1
|
Taouis M, Benomar Y. Is resistin the master link between inflammation and inflammation-related chronic diseases? Mol Cell Endocrinol 2021; 533:111341. [PMID: 34082045 DOI: 10.1016/j.mce.2021.111341] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 05/25/2021] [Accepted: 05/28/2021] [Indexed: 01/07/2023]
Abstract
Resistin has been firstly discovered in mice and was identified as an adipose tissue-secreted hormone or adipokine linking obesity and insulin resistance. In humans, resistin has been characterized as a hormone expressed and secreted by Immune cells especially by macrophages, and was linked to many inflammatory responses including inflammation of adipose tissue due to macrophages' infiltration. Human and mouse resistin display sequence and structural similarities and also dissimilarities that could explain their different expression pattern. In mice, strong pieces of evidence clearly associated high resistin plasma levels to obesity and insulin resistance suggesting that resistin could play an important role in the onset and progression of obesity and insulin resistance via resistin-induced inflammation. In humans, the link between resistin and obesity/insulin resistance is still a matter of debate and needs more epidemiological studies. Also, resistin has been linked to other chronic diseases such as cardiovascular diseases and cancers where resistin has been proposed in many studies as a biological marker.
Collapse
Affiliation(s)
- Mohammed Taouis
- Molecular Neuroendocrinology of Food Intake (NMPA), UMR 9197, University of Paris-Saclay, Orsay, France; NMPA, Dept. Development, Evolution and Cell Signaling, Paris-Saclay Institute of Neurosciences (NeuroPSI) CNRS UMR 9197, Orsay, France.
| | - Yacir Benomar
- Molecular Neuroendocrinology of Food Intake (NMPA), UMR 9197, University of Paris-Saclay, Orsay, France; NMPA, Dept. Development, Evolution and Cell Signaling, Paris-Saclay Institute of Neurosciences (NeuroPSI) CNRS UMR 9197, Orsay, France
| |
Collapse
|
2
|
Variants of G protein-coupled receptors: a reappraisal of their role in receptor regulation. Biochem Soc Trans 2016; 44:589-94. [PMID: 27068974 DOI: 10.1042/bst20150239] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Indexed: 01/11/2023]
Abstract
Truncated or shorter forms of G protein-coupled receptors (GPCRs), originating by alternative splicing, have been considered physiologically irrelevant for a rather long time. Nevertheless, it is now recognized that alternative splicing variants of GPCRs greatly increase the total number of receptor isoforms and can regulate receptor trafficking and signalling. Furthermore, dimerization of these truncated variants with other receptors concurs to expand receptor diversity. Highly truncated variants of GPCRs, typically, are retained in the endoplasmic reticulum (ER) and by heteromerization prevent the wild-type receptor to reach the plasma membrane, exerting a dominant-negative effect on its function. This can be responsible for some pathological conditions but in some other cases, it can offer protection from a disease because the expression of the receptor, that is necessary for binding an infectious agent, is attenuated. Here, we propose a possible new mechanism of creation of truncated GPCR variants through an internal ribosome entry site (IRES), a nucleotide sequence that allows cap independent translation of proteins by recruiting the ribosome in proximity of an internal initiation codon. We suggest that an IRES, situated in the third cytoplasmic loop, could be responsible for the translation of the last two transmembrane (TM) regions of the muscarinic M2receptor. IRES driven expression of this C-terminal part of the muscarinic M2receptor could represent a novel and additional mechanism of receptor regulation.
Collapse
|
3
|
DeMorrow S, Meng F, Venter J, Leyva-Illades D, Francis H, Frampton G, Pae HY, Quinn M, Onori P, Glaser S, McDaniel K, Mancinelli R, Gaudio E, Alpini G, Franchitto A. Neuropeptide Y inhibits biliary hyperplasia of cholestatic rats by paracrine and autocrine mechanisms. Am J Physiol Gastrointest Liver Physiol 2013; 305:G250-7. [PMID: 23703654 PMCID: PMC3742859 DOI: 10.1152/ajpgi.00140.2013] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Neuropeptide Y (NPY) exerts its functions through six subtypes of receptors (Y₁-Y₆). Biliary homeostasis is regulated by several factors through autocrine/paracrine signaling. NPY inhibits cholangiocarcinoma growth; however, no information exists regarding the autocrine/paracrine role of NPY on biliary hyperplasia during cholestasis. The aims of this study were to determine: 1) the expression of NPY and Y₁-Y₅ in cholangiocytes and 2) the paracrine/autocrine effects of NPY on cholangiocyte proliferation. Normal or bile duct ligation (BDL) rats were treated with NPY, neutralizing anti-NPY antibody, or vehicle for 7 days. NPY and NPY receptor (NPYR) expression was assessed in liver sections and isolated cholangiocytes. NPY secretion was assessed in serum and bile from normal and BDL rats, as well as supernatants from normal and BDL cholangiocytes and normal rat cholangiocyte cell line [intrahepatic normal cholangiocyte culture (NRICC)]. We evaluated intrahepatic bile ductal mass (IBDM) in liver sections and proliferation in cholangiocytes. With the use of NRICC, the effects of NPY or anti-NPY antibody on cholangiocyte proliferation were determined. The expression of NPY and all NPYR were increased after BDL. NPY levels were lower in serum and cholangiocyte supernatant from BDL compared with normal rats. NPY secretion from NRICC was detected at both the basolateral and apical domains. Chronic NPY treatment decreased proliferating cellular nuclear antigen (PCNA) expression and IBDM in BDL rats. Administration of anti-NPY antibody to BDL rats increased cholangiocyte proliferation and IBDM. NPY treatment of NRICC decreased PCNA expression and increased the cell cycle arrest, whereas treatment with anti-NPY antibody increased proliferation. Therapies targeting NPY-mediated signaling may prove beneficial for the treatment of cholangiopathies.
