1
|
Ou H, Chen Q, Lin Z, Yang Y, Wang P, Sriboonvorakul N, Lin S. RNA-seq Analysis Reveals Potential Synergic Effects of Acetate and Cold Exposure on Interscapular Brown Adipose Tissue in Mice. BIOLOGY 2023; 12:1285. [PMID: 37886995 PMCID: PMC10603878 DOI: 10.3390/biology12101285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 09/22/2023] [Accepted: 09/24/2023] [Indexed: 10/28/2023]
Abstract
Brown adipose tissue (BAT) exhibits remarkable morphological and functional plasticity in response to environmental (e.g., cold exposure) and nutrient (e.g., high-fat diet) stimuli. Notably, a number of studies have showed that acetate, the main fermentation product of dietary fiber in gut, profoundly influences the differentiation and activity of BAT. However, the potential synergic or antagonistic effects of acetate and cold exposure on BAT have not been well examined. In the present study, the C57BL/6J mice were treated with acetate at the systemic level before a short period of cold exposure. Physiological parameters including body weight, blood glucose, and Respiratory Exchange Ratio (RER) were monitored, and thermal imaging of body surface temperature was captured. Moreover, the transcriptome profiles of interscapular BAT were also determined and analyzed afterwards. The obtained results showed that acetate treatment prior to cold exposure could alter the gene expression profile, as evidenced by significant differential clusters between the two groups. GO analysis and KEGG analysis further identified differentially expressed genes being mainly enriched for a number of biological terms and pathways related to lipid metabolism and brown adipose activity such as "G-protein-coupled receptor activity", "cAMP metabolic process", "PPAR signaling pathway", and "FoxO signaling pathway". GSEA analysis further suggested that activation status of key pathways including "PPAR signaling pathway" and "TCA cycle" were altered upon acetate treatment. Taken together, our study identified the potential synergistic effect of acetic acid with cold exposure on BAT, which highlighted the positive dietary and therapeutic aspects of acetate.
Collapse
Affiliation(s)
- Hongtao Ou
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (H.O.)
| | - Qingyan Chen
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (H.O.)
| | - Zhongjing Lin
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (H.O.)
| | - Yang Yang
- Shenzhen Research Institute, The Hong Kong Polytechnic University, Shenzhen 518051, China
| | - Peixin Wang
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (H.O.)
| | - Natthida Sriboonvorakul
- Department of Clinical Tropical Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand
| | - Shaoling Lin
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (H.O.)
| |
Collapse
|
2
|
Geng T, Sun Y, Cheng L, Cao Y, Zhang M, Hong Z, Ma L, Zhang Y. Downregulation of LHCGR Attenuates COX-2 Expression and Induces Luteinized Unruptured Follicle Syndrome in Endometriosis. Front Endocrinol (Lausanne) 2022; 13:853563. [PMID: 35600595 PMCID: PMC9114297 DOI: 10.3389/fendo.2022.853563] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 03/21/2022] [Indexed: 11/13/2022] Open
Abstract
An association between endometriosis and luteinized unruptured follicle syndrome (LUFs) has long been identified. Although inactivating mutation of luteinizing hormone/choriogonadotropin receptor (LHGCR) results in LUFs, whether LHCGR contributes to promoting LUFs in endometriosis remains elusive. To investigate the effect of LHCGR signaling in the development of endometriosis-associated LUFs and dissect the underlying mechanism in vivo mouse endometriosis model was established to measure the effect on ovarian folliculogenesis. In vitro cultures of primary human GCs collected from patients undergoing in vitro fertilization were performed and treated with human chorionic gonadotropin (hCG), dibutyryl cyclic-AMP (db-cAMP), LHCGR or CCAAT/enhancer binding protein-α (C/EBPα) small interfering RNA to identify the potential mechanisms. KGN cell line was used to investigate the mechanistic features of transcriptional regulation. Results showed an increased incidence of LUFs was observed in mice with endometriosis. The expression of LHCGR was decreased in the GCs of endometriosis mice. In in vitro cell models, LHCGR signaling increased the expression of C/EBPα and cyclooxygenase-2(COX-2), while inhibiting C/EBPα mitigated the induced COX-2 expression. Mechanically, C/EBPα bounded to the promoter region of COX-2 and increased the transcriptional activity under the stimulation of hCG or db-cAMP. Taken together, this study demonstrated that the LHCGR signaling was reduced in GCs of endometriosis and resulted in a decrease in gonadotropin-induced COX-2 expression. Our study might provide new insights into the dysfunction of GCs in endometriosis.
Collapse
Affiliation(s)
- Ting Geng
- Reproductive Medicine Center, Zhongnan Hospital of Wuhan University, Wuhan, China
- Hubei Clinical Research Center for Prenatal Diagnosis and Birth Health, Wuhan, China
- Department of Obstetrics and Gynecology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Yifan Sun
- Reproductive Medicine Center, Zhongnan Hospital of Wuhan University, Wuhan, China
- Hubei Clinical Research Center for Prenatal Diagnosis and Birth Health, Wuhan, China
- Department of Obstetrics and Gynecology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Lin Cheng
- Reproductive Medicine Center, Zhongnan Hospital of Wuhan University, Wuhan, China
- Hubei Clinical Research Center for Prenatal Diagnosis and Birth Health, Wuhan, China
- Department of Obstetrics and Gynecology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Yuming Cao
- Reproductive Medicine Center, Zhongnan Hospital of Wuhan University, Wuhan, China
- Hubei Clinical Research Center for Prenatal Diagnosis and Birth Health, Wuhan, China
- Department of Obstetrics and Gynecology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Ming Zhang
- Reproductive Medicine Center, Zhongnan Hospital of Wuhan University, Wuhan, China
- Hubei Clinical Research Center for Prenatal Diagnosis and Birth Health, Wuhan, China
| | - Zhidan Hong
- Reproductive Medicine Center, Zhongnan Hospital of Wuhan University, Wuhan, China
- Hubei Clinical Research Center for Prenatal Diagnosis and Birth Health, Wuhan, China
| | - Ling Ma
- Reproductive Medicine Center, Zhongnan Hospital of Wuhan University, Wuhan, China
- Hubei Clinical Research Center for Prenatal Diagnosis and Birth Health, Wuhan, China
| | - Yuanzhen Zhang
- Reproductive Medicine Center, Zhongnan Hospital of Wuhan University, Wuhan, China
- Hubei Clinical Research Center for Prenatal Diagnosis and Birth Health, Wuhan, China
- Department of Obstetrics and Gynecology, Zhongnan Hospital of Wuhan University, Wuhan, China
- *Correspondence: Yuanzhen Zhang,
| |
Collapse
|
3
|
Constructing gene regulatory networks using epigenetic data. NPJ Syst Biol Appl 2021; 7:45. [PMID: 34887443 PMCID: PMC8660777 DOI: 10.1038/s41540-021-00208-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 11/01/2021] [Indexed: 12/24/2022] Open
Abstract
The biological processes that drive cellular function can be represented by a complex network of interactions between regulators (transcription factors) and their targets (genes). A cell's epigenetic state plays an important role in mediating these interactions, primarily by influencing chromatin accessibility. However, how to effectively use epigenetic data when constructing a gene regulatory network remains an open question. Almost all existing network reconstruction approaches focus on estimating transcription factor to gene connections using transcriptomic data. In contrast, computational approaches for analyzing epigenetic data generally focus on improving transcription factor binding site predictions rather than deducing regulatory network relationships. We bridged this gap by developing SPIDER, a network reconstruction approach that incorporates epigenetic data into a message-passing framework to estimate gene regulatory networks. We validated SPIDER's predictions using ChIP-seq data from ENCODE and found that SPIDER networks are both highly accurate and include cell-line-specific regulatory interactions. Notably, SPIDER can recover ChIP-seq verified transcription factor binding events in the regulatory regions of genes that do not have a corresponding sequence motif. The networks estimated by SPIDER have the potential to identify novel hypotheses that will allow us to better characterize cell-type and phenotype specific regulatory mechanisms.
Collapse
|
4
|
Drori A, Gammal A, Azar S, Hinden L, Hadar R, Wesley D, Nemirovski A, Szanda G, Salton M, Tirosh B, Tam J. CB 1R regulates soluble leptin receptor levels via CHOP, contributing to hepatic leptin resistance. eLife 2020; 9:60771. [PMID: 33210603 PMCID: PMC7728447 DOI: 10.7554/elife.60771] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 11/17/2020] [Indexed: 12/22/2022] Open
Abstract
The soluble isoform of leptin receptor (sOb-R), secreted by the liver, regulates leptin bioavailability and bioactivity. Its reduced levels in diet-induced obesity (DIO) contribute to hyperleptinemia and leptin resistance, effects that are regulated by the endocannabinoid (eCB)/CB1R system. Here we show that pharmacological activation/blockade and genetic overexpression/deletion of hepatic CB1R modulates sOb-R levels and hepatic leptin resistance. Interestingly, peripheral CB1R blockade failed to reverse DIO-induced reduction of sOb-R levels, increased fat mass and dyslipidemia, and hepatic steatosis in mice lacking C/EBP homologous protein (CHOP), whereas direct activation of CB1R in wild-type hepatocytes reduced sOb-R levels in a CHOP-dependent manner. Moreover, CHOP stimulation increased sOb-R expression and release via a direct regulation of its promoter, while CHOP deletion reduced leptin sensitivity. Our findings highlight a novel molecular aspect by which the hepatic eCB/CB1R system is involved in the development of hepatic leptin resistance and in the regulation of sOb-R levels via CHOP. When the human body has stored enough energy from food, it releases a hormone called leptin that travels to the brain and stops feelings of hunger. This hormone moves through the bloodstream and can affect other organs, such as the liver, which also help control our body’s energy levels. Most people with obesity have very high levels of leptin in their blood, but are resistant to its effects and will therefore continue to feel hungry despite having stored enough energy. One of the proteins that controls the levels of leptin is a receptor called sOb-R, which is released by the liver and binds to leptin as it travels in the blood. Individuals with high levels of this receptor often have less free leptin in their bloodstream and a lower body weight. Another protein that helps the body to regulate its energy levels is the cannabinoid-1 receptor, or CB1R for short. In people with obesity, this receptor is overactive and has been shown to contribute to leptin resistance, which is when the brain becomes less receptive to leptin. Previous work in mice showed that blocking CB1R reduced the levels of leptin and allowed mice to react to this hormone normally again, but it remained unclear whether CB1R affects how other organs, such as the liver, respond to leptin. To answer this question, Drori et al. blocked the CB1R receptor in the liver of mice eating a high-fat diet, either by using a drug or by deleting the gene that codes for this protein. This caused mice to have higher levels of sOb-R circulating in their bloodstream. Further experiments showed that this change in sOb-R was caused by the levels of a protein called CHOP increasing in the liver when CB1R was blocked. Drori et al. found that inhibiting CB1R caused these obese mice to lose weight and have healthier, less fatty livers as a result of their livers no longer being resistant to the effects of leptin. Scientists, doctors and pharmaceutical companies are trying to develop new strategies to combat obesity. The results from these experiments suggest that blocking CB1R in the liver could allow this organ to react to leptin appropriately again. Drugs blocking CB1R, including the one used in this study, will be tested in clinical trials and could provide a new approach for treating obesity.
