1
|
Loh NY, Rosoff DB, Richmond R, Noordam R, Smith GD, Ray D, Karpe F, Lohoff FW, Christodoulides C. Bidirectional Mendelian Randomization Highlights Causal Relationships Between Circulating INHBC and Multiple Cardiometabolic Diseases and Traits. Diabetes 2024; 73:2084-2094. [PMID: 39283655 PMCID: PMC11579406 DOI: 10.2337/db24-0168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 09/05/2024] [Indexed: 11/22/2024]
Abstract
Human genetic and transgenic mouse studies have highlighted a potential liver-adipose tissue endocrine axis, involving activin C (Act-C) and/or Act-E and ALK7, influencing fat distribution and systemic metabolism. We investigated the bidirectional effects between circulating INHBC, which homodimerizes into Act-C, and adiposity traits, insulin resistance, inflammation, and cardiometabolic disease risk. Additionally, we examined whether Act-C is an ALK7 ligand in human adipocytes. We used Mendelian randomization and in vitro studies in immortalized human abdominal and gluteal adipocytes. Circulating INHBC was causally linked to reduced lower-body fat, dyslipidemia, and increased risks of coronary artery disease (CAD) and nonalcoholic fatty liver disease (NAFLD). Conversely, upper-body fat distribution, obesity, hypertriglyceridemia, subclinical inflammation, and type 2 diabetes positively impacted plasma INHBC levels. Mechanistically, an atherogenic lipid profile may partly explain the INHBC-CAD link, while inflammation and hypertriglyceridemia may partly explain how adiposity traits affect circulating INHBC. Phenome-wide Mendelian randomization showed weak causal relationships between higher plasma INHBC and impaired kidney function and higher gout risk. In human adipocytes, recombinant Act-C activated SMAD2/3 signaling via ALK7 and suppressed lipolysis. In summary, INHBC influences systemic metabolism by activating ALK7 in adipose tissue and may serve as a drug target for atherogenic dyslipidemia, CAD, and NAFLD. ARTICLE HIGHLIGHTS
Collapse
Affiliation(s)
- Nellie Y. Loh
- Oxford Centre for Diabetes, Endocrinology and Metabolism, Radcliffe Department of Medicine, University of Oxford, Oxford, U.K
| | - Daniel B. Rosoff
- Oxford Centre for Diabetes, Endocrinology and Metabolism, Radcliffe Department of Medicine, University of Oxford, Oxford, U.K
- National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, U.K
| | - Rebecca Richmond
- Oxford Centre for Diabetes, Endocrinology and Metabolism, Radcliffe Department of Medicine, University of Oxford, Oxford, U.K
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, U.K
| | - Raymond Noordam
- Department of Internal Medicine, Section of Gerontology and Geriatrics, Leiden University Medical Center, Leiden, the Netherlands
| | | | - David Ray
- Oxford Centre for Diabetes, Endocrinology and Metabolism, Radcliffe Department of Medicine, University of Oxford, Oxford, U.K
- NIHR Oxford Biomedical Research Centre, John Radcliffe Hospital, Oxford, U.K
| | - Fredrik Karpe
- Oxford Centre for Diabetes, Endocrinology and Metabolism, Radcliffe Department of Medicine, University of Oxford, Oxford, U.K
- NIHR Oxford Biomedical Research Centre, John Radcliffe Hospital, Oxford, U.K
| | - Falk W. Lohoff
- National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD
| | - Constantinos Christodoulides
- Oxford Centre for Diabetes, Endocrinology and Metabolism, Radcliffe Department of Medicine, University of Oxford, Oxford, U.K
- NIHR Oxford Biomedical Research Centre, John Radcliffe Hospital, Oxford, U.K
| |
Collapse
|
2
|
Miao X, Alidadipour A, Saed V, Sayyadi F, Jadidi Y, Davoudi M, Amraee F, Jadidi N, Afrisham R. Hepatokines: unveiling the molecular and cellular mechanisms connecting hepatic tissue to insulin resistance and inflammation. Acta Diabetol 2024; 61:1339-1361. [PMID: 39031190 DOI: 10.1007/s00592-024-02335-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Accepted: 07/06/2024] [Indexed: 07/22/2024]
Abstract
Insulin resistance arising from Non-Alcoholic Fatty Liver Disease (NAFLD) stands as a prevalent global ailment, a manifestation within societies stemming from individuals' suboptimal dietary habits and lifestyles. This form of insulin resistance emerges as a pivotal factor in the development of type 2 diabetes mellitus (T2DM). Emerging evidence underscores the significant role of hepatokines, as hepatic-secreted hormone-like entities, in the genesis of insulin resistance and eventual onset of type 2 diabetes. Hepatokines exert influence over extrahepatic metabolism regulation. Their principal functions encompass impacting adipocytes, pancreatic cells, muscles, and the brain, thereby playing a crucial role in shaping body metabolism through signaling to target tissues. This review explores the most important hepatokines, each with distinct influences. Our review shows that Fetuin-A promotes lipid-induced insulin resistance by acting as an endogenous ligand for Toll-like receptor 4 (TLR-4). FGF21 reduces inflammation in diabetes by blocking the nuclear translocation of nuclear factor-κB (NF-κB) in adipocytes and adipose tissue, while also improving glucose metabolism. ANGPTL6 enhances AMPK and insulin signaling in muscle, and suppresses gluconeogenesis. Follistatin can influence insulin resistance and inflammation by interacting with members of the TGF-β family. Adropin show a positive correlation with phosphoenolpyruvate carboxykinase 1 (PCK1), a key regulator of gluconeogenesis. This article delves into hepatokines' impact on NAFLD, inflammation, and T2DM, with a specific focus on insulin resistance. The aim is to comprehend the influence of these recently identified hormones on disease development and their underlying physiological and pathological mechanisms.
