University College, Zayed University, Academic City, PO Box 19282, Dubai, United Arab Emirates
| |
Collapse
|
24
|
Perales-Puchalt A, Svoronos N, Rutkowski MR, Allegrezza MJ, Tesone AJ, Payne KK, Wickramasinghe J, Nguyen JM, O'Brien SW, Gumireddy K, Huang Q, Cadungog MG, Connolly DC, Tchou J, Curiel TJ, Conejo-Garcia JR. Follicle-Stimulating Hormone Receptor Is Expressed by Most Ovarian Cancer Subtypes and Is a Safe and Effective Immunotherapeutic Target. Clin Cancer Res 2016; 23:441-453. [PMID: 27435394 DOI: 10.1158/1078-0432.ccr-16-0492] [Citation(s) in RCA: 78] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Revised: 07/11/2016] [Accepted: 07/12/2016] [Indexed: 01/08/2023]
Abstract
PURPOSE To define the safety and effectiveness of T cells redirected against follicle-stimulating hormone receptor (FSHR)-expressing ovarian cancer cells. EXPERIMENTAL DESIGN FSHR expression was determined by Western blotting, immunohistochemistry, and qPCR in 77 human ovarian cancer specimens from 6 different histologic subtypes and 20 human healthy tissues. The effectiveness of human T cells targeted with full-length FSH in vivo was determined against a panel of patient-derived xenografts. Safety and effectiveness were confirmed in immunocompetent tumor-bearing mice, using constructs targeting murine FSHR and syngeneic T cells. RESULTS FSHR is expressed in gynecologic malignancies of different histologic types but not in nonovarian healthy tissues. Accordingly, T cells expressing full-length FSHR-redirected chimeric receptors mediate significant therapeutic effects (including tumor rejection) against a panel of patient-derived tumors in vivo In immunocompetent mice growing syngeneic, orthotopic, and aggressive ovarian tumors, fully murine FSHR-targeted T cells also increased survival without any measurable toxicity. Notably, chimeric receptors enhanced the ability of endogenous tumor-reactive T cells to abrogate malignant progression upon adoptive transfer into naïve recipients subsequently challenged with the same tumor. Interestingly, FSHR-targeted T cells persisted as memory lymphocytes without noticeable PD-1-dependent exhaustion during end-stage disease, in the absence of tumor cell immunoediting. However, exosomes in advanced tumor ascites diverted the effector activity of this and other chimeric receptor-transduced T cells away from targeted tumor cells. CONCLUSIONS T cells redirected against FSHR+ tumor cells with full-length FSH represent a promising therapeutic alternative against a broad range of ovarian malignancies, with negligible toxicity even in the presence of cognate targets in tumor-free ovaries. Clin Cancer Res; 23(2); 441-53. ©2016 AACR.
Collapse
Affiliation(s)
- Alfredo Perales-Puchalt
- Tumor Microenvironment and Metastasis Program, The Wistar Institute, Philadelphia, Pennsylvania
| | - Nikolaos Svoronos
- Tumor Microenvironment and Metastasis Program, The Wistar Institute, Philadelphia, Pennsylvania
| | - Melanie R Rutkowski
- Tumor Microenvironment and Metastasis Program, The Wistar Institute, Philadelphia, Pennsylvania
| | - Michael J Allegrezza
- Tumor Microenvironment and Metastasis Program, The Wistar Institute, Philadelphia, Pennsylvania
| | - Amelia J Tesone
- Tumor Microenvironment and Metastasis Program, The Wistar Institute, Philadelphia, Pennsylvania
| | - Kyle K Payne
- Tumor Microenvironment and Metastasis Program, The Wistar Institute, Philadelphia, Pennsylvania
| | | | - Jenny M Nguyen
- Tumor Microenvironment and Metastasis Program, The Wistar Institute, Philadelphia, Pennsylvania
| | - Shane W O'Brien
- Molecular Therapeutics Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - Kiranmai Gumireddy
- Tumor Microenvironment and Metastasis Program, The Wistar Institute, Philadelphia, Pennsylvania
| | - Qihong Huang
- Tumor Microenvironment and Metastasis Program, The Wistar Institute, Philadelphia, Pennsylvania
| | - Mark G Cadungog
- Helen F. Graham Cancer Center, Christiana Care Health System, Newark, Delaware
| | - Denise C Connolly
- Molecular Therapeutics Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - Julia Tchou
- Division of Endocrine and Oncologic Surgery, Department of Surgery, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Tyler J Curiel
- Department of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, Texas
| | - Jose R Conejo-Garcia
- Tumor Microenvironment and Metastasis Program, The Wistar Institute, Philadelphia, Pennsylvania.
| |
Collapse
|
25
|
Thyrostimulin-TSHR signaling promotes the proliferation of NIH:OVCAR-3 ovarian cancer cells via trans-regulation of the EGFR pathway. Sci Rep 2016; 6:27471. [PMID: 27273257 PMCID: PMC4895341 DOI: 10.1038/srep27471] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Accepted: 05/19/2016] [Indexed: 12/13/2022] Open
Abstract
Gonadotropin signaling plays an indispensable role in ovarian cancer progression. We previously have demonstrated that thyrostimulin and thyroid-stimulating hormone receptor (TSHR), the most ancient glycoprotein hormone and receptor pair that evolved much earlier than the gonadotropin systems, co-exist in the ovary. However, whether thyrostimulin-driven TSHR activation contributes to ovarian cancer progression in a similar way to gonadotropin receptors has never been explored. In this study, we first found that TSHR is expressed in both rat normal ovarian surface epithelium and human epithelial ovarian cancers (EOCs). Using human NIH:OVCAR-3 as a cell model, we demonstrated that thyrostimulin promotes EOC cell proliferation as strongly as gonadotropins. Thyrostimulin treatment not only activated adenylyl cyclase and the subsequent PKA, MEK-ERK1/2 and PI3K-AKT signal cascades, but also trans-activated EGFR signaling. Signaling dissection using diverse inhibitors indicated that EOC cell proliferation driven by thyrostimulin-TSHR signaling is PKA independent, but does require the involvement of the MEK-ERK and PI3K-AKT signal cascades, which are activated mainly via the trans-activation of EGFR. Thus, not only have we proved that this ancient glycoprotein hormone system is involved in NIH:OVCAR-3 cell proliferation for the first time, but also that it may possibly become a novel oncotarget when studying ovarian cancer.