Collapse
Affiliation(s)
- Adi Drori
- Obesity and Metabolism Laboratory, Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Asaad Gammal
- Obesity and Metabolism Laboratory, Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Shahar Azar
- Obesity and Metabolism Laboratory, Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Liad Hinden
- Obesity and Metabolism Laboratory, Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Rivka Hadar
- Obesity and Metabolism Laboratory, Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Daniel Wesley
- Laboratory of Physiological Studies, National Institute on Alcohol Abuse & Alcoholism, Bethesda, United States
| | - Alina Nemirovski
- Obesity and Metabolism Laboratory, Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Gergő Szanda
- MTA-SE Laboratory of Molecular Physiology, Department of Physiology, Semmelweis University, Budapest, Hungary
| | - Maayan Salton
- Department of Biochemistry and Molecular Biology, The Institute for Medical Research Israel-Canada, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Boaz Tirosh
- The Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Joseph Tam
- Obesity and Metabolism Laboratory, Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| |
Collapse
|
5
|
Kakogiannos N, Ferrari L, Giampietro C, Scalise AA, Maderna C, Ravà M, Taddei A, Lampugnani MG, Pisati F, Malinverno M, Martini E, Costa I, Lupia M, Cavallaro U, Beznoussenko GV, Mironov AA, Fernandes B, Rudini N, Dejana E, Giannotta M. JAM-A Acts via C/EBP-α to Promote Claudin-5 Expression and Enhance Endothelial Barrier Function. Circ Res 2020; 127:1056-1073. [PMID: 32673519 PMCID: PMC7508279 DOI: 10.1161/circresaha.120.316742] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
RATIONALE Intercellular tight junctions are crucial for correct regulation of the endothelial barrier. Their composition and integrity are affected in pathological contexts, such as inflammation and tumor growth. JAM-A (junctional adhesion molecule A) is a transmembrane component of tight junctions with a role in maintenance of endothelial barrier function, although how this is accomplished remains elusive. OBJECTIVE We aimed to understand the molecular mechanisms through which JAM-A expression regulates tight junction organization to control endothelial permeability, with potential implications under pathological conditions. METHODS AND RESULTS Genetic deletion of JAM-A in mice significantly increased vascular permeability. This was associated with significantly decreased expression of claudin-5 in the vasculature of various tissues, including brain and lung. We observed that C/EBP-α (CCAAT/enhancer-binding protein-α) can act as a transcription factor to trigger the expression of claudin-5 downstream of JAM-A, to thus enhance vascular barrier function. Accordingly, gain-of-function for C/EBP-α increased claudin-5 expression and decreased endothelial permeability, as measured by the passage of fluorescein isothiocyanate (FITC)-dextran through endothelial monolayers. Conversely, C/EBP-α loss-of-function showed the opposite effects of decreased claudin-5 levels and increased endothelial permeability. Mechanistically, JAM-A promoted C/EBP-α expression through suppression of β-catenin transcriptional activity, and also through activation of EPAC (exchange protein directly activated by cAMP). C/EBP-α then directly binds the promoter of claudin-5 to thereby promote its transcription. Finally, JAM-A-C/EBP-α-mediated regulation of claudin-5 was lost in blood vessels from tissue biopsies from patients with glioblastoma and ovarian cancer. CONCLUSIONS We describe here a novel role for the transcription factor C/EBP-α that is positively modulated by JAM-A, a component of tight junctions that acts through EPAC to up-regulate the expression of claudin-5, to thus decrease endothelial permeability. Overall, these data unravel a regulatory molecular pathway through which tight junctions limit vascular permeability. This will help in the identification of further therapeutic targets for diseases associated with endothelial barrier dysfunction. Graphic Abstract: An graphic abstract is available for this article.
Collapse
Affiliation(s)
- Nikolaos Kakogiannos
- From the FIRC Institute of Molecular Oncology, Milan, Italy (N.K., L.F., A.A.S., C.M., M.G.L., M.M., E.M., I.C., G.V.B., A.A.M., E.D., M.G.)
| | - Laura Ferrari
- From the FIRC Institute of Molecular Oncology, Milan, Italy (N.K., L.F., A.A.S., C.M., M.G.L., M.M., E.M., I.C., G.V.B., A.A.M., E.D., M.G.)
| | - Costanza Giampietro
- EMPA, Swiss Federal Laboratories for Material Science and Technologies, Experimental Continuum Mechanics, Dübendorf, Switzerland (C.G.)
| | - Anna Agata Scalise
- From the FIRC Institute of Molecular Oncology, Milan, Italy (N.K., L.F., A.A.S., C.M., M.G.L., M.M., E.M., I.C., G.V.B., A.A.M., E.D., M.G.)
| | - Claudio Maderna
- From the FIRC Institute of Molecular Oncology, Milan, Italy (N.K., L.F., A.A.S., C.M., M.G.L., M.M., E.M., I.C., G.V.B., A.A.M., E.D., M.G.)
| | - Micol Ravà
- Experimental Oncology (M.R.), European Institute of Oncology IRCSS, Milan
| | | | - Maria Grazia Lampugnani
- From the FIRC Institute of Molecular Oncology, Milan, Italy (N.K., L.F., A.A.S., C.M., M.G.L., M.M., E.M., I.C., G.V.B., A.A.M., E.D., M.G.).,Mario Negri Institute for Pharmacological Research, Milan (M.G.L.)
| | | | - Matteo Malinverno
- From the FIRC Institute of Molecular Oncology, Milan, Italy (N.K., L.F., A.A.S., C.M., M.G.L., M.M., E.M., I.C., G.V.B., A.A.M., E.D., M.G.)
| | - Emanuele Martini
- From the FIRC Institute of Molecular Oncology, Milan, Italy (N.K., L.F., A.A.S., C.M., M.G.L., M.M., E.M., I.C., G.V.B., A.A.M., E.D., M.G.)
| | - Ilaria Costa
- From the FIRC Institute of Molecular Oncology, Milan, Italy (N.K., L.F., A.A.S., C.M., M.G.L., M.M., E.M., I.C., G.V.B., A.A.M., E.D., M.G.)
| | - Michela Lupia
- Unit of Gynaecological Oncology Research (M.L., U.C.), European Institute of Oncology IRCSS, Milan
| | - Ugo Cavallaro
- Unit of Gynaecological Oncology Research (M.L., U.C.), European Institute of Oncology IRCSS, Milan
| | - Galina V Beznoussenko
- From the FIRC Institute of Molecular Oncology, Milan, Italy (N.K., L.F., A.A.S., C.M., M.G.L., M.M., E.M., I.C., G.V.B., A.A.M., E.D., M.G.)
| | - Alexander A Mironov
- From the FIRC Institute of Molecular Oncology, Milan, Italy (N.K., L.F., A.A.S., C.M., M.G.L., M.M., E.M., I.C., G.V.B., A.A.M., E.D., M.G.)
| | - Bethania Fernandes
- Pathology Unit, Humanitas Clinical and Research Centre, Rozzano, Milan (B.F., N.R.)
| | - Noemi Rudini
- Pathology Unit, Humanitas Clinical and Research Centre, Rozzano, Milan (B.F., N.R.)
| | - Elisabetta Dejana
- From the FIRC Institute of Molecular Oncology, Milan, Italy (N.K., L.F., A.A.S., C.M., M.G.L., M.M., E.M., I.C., G.V.B., A.A.M., E.D., M.G.).,Oncology and Haemato-Oncology, School of Medicine, University of Milan (E.D.).,Immunology, Genetics and Pathology, Uppsala University, Sweden (E.D.)
| | - Monica Giannotta
- From the FIRC Institute of Molecular Oncology, Milan, Italy (N.K., L.F., A.A.S., C.M., M.G.L., M.M., E.M., I.C., G.V.B., A.A.M., E.D., M.G.)
| |
Collapse
|
6
|
Chiba T, Maeda T, Sanbe A, Kudo K. Serotonin suppresses β-casein expression via PTP1B activation in human mammary epithelial cells. Biochem Biophys Res Commun 2016; 473:323-328. [DOI: 10.1016/j.bbrc.2016.03.103] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2016] [Accepted: 03/21/2016] [Indexed: 12/19/2022]
|
7
|
Ruggiero C, Lalli E. Impact of ACTH Signaling on Transcriptional Regulation of Steroidogenic Genes. Front Endocrinol (Lausanne) 2016; 7:24. [PMID: 27065945 PMCID: PMC4810002 DOI: 10.3389/fendo.2016.00024] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Accepted: 03/14/2016] [Indexed: 01/12/2023] Open
Abstract
The trophic peptide hormone adrenocorticotropic (ACTH) stimulates steroid hormone biosynthesis evoking both a rapid, acute response and a long-term, chronic response, via the activation of cAMP/protein kinase A (PKA) signaling. The acute response is initiated by the mobilization of cholesterol from lipid stores and its delivery to the inner mitochondrial membrane, a process that is mediated by the steroidogenic acute regulatory protein. The chronic response results in the increased coordinated transcription of genes encoding steroidogenic enzymes. ACTH binding to its cognate receptor, melanocortin 2 receptor (MC2R), stimulates adenylyl cyclase, thus inducing cAMP production, PKA activation, and phosphorylation of specific nuclear factors, which bind to target promoters and facilitate coactivator protein recruitment to direct steroidogenic gene transcription. This review provides a general view of the transcriptional control exerted by the ACTH/cAMP system on the expression of genes encoding for steroidogenic enzymes in the adrenal cortex. Special emphasis will be given to the transcription factors required to mediate ACTH-dependent transcription of steroidogenic genes.