Collapse
Affiliation(s)
- Xiaolei Miao
- School of Pharmacy, Xianning Medical College, Hubei University of Science and Technology, Xianning, 437100, China
| | - Arian Alidadipour
- Department of Medical Laboratory Sciences, School of Allied Medical Sciences, Tehran University of Medical Sciences, Tehran, Iran
| | - Vian Saed
- Department of Medical Laboratory Sciences, School of Allied Medical Sciences, Tehran University of Medical Sciences, Tehran, Iran
| | - Firooze Sayyadi
- Department of Medical Laboratory Sciences, School of Allied Medical Sciences, Tehran University of Medical Sciences, Tehran, Iran
| | - Yasaman Jadidi
- Department of Medical Laboratory Sciences, School of Allied Medical Sciences, Tehran University of Medical Sciences, Tehran, Iran
| | - Maryam Davoudi
- Department of Medical Laboratory Sciences, School of Allied Medical Sciences, Tehran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Amraee
- Department of Medical Laboratory Sciences, School of Allied Medical Sciences, Tehran University of Medical Sciences, Tehran, Iran
| | - Nastaran Jadidi
- Department of Medical Laboratory Sciences, School of Allied Medical Sciences, Tehran University of Medical Sciences, Tehran, Iran
| | - Reza Afrisham
- Department of Medical Laboratory Sciences, School of Allied Medical Sciences, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
3
|
Vestal KA, Kattamuri C, Koyiloth M, Ongaro L, Howard JA, Deaton AM, Ticau S, Dubey A, Bernard DJ, Thompson TB. Activin E is a transforming growth factor β ligand that signals specifically through activin receptor-like kinase 7. Biochem J 2024; 481:547-564. [PMID: 38533769 PMCID: PMC11088876 DOI: 10.1042/bcj20230404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 03/21/2024] [Accepted: 03/26/2024] [Indexed: 03/28/2024]
Abstract
Activins are one of the three distinct subclasses within the greater Transforming growth factor β (TGFβ) superfamily. First discovered for their critical roles in reproductive biology, activins have since been shown to alter cellular differentiation and proliferation. At present, members of the activin subclass include activin A (ActA), ActB, ActC, ActE, and the more distant members myostatin and GDF11. While the biological roles and signaling mechanisms of most activins class members have been well-studied, the signaling potential of ActE has remained largely unknown. Here, we characterized the signaling capacity of homodimeric ActE. Molecular modeling of the ligand:receptor complexes showed that ActC and ActE shared high similarity in both the type I and type II receptor binding epitopes. ActE signaled specifically through ALK7, utilized the canonical activin type II receptors, ActRIIA and ActRIIB, and was resistant to the extracellular antagonists follistatin and WFIKKN. In mature murine adipocytes, ActE invoked a SMAD2/3 response via ALK7, like ActC. Collectively, our results establish ActE as a specific signaling ligand which activates the type I receptor, ALK7.
Collapse
Affiliation(s)
- Kylie A. Vestal
- Department of Molecular and Cellular Biosciences, University of Cincinnati, Cincinnati, OH 45267, U.S.A
| | - Chandramohan Kattamuri
- Department of Molecular and Cellular Biosciences, University of Cincinnati, Cincinnati, OH 45267, U.S.A
| | - Muhasin Koyiloth
- Department of Molecular and Cellular Biosciences, University of Cincinnati, Cincinnati, OH 45267, U.S.A
| | - Luisina Ongaro
- Department of Pharmacology and Therapeutics, Centre for Research in Reproduction and Development, McGill University, Montreal, Quebec, Canada
| | - James A. Howard
- Department of Pharmacology and Systems Physiology, University of Cincinnati, Cincinnati, OH 45267, U.S.A
| | | | | | - Aditi Dubey
- Alnylam Pharmaceuticals, Cambridge, MA, U.S.A
| | - Daniel J. Bernard
- Department of Pharmacology and Therapeutics, Centre for Research in Reproduction and Development, McGill University, Montreal, Quebec, Canada
| | - Thomas B. Thompson
- Department of Molecular and Cellular Biosciences, University of Cincinnati, Cincinnati, OH 45267, U.S.A
| |
Collapse
|
4
|
Griffin JD, Buxton JM, Culver JA, Barnes R, Jordan EA, White AR, Flaherty SE, Bernardo B, Ross T, Bence KK, Birnbaum MJ. Hepatic Activin E mediates liver-adipose inter-organ communication, suppressing adipose lipolysis in response to elevated serum fatty acids. Mol Metab 2023; 78:101830. [PMID: 38787338 PMCID: PMC10656223 DOI: 10.1016/j.molmet.2023.101830] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 10/21/2023] [Indexed: 05/25/2024] Open
Abstract
OBJECTIVE The liver is a central regulator of energy metabolism exerting its influence both through intrinsic processing of substrates such as glucose and fatty acid as well as by secreting endocrine factors, known as hepatokines, which influence metabolism in peripheral tissues. Human genome wide association studies indicate that a predicted loss-of-function variant in the Inhibin βE gene (INHBE), encoding the putative hepatokine Activin E, is associated with reduced abdominal fat mass and cardiometabolic disease risk. However, the regulation of hepatic Activin E and the influence of Activin E on adiposity and metabolic disease are not well understood. Here, we examine the relationship between hepatic Activin E and adipose metabolism, testing the hypothesis that Activin E functions as part of a liver-adipose, inter-organ feedback loop to suppress adipose tissue lipolysis in response to elevated serum fatty acids and hepatic fatty acid exposure. METHODS The relationship between hepatic Activin E and non-esterified fatty acids (NEFA) released from adipose lipolysis was assessed in vivo using fasted CL 316,243 treated mice and in vitro using Huh7 hepatocytes treated with fatty acids. The influence of Activin E on adipose lipolysis was examined using a combination of Inhbe knockout mice, a mouse model of hepatocyte-specific overexpression of Activin E, and mouse brown adipocytes treated with Activin E enriched media. RESULTS Increasing hepatocyte NEFA exposure in vivo by inducing adipose lipolysis through fasting or CL 316,243 treatment increased hepatic Inhbe expression. Similarly, incubation of Huh7 human hepatocytes with fatty acids increased expression of INHBE. Genetic ablation of Inhbe in mice increased fasting circulating NEFA and hepatic triglyceride accumulation. Treatment of mouse brown adipocytes with Activin E conditioned media and overexpression of Activin E in mice suppressed adipose lipolysis and reduced serum FFA levels, respectively. The suppressive effects of Activin E on lipolysis were lost in CRISPR-mediated ALK7 deficient cells and ALK7 kinase deficient mice. Disruption of the Activin E-ALK7 signaling axis in Inhbe KO mice reduced adiposity upon HFD feeding, but caused hepatic steatosis and insulin resistance. CONCLUSIONS Taken together, our data suggest that Activin E functions as part of a liver-adipose feedback loop, such that in response to increased serum free fatty acids and elevated hepatic triglyceride, Activin E is released from hepatocytes and signals in adipose through ALK7 to suppress lipolysis, thereby reducing free fatty acid efflux to the liver and preventing excessive hepatic lipid accumulation. We find that disrupting this Activin E-ALK7 inter-organ communication network by ablation of Inhbe in mice increases lipolysis and reduces adiposity, but results in elevated hepatic triglyceride and impaired insulin sensitivity. These results highlight the liver-adipose, Activin E-ALK7 signaling axis as a critical regulator of metabolic homeostasis.