Collapse
Affiliation(s)
- Sharon DeMorrow
- 1Research, Central Texas Veterans Health Care System, Temple, Texas; ,2Scott & White Digestive Disease Research Center, Scott & White, Temple, Texas; ,4Department of Medicine, Division Gastroenterology, Texas A&M Health Science Center, College of Medicine, Temple, Texas;
| | - Fanyin Meng
- 1Research, Central Texas Veterans Health Care System, Temple, Texas; ,2Scott & White Digestive Disease Research Center, Scott & White, Temple, Texas; ,3Division of Research and Education, Scott & White, Temple, Texas; ,4Department of Medicine, Division Gastroenterology, Texas A&M Health Science Center, College of Medicine, Temple, Texas;
| | - Julie Venter
- 4Department of Medicine, Division Gastroenterology, Texas A&M Health Science Center, College of Medicine, Temple, Texas;
| | - Dinorah Leyva-Illades
- 4Department of Medicine, Division Gastroenterology, Texas A&M Health Science Center, College of Medicine, Temple, Texas;
| | - Heather Francis
- 1Research, Central Texas Veterans Health Care System, Temple, Texas; ,2Scott & White Digestive Disease Research Center, Scott & White, Temple, Texas; ,3Division of Research and Education, Scott & White, Temple, Texas; ,4Department of Medicine, Division Gastroenterology, Texas A&M Health Science Center, College of Medicine, Temple, Texas;
| | - Gabriel Frampton
- 4Department of Medicine, Division Gastroenterology, Texas A&M Health Science Center, College of Medicine, Temple, Texas;
| | - Hae Yong Pae
- 4Department of Medicine, Division Gastroenterology, Texas A&M Health Science Center, College of Medicine, Temple, Texas;
| | - Matthew Quinn
- 4Department of Medicine, Division Gastroenterology, Texas A&M Health Science Center, College of Medicine, Temple, Texas;
| | - Paolo Onori
- 5Department of Anatomical, Histological, Forensic Medicine and Orthopedics Sciences, “La Sapienza,” Rome, Italy; and
| | - Shannon Glaser
- 1Research, Central Texas Veterans Health Care System, Temple, Texas; ,2Scott & White Digestive Disease Research Center, Scott & White, Temple, Texas; ,3Division of Research and Education, Scott & White, Temple, Texas; ,4Department of Medicine, Division Gastroenterology, Texas A&M Health Science Center, College of Medicine, Temple, Texas;
| | - Kelly McDaniel
- 3Division of Research and Education, Scott & White, Temple, Texas;
| | - Romina Mancinelli
- 5Department of Anatomical, Histological, Forensic Medicine and Orthopedics Sciences, “La Sapienza,” Rome, Italy; and
| | - Eugenio Gaudio
- 5Department of Anatomical, Histological, Forensic Medicine and Orthopedics Sciences, “La Sapienza,” Rome, Italy; and
| | - Gianfranco Alpini
- 1Research, Central Texas Veterans Health Care System, Temple, Texas; ,2Scott & White Digestive Disease Research Center, Scott & White, Temple, Texas; ,4Department of Medicine, Division Gastroenterology, Texas A&M Health Science Center, College of Medicine, Temple, Texas;
| | - Antonio Franchitto
- 5Department of Anatomical, Histological, Forensic Medicine and Orthopedics Sciences, “La Sapienza,” Rome, Italy; and ,6Eleonora Lorillard Spencer-Cenci Foundation, Rome, Italy
| |
Collapse
|
4
|
Wise H. The roles played by highly truncated splice variants of G protein-coupled receptors. J Mol Signal 2012; 7:13. [PMID: 22938630 PMCID: PMC3477067 DOI: 10.1186/1750-2187-7-13] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2012] [Accepted: 07/29/2012] [Indexed: 01/08/2023] Open
Abstract
Alternative splicing of G protein-coupled receptor (GPCR) genes greatly increases the total number of receptor isoforms which may be expressed in a cell-dependent and time-dependent manner. This increased diversity of cell signaling options caused by the generation of splice variants is further enhanced by receptor dimerization. When alternative splicing generates highly truncated GPCRs with less than seven transmembrane (TM) domains, the predominant effect in vitro is that of a dominant-negative mutation associated with the retention of the wild-type receptor in the endoplasmic reticulum (ER). For constitutively active (agonist-independent) GPCRs, their attenuated expression on the cell surface, and consequent decreased basal activity due to the dominant-negative effect of truncated splice variants, has pathological consequences. Truncated splice variants may conversely offer protection from disease when expression of co-receptors for binding of infectious agents to cells is attenuated due to ER retention of the wild-type co-receptor. In this review, we will see that GPCRs retained in the ER can still be functionally active but also that highly truncated GPCRs may also be functionally active. Although rare, some truncated splice variants still bind ligand and activate cell signaling responses. More importantly, by forming heterodimers with full-length GPCRs, some truncated splice variants also provide opportunities to generate receptor complexes with unique pharmacological properties. So, instead of assuming that highly truncated GPCRs are associated with faulty transcription processes, it is time to reassess their potential benefit to the host organism.
Collapse
Affiliation(s)
- Helen Wise
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong, SAR, China.
| |
Collapse
|
5
|
Lundell I, Rabe Bernhardt N, Johnsson AK, Larhammar D. Internalization studies of chimeric neuropeptide Y receptors Y1 and Y2 suggest complex interactions between cytoplasmic domains. ACTA ACUST UNITED AC 2011; 168:50-8. [DOI: 10.1016/j.regpep.2011.03.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2011] [Revised: 02/18/2011] [Accepted: 03/28/2011] [Indexed: 11/25/2022]
|
6
|
Functional characterization of two melanocortin (MC) receptors in lamprey showing orthology to the MC1 and MC4 receptor subtypes. BMC Evol Biol 2007; 7:101. [PMID: 17603878 PMCID: PMC1925065 DOI: 10.1186/1471-2148-7-101] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2007] [Accepted: 06/29/2007] [Indexed: 11/15/2022] Open
Abstract
Background The melanocortin (MC) receptors have a key role in regulating body weight and pigmentation. They belong to the rhodopsin family of G protein-coupled receptors (GPCRs). The purpose of this study was to identify ancestral MC receptors in agnathan, river lamprey. Results We report cloning of two MC receptors from river lamprey. The lamprey receptors, designated MCa and MCb, showed orthology to the MC1 and MC4 receptor subtypes, respectively. The molecular clock analysis suggested that lamprey MC receptor genes were not duplicated recently and diverged from each other more than 400 MYR ago. Expression and pharmacological characterization showed that the lamprey MCa receptor was able to bind and be activated by both lamprey and human MSH peptides. The lamprey MCa receptor had relatively high affinity for ACTH derived peptides similarly to the fish MC receptors. We found that both of the lamprey MC receptors were expressed in skin, while the MCb receptor was also found in liver, heart and skeletal muscle. Conclusion This study shows presence of MC receptors in agnathans indicating early signs of specific functions of melanocortin receptor subtypes.