Collapse
|
26
|
Gharwan H, Bunch KP, Annunziata CM. The role of reproductive hormones in epithelial ovarian carcinogenesis. Endocr Relat Cancer 2015; 22:R339-63. [PMID: 26373571 DOI: 10.1530/erc-14-0550] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/15/2015] [Indexed: 12/12/2022]
Abstract
Epithelial ovarian cancer comprises ∼85% of all ovarian cancer cases. Despite acceptance regarding the influence of reproductive hormones on ovarian cancer risk and considerable advances in the understanding of epithelial ovarian carcinogenesis on a molecular level, complete understanding of the biologic processes underlying malignant transformation of ovarian surface epithelium is lacking. Various hypotheses have been proposed over the past several decades to explain the etiology of the disease. The role of reproductive hormones in epithelial ovarian carcinogenesis remains a key topic of research. Primary questions in the field of ovarian cancer biology center on its developmental cell of origin, the positive and negative effects of each class of hormones on ovarian cancer initiation and progression, and the role of the immune system in the ovarian cancer microenvironment. The development of the female reproductive tract is dictated by the hormonal milieu during embryogenesis. Intensive research efforts have revealed that ovarian cancer is a heterogenous disease that may develop from multiple extra-ovarian tissues, including both Müllerian (fallopian tubes, endometrium) and non-Müllerian structures (gastrointestinal tissue), contributing to its heterogeneity and distinct histologic subtypes. The mechanism underlying ovarian localization, however, remains unclear. Here, we discuss the role of reproductive hormones in influencing the immune system and tipping the balance against or in favor of developing ovarian cancer. We comment on animal models that are critical for experimentally validating existing hypotheses in key areas of endocrine research and useful for preclinical drug development. Finally, we address emerging therapeutic trends directed against ovarian cancer.
Collapse
Affiliation(s)
- Helen Gharwan
- National Cancer InstituteNational Institutes of Health, 10 Center Drive, Building 10, 12N226, Bethesda, Maryland 20892-1906, USAWomen's Malignancies BranchNational Cancer Institute, National Institutes of Health, Center for Cancer Research, Bethesda, Maryland, USADepartment of Gynecologic OncologyWalter Reed National Military Medical Center, Bethesda, Maryland, USA
| | - Kristen P Bunch
- National Cancer InstituteNational Institutes of Health, 10 Center Drive, Building 10, 12N226, Bethesda, Maryland 20892-1906, USAWomen's Malignancies BranchNational Cancer Institute, National Institutes of Health, Center for Cancer Research, Bethesda, Maryland, USADepartment of Gynecologic OncologyWalter Reed National Military Medical Center, Bethesda, Maryland, USA National Cancer InstituteNational Institutes of Health, 10 Center Drive, Building 10, 12N226, Bethesda, Maryland 20892-1906, USAWomen's Malignancies BranchNational Cancer Institute, National Institutes of Health, Center for Cancer Research, Bethesda, Maryland, USADepartment of Gynecologic OncologyWalter Reed National Military Medical Center, Bethesda, Maryland, USA
| | - Christina M Annunziata
- National Cancer InstituteNational Institutes of Health, 10 Center Drive, Building 10, 12N226, Bethesda, Maryland 20892-1906, USAWomen's Malignancies BranchNational Cancer Institute, National Institutes of Health, Center for Cancer Research, Bethesda, Maryland, USADepartment of Gynecologic OncologyWalter Reed National Military Medical Center, Bethesda, Maryland, USA
| |
Collapse
|
27
|
Dent MP, Carmichael PL, Jones KC, Martin FL. Towards a non-animal risk assessment for anti-androgenic effects in humans. ENVIRONMENT INTERNATIONAL 2015; 83:94-106. [PMID: 26115536 DOI: 10.1016/j.envint.2015.06.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Revised: 06/11/2015] [Accepted: 06/12/2015] [Indexed: 06/04/2023]
Abstract
Toxicology testing is undergoing a transformation from a system based on high-dose studies in laboratory animals to one founded primarily on in vitro methods that evaluate changes in normal cellular signalling pathways using human-relevant cells or tissues. We review the tools and approaches that could be used to develop a non-animal safety assessment for anti-androgenic effects in humans, with a focus on the molecular initiating events (MIEs) that human disorders indicate critical for normal functioning of the hypothalamus-pituitary-testicular (HPT) axis. In vitro test systems exist which can be used to characterize the effects of test chemicals on some MIEs such as androgen receptor antagonism, inhibition of steroidogenic enzymes or 5α-reductase inhibition. When used alongside information describing the pharmacokinetics of a specific chemical exposure, these could be used to inform a pathways-based safety assessment. However, some parts of the HPT axis such as events occurring in the hypothalamus or pituitary are not well represented by accepted in vitro methods. In vitro tools to characterize perturbations in these events need to be developed before a fully integrated model of the HPT axis can be described. Knowledge gaps also exist which prevent us from using in vitro data to predict the type and severity of in vivo effect(s) that could arise from a given level of in vitro anti-androgenic activity. This means that more work is needed to reliably link an MIE with an adverse outcome. However, especially for chemicals with low anti-androgenic activity, human exposure data can be used to put in vitro mode of action data into context for risk-based safety decision-making.
Collapse
Affiliation(s)
- Matthew P Dent
- Safety and Environmental Assurance Centre, Unilever Colworth Science Park, Bedfordshire MK44 1LQ, UK.
| | - Paul L Carmichael
- Safety and Environmental Assurance Centre, Unilever Colworth Science Park, Bedfordshire MK44 1LQ, UK
| | - Kevin C Jones
- Lancaster Environment Centre, Lancaster University, Bailrigg, Lancaster LA1 4YQ, UK
| | - Francis L Martin
- Lancaster Environment Centre, Lancaster University, Bailrigg, Lancaster LA1 4YQ, UK.
| |
Collapse
|
28
|
Lee CW, Guo L, Matei D, Stantz K. Development of Follicle-Stimulating Hormone Receptor Binding Probes to Image Ovarian Xenografts. ACTA ACUST UNITED AC 2015; 5. [PMID: 26779384 PMCID: PMC4712933 DOI: 10.4172/2155-952x.1000198] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
The Follicle-Stimulating Hormone Receptor (FSHR) is used as an imaging biomarker for the detection of ovarian cancer (OC). FSHR is highly expressed on ovarian tumors and involved with cancer development and metastatic signaling pathways. A decapeptide specific to the FSHR extracellular domain is synthesized and conjugated to fluorescent dyes to image OC cells in vitro and tumors xenograft model in vivo. The in vitro binding curve and the average number of FSHR per cell are obtained for OVCAR-3 cells by a high resolution flow cytometer. For the decapeptide, the measured EC50 was 160 μM and the average number of receptors per cell was 1.7 × 107. The decapeptide molecular imaging probe reached a maximum tumor to muscle ratio five hours after intravenous injection and a dose-dependent plateau after 24-48 hours. These results indicate the potential application of a small molecular weight imaging probe specific to ovarian cancer through binding to FSHR. Based on these results, multimeric constructs are being developed to optimize binding to ovarian cells and tumors.