Collapse
Affiliation(s)
- John D Griffin
- Internal Medicine Research Unit, Pfizer Inc.,1 Portland Street, Cambridge, MA 02139, USA.
| | - Joanne M Buxton
- Internal Medicine Research Unit, Pfizer Inc.,1 Portland Street, Cambridge, MA 02139, USA
| | - Jeffrey A Culver
- Internal Medicine Research Unit, Pfizer Inc.,1 Portland Street, Cambridge, MA 02139, USA
| | - Robert Barnes
- Internal Medicine Research Unit, Pfizer Inc.,1 Portland Street, Cambridge, MA 02139, USA
| | - Emily A Jordan
- Internal Medicine Research Unit, Pfizer Inc.,1 Portland Street, Cambridge, MA 02139, USA
| | - Alexis R White
- Internal Medicine Research Unit, Pfizer Inc.,1 Portland Street, Cambridge, MA 02139, USA
| | - Stephen E Flaherty
- Internal Medicine Research Unit, Pfizer Inc.,1 Portland Street, Cambridge, MA 02139, USA
| | - Barbara Bernardo
- Internal Medicine Research Unit, Pfizer Inc.,1 Portland Street, Cambridge, MA 02139, USA
| | - Trenton Ross
- Internal Medicine Research Unit, Pfizer Inc.,1 Portland Street, Cambridge, MA 02139, USA
| | - Kendra K Bence
- Internal Medicine Research Unit, Pfizer Inc.,1 Portland Street, Cambridge, MA 02139, USA
| | - Morris J Birnbaum
- Internal Medicine Research Unit, Pfizer Inc.,1 Portland Street, Cambridge, MA 02139, USA
| |
Collapse
|
5
|
Vestal KA, Kattamuri C, Koyiloth M, Ongaro L, Howard JA, Deaton A, Ticau S, Dubey A, Bernard DJ, Thompson TB. Activin E is a TGFβ ligand that signals specifically through activin receptor-like kinase 7. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.25.559288. [PMID: 37808681 PMCID: PMC10557571 DOI: 10.1101/2023.09.25.559288] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
Activins are one of the three distinct subclasses within the greater Transforming Growth Factor β (TGFβ) superfamily. First discovered for their critical roles in reproductive biology, activins have since been shown to alter cellular differentiation and proliferation. At present, members of the activin subclass include activin A (ActA), ActB, ActC, ActE, and the more distant members myostatin and GDF11. While the biological roles and signaling mechanisms of most activins class members have been well-studied, the signaling potential of ActE has remained largely unknown. Here, we characterized the signaling capacity of homodimeric ActE. Molecular modeling of the ligand:receptor complexes showed that ActC and ActE shared high similarity in both the type I and type II receptor binding epitopes. ActE signaled specifically through ALK7, utilized the canonical activin type II receptors, ActRIIA and ActRIIB, and was resistant to the extracellular antagonists follistatin and WFIKKN. In mature murine adipocytes, ActE invoked a SMAD2/3 response via ALK7, similar to ActC. Collectively, our results establish ActE as an ALK7 ligand, thereby providing a link between genetic and in vivo studies of ActE as a regulator of adipose tissue.
Collapse
Affiliation(s)
- Kylie A Vestal
- Department of Molecular and Cellular Biosciences, University of Cincinnati, Cincinnati, OH 45267, USA
| | - Chandramohan Kattamuri
- Department of Molecular and Cellular Biosciences, University of Cincinnati, Cincinnati, OH 45267, USA
| | - Muhasin Koyiloth
- Department of Molecular and Cellular Biosciences, University of Cincinnati, Cincinnati, OH 45267, USA
| | - Luisina Ongaro
- Department of Pharmacology and Therapeutics, Centre for Research in Reproduction and Development, McGill University, Montreal, Quebec, Canada
| | - James A Howard
- Department of Pharmacology and Systems Physiology, University of Cincinnati, Cincinnati, OH 45267, USA
| | | | | | | | - Daniel J Bernard
- Department of Pharmacology and Therapeutics, Centre for Research in Reproduction and Development, McGill University, Montreal, Quebec, Canada
| | - Thomas B Thompson
- Department of Molecular and Cellular Biosciences, University of Cincinnati, Cincinnati, OH 45267, USA
| |
Collapse
|
6
|
Hamang M, Yaden B, Dai G. Gastrointestinal pharmacology activins in liver health and disease. Biochem Pharmacol 2023; 214:115668. [PMID: 37364623 PMCID: PMC11234865 DOI: 10.1016/j.bcp.2023.115668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 06/06/2023] [Accepted: 06/20/2023] [Indexed: 06/28/2023]
Abstract
Activins are a subgroup of the TGFβ superfamily of growth and differentiation factors, dimeric in nature and consisting of two inhibin beta subunits linked via a disulfide bridge. Canonical activin signaling occurs through Smad2/3, with negative feedback initiated by Smad6/7 following signal transduction, which binds activin type I receptor preventing phosphorylation of Smad2/3 and activation of downstream signaling. In addition to Smad6/7, other inhibitors of activin signaling have been identified as well, including inhibins (dimers of an inhibin alpha and beta subunit), BAMBI, Cripto, follistatin, and follistatin-like 3 (fstl3). To date, activins A, B, AB, C, and E have been identified and isolated in mammals, with activin A and B having the most characterization of biological activity. Activin A has been implicated as a regulator of several important functions of liver biology, including hepatocyte proliferation and apoptosis, ECM production, and liver regeneration; the role of other subunits of activin in liver physiology are less understood. There is mounting data to suggest a link between dysregulation of activins contributing to various hepatic diseases such as inflammation, fibrosis, and hepatocellular carcinoma, and emerging studies demonstrating the protective and regenerative effects of inhibiting activins in mouse models of liver disease. Due to their importance in liver biology, activins demonstrate utility as a therapeutic target for the treatment of hepatic diseases such as cirrhosis, NASH, NAFLD, and HCC; further research regarding activins may provide diagnostic or therapeutic opportunity for those suffering from various liver diseases.