Collapse
|
7
|
Eva C, Serra M, Mele P, Panzica G, Oberto A. Physiology and gene regulation of the brain NPY Y1 receptor. Front Neuroendocrinol 2006; 27:308-39. [PMID: 16989896 DOI: 10.1016/j.yfrne.2006.07.002] [Citation(s) in RCA: 115] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2005] [Revised: 07/18/2006] [Accepted: 07/25/2006] [Indexed: 10/24/2022]
Abstract
Neuropeptide Y (NPY) is one of the most prominent and abundant neuropeptides in the mammalian brain where it interacts with a family of G-protein coupled receptors, including the Y(1) receptor subtype (Y(1)R). NPY-Y(1)R signalling plays a prominent role in the regulation of several behavioural and physiological functions including feeding behaviour and energy balance, sexual hormone secretion, stress response, emotional behaviour, neuronal excitability and ethanol drinking. Y(1)R expression is regulated by neuronal activity and peripheral hormones. The Y(1)R gene has been isolated from rodents and humans and it contains multiple regulatory elements that may participate in the regulation of its expression. Y(1)R expression in the hypothalamus is modulated by changes in energetic balance induced by a wide variety of conditions (fasting, pregnancy, hyperglycaemic challenge, hypophagia, diet induced obesity). Estrogens up-regulate responsiveness to NPY to stimulate preovulatory GnRH and gonadotropin surges by increasing Y(1)R gene expression both in the hypothalamus and the pituitary. Y(1)R expression is modulated by different kinds of brain insults, such as stress and seizure activity, and alteration in its expression may contribute to antidepressant action. Chronic modulation of GABA(A) receptor function by benzodiazepines or neuroactive steroids also affects Y(1)R expression in the amygdala, suggesting that a functional interaction between the GABA(A) receptor and Y(1)R mediated signalling may contribute to the regulation of emotional behaviour. In this paper, we review the state of the art concerning Y(1)R function and gene expression, including our personal contribution to many of the subjects mentioned above.
Collapse
Affiliation(s)
- Carola Eva
- Sezione di Farmacologia, Dipartimento di Anatomia, Farmacologia e Medicina Legale, Università di Torino, Italy; Centro Rita Levi Montalcini, Università di Torino, Italy.
| | | | | | | | | |
Collapse
|
8
|
Bromée T, Sjödin P, Fredriksson R, Boswell T, Larsson TA, Salaneck E, Zoorob R, Mohell N, Larhammar D. Neuropeptide Y-family receptors Y6 and Y7 in chicken. Cloning, pharmacological characterization, tissue distribution and conserved synteny with human chromosome region. FEBS J 2006; 273:2048-63. [PMID: 16640567 DOI: 10.1111/j.1742-4658.2006.05221.x] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The peptides of the neuropeptide Y (NPY) family exert their functions, including regulation of appetite and circadian rhythm, by binding to G-protein coupled receptors. Mammals have five subtypes, named Y1, Y2, Y4, Y5 and Y6, and recently Y7 has been discovered in fish and amphibians. In chicken we have previously characterized the first four subtypes and here we describe Y6 and Y7. The genes for Y6 and Y7 are located 1 megabase apart on chromosome 13, which displays conserved synteny with human chromosome 5 that harbours the Y6 gene. The porcine PYY radioligand bound the chicken Y6 receptor with a K(d) of 0.80 +/- 0.36 nm. No functional coupling was demonstrated. The Y6 mRNA is expressed in hypothalamus, gastrointestinal tract and adipose tissue. Porcine PYY bound chicken Y7 with a K(d) of 0.14 +/- 0.01 nm (mean +/- SEM), whereas chicken PYY surprisingly had a much lower affinity, with a Ki of 41 nm, perhaps as a result of its additional amino acid at the N terminus. Truncated peptide fragments had greatly reduced affinity for Y7, in agreement with its closest relative, Y2, in chicken and fish, but in contrast to Y2 in mammals. This suggests that in mammals Y2 has only recently acquired the ability to bind truncated PYY. Chicken Y7 has a much more restricted tissue distribution than other subtypes and was only detected in adrenal gland. Y7 seems to have been lost in mammals. The physiological roles of Y6 and Y7 remain to be identified, but our phylogenetic and chromosomal analyses support the ancient origin of these Y receptor genes by chromosome duplications in an early (pregnathostome) vertebrate ancestor.
Collapse
Affiliation(s)
- Torun Bromée
- Department of Neuroscience, Unit of Pharmacology, Uppsala University, Sweden
| | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Larsson TA, Larson ET, Fredriksson R, Conlon JM, Larhammar D. Characterization of NPY receptor subtypes Y2 and Y7 in rainbow trout Oncorhynchus mykiss. Peptides 2006; 27:1320-7. [PMID: 16359756 DOI: 10.1016/j.peptides.2005.10.008] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2005] [Revised: 10/09/2005] [Accepted: 10/10/2005] [Indexed: 01/03/2023]
Abstract
We report the cloning and pharmacological characterization of two neuropeptide Y (NPY) receptor subtypes, Y2 and Y7, in rainbow trout (Oncorhynchus mykiss). These subtypes are approximately 50% identical to each other and belong to the Y2 subfamily of NPY receptors. The binding properties of the receptors were investigated after expression in human HEK-293 EBNA cells. Both receptors bound the three zebrafish peptides NPY, PYYa, and PYYb, as well as porcine NPY and PYY, with affinities in the nanomolar range that are similar to mammalian Y2. The affinity of the truncated porcine NPY fragments, NPY 13-36 and NPY 18-36 was markedly lower compared to mammalian and chicken Y2. This suggests that mammalian and chicken Y2 are unique among NPY receptors in their ability to bind truncated peptide fragments. The antagonist BIIE0246, developed for mammalian Y2, did not bind either of the two rainbow trout receptors. Our results support the proposed expansion of this gene family by duplications before the gnathostome radiation. They also reveal appreciable differences in the repertoire and characteristics of NPY receptors between fish and tetrapods stressing the importance of lineage-specific gene loss as well as sequence divergence after duplication.
Collapse
Affiliation(s)
- Tomas A Larsson
- Department of Neuroscience, Uppsala University, Box 593, SE-75124, Uppsala, Sweden.
| | | | | | | | | |
Collapse
|
10
|
Merten N, Beck-Sickinger AG. Molecular ligand-receptor interaction of the NPY/PP peptide family. EXS 2006:35-62. [PMID: 16382996 DOI: 10.1007/3-7643-7417-9_3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Nicole Merten
- Institute of Biochemistry, Brüderstr. 34, 04103 Leipzig, Germany
| | | |
Collapse
|
11
|
Sjödin P, Holmberg SKS, Akerberg H, Berglund MM, Mohell N, Larhammar D. Re-evaluation of receptor-ligand interactions of the human neuropeptide Y receptor Y1: a site-directed mutagenesis study. Biochem J 2006; 393:161-9. [PMID: 16097949 PMCID: PMC1383674 DOI: 10.1042/bj20050708] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Interactions of the human NPY (neuropeptide Y) receptor Y1 with the two endogenous agonists NPY and peptide YY and two non-peptide antagonists were investigated using site-directed mutagenesis at 17 positions. The present study was triggered by contradictions among previously published reports and conclusions that seemed inconsistent with sequence comparisons across species and receptor subtypes. Our results show that Asp287, at the border between TM (transmembrane) region 6 and EL3 (extracellular loop 3) influences peptide binding, while two aspartic residues in EL2 do not, in agreement with some previous studies but in disagreement with others. A hydrophobic pocket of the Y1 receptor consisting of Tyr100 (TM2), Phe286 (TM6) and His298 (EL3) has been proposed to interact with the amidated C-terminus of NPY, a theory that is unsupported by sequence comparisons between Y1, Y2 and Y5. Nevertheless, our results confirm that these amino acid residues are critical for peptide binding, but probably interact with NPY differently than proposed previously. Studies with the Y1-selective antagonist SR120819A identified a new site of interaction at Asn116 in TM3. Position Phe173 in TM4 is also important for binding of this antagonist. In contrast with previous reports, we found that Phe173 is not crucial for the binding of BIBP3226, another selective Y1 receptor antagonist. Also, we found that position Thr212 (TM5) is important for binding of both antagonists. Our mutagenesis results and our three-dimensional model of the receptor based on the high-resolution structure of bovine rhodopsin suggest new interactions for agonist as well as antagonist binding to the Y1 receptor.