Collapse
Affiliation(s)
- Carmen Ruggiero
- Institut de Pharmacologie Moléculaire et Cellulaire CNRS UMR 7275, Valbonne, France
- Laboratoire International Associé (LIA) CNRS NEOGENEX, Valbonne, France
- Université de Nice, Valbonne, France
| | - Enzo Lalli
- Institut de Pharmacologie Moléculaire et Cellulaire CNRS UMR 7275, Valbonne, France
- Laboratoire International Associé (LIA) CNRS NEOGENEX, Valbonne, France
- Université de Nice, Valbonne, France
| |
Collapse
|
8
|
Papantonis A, Swevers L, Iatrou K. Chorion genes: a landscape of their evolution, structure, and regulation. ANNUAL REVIEW OF ENTOMOLOGY 2015; 60:177-194. [PMID: 25341099 DOI: 10.1146/annurev-ento-010814-020810] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Differential regulation at the level of transcription provides a means for controlling gene expression in eukaryotes, especially during development. Insect model systems have been extensively used to decipher the molecular basis of such regulatory cascades, and one of the oldest such model systems is the regulation of chorion gene expression during ovarian follicle maturation. Recent experimental and technological advances have shed new light onto the system, allowing us to revisit it. Thus, in this review we try to summarize almost 40 years' worth of studies on chorion gene regulation while-by comparing Bombyx mori and Drosophila melanogaster models-attempting to present a comprehensive, unified model of the various regulatory aspects of choriogenesis that takes into account the evolutionary conservation and divergence of the underlying mechanisms.
Collapse
Affiliation(s)
- Argyris Papantonis
- Research Group for Systems Biology of Chromatin, Center for Molecular Medicine, University of Cologne, 50931 Cologne, Germany;
| | | | | |
Collapse
|
9
|
Abstract
Chronic inflammatory diseases, such as atherosclerosis, are a major cause of death and disability in the developed world. In this respect, although cholesterol obviously plays a predominant role in atherosclerosis, targeting inflammation at lesion sites may be just as important. Indeed, elevated IL-6 (interleukin 6) levels are as strongly associated with coronary heart disease as increased cholesterol. We have been investigating novel cAMP-regulated pathways that combat the action of pro-inflammatory cytokines, such as IL-6 and leptin, in the VECs (vascular endothelial cells) of the circulatory system. In this respect, we have begun to unravel new molecular mechanisms by which the cAMP/Epac1 (exchange protein directly activated by cAMP 1)/Rap1 pathway can initiate a rigorous programme of protective anti-inflammatory responses in VECs. Central to this is the coupling of cAMP elevation to the mobilization of two C/EBP (CCAAT/enhancer-binding protein) family transcription factors, resulting in the induction of the SOCS3 (suppressor of cytokine signalling 3) gene, which attenuates pro-inflammatory cytokine signalling in VECs. These novel 'protective' mechanisms of cAMP action will inform the development of the next generation of pharmaceuticals specifically designed to combat endothelial inflammation associated with cardiovascular disease.
Collapse
|
10
|
Lecanidou R, Papantonis A. Modeling bidirectional transcription using silkmoth chorion gene promoters. Organogenesis 2012; 6:54-8. [PMID: 20592866 DOI: 10.4161/org.6.1.10696] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2009] [Revised: 11/18/2009] [Accepted: 11/18/2009] [Indexed: 11/19/2022] Open
Abstract
Bidirectional transcription is an interesting feature of eukaryotic genomes; yet not all aspects of its mechanism are understood. Silkmoth choriogenesis is a model system for studying transcriptional regulation at the initiation level. As chorion genes comprise a large group of divergently transcribed gene pairs, we are presented with the possibility of investigating the intricacies of bidirectional transcription. Their well characterized 5' regulatory regions and expression profiles lay the foundation for investigating protein:protein and protein:DNA interactions, and RNA polymerase function during oocyte development. In this article we summarize current knowledge on chorion gene regulation and propose an approach to modeling bidirectional transcription using chorion promoters.
Collapse
Affiliation(s)
- Rena Lecanidou
- Molecular Biology Laboratory, Department of Biochemistry and Molecular Biology, National and Kapodistrian University of Athens, Athens, Greece
| | | |
Collapse
|
11
|
Cui TX, Lin G, LaPensee CR, Calinescu AA, Rathore M, Streeter C, Piwien-Pilipuk G, Lanning N, Jin H, Carter-Su C, Qin ZS, Schwartz J. C/EBPβ mediates growth hormone-regulated expression of multiple target genes. Mol Endocrinol 2011; 25:681-93. [PMID: 21292824 DOI: 10.1210/me.2010-0232] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Regulation of c-Fos transcription by GH is mediated by CCAAT/enhancer binding protein β (C/EBPβ). This study examines the role of C/EBPβ in mediating GH activation of other early response genes, including Cyr61, Btg2, Socs3, Zfp36, and Socs1. C/EBPβ depletion using short hairpin RNA impaired responsiveness of these genes to GH, as seen for c-Fos. Rescue with wild-type C/EBPβ led to GH-dependent recruitment of the coactivator p300 to the c-Fos promoter. In contrast, rescue with C/EBPβ mutated at the ERK phosphorylation site at T188 failed to induce GH-dependent recruitment of p300, indicating that ERK-mediated phosphorylation of C/EBPβ at T188 is required for GH-induced recruitment of p300 to c-Fos. GH also induced the occupancy of phosphorylated C/EBPβ and p300 on Cyr61, Btg2, and Socs3 at predicted C/EBP-cAMP response element-binding protein motifs in their promoters. Consistent with a role for ERKs in GH-induced expression of these genes, treatment with U0126 to block ERK phosphorylation inhibited their GH-induced expression. In contrast, GH-dependent expression of Zfp36 and Socs1 was not inhibited by U0126. Thus, induction of multiple early response genes by GH in 3T3-F442A cells is mediated by C/EBPβ. A subset of these genes is regulated similarly to c-Fos, through a mechanism involving GH-stimulated ERK 1/2 activation, phosphorylation of C/EBPβ, and recruitment of p300. Overall, these studies suggest that C/EBPβ, like the signal transducer and activator of transcription proteins, regulates multiple genes in response to GH.
Collapse
Affiliation(s)
- Tracy X Cui
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, Michigan 48109-5622, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Lecanidou R, Papantonis A. Silkmoth chorion gene regulation revisited: promoter architecture as a key player. INSECT MOLECULAR BIOLOGY 2010; 19:141-151. [PMID: 20002795 DOI: 10.1111/j.1365-2583.2009.00969.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Regulation of silkmoth chorion genes has long been used as a model system for studying differential gene expression. The large numbers of genes, their overlapping expression patterns and the overall complexity of the system hinted towards an elaborate mechanism for transcriptional control. Recent studies, however, offer evidence of a molecular pathway governed by the interplay between two general transcription factors, CCAAT enhancer binding proteins (C/EBP) and GATA, an architectural protein, high mobility group A and a chromatin remodeller, chromo-helicase/ATPase-DNA binding protein 1. In this review we present a parsimonious model that adequately describes regulation of transcription across all temporally regulated chorion genes, and propose a role for promoter architecture.
Collapse
Affiliation(s)
- R Lecanidou
- Molecular Biology Laboratory, Department of Biochemistry and Molecular Biology, National and Kapodistrian University of Athens, Athens, Greece.
| | | |
Collapse
|
13
|
Grandoch M, Roscioni SS, Schmidt M. The role of Epac proteins, novel cAMP mediators, in the regulation of immune, lung and neuronal function. Br J Pharmacol 2009; 159:265-84. [PMID: 19912228 DOI: 10.1111/j.1476-5381.2009.00458.x] [Citation(s) in RCA: 121] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Chronic degenerative inflammatory diseases, such as chronic obstructive pulmonary disease and Alzheimer's dementia, afflict millions of people around the world, causing death and debilitation. Despite the global impact of these diseases, there have been few innovative breakthroughs into their cause, treatment or cure. As with many debilitating disorders, chronic degenerative inflammatory diseases may be associated with defective or dysfunctional responses to second messengers, such as cyclic adenosinemonophosphate (cAMP). The identification of the cAMP-activated guanine nucleotide exchange factors for Ras-like GTPases, Epac1 (also known as cAMP-GEF-I) and Epac2 (also known as cAMP-GEF-II), profoundly altered the prevailing assumptions concerning cAMP signalling, which until then had been solely associated with protein kinase A (PKA). Studies of the molecular mechanisms of Epac-related signalling have demonstrated that these novel cAMP sensors regulate many physiological processes either alone and/or in concert with PKA. These include calcium handling, cardiac and smooth muscle contraction, learning and memory, cell proliferation and differentiation, apoptosis, and inflammation. The diverse signalling properties of cAMP might be explained by spatio-temporal compartmentalization, as well as A-kinase anchoring proteins, which seem to coordinate Epac signalling networks. Future research should focus on the Epac-regulated dynamics of cAMP, and, hopefully, the development of compounds that specifically interfere with the Epac signalling system in order to determine the precise significance of Epac proteins in chronic degenerative inflammatory disorders.