Collapse
Affiliation(s)
- Chung-Wein Lee
- Medical Physics Program, School of Health Science, Purdue University, West Lafayette, IN, USA
| | - Lili Guo
- Department of Medicine, Indiana University School of Medicine, Indianapolis IN, USA
| | - Daniela Matei
- Department of Medicine, Indiana University School of Medicine, Indianapolis IN, USA
| | - Keith Stantz
- Medical Physics Program, School of Health Science, Purdue University, West Lafayette, IN, USA; Department of Medicine, Indiana University School of Medicine, Indianapolis IN, USA
| |
Collapse
|
29
|
Abbasi A, Khalaj M, Akiyama K, Mukai Y, Matsumoto H, Acosta TJ, Said N, Yoshida M, Kunieda T. Lack of Rev7 function results in development of tubulostromal adenomas in mouse ovary. Mol Cell Endocrinol 2015; 412:19-25. [PMID: 26004212 DOI: 10.1016/j.mce.2015.05.022] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2014] [Revised: 04/30/2015] [Accepted: 05/19/2015] [Indexed: 11/19/2022]
Abstract
Rev7 is a subunit of Polζ, one of the translesion DNA synthesis (TLS) polymerases involved in DNA damage repair. We recently found that Rev7 is also essential for germ cell development in mouse. In the present study, we found the development of ovarian tumors in Rev7 mutant mouse, suggesting the involvement of TLS deficiency in the etiology of ovarian tumor. The Rev7 mutant mice showed complete lack of oocytes and follicles in the ovary. The lack of follicles causes a significant increase of gonadotropin level and an increase in the proliferation of ovarian cells. As a result, the weight of the ovaries of Rev7 mutant mice increased with age and they developed tubulostromal adenomas. However, the remarkable overgrowth of ovaries occurred after gonadotropin level decreases at older ages, suggesting gonadotropin-independent progression of the ovarian tumors. In addition, the Rev7 mutant fibroblasts and ovarian cells showed significant accumulation of DNA damage. These findings suggest that not only increased gonadotropin levels but also lack of DNA damage repair function could be responsible for the development of ovarian tumors in the Rev7 mutant mouse.
Collapse
Affiliation(s)
- Abdolrahim Abbasi
- Graduate School of Natural Science and Technology, Okayama University, Tsushima-naka, Okayama 700-8530, Japan; Laboratory of Cellular and Developmental Biology, NIDDK, National Institutes of Health, Bethesda, MD 20892, USA
| | - Maryam Khalaj
- Graduate School of Natural Science and Technology, Okayama University, Tsushima-naka, Okayama 700-8530, Japan; Laboratory of Cellular and Developmental Biology, NIDDK, National Institutes of Health, Bethesda, MD 20892, USA
| | - Kouyou Akiyama
- Advanced Science Research Center, Okayama University, Tsushima-naka, Okayama 700-8530, Japan
| | - Yoshiyuki Mukai
- Faculty of Agriculture, Okayama University, Tsushima-naka, Okayama 700-8530, Japan
| | - Hirokazu Matsumoto
- Graduate School of Environmental and Life Science, Okayama University, Tsushima-naka, Okayama 700-8530, Japan
| | - Tomas J Acosta
- Graduate School of Environmental and Life Science, Okayama University, Tsushima-naka, Okayama 700-8530, Japan
| | - Neveen Said
- Department of Radiation Oncology, School of Medicine, University of Virginia, Charlottesville, VA 22908-0422, USA
| | - Midori Yoshida
- National Institute of Health Sciences, Kamiyoga, Setagaya, Tokyo 158-8501, Japan
| | - Tetsuo Kunieda
- Graduate School of Environmental and Life Science, Okayama University, Tsushima-naka, Okayama 700-8530, Japan.
| |
Collapse
|
30
|
Urbanska K, Stashwick C, Poussin M, Powell DJ. Follicle-Stimulating Hormone Receptor as a Target in the Redirected T-cell Therapy for Cancer. Cancer Immunol Res 2015; 3:1130-7. [PMID: 26112923 DOI: 10.1158/2326-6066.cir-15-0047] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Accepted: 06/16/2015] [Indexed: 01/28/2023]
Abstract
Adoptive transfer of T cells engineered to express chimeric immunoreceptors is an effective strategy to treat hematologic cancers; however, the use of this type of therapy for solid cancers, such as ovarian cancer, remains challenging because a safe and effective immunotherapeutic target has not yet been identified. Here, we constructed and evaluated a novel redirected T-cell-based immunotherapy targeting human follicle-stimulating hormone receptor (FSHR), a highly conserved molecule in vertebrate animals with expression limited to gonadal tissues, ovarian cancer, and cancer-associated vasculature. Receptor ligand-based anti-FSHR immunoreceptors were constructed that contained small binding fragments from the ligand for FSHR, FSH, fused to T-cell transmembrane and T-cell signaling domains. Human T cells transduced to express anti-FSHR immunoreceptors were specifically immunoreactive against FSHR-expressing human and mouse ovarian cancer cell lines in an MHC-nonrestricted manner and mediated effective lysis of FHSR-expressing tumor cells, but not FSHR-deficient targets, in vitro. Similarly, the outgrowth of human ovarian cancer xenografts in immunodeficient mice was significantly inhibited by the adoptive transfer of FSHR-redirected T cells. Our experimental observations show that FSHR is a promising immunotherapeutic target for ovarian cancer and support further exploration of FSHR-targeted immune therapy approaches for patients with cancer.
Collapse
Affiliation(s)
- Katarzyna Urbanska
- Department of Obstetrics and Gynecology, Ovarian Cancer Research Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Caitlin Stashwick
- Department of Obstetrics and Gynecology, Ovarian Cancer Research Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Mathilde Poussin
- Department of Obstetrics and Gynecology, Ovarian Cancer Research Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Daniel J Powell
- Department of Obstetrics and Gynecology, Ovarian Cancer Research Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania. Department of Pathology and Laboratory Medicine, Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania.
| |
Collapse
|
31
|
Granulosa Cell-Specific Brca1 Loss Alone or Combined with Trp53 Haploinsufficiency and Transgenic FSH Expression Fails to Induce Ovarian Tumors. Discov Oncol 2015; 6:142-52. [PMID: 25943777 DOI: 10.1007/s12672-015-0222-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2015] [Accepted: 04/25/2015] [Indexed: 01/09/2023] Open
Abstract
BRCA1 mutations are associated with ovarian cancer. Previous studies reported that murine granulosa cell (GC) Brca1 loss caused ovarian-uterine tumors resembling serous cystadenomas, but the pathogenesis of these tumors may have been confounded by ectopic Brca1 expression and altered estrous cycling. We have used Tg.AMH.Cre conferring proven ovarian and GC-specific Cre activity to selectively target Brca1 disruption, denoted Brca1(GC-/-). Furthermore, ovary-specific Brca1(GC-/-) was combined with global Trp53 haploinsufficiency (Trp53(+/-)) and transgenic follicle-stimulating hormone (Tg.FSH) overexpression as a multi-hit strategy to investigate additional genetic and hormonal ovarian tumorigenesis mechanisms. However, 12-month-old Brca1(GC-/-) mice had no detectable ovarian or uterine tumors. Brca1(GC-/-) mice had significantly increased ovary weights, follicles exhibiting more pyknotic granulosa cells, and fewer corpora lutea with regular estrous cycling compared to controls. Isolated Brca1(GC-/-) mutation lengthened the estrous cycle and proestrus stage; however, ovarian cystadenomas were not observed, even when Brca1(GC-/-) was combined with Trp53(+/-) and overexpressed Tg.FSH. Our Brca1(GC-/-) models reveal that specific intra-follicular Brca1 loss alone, or combined with cancer-promoting genetic (Trp53 loss) and endocrine (high serum FSH) changes, was not sufficient to cause ovarian tumors. Our findings show that the ovary is remarkably resistant to oncogenesis, and support the emerging view of an extragonadal, multi-hit origin for ovarian tumorigenesis.