Collapse
Affiliation(s)
- Paula Sjödin
- Department of Neuroscience, Unit of Pharmacology, Uppsala University, Box 593, SE-75124 Uppsala, Sweden.
| | | | | | | | | | | |
Collapse
|
12
|
Ruscica M, Dozio E, Boghossian S, Bovo G, Martos Riaño V, Motta M, Magni P. Activation of the Y1 receptor by neuropeptide Y regulates the growth of prostate cancer cells. Endocrinology 2006; 147:1466-73. [PMID: 16339211 DOI: 10.1210/en.2005-0925] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
This study deals with the role of neuropeptide Y (NPY) in the regulation of cell proliferation. NPY is expressed in the normal and tumoral prostate, but no data on its possible role in prostate cancer (PCa) progression are available. Therefore, we evaluated the direct effect of NPY on the growth of the human PCa cell lines LNCaP (androgen dependent) and DU145 and PC3 (androgen independent). All PCa cell lines expressed Y1-R gene and protein. NPY treatment reduced the proliferation of LNCaP and DU145 cells and increased that of PC3 cells. The Y1-R antagonist BIBP3226 abolished such effects, suggesting a mandatory role of Y1-R in this process. LNCaP cells showed elevated constitutive levels of phosphorylated ERK1/2, which were not affected by NPY. In DU145 cells, NPY stimulated a long-lasting ERK1/2 activation, whereas, in PC3 cells, this effect was rapid and transient and required activation of protein kinase C. Moreover, in both cell lines, pretreatment with BIBP3226 prevented the NPY-induced ERK1/2 phosphorylation, further supporting Y1-R involvement. NPY treatment reduced forskolin-stimulated cAMP accumulation only in PC3 cells and did not change intracellular calcium concentration in any PCa cell line. These data indicate that NPY may directly regulate PCa cell growth via Y1-R. The direction of this effect appears to be related to the time kinetics of MAPK activation, i.e. long-lasting vs. transient, and to the clone-specific involvement of other intracellular signals. These findings suggest that NPY-related mechanisms might play a relevant role in the progression of PCa, at both androgen dependent and independent stages.
Collapse
|
13
|
Fredriksson R, Sjödin P, Larson ET, Conlon JM, Larhammar D. Cloning and characterization of a zebrafish Y2 receptor. ACTA ACUST UNITED AC 2005; 133:32-40. [PMID: 16257457 DOI: 10.1016/j.regpep.2005.09.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2005] [Accepted: 09/08/2005] [Indexed: 10/25/2022]
Abstract
The NPY receptors belong to the superfamily of G-protein coupled receptors and in mammals this family has five members, named Y1, Y2, Y4, Y5, and Y6. In bony fish, four receptors have been identified, named Ya, Yb, Yc and Y7. Yb and Y7 arose prior to the split between ray-fined fishes and tetrapods and have been lost in mammals. Yc appeared as a copy of Yb in teleost fishes. Ya may be an ortholog of Y4, but surprisingly no unambiguous receptor ortholog to any of the mammalian subtypes has yet been identified in bony fishes. Here we present the cloning and pharmacological characterization of a Y2 receptor in zebrafish, Danio rerio. To date, this is the first Y2 receptor outside mammals and birds that has been characterized pharmacologically. Phylogenetic analysis and synteny confirmed that this receptor is orthologous to mammalian Y2. We show that the receptor is pharmacologically most similar to chicken Y2 which leads to the conclusion that Y2 has acquired several novel characteristics in mammals. Y2 from zebrafish binds very poorly to the Y2-specific antagonist BIIE0246. Our pharmacological characterization supports our previous conclusions regarding the binding pocket of BIIE0246 in the human Y2 receptor.
Collapse
Affiliation(s)
- R Fredriksson
- Department of Neuroscience, Uppsala University, Box 593, SE-75124, Uppsala, Sweden
| | | | | | | | | |
Collapse
|
14
|
Arun KHS, Kaul CL, Ramarao P. Green fluorescent proteins in receptor research: An emerging tool for drug discovery. J Pharmacol Toxicol Methods 2005; 51:1-23. [PMID: 15596111 DOI: 10.1016/j.vascn.2004.07.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2003] [Accepted: 07/27/2004] [Indexed: 01/20/2023]
Abstract
In the last five years, green fluorescent protein (GFP) has emerged from being a mere curiosity to become a reliable tool for molecular pharmacological research. GFP produces an intense and stable green fluorescence noncatalytically by absorbing blue light maximally at 395 nm and emitting green light with a peak at 509 nm. It consists of 238 amino acids and its molecular mass is 27-30 kDa. GFP fluorescence occurs without cofactors and this property allows GFP fluorescence to be utilised in nonnative organisms, wherein it can be used as a reporter. This use of GFP permits real-time analysis of receptor dynamics. The emitted fluorescence can be used as a nontoxic marker and detected using fluorescence-activated cell sorting (FACS), thus avoiding any staining procedure, expensive mRNA analysis or hazardous radiolabeled binding assays. The potential value of GFP has also been recognized in orphan receptor research, where various GFP-tagged therapeutic proteins have been constructed in an attempt to identify the endogenous ligand(s). These chimeric proteins have been used to determine the site and time course of receptor expression and to relate receptor dynamics with therapeutic outcome. The preparation of new GFP constructs for identifying germ layer cells (endodermal, ectodermal, and mesodermal), as well as neuronal, haematopoietic, endothelial, and cartilage cells, has provided a useful battery of tissue/receptor-specific screening assays for new chemical entities. Genetically engineered cells with GFP expression have provided a valuable tool for automated analysis, and can be adapted for high-throughput systems. GFP is being increasingly utilised for the study of receptor dynamics, where, having already proved beneficial, it will likely continue to contribute towards the search for new classes of drugs, as well as to "de-orphaning" orphan receptors.