Collapse
Affiliation(s)
- Matthew Hamang
- Department of Biology, School of Science, Indiana University - Purdue University Indianapolis, IN, United States.
| | - Benjamin Yaden
- Department of Biology, School of Science, Indiana University - Purdue University Indianapolis, IN, United States.
| | - Guoli Dai
- Department of Biology, School of Science, Indiana University - Purdue University Indianapolis, IN, United States.
| |
Collapse
|
7
|
Soomro A, Khajehei M, Li R, O’Neil K, Zhang D, Gao B, MacDonald M, Kakoki M, Krepinsky JC. A therapeutic target for CKD: activin A facilitates TGFβ1 profibrotic signaling. Cell Mol Biol Lett 2023; 28:10. [PMID: 36717814 PMCID: PMC9885651 DOI: 10.1186/s11658-023-00424-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 01/20/2023] [Indexed: 02/01/2023] Open
Abstract
BACKGROUND TGFβ1 is a major profibrotic mediator in chronic kidney disease (CKD). Its direct inhibition, however, is limited by adverse effects. Inhibition of activins, also members of the TGFβ superfamily, blocks TGFβ1 profibrotic effects, but the mechanism underlying this and the specific activin(s) involved are unknown. METHODS Cells were treated with TGFβ1 or activins A/B. Activins were inhibited generally with follistatin, or specifically with neutralizing antibodies or type I receptor downregulation. Cytokine levels, signaling and profibrotic responses were assessed with ELISA, immunofluorescence, immunoblotting and promoter luciferase reporters. Wild-type or TGFβ1-overexpressing mice with unilateral ureteral obstruction (UUO) were treated with an activin A neutralizing antibody. RESULTS In primary mesangial cells, TGFβ1 induces secretion primarily of activin A, which enables longer-term profibrotic effects by enhancing Smad3 phosphorylation and transcriptional activity. This results from lack of cell refractoriness to activin A, unlike that for TGFβ1, and promotion of TGFβ type II receptor expression. Activin A also supports transcription through regulating non-canonical MRTF-A activation. TGFβ1 additionally induces secretion of activin A, but not B, from tubular cells, and activin A neutralization prevents the TGFβ1 profibrotic response in renal fibroblasts. Fibrosis induced by UUO is inhibited by activin A neutralization in wild-type mice. Worsened fibrosis in TGFβ1-overexpressing mice is associated with increased renal activin A expression and is inhibited to wild-type levels with activin A neutralization. CONCLUSIONS Activin A facilitates TGFβ1 profibrotic effects through regulation of both canonical (Smad3) and non-canonical (MRTF-A) signaling, suggesting it may be a novel therapeutic target for preventing fibrosis in CKD.
Collapse
Affiliation(s)
- Asfia Soomro
- grid.25073.330000 0004 1936 8227Division of Nephrology, Department of Medicine, McMaster University, Hamilton, Canada
| | - Mohammad Khajehei
- grid.25073.330000 0004 1936 8227Division of Nephrology, Department of Medicine, McMaster University, Hamilton, Canada
| | - Renzhong Li
- grid.25073.330000 0004 1936 8227Division of Nephrology, Department of Medicine, McMaster University, Hamilton, Canada
| | - Kian O’Neil
- grid.25073.330000 0004 1936 8227Division of Nephrology, Department of Medicine, McMaster University, Hamilton, Canada
| | - Dan Zhang
- grid.25073.330000 0004 1936 8227Division of Nephrology, Department of Medicine, McMaster University, Hamilton, Canada
| | - Bo Gao
- grid.25073.330000 0004 1936 8227Division of Nephrology, Department of Medicine, McMaster University, Hamilton, Canada
| | - Melissa MacDonald
- grid.25073.330000 0004 1936 8227Division of Nephrology, Department of Medicine, McMaster University, Hamilton, Canada
| | - Masao Kakoki
- grid.410711.20000 0001 1034 1720Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, NC USA
| | - Joan C. Krepinsky
- grid.25073.330000 0004 1936 8227Division of Nephrology, Department of Medicine, McMaster University, Hamilton, Canada ,grid.416721.70000 0001 0742 7355St. Joseph’s Hospital, 50 Charlton Ave East, Rm T3311, Hamilton, ON L8N 4A6 Canada
| |
Collapse
|
8
|
Friend or foe for obesity: how hepatokines remodel adipose tissues and translational perspective. Genes Dis 2022. [DOI: 10.1016/j.gendis.2021.12.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
9
|
Jensen-Cody SO, Potthoff MJ. Hepatokines and metabolism: Deciphering communication from the liver. Mol Metab 2020; 44:101138. [PMID: 33285302 PMCID: PMC7788242 DOI: 10.1016/j.molmet.2020.101138] [Citation(s) in RCA: 128] [Impact Index Per Article: 25.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 11/19/2020] [Accepted: 12/01/2020] [Indexed: 02/09/2023] Open
Abstract
Background The liver is a key regulator of systemic energy homeostasis and can sense and respond to nutrient excess and deficiency through crosstalk with multiple tissues. Regulation of systemic energy homeostasis by the liver is mediated in part through regulation of glucose and lipid metabolism. Dysregulation of either process may result in metabolic dysfunction and contribute to the development of insulin resistance or fatty liver disease. Scope of review The liver has recently been recognized as an endocrine organ that secretes hepatokines, which are liver-derived factors that can signal to and communicate with distant tissues. Dysregulation of liver-centered inter-organ pathways may contribute to improper regulation of energy homeostasis and ultimately metabolic dysfunction. Deciphering the mechanisms that regulate hepatokine expression and communication with distant tissues is essential for understanding inter-organ communication and for the development of therapeutic strategies to treat metabolic dysfunction. Major conclusions In this review, we discuss liver-centric regulation of energy homeostasis through hepatokine secretion. We highlight key hepatokines and their roles in metabolic control, examine the molecular mechanisms of each hepatokine, and discuss their potential as therapeutic targets for metabolic disease. We also discuss important areas of future studies that may contribute to understanding hepatokine signaling under healthy and pathophysiological conditions.