Collapse
|
32
|
The Asn680Ser polymorphism of the follicle stimulating hormone receptor gene and ovarian cancer risk: a meta-analysis. J Assist Reprod Genet 2015; 31:683-8. [PMID: 24658926 DOI: 10.1007/s10815-014-0218-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2013] [Accepted: 03/11/2014] [Indexed: 10/25/2022] Open
Abstract
PURPOSE The purpose of this study was to conduct a meta-analysis to assess the association between FSHR Asn680Ser polymorphism and ovarian cancer susceptibility. METHODS A literature search was conducted in PubMed, Embase and the China National Knowledge Infrastructure (CNKI) for all relevant studies published up to September 2013. The pooled odds ratios (ORs) with the corresponding 95 % confidence intervals (95 % CIs) were calculated to evaluate the association. RESULTS Four case-control studies including 474 ovarian cancer cases and 659 controls met the inclusion criteria. The pooled analyses showed that FSHR Asn680Ser polymorphism was associated with the risk of ovarian cancer (Ser vs Asn: OR=1.295, 95 % CI 1.057-1.498, P=0.01; Ser/Ser + Asn/Ser vs Asn/Asn: OR=1.611, 95 % CI 1.027-2.528, P=0.038). Subgroup analyses by ethnicity (Caucasian and Asian) further revealed significant associations among Asians (Ser vs Asn: OR=1.386, 95 % CI 1.066-1.802, P=0.015; Ser/Ser + Asn/Ser vs Asn/Asn: OR=1.893, 95 % CI 1.329-2.689, P=0.000) but not Caucasians. There was no obvious risk of publication bias. CONCLUSIONS The meta-analysis suggests that FSHR Asn680Ser polymorphism may be a risk factor for ovarian cancer in Asians. Due to the limited quantity of the included studies, further studies are needed to validate the above conclusions.
Collapse
|
33
|
Hong H, Yan Y, Shi S, Graves SA, Krasteva LK, Nickles RJ, Yang M, Cai W. PET of follicle-stimulating hormone receptor: broad applicability to cancer imaging. Mol Pharm 2015; 12:403-10. [PMID: 25581441 DOI: 10.1021/mp500766x] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Selective overexpression of follicle-stimulating hormone receptor (FSHR) inside the vascular endothelium of tumors has been confirmed to play critical roles in angiogenesis, tumor invasion, and metastases. The expression level of FSHR correlates strongly with the response of tumors to antiangiogenic therapies. In this study, an immunoPET tracer was developed for imaging of FSHR in different cancer types. A monoclonal antibody (FSHR-mAb) against FSHR was conjugated with S-2-(4-isothiocyanatobenzyl)-1,4,7-triazacyclononane-1,4,7-triacetic acid (p-SCN-Bn-NOTA) and used for subsequent (64)Cu-labeling. NOTA-FSHR-mAb preserved FSHR specificity/affinity, confirmed by flow cytometry measurements. (64)Cu-labeling was successfully conducted with decent yields (∼25%) and high specific activity (0.93 GBq/mg). The uptake of (64)Cu-NOTA-FSHR-mAb was 3.6 ± 0.8, 13.2 ± 0.7, and 14.6 ± 0.4 %ID/g in FSHR-positive CAOV-3 tumors at 4, 24, and 48 h postinjection, respectively (n = 3), significantly higher (p < 0.05) than that in FSHR-negative SKOV-3 tumors (2.3 ± 1.2, 8.0 ± 0.9, and 9.1 ± 1.3 %ID/g at 4, 24, and 48 h postinjection, respectively (n = 3)) except at 4 h p.i. FSHR-relevant uptake of (64)Cu-NOTA-FSHR-mAb was also readily observed in other tumor types (e.g., triple-negative breast tumor MDA-MB-231 or prostate tumor PC-3). Histology studies showed universal FSHR expression in microvasculature of these four tumor types and also prominent expression in tumor cells of CAOV-3, PC-3, and MDA-MB-231. Correlations between tumor FSHR level and uptake of (64)Cu-NOTA-FSHR-mAb were witnessed in this study. FSHR-specific uptake of (64)Cu-NOTA-FSHR mAb in different tumors enables its applicability for future cancer theranostic applications and simultaneously establishes FSHR as a promising clinical target for cancer.
Collapse
Affiliation(s)
- Hao Hong
- Department of Radiology, ‡Department of Medical Physics, §Materials Science Program, and ∥Department of Biomedical Engineering, University of Wisconsin-Madison , Madison, Wisconsin 53705-2275, United States
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Szkudlinski MW. New Frontier in Glycoprotein Hormones and Their Receptors Structure-Function. Front Endocrinol (Lausanne) 2015; 6:155. [PMID: 26539160 PMCID: PMC4609891 DOI: 10.3389/fendo.2015.00155] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Accepted: 09/18/2015] [Indexed: 01/27/2023] Open
Abstract
Last two decades of structure-function studies performed in numerous laboratories provided substantial progress in understanding basic science, physiological, pathophysiological, pharmacological, and comparative aspects of glycoprotein hormones (GPHs) and their cognate receptors. Multiple concepts and models developed based on experimental data in the past stood the test of time and have been, at least in part, confirmed and/or remained compatible with the new structures resolved at the atomic level. Major advances in understanding of the ligand-receptor relationships are heralding the dawn of a new era for GPHs and their receptors, although many basic questions still remain unanswered. This article examines retrospectively several basic science aspects of GPH super-agonists and related "biosuperiors" in a broader context of the advances in the ligand-receptor structure-function relationships and new mechanistic models generated based on the structure elucidation. Due to selective focus of my comments and perspectives in certain parts, the reader is directed to the most relevant publications and reviews in the field for more comprehensive analyses.
Collapse
Affiliation(s)
- Mariusz W. Szkudlinski
- Trophogen Inc., Rockville, MD, USA
- *Correspondence: Mariusz W. Szkudlinski, Trophogen Inc., 9714 Medical Center Drive, Rockville, MD, USA,
| |
Collapse
|
35
|
Joo BS, Jung IK, Park MJ, Joo JK, Kim KH, Lee KS. Differential expression of pluripotent and germ cell markers in ovarian surface epithelium according to age in female mice. Reprod Biol Endocrinol 2014; 12:113. [PMID: 25421381 PMCID: PMC4280751 DOI: 10.1186/1477-7827-12-113] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2014] [Accepted: 09/04/2014] [Indexed: 01/17/2023] Open
Abstract
BACKGROUND Many studies have proposed that putative ovarian stem cells (OSCs) derived from the ovarian surface epithelium (OSE) layer of adult mammalian ovaries can produce oocytes. Few studies have reported that ovaries of aged mammalian females including mice and women possess rare premeiotic germ cells that can generate oocytes. However, no studies have reported the changes of OSCs according to the age of the female. Therefore, this study evaluated pluripotent and germ cell marker expression in the intact ovary, scraped OSE, and postcultured OSE according to age in female mice. METHODS C57BL/6 female mice of 2 age groups (6-8 and 28-31 weeks) were superovulated by injection with 5 IU equine chorionic gonadotropin (eCG). Both ovaries were removed after 48 hours and scrapped to obtain OSE. Gene expressions of pluripotent (Oct-4, Sox-2, Nanog) and germ cell markers (c-Kit, GDF-9, and VASA) were evaluated by RT-PCR. VASA and GDF-9 were immune-localized in oocyte-like structures. RESULTS Expressions of germ cell markers in the intact ovary were significantly decreased in aged females, whereas expressions of pluripotent markers were not detected, regardless of age. Scraped OSE expression of all pluripotent and germ cell markers, except for c-Kit, was similar between both age groups. Three weeks postcultured OSE had significantly decreased expression of GDF-9 and VASA , but not c-Kit, in old mice, as compared to young mice; however there was no difference in the expression of other genes. The number of positively stained Oct-4 by immunohistochemistry in postcultured OSE was 2.5 times higher in young mice than aged mice. Oocyte-like structure was spontaneously produced in postcultured OSE. However, while that of young mice revealed a prominent nucleus, zona pellucida-like structure and cytoplasmic organelles, these features were not observed in old mice. CONCLUSIONS These results show that aged female mice have putative OSCs in OSE, but their differentiation potential, as well as the number of OSCs differs from those of young mice.