Collapse
Affiliation(s)
- K H S Arun
- Cardiovascular and Receptorology Laboratory, Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Phase-X, Sector 67, S.A.S. Nagar (Mohali)-160 062, Punjab, India
| | | | | |
Collapse
|
15
|
Haitina T, Klovins J, Andersson J, Fredriksson R, Lagerström MC, Larhammar D, Larson ET, Schiöth HB. Cloning, tissue distribution, pharmacology and three-dimensional modelling of melanocortin receptors 4 and 5 in rainbow trout suggest close evolutionary relationship of these subtypes. Biochem J 2004; 380:475-86. [PMID: 14965341 PMCID: PMC1224171 DOI: 10.1042/bj20031934] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2003] [Revised: 02/09/2004] [Accepted: 02/13/2004] [Indexed: 11/17/2022]
Abstract
The rainbow trout (Oncorhynchus mykiss) is one of the most widely used fish species in aquaculture and physiological research. In the present paper, we report the first cloning, 3D (three-dimensional) modelling, pharmacological characterization and tissue distribution of two melanocortin (MC) receptors in rainbow trout. Phylogenetic analysis indicates that these receptors are orthologues of the human MC4 and MC5 receptors. We created 3D molecular models of these rainbow trout receptors and their human counterparts. These models suggest greater divergence between the two human receptors than between their rainbow trout counterparts. The pharmacological analyses demonstrated that ACTH (adrenocorticotropic hormone) had surprisingly high affinity for the rainbow trout MC4 and MC5 receptors, whereas alpha-, beta- and gamma-MSH (melanocyte-stimulating hormone) had lower affinity. In second-messenger studies, the cyclic MSH analogues MTII and SHU9119 acted as potent agonist and antagonist respectively at the rainbow trout MC4 receptor, indicating that these ligands are suitable for physiological studies in rainbow trout. Interestingly, we found that the rainbow trout MC4 receptor has a natural high-affinity binding site for zinc ions (0.5 microM) indicating that zinc may play an evolutionary conserved role at this receptor. Reverse transcription PCR indicates that the rainbow trout receptors are expressed both in peripheral tissues and in the central nervous system, including the telencephalon, optic tectum and hypothalamus. Overall, this analysis indicates that the rainbow trout MC4 and MC5 receptors have more in common than their mammalian counterparts, which may suggest that these two receptors have a closer evolutionary relationship than the other MC receptor subtypes.
Collapse
MESH Headings
- Amino Acid Sequence/genetics
- Animals
- Binding Sites
- Binding, Competitive
- Cell Line
- Cloning, Molecular/methods
- Evolution, Molecular
- Humans
- Kidney/chemistry
- Kidney/cytology
- Kidney/embryology
- Kidney/metabolism
- Models, Molecular
- Molecular Sequence Data
- Oncorhynchus mykiss/genetics
- Organ Specificity
- Pharmacology
- Phylogeny
- Receptor, Melanocortin, Type 4/chemistry
- Receptor, Melanocortin, Type 4/genetics
- Receptor, Melanocortin, Type 4/metabolism
- Receptors, Corticotropin/chemistry
- Receptors, Corticotropin/genetics
- Receptors, Corticotropin/metabolism
- Receptors, Melanocortin
- Sequence Alignment/methods
- Sequence Analysis, DNA/methods
- Zinc/metabolism
Collapse
Affiliation(s)
- Tatjana Haitina
- Department of Neuroscience, Unit of Pharmacology, Uppsala University, BMC, Uppsala SE75124, Sweden
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Ling MK, Hotta E, Kilianova Z, Haitina T, Ringholm A, Johansson L, Gallo-Payet N, Takeuchi S, Schiöth HB. The melanocortin receptor subtypes in chicken have high preference to ACTH-derived peptides. Br J Pharmacol 2004; 143:626-37. [PMID: 15466451 PMCID: PMC1575423 DOI: 10.1038/sj.bjp.0705900] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
1 Melanocortin (MC) receptors are widely distributed throughout the body of chicken, like in mammals, and participate in a wide range of physiological functions. 2 To clarify the pharmacological impact of ligands acting in the MC system, we expressed the chicken MC1, MC2, MC3, MC4 and MC5 (cMC1-5) receptors in eukaryotic cells and performed comprehensive pharmacological characterization of the potency of endogenous and synthetic melanocortin peptides. 3 Remarkably, the cMC receptors displayed high affinity for ACTH-derived peptides and in general low affinity for alpha-MSH. It is evident that not only the cMC2 receptor but also the other cMC receptors interact with ACTH-derived peptide through an epitope beyond the sequence of alpha-MSH. 4 The synthetic ligand MTII was found to be a potent agonist whereas HS024 was a potent antagonist at the cMC4 receptor, indicating that these ligands are suitable for physiological studies in chicken. 5 We also show the presence of prohormone convertase 1 (PC1) and PC2 genes in chicken, and that these peptides are coexpressed with proopiomelanocortin (POMC) in various tissues.
Collapse
Affiliation(s)
- Maria K Ling
- Department of Neuroscience, Uppsala University, BMC, Box 593, 751 24 Uppsala, Sweden
| | - Eri Hotta
- Department of Biology, Faculty of Science, Okayama University, Okayama, Japan
| | - Zuzana Kilianova
- Service of Endocrinology, Department of Medicine, University of Sherbrooke, Sherbrooke, Quebec, Canada
| | - Tatjana Haitina
- Department of Neuroscience, Uppsala University, BMC, Box 593, 751 24 Uppsala, Sweden
| | - Aneta Ringholm
- Department of Neuroscience, Uppsala University, BMC, Box 593, 751 24 Uppsala, Sweden
| | - Lisa Johansson
- Department of Neuroscience, Uppsala University, BMC, Box 593, 751 24 Uppsala, Sweden
| | - Nicole Gallo-Payet
- Service of Endocrinology, Department of Medicine, University of Sherbrooke, Sherbrooke, Quebec, Canada
| | - Sakae Takeuchi
- Department of Biology, Faculty of Science, Okayama University, Okayama, Japan
| | - Helgi B Schiöth
- Department of Neuroscience, Uppsala University, BMC, Box 593, 751 24 Uppsala, Sweden
- Author for correspondence:
| |
Collapse
|
17
|
Abstract
Neuropeptide Y (NPY) was first reported as an abundant peptide in brain tissue in 1982. Shortly thereafter, NPY was found to be a member of a peptide family consisting of the endocrine peptides pancreatic polypeptide (PP) and peptide YY (PYY). These peptides exert most of their biological effects through five G-protein coupled receptors termed Y1, Y2, Y4, Y5 and y6 that mediate either inhibition adenylate cyclase or increases in intracellular calcium. Since the discovery of NPY, a robust a body of literature has developed around the potential functions of this peptide. While initial findings identified NPY is an important contributor to the regulation of feeding, body weight and blood pressure, more recent work as revealed more subtle functions of this peptide and its potential role in affective disorders, bone formation and cravings. The accompanying twelve reviews detail important developments in our understanding of the functional role of NPY.