Collapse
Affiliation(s)
- Sharon O Jensen-Cody
- Department of Neuroscience and Pharmacology, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA; Fraternal Order of Eagles Diabetes Research Center, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA; Iowa Neuroscience Institute, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
| | - Matthew J Potthoff
- Department of Neuroscience and Pharmacology, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA; Fraternal Order of Eagles Diabetes Research Center, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA; Iowa Neuroscience Institute, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA; Department of Veterans Affairs Medical Center, Iowa City, IA 52242, USA.
| |
Collapse
|
10
|
Zhong X, Pons M, Poirier C, Jiang Y, Liu J, Sandusky GE, Shahda S, Nakeeb A, Schmidt CM, House MG, Ceppa EP, Zyromski NJ, Liu Y, Jiang G, Couch ME, Koniaris LG, Zimmers TA. The systemic activin response to pancreatic cancer: implications for effective cancer cachexia therapy. J Cachexia Sarcopenia Muscle 2019; 10:1083-1101. [PMID: 31286691 PMCID: PMC6818463 DOI: 10.1002/jcsm.12461] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 04/19/2019] [Accepted: 05/14/2019] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND Pancreatic ductal adenocarcinoma (PDAC) is a particularly lethal malignancy partly due to frequent, severe cachexia. Serum activin correlates with cachexia and mortality, while exogenous activin causes cachexia in mice. METHODS Isoform-specific activin expression and activities were queried in human and murine tumours and PDAC models. Activin inhibition was by administration of soluble activin type IIB receptor (ACVR2B/Fc) and by use of skeletal muscle specific dominant negative ACVR2B expressing transgenic mice. Feed-forward activin expression and muscle wasting activity were tested in vivo and in vitro on myotubes. RESULTS Murine PDAC tumour-derived cell lines expressed activin-βA but not activin-βB. Cachexia severity increased with activin expression. Orthotopic PDAC tumours expressed activins, induced activin expression by distant organs, and produced elevated serum activins. Soluble factors from PDAC elicited activin because conditioned medium from PDAC cells induced activin expression, activation of p38 MAP kinase, and atrophy of myotubes. The activin trap ACVR2B/Fc reduced tumour growth, prevented weight loss and muscle wasting, and prolonged survival in mice with orthotopic tumours made from activin-low cell lines. ACVR2B/Fc also reduced cachexia in mice with activin-high tumours. Activin inhibition did not affect activin expression in organs. Hypermuscular mice expressing dominant negative ACVR2B in muscle were protected for weight loss but not mortality when implanted with orthotopic tumours. Human tumours displayed staining for activin, and expression of the gene encoding activin-βA (INHBA) correlated with mortality in patients with PDAC, while INHBB and other related factors did not. CONCLUSIONS Pancreatic adenocarcinoma tumours are a source of activin and elicit a systemic activin response in hosts. Human tumours express activins and related factors, while mortality correlates with tumour activin A expression. PDAC tumours also choreograph a systemic activin response that induces organ-specific and gene-specific expression of activin isoforms and muscle wasting. Systemic blockade of activin signalling could preserve muscle and prolong survival, while skeletal muscle-specific activin blockade was only protective for weight loss. Our findings suggest the potential and need for gene-specific and organ-specific interventions. Finally, development of more effective cancer cachexia therapy might require identifying agents that effectively and/or selectively inhibit autocrine vs. paracrine activin signalling.