Collapse
Affiliation(s)
- Maria Grandoch
- Institut für Pharmakologie, Universitätsklinikum Essen, Essen, Germany
| | | | | |
Collapse
|
14
|
Manna PR, Dyson MT, Stocco DM. Role of basic leucine zipper proteins in transcriptional regulation of the steroidogenic acute regulatory protein gene. Mol Cell Endocrinol 2009; 302:1-11. [PMID: 19150388 PMCID: PMC5006949 DOI: 10.1016/j.mce.2008.12.009] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2008] [Revised: 12/15/2008] [Accepted: 12/15/2008] [Indexed: 01/23/2023]
Abstract
The regulation of steroidogenic acute regulatory protein (StAR) gene transcription by cAMP-dependent mechanisms occurs in the absence of a consensus cAMP response element (CRE, TGACGTGA). This regulation is coordinated by multiple transcription factors that bind to sequence-specific elements located approximately 150 bp upstream of the transcription start site. Among the proteins that bind within this region, the basic leucine zipper (bZIP) family of transcription factors, i.e. CRE binding protein (CREB)/CRE modulator (CREM)/activating transcription factor (ATF), activator protein 1 (AP-1; Fos/Jun), and CCAAT enhancer binding protein beta (C/EBPbeta), interact with an overlapping region (-81/-72 bp) in the StAR promoter, mediate stimulus-transcription coupling of cAMP signaling and play integral roles in regulating StAR gene expression. These bZIP proteins are structurally similar and bind to DNA sequences as dimers; however, they exhibit discrete transcriptional activities, interact with several transcription factors and other properties that contribute in their regulatory functions. The 5'-flanking -81/-72 bp region of the StAR gene appears to function as a key element within a complex cAMP response unit by binding to different bZIP members, and the StAR promoter displays variable states of cAMP responsivity contingent upon the occupancy of these cis-elements with these transcription factors. The expression and activities of CREB/CREM/ATF, Fos/Jun and C/EBPbeta have been demonstrated to be mediated by a plethora of extracellular signals, and the phosphorylation of these proteins at several Ser and Thr residues allows recruitment of the transcriptional coactivator CREB binding protein (CBP) or its functional homolog p300 to the StAR promoter. This review will focus on the current level of understanding of the roles of selective bZIP family proteins within the complex series of processes involved in regulating StAR gene transcription.
Collapse
Affiliation(s)
- Pulak R Manna
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | | | | |
Collapse
|
15
|
Dhawan P, Wieder R, Christakos S. CCAAT enhancer-binding protein alpha is a molecular target of 1,25-dihydroxyvitamin D3 in MCF-7 breast cancer cells. J Biol Chem 2009; 284:3086-3095. [PMID: 19054766 PMCID: PMC2631956 DOI: 10.1074/jbc.m803602200] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2008] [Revised: 12/02/2008] [Indexed: 11/06/2022] Open
Abstract
Numerous studies have shown that the active form of vitamin D, 1,25(OH)(2)D(3), can exert growth inhibitory effects on human breast cancer cells and mammary tumor growth. However, the molecular mechanisms remain to be fully delineated. This study demonstrates for the first time that CCAAT enhancer-binding protein alpha (C/EBPalpha), a member of the C/EBP family of transcription factors, is induced by 1,25(OH)(2)D(3) and is a potent enhancer of VDR transcription in MCF-7 breast cancer cells. 1,25(OH)(2)D(3) was found to induce C/EBPalpha as well as VDR expression in MCF-7 cells. C/EBPalpha was not detected in MDA-MB-231 cells that are poorly responsive to 1,25(OH)(2)D(3). Antiproliferative effects of 1,25(OH)(2)D(3) and induction of VDR were observed in MDA-MB-231 cells transfected with C/EBPalpha, and knockdown of C/EBPalpha suppressed VDR and antiproliferative effects of 1,25(OH)(2)D(3) in MCF-7 cells. Transfection of C/EBPalpha in MCF-7 cells resulted in a dose-dependent enhancement of hVDR transcription. Our studies show that C/EBPalpha can bind to Brahma (Brm), an ATPase that is a component of the SWI/SNF complex, and cooperate with Brm in the regulation of hVDR transcription in MCF-7 cells. Because the levels of VDR in MCF-7 breast cancer cells correlate with the antiproliferative effects of 1,25(OH)(2)D(3) and because C/EBPalpha has been suggested as a potential tumor suppressor in breast cancer, these findings provide important mechanisms whereby 1,25(OH)(2)D(3) may act to inhibit growth of breast cancer cells. These findings also identify C/EBPalpha as a 1,25(OH)(2)D(3) target in breast cancer cells and provide evidence for C/EBPalpha as a candidate for breast cancer treatment.
Collapse
Affiliation(s)
- Puneet Dhawan
- Department of Biochemistry and Molecular Biology, University of Medicine and Dentistry of New Jersey-New Jersey Medical School, Newark, New Jersey 07103
| | - Robert Wieder
- Department of Medicine, University of Medicine and Dentistry of New Jersey-New Jersey Medical School, Newark, New Jersey 07103
| | - Sylvia Christakos
- Department of Biochemistry and Molecular Biology, University of Medicine and Dentistry of New Jersey-New Jersey Medical School, Newark, New Jersey 07103.
| |
Collapse
|
16
|
Wei Y, Puzhko S, Wabitsch M, Goodyer CG. Structure and activity of the human growth hormone receptor (hGHR) gene V2 promoter. Mol Endocrinol 2008; 23:360-72. [PMID: 19116246 DOI: 10.1210/me.2008-0188] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Human GH (hGH) has important effects on growth as well as carbohydrate, fat, and protein metabolism. These actions require the presence of normal levels of a functional hGH receptor (hGHR) on the surface of target cells. hGHR gene expression is characterized by the use of several 5'-noncoding exons and alternative splicing, resulting in the generation of multiple mRNA isoforms. The hGHR V2 transcript is predominant in most tissues, including human fat. However, factors regulating its ubiquitous expression have remained unidentified. The present study was aimed at characterizing the mechanisms regulating hGHR V2 transcription. Two major V2 transcriptional start sites were identified by primer extension assays. The V2 proximal promoter is TATA-less, with several characteristics of a housekeeping gene promoter. Transient transfection analyses of 2.6 kb of the 5'-flanking region of V2 confirmed its promoter activity in multiple primate cell lines. Similar promoter activity patterns were observed in human SGBS preadipocytes and mature adipocytes but with much higher V2 promoter activity in mature adipocytes, suggesting that changes in the availability of specific factors during adipocyte differentiation play a role in V2 promoter regulation. Serial deletion and mutation analyses revealed that transcription of hGHR V2 in different cell types, including adipocytes, is determined by a core promoter and distinct inhibitory and activation domains in the 5'-promoter region as well as within the V2 exon. Our data suggest that V2 transcription is the result of a complex interplay involving multiple factors, to ensure appropriate expression of hGHR in different hGH target cells.
Collapse
Affiliation(s)
- Yuhong Wei
- McGill University Health Centre, Montreal Children's Hospital Research Institute, 4060 St. Catherine West, Room 415-1, Montreal, Quebec, Canada H3Z 2Z3
| | | | | | | |
Collapse
|
17
|
van Deursen D, Botma GJ, Jansen H, Verhoeven AJM. Down-regulation of hepatic lipase expression by elevation of cAMP in human hepatoma but not adrenocortical cells. Mol Cell Endocrinol 2008; 294:37-44. [PMID: 18675312 DOI: 10.1016/j.mce.2008.07.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2007] [Revised: 06/12/2008] [Accepted: 07/06/2008] [Indexed: 10/21/2022]
Abstract
Expression of hepatic lipase (HL) in the liver is reduced during prolonged fasting. This effect is mainly mediated via catecholamines, which signal through elevation of Ca(i)(2+) as well as cAMP. We have studied the effect of cAMP on HL expression in cell culture. Overnight incubation of HepG2 cells with 10-300microM 8-bromo-cyclic AMP resulted in a dose-dependent, up to 50% reduction in secretion of HL, but had no effect on secretion of alpha(1)-antitrypsin or overall protein synthesis. HL mRNA levels were decreased 1.5 fold, as determined by semi-quantitative and real-time RT-PCR. In HepG2 cells transiently transfected with human HL (-685/+13) or rat HL (-446/+9) promoter-reporter constructs, cAMP induced a similar dose-dependent suppression of HL promoter activity. cAMP responsiveness in HepG2 cells was mediated by a conserved 10-bp response element at -45/-36, that represents a potential binding site for CCAAT/enhancer-binding protein beta (C/EBPbeta). cAMP reduced expression of the 45kDa C/EBPbeta protein and binding of C/EBPbeta to the proximal promoter region of the human HL gene by 50%, as determined by immunoblotting and chromatin immunoprecipitation assay, respectively. In human H295R adrenocortical cells, cAMP failed to suppress HL promoter activity, and only slightly reduced C/EBPbeta expression. We conclude that the fall in HL expression during prolonged fasting may be mediated through elevation of cAMP and lowering of C/EBPbeta expression.
Collapse
Affiliation(s)
- Diederik van Deursen
- Department of Biochemistry, Erasmus MC, P.O. Box 2040, 3000 CA, Rotterdam, Netherlands
| | | | | | | |
Collapse
|
18
|
Kim BK, Lim SO, Park YG. Requirement of the cyclic adenosine monophosphate response element-binding protein for hepatitis B virus replication. Hepatology 2008; 48:361-73. [PMID: 18615500 DOI: 10.1002/hep.22359] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
UNLABELLED The cyclic adenosine monophosphate-response element (CRE)-transcription factor complex participates in the regulation of viral gene expression and pathologic processes caused by various viruses. The hepatitis B virus (HBV) enhancer I directs liver-specific transcription of viral genes and contains a CRE sequence (HBV-CRE); however, whether the HBV-CRE and CRE-binding protein (CREB) are required for the HBV life cycle remains to be determined. This study was designed to investigate the role of CREB in HBV replication and gene expression. Sequence-comparison analysis of 984 HBVs reported worldwide showed that the HBV-CRE sequence is highly conserved, indicating the possibility that it plays an important role in the HBV life cycle. The binding of CREB to the HBV-CRE site was markedly inhibited by oligonucleotides containing HBV-CRE and consensus CRE sequences in vitro and in vivo. The HBV promoter activity was demonstrated to be dependent upon the transactivation activity of CREB. Treatment with CRE decoy oligonucleotides reduced HBV promoter activity, and this was reversed by CREB overexpression. The levels of viral transcripts, DNA, and antigens were remarkably decreased in response to the overexpression of CREB mutants or treatment with the CRE decoy oligonucleotides, whereas enhancing CREB activity increased the levels of viral transcripts. In addition, introduction of a three-base mutation into the HBV-CRE led to a marked reduction in HBV messenger RNA synthesis. CONCLUSION Taken together, our results demonstrate that both replication and gene expression of HBV require a functional CREB and HBV-CRE. We have also demonstrated that CRE decoy oligonucleotides and the overexpression of CREB mutants can effectively block the HBV life cycle, suggesting that interventions against CREB activity could provide a new avenue to treat HBV infection.