Collapse
Affiliation(s)
- Bo Sun Joo
- Research Center for Anti-Aging Technology Development, Pusan National University, Busan, Korea
| | - In Kook Jung
- Department of Obstetrics and Gynecology, Medical Research Institute, Pusan National University School of Medicine, Busan, Korea
| | - Min Jung Park
- Research Center for Anti-Aging Technology Development, Pusan National University, Busan, Korea
| | - Jong Kil Joo
- Department of Obstetrics and Gynecology, Medical Research Institute, Pusan National University School of Medicine, Busan, Korea
| | - Ki Hyung Kim
- Department of Obstetrics and Gynecology, Medical Research Institute, Pusan National University School of Medicine, Busan, Korea
| | - Kyu-Sup Lee
- Department of Obstetrics and Gynecology, Medical Research Institute, Pusan National University School of Medicine, Busan, Korea
| |
Collapse
|
36
|
Bhartiya D, Singh J. FSH-FSHR3-stem cells in ovary surface epithelium: basis for adult ovarian biology, failure, aging, and cancer. Reproduction 2014; 149:R35-48. [PMID: 25269615 DOI: 10.1530/rep-14-0220] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Despite extensive research, genetic basis of premature ovarian failure (POF) and ovarian cancer still remains elusive. It is indeed paradoxical that scientists searched for mutations in FSH receptor (FSHR) expressed on granulosa cells, whereas more than 90% of cancers arise in ovary surface epithelium (OSE). Two distinct populations of stem cells including very small embryonic-like stem cells (VSELs) and ovarian stem cells (OSCs) exist in OSE, are responsible for neo-oogenesis and primordial follicle assembly in adult life, and are modulated by FSH via its alternatively spliced receptor variant FSHR3 (growth factor type 1 receptor acting via calcium signaling and the ERK/MAPK pathway). Any defect in FSH-FSHR3-stem cell interaction in OSE may affect folliculogenesis and thus result in POF. Ovarian aging is associated with a compromised microenvironment that does not support stem cell differentiation into oocytes and further folliculogenesis. FSH exerts a mitogenic effect on OSE and elevated FSH levels associated with advanced age may provide a continuous trigger for stem cells to proliferate resulting in cancer, thus supporting gonadotropin theory for ovarian cancer. Present review is an attempt to put adult ovarian biology, POF, aging, and cancer in the perspective of FSH-FSHR3-stem cell network that functions in OSE. This hypothesis is further supported by the recent understanding that: i) cancer is a stem cell disease and OSE is the niche for ovarian cancer stem cells; ii) ovarian OCT4-positive stem cells are regulated by FSH; and iii) OCT4 along with LIN28 and BMP4 are highly expressed in ovarian cancers.
Collapse
Affiliation(s)
- Deepa Bhartiya
- Stem Cell Biology DepartmentNational Institute for Research in Reproductive Health (ICMR), Mumbai 400 012, India
| | - Jarnail Singh
- Stem Cell Biology DepartmentNational Institute for Research in Reproductive Health (ICMR), Mumbai 400 012, India
| |
Collapse
|
37
|
Figueira MI, Cardoso HJ, Correia S, Maia CJ, Socorro S. Hormonal regulation of c-KIT receptor and its ligand: implications for human infertility? ACTA ACUST UNITED AC 2014; 49:1-19. [PMID: 25451758 DOI: 10.1016/j.proghi.2014.09.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2014] [Accepted: 09/01/2014] [Indexed: 10/24/2022]
|
38
|
Fan L, Chen J, Zhang X, Liu Y, Xu C. Follicle-stimulating hormone polypeptide modified nanoparticle drug delivery system in the treatment of lymphatic metastasis during ovarian carcinoma therapy. Gynecol Oncol 2014; 135:125-32. [PMID: 25003656 DOI: 10.1016/j.ygyno.2014.06.030] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2014] [Revised: 06/13/2014] [Accepted: 06/28/2014] [Indexed: 10/25/2022]
Abstract
OBJECTIVE Traditional chemotherapy drugs have an obvious drawback of nonspecific biodistribution in treating ovarian cancer. Follicle-stimulating hormone receptor (FSHR), a G-protein coupled receptor which is mainly expressed in reproductive system, is an important drug target in developing novel therapeutics. METHODS Using a polypeptide of follicle-stimulating hormone (named as FSHP), a conjugated nanoparticle, FSHP-NP was developed to target FSHR in lymphatic metastasis of ovarian cancer. FSHP-NP was tested for recognition specificity and uptake efficiency on FSHR-expressing cells. A paclitaxel (PTX)-loaded FSHP-NP (FSHP-NP-PTX) was further developed and its anti-tumor effect was determined in vivo and in vitro. RESULTS Taking NuTu-19 cells as an example, FSHP-NP-PTX displayed significantly stronger anti-cell proliferative and anti-tumor effects in a dose- and time-dependent manner when compared with free PTX or naked PTX-loaded nanoparticles (NP-PTX) in vitro. In vivo examinations showed that the size and weight of the lymph nodes were reduced in the FSHP-NP-PTX group. CONCLUSION FSHR as a novel therapeutic target in ovarian cancer and delivery of PTX via conjugated nanoparticle (FSHP-NP) might represent a new therapeutic approach in ovarian cancer.
Collapse
Affiliation(s)
- Lingling Fan
- Obstetrics and Gynecology Hospital, Department of Obstetrics and Gynecology of Shanghai Medical School, Fudan University, Shanghai, China; Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai, China
| | - Jun Chen
- Department of Pharmaceutics, School of Pharmacy, Fudan University, Shanghai, China
| | - Xiaoyan Zhang
- Obstetrics and Gynecology Hospital, Department of Obstetrics and Gynecology of Shanghai Medical School, Fudan University, Shanghai, China; Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai, China
| | - Yingtao Liu
- Obstetrics and Gynecology Hospital, Department of Obstetrics and Gynecology of Shanghai Medical School, Fudan University, Shanghai, China; Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai, China
| | - Congjian Xu
- Obstetrics and Gynecology Hospital, Department of Obstetrics and Gynecology of Shanghai Medical School, Fudan University, Shanghai, China; Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai, China.