Collapse
Affiliation(s)
- Xiaoling Zhong
- Department of SurgeryIndiana University School of MedicineIndianapolisINUSA
- IUPUI Center for Cachexia Innovation, Research and TherapyIndianapolisINUSA
| | - Marianne Pons
- Department of SurgeryIndiana University School of MedicineIndianapolisINUSA
| | - Christophe Poirier
- Department of SurgeryIndiana University School of MedicineIndianapolisINUSA
| | - Yanlin Jiang
- Department of SurgeryIndiana University School of MedicineIndianapolisINUSA
| | - Jianguo Liu
- Department of SurgeryIndiana University School of MedicineIndianapolisINUSA
| | - George E. Sandusky
- Department of Pathology and Laboratory MedicineIndiana University School of MedicineIndianapolisINUSA
- IU Simon Cancer CenterIndianapolisINUSA
| | - Safi Shahda
- IU Simon Cancer CenterIndianapolisINUSA
- Department of MedicineIndiana University School of MedicineIndianapolisINUSA
| | - Attila Nakeeb
- Department of SurgeryIndiana University School of MedicineIndianapolisINUSA
- IU Simon Cancer CenterIndianapolisINUSA
| | - C. Max Schmidt
- Department of SurgeryIndiana University School of MedicineIndianapolisINUSA
- IU Simon Cancer CenterIndianapolisINUSA
| | - Michael G. House
- Department of SurgeryIndiana University School of MedicineIndianapolisINUSA
- IU Simon Cancer CenterIndianapolisINUSA
| | - Eugene P. Ceppa
- Department of SurgeryIndiana University School of MedicineIndianapolisINUSA
- IU Simon Cancer CenterIndianapolisINUSA
| | - Nicholas J. Zyromski
- Department of SurgeryIndiana University School of MedicineIndianapolisINUSA
- IU Simon Cancer CenterIndianapolisINUSA
| | - Yunlong Liu
- IUPUI Center for Cachexia Innovation, Research and TherapyIndianapolisINUSA
- IU Simon Cancer CenterIndianapolisINUSA
- Department of Medical and Molecular GeneticsIndiana University School of MedicineIndianapolisINUSA
- Center for Computational Biology and BioinformaticsIndiana University School of MedicineIndianapolisINUSA
- Indiana Center for Musculoskeletal HealthIndiana University School of MedicineIndianapolisINUSA
| | - Guanglong Jiang
- Department of Medical and Molecular GeneticsIndiana University School of MedicineIndianapolisINUSA
| | - Marion E. Couch
- IU Simon Cancer CenterIndianapolisINUSA
- Indiana Center for Musculoskeletal HealthIndiana University School of MedicineIndianapolisINUSA
- Department of Otolaryngology—Head & Neck SurgeryIndiana University School of MedicineIndianapolisINUSA
| | - Leonidas G. Koniaris
- Department of SurgeryIndiana University School of MedicineIndianapolisINUSA
- IUPUI Center for Cachexia Innovation, Research and TherapyIndianapolisINUSA
- IU Simon Cancer CenterIndianapolisINUSA
- Indiana Center for Musculoskeletal HealthIndiana University School of MedicineIndianapolisINUSA
| | - Teresa A. Zimmers
- Department of SurgeryIndiana University School of MedicineIndianapolisINUSA
- IUPUI Center for Cachexia Innovation, Research and TherapyIndianapolisINUSA
- IU Simon Cancer CenterIndianapolisINUSA
- Indiana Center for Musculoskeletal HealthIndiana University School of MedicineIndianapolisINUSA
- Department of Otolaryngology—Head & Neck SurgeryIndiana University School of MedicineIndianapolisINUSA
- Department of Anatomy, Cell Biology & PhysiologyIndiana University School of MedicineIndianapolisINUSA
- Department of Biochemistry and Molecular BiologyIndiana University School of MedicineIndianapolisINUSA
| |
Collapse
|
11
|
Morita M, Hashimoto O. Identification and expression of the medaka inhibin βE subunit. Mol Biol Rep 2019; 46:1603-1609. [PMID: 30680594 DOI: 10.1007/s11033-019-04607-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2018] [Accepted: 01/16/2019] [Indexed: 11/24/2022]
Abstract
Activin E, a member of the TGF-β super family, is a protein dimer of mature inhibin βE subunits. Recently, it is reported that hepatic activin E may act as a hepatokine that alter whole body energy/glucose metabolism in human. However, orthologues of the activin E gene have yet to be identified in lower vertebrates, including fish. Here, we cloned the medaka (Oryzias latipes) activin E cDNA from liver. Among all the mammalian inhibin β subunits, the mature medaka activin E amino acid sequence shares the highest homology with mammalian activin E. Recombinant expression studies suggest that medaka activin E, the disulfide-bound mature form of mature inhibin βE subunits, may exert its effects in a way similar to that in mammals. Although activin E mRNA is predominantly expressed in liver in mammals, it is ubiquitously expressed in medaka tissues. Since expression in the liver was enhanced after a high fat diet, medaka activin E may be associated with energy/glucose metabolism, as shown in mice and human.
Collapse
Affiliation(s)
- Masahiro Morita
- Kitasato University School of Veterinary Medicine, 35-1 Higashi 23, Towada-shi, Aomori, 034-8628, Japan
| | - Osamu Hashimoto
- Kitasato University School of Veterinary Medicine, 35-1 Higashi 23, Towada-shi, Aomori, 034-8628, Japan.
| |
Collapse
|
12
|
|
13
|
Hashimoto O, Funaba M, Sekiyama K, Doi S, Shindo D, Satoh R, Itoi H, Oiwa H, Morita M, Suzuki C, Sugiyama M, Yamakawa N, Takada H, Matsumura S, Inoue K, Oyadomari S, Sugino H, Kurisaki A. Activin E Controls Energy Homeostasis in Both Brown and White Adipose Tissues as a Hepatokine. Cell Rep 2018; 25:1193-1203. [DOI: 10.1016/j.celrep.2018.10.008] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Revised: 06/12/2018] [Accepted: 09/28/2018] [Indexed: 02/08/2023] Open
|
14
|
Sugiyama M, Kikuchi A, Misu H, Igawa H, Ashihara M, Kushima Y, Honda K, Suzuki Y, Kawabe Y, Kaneko S, Takamura T. Inhibin βE (INHBE) is a possible insulin resistance-associated hepatokine identified by comprehensive gene expression analysis in human liver biopsy samples. PLoS One 2018; 13:e0194798. [PMID: 29596463 PMCID: PMC5875797 DOI: 10.1371/journal.pone.0194798] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Accepted: 02/11/2018] [Indexed: 12/15/2022] Open
Abstract
The liver plays a major role in whole-body energy homeostasis by releasing secretory factors, termed hepatokines. To identify novel target genes associated with insulin resistance, we performed a comprehensive analysis of gene expression profiles using a DNA chip method in liver biopsy samples from humans with varying degrees of insulin resistance. Inhibin βE (INHBE) was identified as a novel putative hepatokine with hepatic gene expression that positively correlated with insulin resistance and body mass index in humans. Quantitative real time-PCR analysis also showed an increase in INHBE gene expression in independent liver samples from insulin-resistant human subjects. Additionally, Inhbe gene expression increased in the livers of db/db mice, a rodent model of type 2 diabetes. To preliminarily screen the role of Inhbe in vivo in whole-body energy metabolic status, hepatic mRNA was knocked down with siRNA for Inhbe (siINHBE) in db/db mice. Treatment with siINHBE suppressed body weight gain during the two-week experimental period, which was attributable to diminished fat rather than lean mass. Additionally, treatment with siINHBE decreased the respiratory quotient and increased plasma total ketone bodies compared with treatment with non-targeting siRNA, both of which suggest enhanced whole-body fat utilization. Our study suggests that INHBE functions as a possible hepatokine to alter the whole-body metabolic status under obese insulin-resistant conditions.