Collapse
Affiliation(s)
- Bo Kyung Kim
- Department of Biochemistry, Korea University College of Medicine, Seoul, Korea
| | | | | |
Collapse
|
19
|
Yarwood SJ, Borland G, Sands WA, Palmer TM. Identification of CCAAT/enhancer-binding proteins as exchange protein activated by cAMP-activated transcription factors that mediate the induction of the SOCS-3 gene. J Biol Chem 2008; 283:6843-53. [PMID: 18195020 DOI: 10.1074/jbc.m710342200] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The prototypical second messenger cAMP is a key regulator of immune and inflammatory responses. Its ability to inhibit interleukin (IL)-6 responses is due to induction of suppressor of cytokine signaling-3 (SOCS-3), a negative regulator of IL-6 receptor signaling. We have determined previously that SOCS-3 induction by cAMP occurs independently of cAMP-dependent protein kinase, instead requiring the recently identified cAMP sensor exchange protein activated by cAMP 1 (EPAC1). Here we present evidence to suggest that the C/EBP family of transcription factors link EPAC1 activation to SOCS-3 induction. Firstly, selective activation of EPAC in human umbilical vein endothelial cells increased C/EBP DNA binding activity and recruitment of C/EBPbeta to the SOCS-3 promoter. Secondly, knockdown of C/EBPbeta and -delta isoforms abolished both SOCS-3 induction and inhibition of IL-6 signaling in response to cAMP. Thirdly, overexpression of C/EBPalpha, -beta, or -delta potentiated EPAC-mediated accumulation of SOCS-3. Finally, these effects were not restricted to human umbilical vein endothelial cells, because similar phenomena were observed in murine embryonic fibroblasts in which C/EBPbeta or delta had been deleted. In summary, our findings constitute the first description of an EPAC-C/EBP pathway that can control cAMP-mediated changes in gene expression independently of protein kinase A.
Collapse
Affiliation(s)
- Stephen J Yarwood
- Molecular Pharmacology Group, Division of Biochemistry and Molecular Biology, Faculty of Biomedical and Life Sciences, University of Glasgow, Davidson Bldg., Glasgow G12 8QQ, United Kingdom.
| | | | | | | |
Collapse
|
20
|
Kapatos G, Vunnava P, Wu Y. Protein kinase A-dependent recruitment of RNA polymerase II, C/EBP beta and NF-Y to the rat GTP cyclohydrolase I proximal promoter occurs without alterations in histone acetylation. J Neurochem 2007; 101:1119-33. [PMID: 17394555 PMCID: PMC2212612 DOI: 10.1111/j.1471-4159.2007.04486.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Cyclic-AMP stimulation of GTP cyclohydrolase I (GCH1) gene transcription was investigated in PC12 cells, the protein kinase A-deficient PC12 cell line 126-1B2 and C6 cells using transient transfection assays of proximal promoter reporter constructs and wild type or dominant negative proteins, chromatin immunoprecipitation and real-time quantitative PCR. These studies show that protein kinase A is necessary and sufficient for cAMP-dependent transcription conferred by both the cAMP regulatory element and the adjacent CCAAT-box. In intact cells these cis-elements were shown to bind cAMP response element binding protein, CCAAT-enhancer binding protein beta and nuclear factor-Y, with each protein controlling a different aspect of the cAMP response. Cyclic-AMP acting through protein kinase A stimulated promoter recruitment of CCAAT-enhancer binding protein beta, nuclear factor-Y and RNA polymerase II while depleting the promoter of cyclic-AMP response element binding protein. Stimulation of transcription by cAMP was not associated with increased acetylation of histones H3 and H4 at proximal promoter nucleosomes, indicating that histone acetyltransferases are not involved in this response. Nonetheless, pharmacological inhibition of histone deacetylase activity did increase histone H4 acetylation and the recruitment of RNA polymerase II, indicating that histone acetyltransferases are normally associated with the proximal promoter. Only in C6 cells, however, did inhibition of histone deacetylases stimulate transcription and synergize with cAMP. These experiments provide the first glimpse of the GCH1 gene promoter functioning within intact cells and supply evidence for the involvement of histone acetyltransferase-containing complexes in GCH1 gene transcription.
Collapse
Affiliation(s)
- Gregory Kapatos
- Department of Pharmacology and Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI 48201, USA.
| | | | | |
Collapse
|
21
|
Carapau D, Kruhofer M, Chatalbash A, Orengo JM, Mota MM, Rodriguez A. Transcriptome profile of dendritic cells during malaria: cAMP regulation of IL-6. Cell Microbiol 2007; 9:1738-52. [PMID: 17324158 DOI: 10.1111/j.1462-5822.2007.00910.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Dendritic cells (DCs) have been proposed as mediators of immunity against malaria parasites, as well as a target for inhibition of cellular responses. Here we describe the transcriptomic analysis of spleen DCs in response to Plasmodium infection in a rodent model. We identified a high number of unique transcripts modulated in DCs upon infection. Many cellular functions suffer extensive genomic regulation including the cell cycle, the glycolysis and purine metabolism pathways and also defence responses. Only a small fraction of the regulated genes are coincident with the response induced by other pathogens, suggesting that Plasmodium induces a unique genetic re-programming of DCs. We confirmed regulation of a number of cytokines at the mRNA level including IL-6, IL-10 and IFN-gamma. We further dissected a signalling pathway regulating Plasmodium-induced expression of IL-6 by DCs, which is mediated by release of PGE2, increases in intracellular cAMP and activation of PKA and p38-MAPK.
Collapse
Affiliation(s)
- Daniel Carapau
- New York University School of Medicine, Department of Medical Parasitology, 341E. 25th St., New York, NY 10010, USA
| | | | | | | | | | | |
Collapse
|
22
|
Motzkus D, Loumi S, Cadenas C, Vinson C, Forssmann WG, Maronde E. Activation of human period-1 by PKA or CLOCK/BMAL1 is conferred by separate signal transduction pathways. Chronobiol Int 2007; 24:783-92. [PMID: 17994337 DOI: 10.1080/07420520701672481] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Circadian clocks are self-sustained biochemical oscillators that autonomously generate a near-24 h cycle in the absence of external signals. The process of synchronization to the environment involves the transcriptional activation of several genes. Photic input signals from the retina are transduced via the retinohypothalamic tract to the central pacemaker located in the suprachiasmatic nuclei (SCN) of the hypothalamus. It is known that cells of peripheral organs possess similar molecular organizations, but the signal transductional pathways lack direct light entrainment. It has been assumed that the adaptation of peripheral organs to the SCN phase is achieved by the alternate usage of promoter elements. This question has been addressed by characterizing the signal transductional pathways regulating human Period-1 gene expression in human hepatoma cells (HuH-7). Plasmids coding for key modulators of circadian rhythm, hCLOCK, hBMAL1, and hCRY2 were used to analyze the activation of a human period-1 promoter luciferase (hPER1-luc) construct. Beside classical CLOCK/BMAL1 activation, hPER1-luc was also inducible by the overexpression of the catalytic subunit of PKA (Calpha). The cotransfection of dominant negative constructs to c-FOS, CREB, PKA, and C/EBP were used to characterize both regulatory pathways. It was found that hCLOCK/hBMAL1-mediated hPER1 activation was influenced by AP1, but not significantly by other regulators. Conversely, PKA-induced activation of hPER1 was reduced by the inhibition of CREB and the CCAAT-box binding protein C/EBP, but not by AP1. The present findings imply that CLOCK/BMAL1-mediated activation of hPER1 by AP1 and E-Box elements is distinct from peripheral transcriptional modulation via cAMP-induced CREB and C/EBP.
Collapse
|
23
|
Yu RMK, Wong MML, Kong RYC, Wu RSS, Cheng SH. Induction of hepatic choriogenin mRNA expression in male marine medaka: a highly sensitive biomarker for environmental estrogens. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2006; 77:348-58. [PMID: 16464508 DOI: 10.1016/j.aquatox.2006.01.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2005] [Revised: 01/09/2006] [Accepted: 01/09/2006] [Indexed: 05/06/2023]
Abstract
Teleost choriogenins, precursors of the inner layer subunits of egg envelope, have been recently introduced as sensitive biomarkers for exposure to estrogenic compounds. In this study, two full-length cDNAs-ojChgH and ojChgL which encode the choriogenin H and L forms, respectively, were cloned from the marine medaka, Oryzias javanicus. The deduced protein sequences of ojChgH and ojChgL are highly similar to the corresponding homologues in the freshwater medaka (O. latipes) with identities of 77.2 and 87.6%, respectively. Phylogenetic analysis indicated that ojChgH and ojChgL are members of two different classes of liver-specific ZP-domain containing proteins (ZPB and ZPC, respectively). Computer analysis of ca. 2 kb of the 5'-flanking sequences of ojChgH and ojChgL revealed that both genes contain a number of putative estrogen response elements (EREs) and/or half-site EREs. In vivo mRNA expression patterns of the genes were examined by quantitative real-time RT-PCR. ojChgH is expressed exclusively in the liver while ojChgL is co-expressed in the liver (major) and ovary (minor). Exposure of fish to waterborne 17beta-estradiol (E2) at environmentally relevant concentrations (1, 5, 10 and 100 ng/L) resulted in dose-dependent induction of both genes in the liver, with higher sensitivity and magnitude of induction in males than in females. In the male liver, induction of ojChgH is more sensitive to E2 than that of ojChgL and two other estrogen-responsive genes, estrogen receptor alpha (ojERalpha) and vitellogenin (ojVTG). The lowest-observed-effect concentration (LOEC) of E2 on induction of hepatic ojChgH mRNA is 1 ng/L. In the ovary, expression of ojChgL is non-responsive to E2 treatment. In conclusion, the present study suggested that induction of hepatic ojChgH mRNA in male fish may be a highly sensitive biomarker for exposure to environmental estrogens.