Collapse
Affiliation(s)
- D R Gehlert
- Lilly Research Laboratories, Neuroscience Division, Eli Lilly and Company, Lilly Corporate Center, Mail Code 0510, Indianapolis, IN 46285, USA.
| |
Collapse
|
18
|
Martinez L, Almagro JC, Coll JL, Herrera RJ. Sequence variability in the fibroin-H intron of domesticated and wild silk moths. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2004; 34:343-352. [PMID: 15041018 DOI: 10.1016/j.ibmb.2003.12.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2003] [Accepted: 12/08/2003] [Indexed: 05/24/2023]
Abstract
The single intron of the heavy-chain fibroin gene in domesticated (Bombyx mori) and wild (B. mandarina) silk moths has a length of approximately 1000 nucleotides. It is located only 57 bp from the gene's core promoter and harbors multiple AT-rich regulatory elements that have been found to enhance the basal level of transcription in vitro. In this work, the intronic nucleotide variability among members of both Bombyx species is analyzed. The intron sequences of B. mori strains k120 and Nistari, as well as B. mandarina specimens from Japan and Korea, were obtained. This information was compared with the previously reported sequences of B. mori strains p50 and C-108, as well as an additional B. mandarina specimen collected in Japan. We found a total of 26 variant positions, including variants shared by members of both species and species-specific changes. The potential functional role of these variants was investigated by using the program MatInspector to search for putative binding sites of transcription factors within the intron. We detected a multitude of putative binding elements distributed along the entire intronic sequence. Among them, 22 correspond to protein binding domains that are known to regulate fibroin transcription. The mapping of multiple variant positions within these putative binding sequences as well as in known regulatory elements of the intron argue for functional significance on the regulation of transcription.
Collapse
Affiliation(s)
- Laisel Martinez
- Department of Biological Sciences, Florida International University, University Park, OE 304, Miami, FL 33199, USA
| | | | | | | |
Collapse
|
19
|
Fredriksson R, Larson ET, Yan YL, Postlethwait JH, Larhammar D. Novel neuropeptide Y Y2-like receptor subtype in zebrafish and frogs supports early vertebrate chromosome duplications. J Mol Evol 2004; 58:106-14. [PMID: 14743318 DOI: 10.1007/s00239-003-2529-z] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2002] [Accepted: 07/21/2003] [Indexed: 11/25/2022]
Abstract
The Y receptors comprise a family of G-protein coupled receptors with neuropeptide Y-family peptides as endogenous ligands. The Y receptor family has five members in mammals and evolutionary data suggest that it diversified in the two genome duplications proposed to have occurred early in vertebrate evolution. If this theory holds true, it allows for additional family members to be present. We describe here the cloning, pharmacological characterization, tissue distribution, and chromosomal localization of a novel subtype of the Y-receptor family, named Y7, from the zebrafish. We also present Y7 sequences from rainbow trout and two amphibians. The new receptor is most similar to Y2, with 51-54% identity. As Y2 has also been cloned from some of these species, there clearly are two separate Y2-subfamily genes. Chromosomal mapping in zebrafish supports origin of Y7 as a duplicate of Y2 by chromosome duplication in an early vertebrate. Y7 has probably been lost in the lineage leading to mammals. The pharmacological profile of the zebrafish Y7 receptor is different from mammalian Y2, as it does not bind short fragments of NPY with a high affinity. The Y7 receptor supports the theory of early vertebrate genome duplications and suggests that the Y family of receptors is a result of these early genome duplications.
Collapse
Affiliation(s)
- R Fredriksson
- Department of Neuroscience, Uppsala University, Box 593, SE-75124, Uppsala, Sweden
| | | | | | | | | |
Collapse
|
20
|
Cerdá-Reverter JM, Ling MK, Schiöth HB, Peter RE. Molecular cloning, characterization and brain mapping of the melanocortin 5 receptor in the goldfish. J Neurochem 2004; 87:1354-67. [PMID: 14713292 DOI: 10.1046/j.1471-4159.2003.02107.x] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The melanocortin 5 receptor (MC5R) is activated by melanocyte-stimulating hormones (MSHs) and has a widespread tissue distribution, while its detailed central expression pattern and brain functions are fairly unknown. We report cloning, pharmacological characterization, tissue distribution and detailed brain mapping of melanocortin 5 receptor in goldfish (gMC5R). The goldfish orthologue protein is 69% identical to human MC5R and is conserved in important functional domains. The gMC5R showed similar potency to alpha-, beta- and gamma-MSH peptides in radioligand binding as the mammalian orthologues, while MTII and HS024 were both agonists at this receptor. The gMC5R-mRNA was found in the peripheral tissues including kidney, spleen, skin and retina, with low expression levels in the intestine, fat, muscle, gill, pituitary and ovary. In situ hybridization studies demonstrated that gMC5R transcripts are widely distributed in the goldfish brain. The gMC5R expression was found in ventral telencephalon, pre-optic area, dorsal and ventral thalamus, infundibular hypothalamus, posterior tuberculum, tectum and tegmentum mesencephali, reticular formation, vagal and facial lobes and spinal cord. The cloning and characterization of this receptor provides an important tool to elucidate its participation in neuroendocrine and behavioural control.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Base Sequence
- Binding, Competitive
- Blotting, Southern
- Brain/anatomy & histology
- Brain/metabolism
- Brain Mapping
- Cell Line
- Cloning, Molecular
- Cyclic AMP/metabolism
- Dose-Response Relationship, Drug
- Embryo, Mammalian
- Embryo, Nonmammalian
- Female
- Goldfish
- Humans
- In Situ Hybridization
- Kidney/metabolism
- Male
- RNA, Messenger/biosynthesis
- Radioligand Assay
- Receptor, Melanocortin, Type 4/chemistry
- Receptors, Corticotropin/genetics
- Receptors, Corticotropin/metabolism
- Receptors, Melanocortin
- Retina/metabolism
- Reverse Transcriptase Polymerase Chain Reaction
- Sequence Alignment
- Skin/metabolism
- Spleen/metabolism
- Transfection
- alpha-MSH/analogs & derivatives
- alpha-MSH/pharmacokinetics
Collapse
|
21
|
Cerdá-Reverter JM, Ringholm A, Schiöth HB, Peter RE. Molecular cloning, pharmacological characterization, and brain mapping of the melanocortin 4 receptor in the goldfish: involvement in the control of food intake. Endocrinology 2003; 144:2336-49. [PMID: 12746294 DOI: 10.1210/en.2002-0213] [Citation(s) in RCA: 141] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