Collapse
Affiliation(s)
- Masakazu Sugiyama
- Research Division, Chugai Pharmaceutical Co., Ltd., Gotemba, Shizuoka, Japan
| | - Akihiro Kikuchi
- Department of Endocrinology and Metabolism, Kanazawa University Graduate School of Medical Sciences, Kanazawa, Ishikawa, Japan
- Department of System Biology, Kanazawa University Graduate School of Medical Sciences, Kanazawa, Ishikawa, Japan
- * E-mail: (TT); (AK)
| | - Hirofumi Misu
- Department of Endocrinology and Metabolism, Kanazawa University Graduate School of Medical Sciences, Kanazawa, Ishikawa, Japan
- PRESTO, Japan Science and Technology Agency, Kawaguchi, Saitama, Japan
| | - Hirobumi Igawa
- Department of Endocrinology and Metabolism, Kanazawa University Graduate School of Medical Sciences, Kanazawa, Ishikawa, Japan
- Department of System Biology, Kanazawa University Graduate School of Medical Sciences, Kanazawa, Ishikawa, Japan
| | - Motooki Ashihara
- Research Division, Chugai Pharmaceutical Co., Ltd., Gotemba, Shizuoka, Japan
| | - Youichi Kushima
- Research Division, Chugai Pharmaceutical Co., Ltd., Gotemba, Shizuoka, Japan
| | - Kiyofumi Honda
- Research Division, Chugai Pharmaceutical Co., Ltd., Gotemba, Shizuoka, Japan
| | - Yoshiyuki Suzuki
- Research Division, Chugai Pharmaceutical Co., Ltd., Gotemba, Shizuoka, Japan
| | - Yoshiki Kawabe
- Research Division, Chugai Pharmaceutical Co., Ltd., Gotemba, Shizuoka, Japan
| | - Shuichi Kaneko
- Department of System Biology, Kanazawa University Graduate School of Medical Sciences, Kanazawa, Ishikawa, Japan
| | - Toshinari Takamura
- Department of Endocrinology and Metabolism, Kanazawa University Graduate School of Medical Sciences, Kanazawa, Ishikawa, Japan
- * E-mail: (TT); (AK)
| |
Collapse
|
15
|
Moran B, Cummins SB, Creevey CJ, Butler ST. Transcriptomics of liver and muscle in Holstein cows genetically divergent for fertility highlight differences in nutrient partitioning and inflammation processes. BMC Genomics 2016; 17:603. [PMID: 27514375 PMCID: PMC4982134 DOI: 10.1186/s12864-016-2938-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Accepted: 07/14/2016] [Indexed: 01/01/2023] Open
Abstract
Background The transition between pregnancy and lactation is a major physiological change for dairy cows. Complex systemic and local processes involving regulation of energy balance, galactopoiesis, utilisation of body reserves, insulin resistance, resumption of oestrous cyclicity and involution of the uterus can affect animal productivity and hence farm profitability. Here we used an established Holstein dairy cow model of fertility that displayed genetic and phenotypic divergence in calving interval. Cows had similar genetic merit for milk production traits, but either very good genetic merit for fertility traits (‘Fert+’; n = 8) or very poor genetic merit for fertility traits (‘Fert-’; n = 8). We used RNA sequencing to investigate gene expression profiles in both liver and muscle tissue biopsies at three distinct time-points: late pregnancy, early lactation and mid lactation (-18, 1 and 147 days relative to parturition, respectively). Results We found 807 and 815 unique genes to be differentially expressed in at least one time-point in liver and muscle respectively, of which 79 % and 83 % were only found in a single time-point; 40 and 41 genes were found differentially expressed at every time-point indicating possible systemic or chronic dysregulation. Functional annotation of all differentially expressed genes highlighted two physiological processes that were impacted at every time-point in the study, These were immune and inflammation, and metabolic, lipid and carbohydrate-binding. Conclusion These pathways have previously been identified by other researchers. We show that several specific genes which are differentially regulated, including IGF-1, might impact dairy fertility. We postulate that an increased burden of reactive oxidation species, coupled with a chronic inflammatory state, might reduce dairy cow fertility in our model. Electronic supplementary material The online version of this article (doi:10.1186/s12864-016-2938-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Bruce Moran
- Teagasc, Animal & Grassland Research and Innovation Centre, Grange, Dunsany, Co. Meath, Ireland.,UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin 4, Ireland
| | - Sean B Cummins
- Teagasc, Animal & Grassland Research and Innovation Centre, Moorepark, Fermoy, Co. Cork, Ireland
| | - Christopher J Creevey
- Teagasc, Animal & Grassland Research and Innovation Centre, Grange, Dunsany, Co. Meath, Ireland.,Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth, SY23 3FG, UK
| | - Stephen T Butler
- Teagasc, Animal & Grassland Research and Innovation Centre, Moorepark, Fermoy, Co. Cork, Ireland.
| |
Collapse
|
16
|
Namwanje M, Brown CW. Activins and Inhibins: Roles in Development, Physiology, and Disease. Cold Spring Harb Perspect Biol 2016; 8:cshperspect.a021881. [PMID: 27328872 DOI: 10.1101/cshperspect.a021881] [Citation(s) in RCA: 179] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Since their original discovery as regulators of follicle-stimulating hormone (FSH) secretion and erythropoiesis, the TGF-β family members activin and inhibin have been shown to participate in a variety of biological processes, from the earliest stages of embryonic development to highly specialized functions in terminally differentiated cells and tissues. Herein, we present the history, structures, signaling mechanisms, regulation, and biological processes in which activins and inhibins participate, including several recently discovered biological activities and functional antagonists. The potential therapeutic relevance of these advances is also discussed.