Collapse
Affiliation(s)
- Richard Man Kit Yu
- Department of Biology and Chemistry, Centre for Marine Environmental Research and Innovative Technology, MERIT, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong
| | | | | | | | | |
Collapse
|
24
|
Benjanirut C, Paris M, Wang WH, Hong SJ, Kim KS, Hullinger RL, Andrisani OM. The cAMP pathway in combination with BMP2 regulates Phox2a transcription via cAMP response element binding sites. J Biol Chem 2005; 281:2969-81. [PMID: 16330553 DOI: 10.1074/jbc.m503939200] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Combined BMP2 and cAMP signaling induces the catechola-minergic lineage in neural crest (NC) cultures by increasing expression of the proneural transcription factor Phox2a, in a cAMP response element (CRE)-binding protein (CREB)-mediated mechanism. To determine whether CREB acts directly on Phox2a transcription induced by BMP2+cAMP-elevating agent IBMX, transient transfections of hPhox2a-reporter constructs were performed in avian NC cultures and murine, catecholaminergic CAD cells. Although BMP2+IBMX increased endogenous Phox2a expression, the 7.5-kb hPhox2a reporters expressing either luciferase or DsRed1-E5 fluorescent protein were unresponsive to BMP2+IBMX, but active in both cell types. Cell sorting of fluorescence-positive NC cells expressing the 7.5-kb hPhox2a fluorescent timer reporter differentiated to equal numbers of catecholaminergic cells as fluorescence-negative cells, suggesting inappropriate transcription from the transfected hPhox2a promoter. NC or CAD cells treated with histone deacetylase inhibitor trichostatin A and BMP2+IBMX display increased endogenous Phox2a transcription and prolonged CREB phosphorylation, indicating Phox2a chromatin remodeling is linked to CREB activation. Chromatin immunoprecipitations employing CREB, CREB-binding protein, and acetylated H4 antibodies identified two CRE half-sites at -5.5 kb in the murine Phox2a promoter, which is also conserved in the human promoter. Proximal to the CRE half-sites, within a 170-bp region, are E-box and CCAAT binding sites, also conserved in mouse and human genes. This 170-bp promoter region confers cAMP, BMP2, and enhanced BMP2+cAMP regulation to Phox2a-luciferase reporters. We conclude these CREs are functional, with CREB directly activating Phox2a transcription. Because the E-box binds bHLH proteins like ASH1 induced in NC cells by BMP2, we propose this novel 170-bp cis-acting element is a composite site, mediating the synergistic regulation by BMP2+cAMP on Phox2a transcription.
Collapse
Affiliation(s)
- Chutamas Benjanirut
- Department of Basic Medical Sciences, Purdue University, West Lafayette, Indiana 47907, USA
| | | | | | | | | | | | | |
Collapse
|
25
|
Yang J, Croniger CM, Lekstrom-Himes J, Zhang P, Fenyus M, Tenen DG, Darlington GJ, Hanson RW. Metabolic response of mice to a postnatal ablation of CCAAT/enhancer-binding protein alpha. J Biol Chem 2005; 280:38689-99. [PMID: 16166091 DOI: 10.1074/jbc.m503486200] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Although CCAAT/enhancer-binding protein alpha (C/EBPalpha) is essential for initiating or sustaining several metabolic processes during the perinatal period, the consequences of total ablation of C/EBPalpha during postnatal development have not been investigated. We have created a conditional knock-out model in which the administration of poly(I:C) caused a virtually total deletion of c/ebpalpha (C/EBPalpha(Delta/-) mice) in the liver, spleen, white and brown adipose tissues, pancreas, lung, and kidney of the mice. C/EBPalpha itself was completely ablated in the liver by day 4 after the injection of poly(I:C). There was no noticeable change in phenotype during the first 15 days after the injection. The mice maintained a normal level of fasting blood glucose and responded to the diabetogenic action of streptozotocin. From day 16 onward, the mice developed hypophagia, exhibited severe weight loss, lost triglyceride in white but not brown adipose tissue, became hypoglycemic and hypoinsulinemic, depleted their hepatic glycogen, and developed fatty liver. They also exhibited lowered plasma levels of free fatty acid, triglyceride, and cholesterol, as well as marked changes in hepatic mRNA for C/EBPdelta, peroxisome proliferator-activated receptor alpha, sterol regulatory element-binding protein 1, hydroxymethylglutaryl-coenzyme A reductase, and apolipoproteins. Although basal levels of hepatic mRNA for the cytosolic isoform of phosphoenolpyruvate carboxykinase and glucose-6-phosphatase were reduced, transcription of the genes for these enzymes was inducible by dibutyryl cyclic AMP in C/EBPalpha(Delta/-) mice. The animals died about 1 month after the injection of poly(I:C). These findings demonstrate that C/EBPalpha is essential for the survival of animals during postnatal life and that its ablation leads to distinct biphasic change in metabolic processes.
Collapse
MESH Headings
- Adipose Tissue/metabolism
- Alleles
- Animals
- Apolipoproteins/chemistry
- Blood Glucose/metabolism
- Blotting, Northern
- Blotting, Southern
- Blotting, Western
- Body Weight
- CCAAT-Enhancer-Binding Protein-alpha/metabolism
- CCAAT-Enhancer-Binding Protein-alpha/physiology
- CCAAT-Enhancer-Binding Protein-delta/metabolism
- Cholesterol/metabolism
- Crosses, Genetic
- Cyclic AMP/metabolism
- Cytosol/chemistry
- Fatty Liver/metabolism
- Gene Deletion
- Genotype
- Glucokinase/metabolism
- Glucose/metabolism
- Glucose-6-Phosphatase/chemistry
- Glucose-6-Phosphate/metabolism
- Glycogen/metabolism
- Hydroxymethylglutaryl CoA Reductases/metabolism
- Kinetics
- Liver/metabolism
- Mice
- Mice, Inbred C57BL
- Mice, Inbred CBA
- Mice, Knockout
- Mice, Transgenic
- Models, Genetic
- Oligonucleotide Array Sequence Analysis
- PPAR alpha/metabolism
- Phosphoenolpyruvate Carboxykinase (ATP)/chemistry
- Poly C
- Poly I
- Polymerase Chain Reaction
- Protein Isoforms
- RNA, Messenger/metabolism
- Streptozocin/pharmacology
- Time Factors
- Tissue Distribution
- Transcription, Genetic
- Triglycerides/metabolism
Collapse
Affiliation(s)
- Jianqi Yang
- Department of Biochemistry, Case Western Reserve University School of Medicine, Cleveland, Ohio 44106-4935, USA.
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Albina JE, Mahoney EJ, Daley JM, Wesche DE, Morris SM, Reichner JS. MACROPHAGE ARGINASE REGULATION BY CCAAT/ENHANCER-BINDING PROTEIN ?? Shock 2005; 23:168-72. [PMID: 15665733 DOI: 10.1097/01.shk.0000148054.74268.e2] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Arginase activity is expressed by macrophages in healing wounds and other sites of inflammation and has been shown to modulate the synthesis of nitric oxide, polyamines, and collagen. The role of CCAAT/enhancer-binding protein beta (C/EBPbeta) in the regulation of macrophage arginase by different agonists was investigated using C/EBPbeta-/- and +/+ macrophage cell lines. 8-Bromo-cyclic adenosine monophosphate (8-Br-cAMP, 0.5 mM), recombinant murine interleukin 4 (rmIL-4, 20 U/mL), Escherichia coli lipopolysaccharide (100 ng/mL), and hypoxia (1% O2) induced arginase activity in C/EBPbeta+/+ macrophages, where enzyme activity correlated with arginase I protein. Only rmIL-4 increased arginase activity in C/EBPbeta-/- cells. Arginase II protein was expressed constitutively in wild-type and C/EBPbeta-/- cell lines and was unaltered by 8-Br-cAMP or rmIL-4. rmIL-4-stimulated immortalized C/EBPbeta-/- macrophages demonstrated higher nuclear signal transducer and activator of transcription-6 (STAT6) and phospho-STAT6 content than their +/+ counterparts. Validating the biological relevance of findings with the cell lines, additional experiments examined wound fluids and peritoneal macrophages from C/EBPbeta-/- mice and demonstrated that both contained less arginase activity than those from wild-type controls. Wounds in C/EBPbeta-/- animals showed signs of delayed maturation, as manifested by the persistence of neutrophils in the inflammatory infiltrate. Peritoneal macrophages from C/EBPbeta+/+ animals responded to 8-Br-cAMP and rmIL-4 with increased arginase activity, whereas those from C/EBPbeta-/- mice did not respond to cAMP. Results demonstrate a key mechanistic role for C/EBPbeta in the modulation of macrophage arginase I expression in vivo and in vitro.
Collapse
Affiliation(s)
- Jorge E Albina
- Division of Surgical Research, Department of Surgery, Rhode Island Hospital, 593 Eddy Streer Providence, RI 02903, USA.
| | | | | | | | | | | |
Collapse
|
27
|
Dhawan P, Peng X, Sutton ALM, MacDonald PN, Croniger CM, Trautwein C, Centrella M, McCarthy TL, Christakos S. Functional cooperation between CCAAT/enhancer-binding proteins and the vitamin D receptor in regulation of 25-hydroxyvitamin D3 24-hydroxylase. Mol Cell Biol 2005; 25:472-87. [PMID: 15601867 PMCID: PMC538756 DOI: 10.1128/mcb.25.1.472-487.2005] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
1,25-Dihydroxyvitamin D(3) [1,25(OH)(2)D(3)] induces the synthesis of 25-hydroxyvitamin D(3) 24-hydroxylase [24(OH)ase], an enzyme involved in its catabolism, thereby regulating its own metabolism. Here we demonstrate that CCAAT enhancer binding protein beta (C/EBPbeta) is induced by 1,25(OH)(2)D(3) in kidney and in osteoblastic cells and is a potent enhancer of vitamin D receptor (VDR)-mediated 24(OH)ase transcription. Transfection studies indicate that 1,25(OH)(2)D(3) induction of 24(OH)ase transcription is enhanced a maximum of 10-fold by C/EBPbeta. Suppression of 1,25(OH)(2)D(3)-induced 24(OH)ase transcription was observed with dominant negative C/EBP or osteoblastic cells from C/EBPbeta(-/-) mice. A C/EBP site was identified at positions -395 to -388 (-395/-388) in the rat 24(OH)ase promoter. Mutation of this site inhibited C/EBPbeta binding and markedly attenuated the transcriptional response to C/EBPbeta. We also report the cooperation of CBP/p300 with C/EBPbeta in regulating VDR-mediated 24(OH)ase transcription. We found that not only 1,25(OH)(2)D(3) but also parathyroid hormone (PTH) can induce C/EBPbeta expression in osteoblastic cells. PTH potentiated the induction of C/EBPbeta and 24(OH)ase expression in response to 1,25(OH)(2)D(3) in osteoblastic cells. Data with the human VDR promoter (which contains two putative C/EBP sites) indicate a role for C/EBPbeta in the protein kinase A-mediated induction of VDR transcription. From this study a fundamental role has been established for the first time for cooperative effects and cross talk between the C/EBP family of transcription factors and VDR in 1,25(OH)(2)D(3)-induced transcription. These findings also indicate a novel role for C/EBPbeta in the cross talk between PTH and 1,25(OH)(2)D(3) that involves the regulation of VDR transcription.