We report cloning, pharmacological characterization, tissue distribution, detailed brain mapping, and role in control of food intake of melanocortin 4 receptor in goldfish (gMC4R). The gMC4R protein has 68% identity with the human ortholog and is conserved in important functional domains. Pharmacological profiling showed similar affinities and potency order to hMC4R for MSH peptides, whereas MTII and HS024 were identified as high-affinity agonist and antagonist analogs, respectively. The gMC4R-mRNA was found in brain and some peripheral tissues including the ovary, gill, and spleen. Detailed MC4R-mRNA mapping showed expression in main neuroendocrine and food intake-controlling areas. High expression levels were found in the telencephalon, preoptic area, ventral thalamus, tuberal hypothalamus, and hypothalamic inferior lobe. By RT-PCR, low levels were also detected in the cerebellum, medulla, and spinal cord. Intracerebroventricular MTII administration inhibited food intake in 24-h fasted animals in a dose-dependent manner, whereas HS024 stimulated food intake in fed animals, suggesting that melanocortins exert a tonic inhibitory effect on food intake, which is mediated through central MC4R signaling. The conserved central expression pattern and physiological role in regulation of food intake for the MC4R suggests that neuronal pathways of the melanocortin system may be important for regulation of energy homeostasis in most vertebrates.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Base Sequence
- Binding, Competitive
- Brain Chemistry/physiology
- Brain Mapping
- Cloning, Molecular
- Eating/physiology
- Female
- Gene Expression/physiology
- Goldfish/physiology
- Injections, Intraventricular
- Male
- Molecular Sequence Data
- Peptides, Cyclic/metabolism
- Peptides, Cyclic/pharmacology
- RNA, Messenger/analysis
- Receptor, Melanocortin, Type 4
- Receptors, Corticotropin/genetics
- Receptors, Corticotropin/metabolism
- Species Specificity
- alpha-MSH/analogs & derivatives
- alpha-MSH/metabolism
- alpha-MSH/pharmacology
- beta-MSH/metabolism
- beta-MSH/pharmacology
- gamma-MSH/metabolism
- gamma-MSH/pharmacology
Collapse
|
22
|
Ling MK, Lagerström MC, Fredriksson R, Okimoto R, Mundy NI, Takeuchi S, Schiöth HB. Association of feather colour with constitutively active melanocortin 1 receptors in chicken. EUROPEAN JOURNAL OF BIOCHEMISTRY 2003; 270:1441-9. [PMID: 12653999 DOI: 10.1046/j.1432-1033.2003.03506.x] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Seven alleles of the chicken melanocortin (MC) 1 receptor were cloned into expression vectors, expressed in mammalian cells and pharmacologically characterized. Four of the clones e(+R), e(+B&D), e(wh)/e(y), E(Rfayoumi) gave receptors to which melanocortin stimulating hormone (alpha-MSH) and NDP-MSH bound with similar IC50 values and responded to alpha-MSH by increasing intracellular cAMP levels in a dose-dependent manner. Three of the cMC1 receptors; e(b), E and E(R), did not show any specific binding to the radioligand, but were found to be constitutively active in the cAMP assay. The E and E(R) alleles are associated with black feather colour in chicken while the eb allele gives rise to brownish pigmentation. The three constitutively active receptors share a mutation of Glu to Lys in position 92. This mutation was previously found in darkly pigmented sombre mice, but constitutively active MC receptors have not previously been shown in any nonmammalian species. We also inserted the Glu to Lys mutation in the human MC1 and MC4 receptors. In contrast with the chicken clones, the hMC1-E94K receptor bound to the ligand, but was still constitutively active independently of ligand concentration. The hMC4-E100K receptor did not bind to the MSH ligand and was not constitutively active. The results indicate that the structural requirements that allow the receptor to adapt an active conformation without binding to a ligand, as a consequence of this E/K mutation, are not conserved within the MC receptors. The results are discussed in relationship to feather colour in chicken, molecular receptor structures and evolution. We suggest that properties for the 'E92K switch' mechanism may have evolved in an ancestor common to chicken and mammals and were maintained over long time periods through evolutionary pressure, probably on closely linked structural features.
Collapse
Affiliation(s)
- Maria K Ling
- Department of Neuroscience, Uppsala University, Uppsala, Sweden
| | | | | | | | | | | | | |
Collapse
|
23
|
Larson ET, Fredriksson R, Johansson SRT, Larhammar D. Cloning, pharmacology, and distribution of the neuropeptide Y-receptor Yb in rainbow trout. Peptides 2003; 24:385-95. [PMID: 12732336 DOI: 10.1016/s0196-9781(03)00053-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
This work describes the isolation and pharmacological characterization of a neuropeptide Y (NPY) receptor from rainbow trout (Oncorhynchus mykiss). The receptor exhibits approximately 45% amino acid sequence identity to mammalian Y1-subfamily receptors, Y1, Y4 and y6, a similar degree of identity as these subtypes display to one another. Because it displays highest sequence identity to zebrafish Yb (75%), we named it the trout Yb receptor. The receptor exhibits high binding affinity for zebrafish and human NPY and peptide YY (PYY) but not truncated forms of the peptides. Human pancreatic polypeptide (PP) also binds with high affinity. Y1 selective antagonists exhibit poor binding as is the case for Y2 and Y5 selective ligands. This binding profile supports membership in the Y1 subfamily. Sequence data also support this relationship suggesting that Yb is a fourth and separate member of the Y1 subfamily. NPY has a number of important physiological functions such as regulating food intake and reproduction. The expression of the receptor in the hypothalamus and telencephalon suggests a possible role in these processes. This and other receptors from this species have potential for improving aquaculture.
Collapse
Affiliation(s)
- Earl T Larson
- Department of Neuroscience, Unit of Pharmacology, Uppsala University, Box 593, SE-75124 Uppsala, Sweden.
| | | | | | | |
Collapse
|
24
|
Berglund MM, Hipskind PA, Gehlert DR. Recent developments in our understanding of the physiological role of PP-fold peptide receptor subtypes. Exp Biol Med (Maywood) 2003; 228:217-44. [PMID: 12626767 DOI: 10.1177/153537020322800301] [Citation(s) in RCA: 173] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The three peptides pancreatic polypeptide (PP), peptide YY (PYY), and neuropeptide Y (NPY) share a similar structure known as the PP-fold. There are four known human G-protein coupled receptors for the PP-fold peptides, namely Y1, Y2, Y4, and Y5, each of them being able to bind at least two of the three endogenous ligands. All three peptides are found in the circulation acting as hormones. Although NPY is only released from neurons, PYY and PP are primarily found in endocrine cells in the gut, where they exert such effects as inhibition of gall bladder secretion, gut motility, and pancreatic secretion. However, when PYY is administered in an experimental setting to animals, cloned receptors, or tissue preparations, it can mimic the effects of NPY in essentially all studies, making it difficult to study the effects of PP-fold peptides and to delineate what receptor and peptide accounts for a particular effect. Initial studies with transgenic animals confirmed the well-established action of NPY on metabolism, food-intake, vascular systems, memory, mood, neuronal excitability, and reproduction. More recently, using transgenic techniques and novel antagonists for the Y1, Y2, and Y5 receptors, NPY has been found to be a key player in the regulation of ethanol consumption and neuronal development.