| |
Collapse
|
39
|
Zhang X, Hong S, Kang Y, Zheng Y, Sun H, Xu C. Expression and purification of the extracellular domain of the human follicle-stimulating hormone receptor using Escherichia coli. J Obstet Gynaecol Res 2013; 40:501-8. [PMID: 24147778 DOI: 10.1111/jog.12203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2013] [Accepted: 06/05/2013] [Indexed: 10/26/2022]
Abstract
AIM Although much is known about the structure and biological functions of follicle-stimulating hormone (FSH) receptor (FSHR), the interaction of FSHR and FSH has been challenging to characterize due to the limited quantity of active FSHR protein produced by simple methods. The goal of this study was to express and purify the extracellular domain (ECD) of human FSHR (hFSHR). METHODS Total RNA was isolated from normal human ovary tissue. cDNA for hFSHR ECD were amplified and subsequently ligated into the pET32a(+) vector. The plasmid vector construct was confirmed by polymerase chain reaction and sequencing. Expression in Escherichia coli Rosetta (DE3) pLysS strain was induced by isopropyl-thio-β-D-thiogalactoside, and the recombinant products were purified by immuno-affinity chromatography using an Ni-NTA and High-Q column. The recombinant protein was confirmed by western blotting. RESULTS Following induction, E. coli expressed a recombinant protein of approximately 65 kDa in size, whereas the non-induced E. coli did not express the recombinant protein. The recombinant fragments purified using a High-Q column demonstrated a single band and an abundant yield. The recombinant protein was soluble and specifically recognized by an antibody for hFSHR. Additionally, four mutation sites were detected that resulted in amino acid shifts at position 112 Asn/Thr, 197 Glu/Ala, 198 Leu/Val and 307 Ala/Thr. CONCLUSION The recombinant hFSHR ECD protein was expressed and purified. This method could be easily scaled for increased production and may facilitate additional applications utilizing FSHR in assisted reproductive technology, a contraceptive FSH vaccine and FSHR-targeted therapeutic agents used to treat ovarian cancer.
Collapse
Affiliation(s)
- Xiaoyan Zhang
- Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China; Department of Obstetrics and Gynecology of Shanghai Medical College, Fudan University, Shanghai, China; Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai, China
| | | | | | | | | | | |
Collapse
|
40
|
Patel H, Bhartiya D, Parte S, Gunjal P, Yedurkar S, Bhatt M. Follicle stimulating hormone modulates ovarian stem cells through alternately spliced receptor variant FSH-R3. J Ovarian Res 2013; 6:52. [PMID: 23870332 PMCID: PMC3728228 DOI: 10.1186/1757-2215-6-52] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2013] [Accepted: 07/12/2013] [Indexed: 01/28/2023] Open
Abstract
BACKGROUND We have earlier reported that follicle stimulating hormone (FSH) modulates ovarian stem cells which include pluripotent, very small embryonic-like stem cells (VSELs) and their immediate descendants 'progenitors' termed ovarian germ stem cells (OGSCs), lodged in adult mammalian ovarian surface epithelium (OSE). FSH may exert pleiotropic actions through its alternatively spliced receptor isoforms. Four isoforms of FSH receptors (FSHR) are reported in literature of which FSH-R1 and FSH-R3 have biological activity. Present study was undertaken to identify FSHR isoforms mediating FSH action on ovarian stem cells, using sheep OSE cells culture as the study model. METHODS Cultures of sheep OSE cells (a mix of epithelial cells, VSELs, OGSCs and few contaminating red blood cells) were established with and without FSH 5IU/ml treatment. Effect of FSH treatment on self-renewal of VSELs and their differentiation into OGSCs was studied after 15 hrs by qRT-PCR using markers specific for VSELs (Oct-4A, Sox-2) and OGSCs (Oct-4). FSH receptors and its specific transcripts (R1 and R3) were studied after 3 and 15 hrs of FSH treatment by immunolocalization, in situ hybridization and qRT-PCR. FSHR and OCT-4 were also immuno-localized on sheep ovarian sections, in vitro matured follicles and early embryos. RESULTS FSH treatment resulted in increased stem cells self-renewal and clonal expansion evident by the appearance of stem cell clusters. FSH receptors were expressed on ovarian stem cells whereas the epithelial cells were distinctly negative. An increase in R3 mRNA transcripts was noted after 3 hrs of FSH treatment and was reduced to basal levels by 15 hrs, whereas R1 transcript expression remained unaffected. Both FSHR and OCT-4 were immuno-localized in nuclei of stem cells, showed nuclear or ooplasmic localization in oocytes of primordial follicles and in cytoplasm of granulosa cells in growing follicles. CONCLUSIONS FSH modulates ovarian stem cells via FSH-R3 to undergo potential self-renewal, clonal expansion as 'cysts' and differentiation into oocytes. OCT-4 and FSHR proteins (required initially to maintain pluripotent state of VSELs and for FSH action respectively) gradually shift from nuclei to cytoplasm of developing oocytes and are later possibly removed by surrounding granulosa cells as the oocyte prepares itself for fertilization.
Collapse
Affiliation(s)
- Hiren Patel
- Stem Cell Biology Department, National Institute for Research in Reproductive Health, Mumbai 400012, INDIA
| | - Deepa Bhartiya
- Stem Cell Biology Department, National Institute for Research in Reproductive Health, Mumbai 400012, INDIA
| | - Seema Parte
- Stem Cell Biology Department, National Institute for Research in Reproductive Health, Mumbai 400012, INDIA
| | - Pranesh Gunjal
- Stem Cell Biology Department, National Institute for Research in Reproductive Health, Mumbai 400012, INDIA
| | - Snehal Yedurkar
- Stem Cell Biology Department, National Institute for Research in Reproductive Health, Mumbai 400012, INDIA
| | - Mithun Bhatt
- Stem Cell Biology Department, National Institute for Research in Reproductive Health, Mumbai 400012, INDIA
| |
Collapse
|
41
|
Chand AL, Pathirage N, Lazarus K, Chu S, Drummond AE, Fuller PJ, Clyne CD. Liver receptor homologue-1 expression in ovarian epithelial and granulosa cell tumours. Steroids 2013; 78:700-6. [PMID: 23537609 DOI: 10.1016/j.steroids.2013.03.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2013] [Revised: 02/18/2013] [Accepted: 03/11/2013] [Indexed: 01/12/2023]
Abstract
Granulosa cell tumours of the ovary (GCT) express aromatase and produce oestrogens. The ovarian-specific aromatase promoter (pII) is regulated by members of the group 5A nuclear receptor family, SF-1 and LRH-1. Since both SF-1 and LRH-1 are implicated in proliferation and cancer, we hypothesised that alteration in the expression of either or both receptors may be associated with GCT. We therefore determined the expression of LRH-1, SF-1 and aromatase in a cohort of GCT, mucinous and serous cystadenocarcinomas, and normal ovaries. LRH-1 mRNA was present at low level in normal ovary and serous cystadenocarcinoma, but was elevated approximately 30-fold in GCT, and 8-fold in mucinous cystadenocarcinoma, compared to normal ovary. LRH-1 protein expression was confirmed in GCT by immunohistochemistry. SF-1 mRNA was significantly lower that of LRH-1 in all samples and not significantly altered in GCT, compared to normal ovary. Aromatase mRNA was present at low level in normal ovary and serous and mucinous cystadenocarcinoma, and significantly elevated (18-fold) in GCT compared to normal ovary. Despite the coordinate over-expression of both LRH-1 and aromatase in GCT versus normal ovary, their levels did not correlate in individual patients; rather, aromatase expression correlated with that of SF-1. Finally, although both LRH-1 and SF-1 activated aromatase promoter activity in transient transfection studies, gel-shift and chromatin immunoprecipitation data indicated that SF-1, but not LRH-1, bound to the aromatase promoter. We conclude that SF-1 regulates aromatase expression in GCT; over-expression of LRH-1 suggests that this receptor may be involved in the pathogenesis of GCT by mechanisms other than the regulation of aromatase. Its role in this disease therefore warrants further investigation.