Collapse
Affiliation(s)
- Puneet Dhawan
- Department of Biochemistry and Molecular Biology, University of Medicine and Dentistry of New Jersey-New Jersey Medical School, 185 South Orange Avenue, Newark, NJ 07103, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Hornbuckle LA, Everett CA, Martin CC, Gustavson SS, Svitek CA, Oeser JK, Neal DW, Cherrington AD, O'Brien RM. Selective stimulation of G-6-Pase catalytic subunit but not G-6-P transporter gene expression by glucagon in vivo and cAMP in situ. Am J Physiol Endocrinol Metab 2004; 286:E795-808. [PMID: 14722027 DOI: 10.1152/ajpendo.00455.2003] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We recently compared the regulation of glucose-6-phosphatase (G-6-Pase) catalytic subunit and glucose 6-phosphate (G-6-P) transporter gene expression by insulin in conscious dogs in vivo (Hornbuckle LA, Edgerton DS, Ayala JE, Svitek CA, Neal DW, Cardin S, Cherrington AD, and O'Brien RM. Am J Physiol Endocrinol Metab 281: E713-E725, 2001). In pancreatic-clamped, euglycemic conscious dogs, a 5-h period of hypoinsulinemia led to a marked increase in hepatic G-6-Pase catalytic subunit mRNA; however, G-6-P transporter mRNA was unchanged. Here, we demonstrate, again using pancreatic-clamped, conscious dogs, that glucagon is a candidate for the factor responsible for this selective induction. Thus glucagon stimulated G-6-Pase catalytic subunit but not G-6-P transporter gene expression in vivo. Furthermore, cAMP stimulated endogenous G-6-Pase catalytic subunit gene expression in HepG2 cells but had no effect on G-6-P transporter gene expression. The cAMP response element (CRE) that mediates this induction was identified through transient transfection of HepG2 cells with G-6-Pase catalytic subunit-chloramphenicol acetyltransferase fusion genes. Gel retardation assays demonstrate that this CRE binds several transcription factors including CRE-binding protein and CCAAT enhancer-binding protein.
Collapse
Affiliation(s)
- Lauri A Hornbuckle
- Department of Molecular Physiology and Biophysics, Vanderbilt University Medical School, Nashville, TN 37232-0615, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Hiroi H, Christenson LK, Strauss JF. Regulation of transcription of the steroidogenic acute regulatory protein (StAR) gene: temporal and spatial changes in transcription factor binding and histone modification. Mol Cell Endocrinol 2004; 215:119-26. [PMID: 15026184 DOI: 10.1016/j.mce.2003.11.014] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
We examined the binding of transcription factors and histone modifications associated with induction of expression of the steroidogenic acute regulatory protein (StAR) gene in MA-10 cells using a quantitative chromatin immunoprecipitation (ChIP) assay. GATA-4, SF-1/Ad4BP, and cyclic AMP response element binding protein binding protein (CBP) bind rapidly to the StAR proximal promoter, but in different patterns following 8-Br-cAMP stimulation. Concomitantly, histone modifications occur in a spatial and temporal sequence including increased association of acetylated histone H3 with the proximal promoter region, increased association of dimethylated lysine 4 histone H3 with exonic sequences, a modification that marks actively transcribed regions, and reduced association of a marker linked to gene silencing (lysine 9 dimethylated histone H3). Our findings demonstrate that transcription factors and coactivators are rapidly associated with the StAR proximal promoter, that the patterns of binding differ which has implications for postulated direct interactions among these factors, and that multiple histone modifications are demonstrable in a spatially- and temporally-specific pattern along the StAR gene. These observations suggest that a combinatorial code of transcription factors including reciprocal changes in histone modifications associated with active transcription and gene silencing control StAR gene expression.
Collapse
Affiliation(s)
- Hisahiko Hiroi
- Center for Research on Reproduction and Women's Health, University of Pennsylvania Medical Center, 1354 BRB, 421 Curie Boulevard, Philadelphia, PA 19104, USA
| | | | | |
Collapse
|
30
|
Betanzos A, Huerta M, Lopez-Bayghen E, Azuara E, Amerena J, González-Mariscal L. The tight junction protein ZO-2 associates with Jun, Fos and C/EBP transcription factors in epithelial cells. Exp Cell Res 2004; 292:51-66. [PMID: 14720506 DOI: 10.1016/j.yexcr.2003.08.007] [Citation(s) in RCA: 129] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
ZO-2 is a membrane-associated guanylate kinase (MAGUK) protein present at the tight junction (TJ) of epithelial cells. While confluent monolayers have ZO-2 at their cellular borders, sparse cultures conspicuously show ZO-2 at the nuclei. To study the role of nuclear ZO-2, we tested by pull-down assays and gel shift analysis the interaction between ZO-2 GST fusion proteins and different transcription factors. We identified the existence of a specific interaction of ZO-2 with Fos, Jun and C/EBP (CCAAT/enhancer binding protein). To analyze if this association is present "in vivo", we performed immunoprecipitation and immunolocalization experiments, which revealed an interaction of ZO-2 with Jun, Fos and C/EBP not only at the nucleus but also at the TJ region. To test if the association of ZO-2 with AP-1 (activator protein-1) modulates gene transcription, we performed reporter gene assays employing chloramphenicol acetyltransferase (CAT) constructs with promoters under the control of AP-1 sites. We observed that the co-transfected ZO-2 down-regulates CAT expression in a dose-dependent manner. Since ZO-2 is a multidomain protein, we proceeded to determine which region of the molecule is responsible for the modulation of gene expression, and observed that both the amino and the carboxyl domains are capable of inhibiting gene transcription.
Collapse
Affiliation(s)
- Abigail Betanzos
- Department of Physiology, Biophysics and Neuroscience, Center for Research and Advanced Studies (CINVESTAV), México DF, 07000, Mexico
| | | | | | | | | | | |
Collapse
|
31
|
Kovács KA, Steinmann M, Magistretti PJ, Halfon O, Cardinaux JR. CCAAT/enhancer-binding protein family members recruit the coactivator CREB-binding protein and trigger its phosphorylation. J Biol Chem 2003; 278:36959-65. [PMID: 12857754 DOI: 10.1074/jbc.m303147200] [Citation(s) in RCA: 111] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
CCAAT/enhancer-binding protein (C/EBP) family members are transcription factors involved in important physiological processes, such as cellular proliferation and differentiation, regulation of energy homeostasis, inflammation, and hematopoiesis. Transcriptional activation by C/EBPalpha and C/EBPbeta involves the coactivators CREB-binding protein (CBP) and p300, which promote transcription by acetylating histones and recruiting basal transcription factors. In this study, we show that C/EBPdelta is also using CBP as a coactivator. Based on sequence homology with C/EBPalpha and -beta, we identify in C/EBPdelta two conserved amino acid segments that are necessary for the physical interaction with CBP. Using reporter gene assays, we demonstrate that mutation of these residues prevents CBP recruitment and diminishes the transactivating potential of C/EBPdelta. In addition, our results indicate that C/EBP family members not only recruit CBP but specifically induce its phosphorylation. We provide evidence that CBP phosphorylation depends on its interaction with C/EBPdelta and define point mutations within one of the two conserved amino acid segments of C/EBPdelta that abolish CBP phosphorylation as well as transcriptional activation, suggesting that this new mechanism could be important for C/EBP-mediated transcription.
Collapse
Affiliation(s)
- Krisztián A Kovács
- Department of Child and Adolescent Psychiatry, University of Lausanne, CH-1005 Lausanne, Switzerland
| | | | | | | | | |
Collapse
|
32
|
Selective breeding, quantitative trait locus analysis, and gene arrays identify candidate genes for complex drug-related behaviors. J Neurosci 2003. [PMID: 12805289 DOI: 10.1523/jneurosci.23-11-04491.2003] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022] Open
Abstract
Acute functional tolerance to ethanol develops during a single exposure to ethanol; it has been suggested to be a predisposing factor for the development of ethanol dependence. Genetic determinants of acute functional tolerance, as well as of ethanol dependence, have been clearly demonstrated. We describe a novel approach that uses a combination of selective breeding (to segregate genes contributing to the phenotype of interest, i.e., acute functional tolerance to the incoordinating effect of ethanol), quantitative trait locus analysis (to define chromosomal regions associated with acute functional tolerance), and DNA microarray technology (to identify differentially expressed genes in the brains of the selected lines of mice) to identify candidate genes for the complex phenotype of ethanol tolerance. The results indicate the importance of a signal transduction cascade that involves the glutamate receptor delta2 protein, the Ephrin B3 ligand, and the NMDA receptor, as well as a transcriptional regulatory protein that may be induced by activation of the NMDA receptor (zinc finger protein 179) and a protein that can modulate downstream responses to NMDA receptor activation (peroxiredoxin), in mediating acute tolerance to the incoordinating effect of ethanol.