Collapse
Affiliation(s)
- Magnus M Berglund
- Eli Lilly and Company, Lilly Research Laboratories, Indianapolis, Indiana 46285, USA
| | | | | |
Collapse
|
25
|
Ghosh S, Singh AK, Aruna B, Mukhopadhyay S, Ehtesham NZ. The genomic organization of mouse resistin reveals major differences from the human resistin: functional implications. Gene 2003; 305:27-34. [PMID: 12594039 DOI: 10.1016/s0378-1119(02)01213-1] [Citation(s) in RCA: 107] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The resistin gene is a potential candidate for the etiology of insulin resistance and type 2 diabetes and has been implicated as the molecular link between type 2 diabetes and obesity. Unlike the mouse resistin, expression of the human resistin appears to be regulated differently. We report comparative analyses of the mouse and human genomic fragments encoding the resistin gene. At the amino acid level the two proteins exhibit 59% identity. While at the mRNA level the human resistin shows 64.4% sequence identity with its mouse counterpart, the mouse resistin genomic sequence displays only 46.7% sequence identity with the human resistin and is almost three times bigger than the human resistin. The intronic sequences per se displayed the least identities (28.7%), however the intron boundaries were highly conserved between human and mouse. The mouse resistin carries a very large intron in the 3' UTR, which has a number of regulatory sequences possibly involved in differential gene expression. Of particular significance is the presence of a PPAR/RXR heterodimer binding site within intron X (IntX-PPRE) which may possibly confer TZD responsiveness. Oligonucleotides carrying the authentic PPAR/RXR binding element (Aco-PPRE) as well as IntX-PPRE specifically bound factors (PPAR/RXR heterodimers) present in differentiated 3T3-L1 adipocyte cells in an electrophoretic mobility shift assay. IntX-PPRE oligonucleotide modulated the expression of the luciferase reporter gene in transient transfection assays using 3T3-L1 cells.
Collapse
Affiliation(s)
- Sudip Ghosh
- Molecular Biology Unit, National Institute of Nutrition, Jamia Osmania PO, Hyderabad 500007, India
| | | | | | | | | |
Collapse
|
26
|
Ringholm A, Klovins J, Fredriksson R, Poliakova N, Larson ET, Kukkonen JP, Larhammar D, Schiöth HB. Presence of melanocortin (MC4) receptor in spiny dogfish suggests an ancient vertebrate origin of central melanocortin system. EUROPEAN JOURNAL OF BIOCHEMISTRY 2003; 270:213-21. [PMID: 12605672 DOI: 10.1046/j.1432-1033.2003.03371.x] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We report the cloning, expression, pharmacological characterization and tissue distribution of a melanocortin (MC) receptor gene in a shark, the spiny dogfish (Squalus acanthias) (Sac). Phylogenetic analysis showed that this receptor is an ortholog of the MC4 subtype, sharing 71% overall amino acid identity with the human (Hsa) MC4 receptor. When expressed and characterized by radioligand binding assay for the natural MSH (melanocyte-stimulating hormone) peptides alpha-, beta-, and gamma-MSH, the SacMC4 receptor showed pharmacological properties very similar to the HsaMC4 receptor. Stimulation of SacMC4 receptor transfected cells with alpha-MSH caused a dose-dependent increase in intracellular cAMP levels. The SacMC4 receptor has Ala in position 59 where all other cloned MC receptors have Glu. We confirmed that this was not due to individual polymorphism and subsequently mutated the residue 'back' to Glu but the mutation did not affect the pharmacological properties of the receptor. SacMC4 receptor mRNA was detected by RT-PCR in the optic tectum, hypothalamus, brain stem, telencephalon and olfactory bulb but not in cerebellum or in peripheral tissues. This study describes the first characterization of an MC receptor in a cartilaginous fish, the most distant MC receptor gene cloned to date. Conservation of gene structure, pharmacological properties and tissue distribution suggests that this receptor may have similar roles in sharks as in mammals and that these were established more than 450 million years ago.
Collapse
Affiliation(s)
- Aneta Ringholm
- Department of Neuroscience, Uppsala University, Uppsala, Sweden
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Uddman R, Möller S, Nilsson T, Nyström S, Ekstrand J, Edvinsson L. Neuropeptide Y Y1 and neuropeptide Y Y2 receptors in human cardiovascular tissues. Peptides 2002; 23:927-34. [PMID: 12084524 DOI: 10.1016/s0196-9781(02)00003-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
mRNA encoding the human NPY Y1 and NPY Y2 receptors were detected in cerebral, meningeal, and coronary arteries using reverse transcriptase-polymerase chain reaction (RT-PCR). In addition, the trigeminal and superior cervical ganglia were positive for both receptors. In some arteries and in SK-N-MC cells only mRNA encoding the NPY Y1 was detected. Besides the expected NPY Y1 PCR products, an additional 97 bp longer amplicon originating from an alternative splicing event was found in most tissues studied. Antibodies directed against the NPY Y1 receptor revealed immunostaining mainly in the smooth muscle layer of blood vessels whereas antibodies against the NPY Y2 receptor showed immunostaining in nerve cell bodies.
Collapse
Affiliation(s)
- Rolf Uddman
- Department of Otorhinolaryngology, University Hospital, Malmö, Sweden.
| | | | | | | | | | | |
Collapse
|
28
|
Holmberg SKS, Mikko S, Boswell T, Zoorob R, Larhammar D. Pharmacological characterization of cloned chicken neuropeptide Y receptors Y1 and Y5. J Neurochem 2002; 81:462-71. [PMID: 12065655 DOI: 10.1046/j.1471-4159.2002.00817.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The neuropeptide Y (NPY) receptor subtypes Y1 and Y5 are involved in the regulation of feeding and several other physiological functions in mammals. To increase our understanding of the origin and mechanisms of the complex NPY system, we report here the cloning and pharmacological characterization of receptors Y1 and Y5 in the first non-mammal, chicken (Gallus gallus). The receptors display 80-83% and 64-72% amino acid sequence identity, respectively, with their mammalian orthologues. The three endogenous ligands NPY, peptide YY (PYY) and pancreatic polypeptide (PP) have similar affinities as in mammals, i.e. NPY and PYY have subnanomolar affinity for both receptors whereas chicken PP bound with nanomolar affinity to Y5 but not to Y1. A notable difference to mammalian receptor subtypes is that the Y1 antagonist SR120819A does not bind chicken Y1, whereas BIBP3226 does. The Y5 antagonist CGP71863A binds to the chicken Y5 receptor. Anatomically, both Y1 and Y5 have high mRNA expression levels in the infundibular nucleus which is the homologous structure of the hypothalamic arcuate nucleus in mammals. These results suggest that some of the selective Y1 and Y5 antagonists developed in mammals can be used to study appetite regulation in chicken.
Collapse
Affiliation(s)
- Sara K S Holmberg
- Department of Neuroscience, Unit of Pharmacology, Uppsala University, Uppsala, Sweden
| | | | | | | | | |
Collapse
|