Collapse
Affiliation(s)
- Ashwini L Chand
- Prince Henry's Institute, PO Box 5152, Clayton, Victoria, Australia
| | | | | | | | | | | | | |
Collapse
|
42
|
Targeted paclitaxel nanoparticles modified with follicle-stimulating hormone β 81-95 peptide show effective antitumor activity against ovarian carcinoma. Int J Pharm 2013; 453:498-505. [PMID: 23811008 DOI: 10.1016/j.ijpharm.2013.06.038] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2013] [Revised: 04/28/2013] [Accepted: 06/12/2013] [Indexed: 02/07/2023]
Abstract
The majority of patients with advanced ovarian cancer will experience a relapse and ultimately die from refractory diseases. Targeted therapy shows promise for these patients. Novel therapeutic strategies should be developed on the basis of the molecular mechanisms involved in ovarian cancer and the steroid hormone environment of ovaries. The ovary is the main target organ of follicle-stimulating hormone (FSH), which bind to its receptor with high affinity. In this study a FSH receptor-targeting ligand, FSH β 81-95 peptide, was used as a targeting moiety to synthesize an FSH receptor-mediated drug delivery system. FSH β 81-95 peptide-conjugated nanoparticles (FSH81-NPs) and paclitaxel-loaded FSH81-NPs (FSH81-NP-PTXs) were synthesized. In vitro studies showed that FSH β 81-95 peptide enabled the specific uptake of cytotoxic drugs and increased the intracellular paclitaxel concentration in FSH receptor-expressing cancer cells, resulting in enhanced cytotoxic effects. In vivo studies showed that FSH81-NP-PTXs possessed higher antitumor efficacy against FSH receptor-expressing tumors without any clinical signs of adverse side effects or body weight loss due to modification with FSH β 81-95 peptide. Therefore, FSH binding peptide-targeted drug delivery system exhibited high potential in the treatment of ovarian cancer, and tumor targeting via reproductive hormone receptors might improve the outcome of diseases.
Collapse
|
43
|
Schüler S, Ponnath M, Engel J, Ortmann O. Ovarian epithelial tumors and reproductive factors: a systematic review. Arch Gynecol Obstet 2013; 287:1187-204. [PMID: 23503972 DOI: 10.1007/s00404-013-2784-1] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2012] [Accepted: 02/28/2013] [Indexed: 12/11/2022]
Abstract
PURPOSE The aim of this systematic review is to summarize the current knowledge about the etiology and pathogenesis of borderline tumors ovarian cancer with special emphasis on the role of endocrine treatments and reproductive factors to establish a foundation for future studies. METHODS We performed a systematic review on the relation between ovarian epithelial tumors (OET) and reproductive factors using the keywords: ovarian cancer, ovarian tumor, ovarian borderline tumor, age at menarche, age at menopause, parity, infertility, PCO syndrome, oral contraception, menopausal hormone therapy, fertility treatment. Totally, 3,290 abstracts were scanned for their relevance in this publication and 127 were finally included. RESULTS The incidence of ovarian epithelial cancer and ovarian borderline tumors is influenced by certain reproductive factors. The strongest protective effects are conferred by parity and use of oral contraceptive pills. Recent molecular biologic and histopathologic studies prove that OET represent a diverse group of tumors, each histologic type with a different genetic background. This is at least partly reflected in epidemiologic and clinical studies showing different risk modulating effects of reproductive factors and endocrine therapies on OET. CONCLUSIONS The etiology and pathogenesis of ovarian cancer are still not fully understood. None of the so far proposed hypothesis on the development of OET can fully account for the epidemiologic and clinical findings in the context of reproductive factors and OET development. Further research approaches are warranted and need to put more weight on the clinical and genetical diversity of OET to yield a more detailed insight into their pathogenesis.
Collapse
Affiliation(s)
- Susanne Schüler
- Department of Obstetrics and Gynecology, University of Regensburg, Caritas-Hospital St. Josef, Landshuter Straße 65, 93053 Regensburg, Germany.
| | | | | | | |
Collapse
|
44
|
Gonadotropins activate oncogenic pathways to enhance proliferation in normal mouse ovarian surface epithelium. Int J Mol Sci 2013; 14:4762-82. [PMID: 23449028 PMCID: PMC3634497 DOI: 10.3390/ijms14034762] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2013] [Revised: 02/21/2013] [Accepted: 02/25/2013] [Indexed: 12/18/2022] Open
Abstract
Ovarian cancer is the most lethal gynecological malignancy affecting American women. The gonadotropins, follicle stimulating hormone (FSH) and luteinizing hormone (LH), have been implicated as growth factors in ovarian cancer. In the present study, pathways activated by FSH and LH in normal ovarian surface epithelium (OSE) grown in their microenvironment were investigated. Gonadotropins increased proliferation in both three-dimensional (3D) ovarian organ culture and in a two-dimensional (2D) normal mouse cell line. A mouse cancer pathway qPCR array using mRNA collected from 3D organ cultures identified Akt as a transcriptionally upregulated target following stimulation with FSH, LH and the combination of FSH and LH. Activation of additional pathways, such as Birc5, Cdk2, Cdk4, and Cdkn2a identified in the 3D organ cultures, were validated by western blot using the 2D cell line. Akt and epidermal growth factor receptor (EGFR) inhibitors blocked gonadotropin-induced cell proliferation in 3D organ and 2D cell culture. OSE isolated from 3D organ cultures stimulated with LH or hydrogen peroxide initiated growth in soft agar. Hydrogen peroxide stimulated colonies were further enhanced when supplemented with FSH. LH colony formation and FSH promotion were blocked by Akt and EGFR inhibitors. These data suggest that the gonadotropins stimulate some of the same proliferative pathways in normal OSE that are activated in ovarian cancers.
Collapse
|
45
|
Su D, Pasalich M, Lee AH, Binns CW. Ovarian cancer risk is reduced by prolonged lactation: a case-control study in southern China. Am J Clin Nutr 2013; 97:354-9. [PMID: 23283498 DOI: 10.3945/ajcn.112.044719] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Ovarian cancer is an important neoplasm that is difficult to diagnose and treat; therefore, prevention is the preferable strategy. Growing evidence indicates a protective effect of breastfeeding on ovarian cancer risk. OBJECTIVE The objective was to investigate the association between lactation and the risk of ovarian cancer among southern Chinese women. DESIGN A case-control study was undertaken in Guangzhou, Guangdong Province, between August 2006 and July 2008. A validated and reliable questionnaire was used to obtain information on the months of lactation and number of children breastfed in a sample of 493 incident ovarian cancer patients and 472 hospital-based controls (mean age: 59 y). Logistic regression analyses were performed to assess the association between breastfeeding and the risk of ovarian cancer. RESULTS Significant inverse dose-response relations were found for both duration of lactation and the number of children breastfed. The adjusted ORs were 0.09 (95% CI: 0.04, 0.19) for women with ≥31 mo of total lactation and those with ≤10 mo of lactation and 0.38 (95% CI: 0.27, 0.55) for women with ≥3 children breastfed compared with those with one child breastfed. CONCLUSION Prolonged lactation is associated with a lower risk of ovarian cancer in parous Chinese women.