Collapse
|
33
|
Chen Y, Zhuang S, Cassenaer S, Casteel DE, Gudi T, Boss GR, Pilz RB. Synergism between calcium and cyclic GMP in cyclic AMP response element-dependent transcriptional regulation requires cooperation between CREB and C/EBP-beta. Mol Cell Biol 2003; 23:4066-82. [PMID: 12773552 PMCID: PMC156132 DOI: 10.1128/mcb.23.12.4066-4082.2003] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Calcium induces transcriptional activation of the fos promoter by activation of the cyclic AMP response element (CRE)-binding protein (CREB), and in some cells its effect is enhanced synergistically by cyclic GMP (cGMP) through an unknown mechanism. We observed calcium-cGMP synergism in neuronal and osteogenic cells which express type II cGMP-dependent protein kinase (G-kinase); the effect on the fos promoter was mediated by the CRE and proportional to G-kinase activity. Dominant negative transcription factors showed involvement of CREB- and C/EBP-related proteins but not of AP-1. Expression of C/EBP-beta but not C/EBP-alpha or -delta enhanced the effects of calcium and cGMP on a CRE-dependent reporter gene. The transactivation potential of full-length CREB fused to the DNA-binding domain of Gal4 was increased synergistically by calcium and cGMP, and overexpression of C/EBP-beta enhanced the effect, while a dominant negative C/EBP inhibited it. With a mammalian two-hybrid system, coimmunoprecipitation experiments, and in vitro binding studies, we demonstrated that C/EBP-beta and CREB interacted directly; this interaction involved the C terminus of C/EBP-beta but occurred independently of CREB's leucine zipper domain. CREB Ser(133) phosphorylation was stimulated by calcium but not by cGMP; in cGMP-treated cells, (32)PO(4) incorporation into C/EBP-beta was decreased and C/EBP-beta/CRE complexes were increased, suggesting regulation of C/EBP-beta functions by G-kinase-dependent dephosphorylation. C/EBP-beta and CREB associated with the fos promoter in intact cells, and the amount of promoter-associated C/EBP-beta was increased by calcium and cGMP. We conclude that calcium and cGMP transcriptional synergism requires cooperation of CREB and C/EBP-beta, with calcium and cGMP modulating the phosphorylation states of CREB and C/EBP-beta, respectively.
Collapse
MESH Headings
- 3T3 Cells
- Animals
- Blotting, Northern
- Blotting, Western
- CCAAT-Enhancer-Binding Protein-beta/metabolism
- COS Cells
- Calcium/metabolism
- Cyclic AMP/metabolism
- Cyclic AMP Response Element-Binding Protein/metabolism
- Cyclic GMP/metabolism
- DNA-Binding Proteins/metabolism
- Gene Expression Regulation
- Genes, Dominant
- Genes, Reporter
- Genes, fos/genetics
- Genetic Vectors
- Mice
- Phosphorylation
- Plasmids/metabolism
- Precipitin Tests
- Promoter Regions, Genetic
- Protein Binding
- Protein Structure, Tertiary
- RNA, Messenger/metabolism
- Rats
- Response Elements
- Signal Transduction
- Subcellular Fractions/metabolism
- Time Factors
- Transcription, Genetic
- Transcriptional Activation
- Tumor Cells, Cultured
- Two-Hybrid System Techniques
Collapse
Affiliation(s)
- Yongchang Chen
- Department of Medicine and Cancer Center, University of California at San Diego, La Jolla, California 92093-0652, USA
| | | | | | | | | | | | | |
Collapse
|
34
|
Rossignol R, Faustin B, Rocher C, Malgat M, Mazat JP, Letellier T. Mitochondrial threshold effects. Biochem J 2003; 370:751-62. [PMID: 12467494 PMCID: PMC1223225 DOI: 10.1042/bj20021594] [Citation(s) in RCA: 596] [Impact Index Per Article: 27.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2002] [Revised: 12/04/2002] [Accepted: 12/06/2002] [Indexed: 01/20/2023]
Abstract
The study of mitochondrial diseases has revealed dramatic variability in the phenotypic presentation of mitochondrial genetic defects. To attempt to understand this variability, different authors have studied energy metabolism in transmitochondrial cell lines carrying different proportions of various pathogenic mutations in their mitochondrial DNA. The same kinds of experiments have been performed on isolated mitochondria and on tissue biopsies taken from patients with mitochondrial diseases. The results have shown that, in most cases, phenotypic manifestation of the genetic defect occurs only when a threshold level is exceeded, and this phenomenon has been named the 'phenotypic threshold effect'. Subsequently, several authors showed that it was possible to inhibit considerably the activity of a respiratory chain complex, up to a critical value, without affecting the rate of mitochondrial respiration or ATP synthesis. This phenomenon was called the 'biochemical threshold effect'. More recently, quantitative analysis of the effects of various mutations in mitochondrial DNA on the rate of mitochondrial protein synthesis has revealed the existence of a 'translational threshold effect'. In this review these different mitochondrial threshold effects are discussed, along with their molecular bases and the roles that they play in the presentation of mitochondrial diseases.
Collapse
Affiliation(s)
- Rodrigue Rossignol
- INSERM-EMI 9929, Physiologie mitochondriale, Université Victor Segalen-Bordeaux 2, 146 rue Léo-Saignat, F-33076 Bordeaux-cedex, France.
| | | | | | | | | | | |
Collapse
|
35
|
Brenner S, Prösch S, Schenke-Layland K, Riese U, Gausmann U, Platzer C. cAMP-induced Interleukin-10 promoter activation depends on CCAAT/enhancer-binding protein expression and monocytic differentiation. J Biol Chem 2003; 278:5597-604. [PMID: 12493739 DOI: 10.1074/jbc.m207448200] [Citation(s) in RCA: 120] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The molecular mechanisms underlying the regulation of interleukin (IL)-10 transcription in monocytic cells by various stimuli during inflammation and the stress reaction are not fully understood. Recently, we provided evidence that stress-induced IL-10 promoter activation in monocytic cells is mediated by catecholamines via a cAMP-dependent signaling pathway including CREB/ATF (cAMP-responsive element binding protein/activating transcription factor) binding to two CRE motifs. However, the mutation of these sites diminished cAMP responsiveness by only 50%, suggesting a role for additional transcription factors and elements in the cAMP-dependent regulation of the human IL-10 promoter. Here, we analyze the functional role of one such factor, C/EBP, in two cell lines of myelomonocytic origin, THP-1 and HL-60, which are known to differ in their differentiation status and C/EBP protein content. We show that the level of basal as well as cAMP-stimulated IL-10 transcription depends on the expression of C/EBP alpha and beta and their binding to three motifs in the promoter/enhancer region. The C/EBP5 motif, which is located between the TATA-box and the translation start point, is essential for the C/EBP-mediated constitutive and most of the cAMP-stimulated expression as its mutation nearly abolished IL-10 promoter activity. Our results suggest a dominant role of C/EBP transcription factors relative to CREB/ATF in tissue-specific and differentiation-dependent IL-10 transcription.
Collapse
Affiliation(s)
- Susanne Brenner
- Institute of Anatomy II, Medical School, Friedrich Schiller University, D-07740 Jena, Germany
| | | | | | | | | | | |
Collapse
|
36
|
Wilson HL, McFie PJ, Roesler WJ. Different transcription factor binding arrays modulate the cAMP responsivity of the phosphoenolpyruvate carboxykinase gene promoter. J Biol Chem 2002; 277:43895-902. [PMID: 12237288 DOI: 10.1074/jbc.m203169200] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The cAMP responsiveness of the phosphoenolpyruvate carboxykinase (PEPCK) gene promoter is mediated by a cAMP response unit, which includes three CCAAT/enhancer-binding protein (C/EBPs) sites, and a cAMP response element (CRE). Because both the CRE-binding protein and several C/EBP isoforms can to bind to the CRE with similar affinity, a variety of transcription factor bindings arrays in the cAMP response unit are possible that may affect the protein kinase A (PKA) responsivity of the promoter. To explore this issue, we have designed PEPCK promoter variants that have the native cis-elements within the cAMP response unit replaced with one or more LexA- and/or GAL4-binding sites. We also engineered the corresponding C/EBP and CRE-binding protein chimeras, which have their basic region leucine zipper domains replaced with LexA or GAL4 DNA-binding domains. Using this approach, we have reconstituted the PKA responsiveness of permissive PEPCK promoters in hepatoma cells and have characterized the PKA responsivity of the promoter under defined transcription factor occupancy patterns. Furthermore, analysis of deletion mutants of C/EBPalpha indicated that the domains that mediate its constitutive and PKA-inducible activities vary depending on which cis-element it occupies on the PEPCK promoter. These results suggest that promoter context may influence which domains within a transcription factor are employed to mediate transactivation.
Collapse
Affiliation(s)
- Heather L Wilson
- Department of Biochemistry, University of Saskatchewan, Saskatoon, Canada
| | | | | |
Collapse
|
37
|
Dahle MK, Taskén K, Taskén KA. USF2 inhibits C/EBP-mediated transcriptional regulation of the RIIbeta subunit of cAMP-dependent protein kinase. BMC Mol Biol 2002; 3:10. [PMID: 12086590 PMCID: PMC117135 DOI: 10.1186/1471-2199-3-10] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2002] [Accepted: 06/21/2002] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Cyclic AMP-dependent protein kinase (PKA) plays a central role in regulation of energy metabolism. Upon stimulation of testicular Sertoli cells by follicle stimulating hormone (FSH), glycolysis is activated to increase the production of nutrients for the germ cells, and a new regulatory subunit of cAMP-dependent protein kinase, RIIbeta, is induced. We have previously shown that production of the transcription factor C/EBPbeta is rapidly increased by FSH and cAMP in primary Sertoli cell cultures, and that C/EBPbeta induces the RIIbeta promoter. RESULTS In this work we show that USF1, USF2 and truncated USF isoforms bind to a conserved E-box in the RIIbeta gene. Interestingly, overexpression of USF2, but not USF1, led to inhibition of both cAMP- and C/EBPbeta-mediated induction of RIIbeta. Furthermore, Western blots show that a novel USF1 isoform is induced by cAMP in Sertoli cells. CONCLUSIONS These results indicate that the expression of various USF isoforms may be regulated by cAMP, and that the interplay between USF and C/EBPbeta is important for cAMP-mediated regulation of RIIbeta expression. The counteracting effects of USF2 and C/EBPbeta observed on the RIIbeta promoter is in accordance with the hypothesis that C/EBP and USF play opposite roles in regulation of glucose metabolism.
Collapse
Affiliation(s)
- Maria Krudtaa Dahle
- Department of Medical Biochemistry, Institute of Basic Medical Sciences, University of Oslo, N-0317 Oslo, Norway
| | - Kjetil Taskén
- Department of Medical Biochemistry, Institute of Basic Medical Sciences, University of Oslo, N-0317 Oslo, Norway
| | - Kristin Austlid Taskén
- Department of Medical Biochemistry, Institute of Basic Medical Sciences, University of Oslo, N-0317 Oslo, Norway
| |
Collapse
|