Collapse
Affiliation(s)
- Dada Su
- School of Public Health, Curtin University, Perth, Australia
| | | | | | | |
Collapse
|
46
|
Gadducci A, Guerrieri ME, Genazzani AR. Fertility drug use and risk of ovarian tumors: a debated clinical challenge. Gynecol Endocrinol 2013; 29:30-5. [PMID: 22946709 DOI: 10.3109/09513590.2012.705382] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Infertility itself increases the incidence of ovarian carcinoma, while the potential additional risk associated with the use of fertility drugs is still debated. In 1992, the cumulative analysis of 12 US case-control studies revealed that women who received ovulation-inducing drugs had approximately three-fold higher incidence of invasive ovarian carcinoma. Other investigations reported a lower increase of the risk of invasive carcinoma or borderline tumor of the ovary in women treated with these agents. Conversely, several other case-control or cohort studies failed to detect a significant correlation between fertility drug use and ovarian tumor risk in either parous or nulliparous women compared with untreated infertile women. Moreover neither the number of treatment cycles nor the type of drug used was associated with an increased risk in most studies. Incessant ovulation and excessive gonadotropin secretion have been long considered to play a major role in the development of ovarian carcinoma, and therefore fertility drugs, which raise the serum levels of gonadotropins and increase the chances of multiple ovulations, have been retained as a risk factor for this malignancy, However, the large majority of literature data as well as the new hypotheses on ovarian carcinogenesis appear to exclude a relevant impact of fertility drug use on the risk of ovarian tumors, and especially of high-grade invasive epithelial ovarian cancers.
Collapse
Affiliation(s)
- Angiolo Gadducci
- Department of Procreative Medicine, Division of Gynecology and Obstetrics, University of Pisa, Pisa, Italy.
| | | | | |
Collapse
|
47
|
Tomasina J, Lheureux S, Gauduchon P, Rault S, Malzert-Fréon A. Nanocarriers for the targeted treatment of ovarian cancers. Biomaterials 2013; 34:1073-101. [DOI: 10.1016/j.biomaterials.2012.10.055] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2012] [Accepted: 10/23/2012] [Indexed: 12/09/2022]
|
48
|
Siristatidis C, Sergentanis TN, Kanavidis P, Trivella M, Sotiraki M, Mavromatis I, Psaltopoulou T, Skalkidou A, Petridou ET. Controlled ovarian hyperstimulation for IVF: impact on ovarian, endometrial and cervical cancer—a systematic review and meta-analysis. Hum Reprod Update 2012; 19:105-23. [DOI: 10.1093/humupd/dms051] [Citation(s) in RCA: 108] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
|
49
|
Bhartiya D, Sriraman K, Gunjal P, Modak H. Gonadotropin treatment augments postnatal oogenesis and primordial follicle assembly in adult mouse ovaries? J Ovarian Res 2012; 5:32. [PMID: 23134576 PMCID: PMC3616927 DOI: 10.1186/1757-2215-5-32] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2012] [Accepted: 10/13/2012] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Follicle stimulating hormone (FSH) exerts action on both germline and somatic compartment in both ovary and testis although FSH receptors (FSHR) are localized only on the somatic cells namely granulosa cells of growing follicles and Sertoli cells in the seminiferous tubules. High levels of FSH in females are associated with poor ovarian reserve, ovarian hyper stimulation syndrome etc. and at the same time FSH acts as a survival factor during in vitro organotypic culture of ovarian cortical strips. Thus a further understanding of FSH action on the ovary is essential. We have earlier reported presence of pluripotent very small embryonic-like stem cells (VSELs express Oct-4A in addition to other pluripotent markers) and their immediate descendants 'progenitors' ovarian germ stem cells (OGSCs express Oct-4B in addition to other germ cell markers) in ovarian surface epithelium (OSE) in various mammalian species including mice, rabbit, monkey, sheep and human. Present study was undertaken to investigate the effect of pregnant mare serum gonadotropin (PMSG) on adult mice ovaries with a focus on VSELs, OGSCs, postnatal oogenesis and primordial follicle assembly. METHODS Ovaries were collected from adult mice during different stages of estrus cycle and after 2 and 7 days of PMSG (5 IU) treatment to study histo-architecture and expression for FSHR, pluripotent stem cells , meiosis and germ cell specific markers. RESULTS PMSG treatment resulted in increased FSHR and proliferation as indicated by increased FSHR and PCNA immunostaining in OSE and oocytes of primordial follicles (PF) besides the granulosa cells of large antral follicles. Small 1-2 regions of multilayered OSE invariably associated with a cohort of PF during estrus stage in control ovary were increased to 5-8 regions after PMSG treatment. This was associated with an increase in pluripotent transcripts (Oct-4A, Nanog), meiosis (Scp-3) and germ cells (Oct-4B, Mvh) specific markers. MVH showed positive immuno staining on germ cell nest-like clusters and at places primordial follicles appeared connected through oocytes. CONCLUSIONS The results of the present study show that gonadotropin (PMSG) treatment to adult mouse leads to increased pluripotent stem cell activity in the ovaries, associated with increased meiosis, appearance of several cohorts of PF and their assembly in close proximity of OSE. This was found associated with the presence of germ cell nests and cytoplasmic continuity of oocytes in PF. We have earlier reported that pluripotent ovarian stem cells in the adult mammalian ovary are the VSELs which give rise to slightly differentiated OGSCs. Thus we propose that gonadotropin through its action on pluripotent VSELs augments neo-oogenesis and PF assembly in adult mouse ovaries.
Collapse
Affiliation(s)
- Deepa Bhartiya
- Stem Cell Biology Department, National Institute for Research in Reproductive Health, Mumbai, 400 012, India.
| | | | | | | |
Collapse
|
50
|
Mertens-Walker I, Baxter RC, Marsh DJ. Gonadotropin signalling in epithelial ovarian cancer. Cancer Lett 2012; 324:152-9. [PMID: 22634496 DOI: 10.1016/j.canlet.2012.05.017] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2012] [Revised: 05/15/2012] [Accepted: 05/16/2012] [Indexed: 11/19/2022]
Abstract
Ovarian cancer is the most lethal of all gynecologic malignancies, although its aetiology remains poorly understood. A role for the gonadotropins, follicle-stimulating hormone (FSH) and luteinising hormone (LH), has been implicated in a variety of different aspects of ovarian cancer tumorigenesis, including cellular proliferation, migration and invasion. This review focuses on the latest advances in knowledge concerning signalling pathways and functional consequences of gonadotropin action, including changes in protein-, miRNA- and gene expression, in epithelial ovarian cancer cells.
Collapse
Affiliation(s)
- Inga Mertens-Walker
- Hormones and Cancer Division, Kolling Institute of Medical Research, University of Sydney, Royal North Shore Hospital, St. Leonards, New South Wales 2065, Australia
| | | | | |
Collapse
|