Collapse
Affiliation(s)
- Maria Namwanje
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030
| | - Chester W Brown
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030 Department of Pediatrics, Baylor College of Medicine, Houston, Texas 77030 Texas Children's Hospital, Houston, Texas 77030
| |
Collapse
|
17
|
Makanji Y, Zhu J, Mishra R, Holmquist C, Wong WPS, Schwartz NB, Mayo KE, Woodruff TK. Inhibin at 90: from discovery to clinical application, a historical review. Endocr Rev 2014; 35:747-94. [PMID: 25051334 PMCID: PMC4167436 DOI: 10.1210/er.2014-1003] [Citation(s) in RCA: 105] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
When it was initially discovered in 1923, inhibin was characterized as a hypophysiotropic hormone that acts on pituitary cells to regulate pituitary hormone secretion. Ninety years later, what we know about inhibin stretches far beyond its well-established capacity to inhibit activin signaling and suppress pituitary FSH production. Inhibin is one of the major reproductive hormones involved in the regulation of folliculogenesis and steroidogenesis. Although the physiological role of inhibin as an activin antagonist in other organ systems is not as well defined as it is in the pituitary-gonadal axis, inhibin also modulates biological processes in other organs through paracrine, autocrine, and/or endocrine mechanisms. Inhibin and components of its signaling pathway are expressed in many organs. Diagnostically, inhibin is used for prenatal screening of Down syndrome as part of the quadruple test and as a biochemical marker in the assessment of ovarian reserve. In this review, we provide a comprehensive summary of our current understanding of the biological role of inhibin, its relationship with activin, its signaling mechanisms, and its potential value as a diagnostic marker for reproductive function and pregnancy-associated conditions.
Collapse
Affiliation(s)
- Yogeshwar Makanji
- Department of Obstetrics and Gynecology (Y.M., J.Z., C.H., W.P.S.W., T.K.W.), Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60610; Center for Molecular Innovation and Drug Discovery (R.M., C.H.), Chemistry of Life Processes Institute, Northwestern University, Evanston, Illinois 60208; and Department of Molecular Biosciences (N.B.S., K.E.M., T.K.W.), Center for Reproductive Science, Northwestern University, Evanston, Illinois 60208
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Umeda-Yano S, Hashimoto R, Yamamori H, Okada T, Yasuda Y, Ohi K, Fukumoto M, Ito A, Takeda M. The regulation of gene expression involved in TGF-β signaling by ZNF804A, a risk gene for schizophrenia. Schizophr Res 2013; 146:273-8. [PMID: 23434502 DOI: 10.1016/j.schres.2013.01.026] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2012] [Revised: 01/13/2013] [Accepted: 01/30/2013] [Indexed: 12/23/2022]
Abstract
ZNF804A has been implicated in susceptibility to schizophrenia by several genome-wide association studies (GWAS), follow-up association studies and meta-analyses. However, the biological functions of ZNF804A are not entirely understood. To identify the genes that are affected by ZNF804A, we manipulated the expression of the ZNF804A protein in HEK293 human embryonic kidney cell lines and performed a cDNA microarray analysis followed by qPCR. We found that ZNF804A-overexpression up-regulated four genes (ANKRD1, INHBE, PIK3AP1, and DDIT3) and down-regulated three genes (CLIC2, MGAM, and BIRC3). Furthermore, we confirmed that the expression of ANKRD1, PIK3AP1, INHBE and DDIT3 at the protein level was significantly increased by ZNF804A-overexpression. This is the first report to identify genes whose protein expressions are regulated by ZNF804A. ANKRD1, PIK3AP1, INHBE and DDIT3 are related to transforming growth factor-β (TGF-β) signaling, which plays a crucial role in cell growth and differentiation. On the other hand, recent studies have reported that TGF-β signaling is associated with schizophrenia. These results provide basis for a more progressive investigation of ZNF804A contributions to the susceptibility or pathophysiology of schizophrenia.
Collapse
Affiliation(s)
- Satomi Umeda-Yano
- Department of Molecular Neuropsychiatry, Osaka University Graduate School of Medicine, Suita, Osaka 5650871, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Jückstock J, Kimmich T, Mylonas I, Friese K, Dian D. The inhibin-βC subunit is down-regulated, while inhibin-βE is up-regulated by interferon-β1a in Ishikawa carcinoma cell line. Arch Gynecol Obstet 2013; 288:883-8. [PMID: 23580013 DOI: 10.1007/s00404-013-2848-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2013] [Accepted: 04/03/2013] [Indexed: 11/26/2022]
Abstract
INTRODUCTION Inhibins are important regulators of the female reproductive system. Recently, two new inhibin-subunits βC and βE have been described, although, their function is still quite unclear. Interestingly, there is an association between interferon and TGF-β expression. Therefore, the aim of this study was to determine expression changes of inhibin-βC and -βE subunits in endometrial Ishikawa carcinoma cell line after stimulation with interferon-β1a. MATERIALS AND METHODS The Ishikawa cell line was cultured until confluence was observed (after 2 days). After adding interferon-β1a (1,000 IE/ml), Ishikawa cells were analyzed for inhibin-βC and -βE subunits by RT-PCR. The fibroblast cell line BJ6 served as negative control. Experiments were performed in triplicates. RESULTS The endometrial adenocarcinoma cell line Ishikawa synthesized the inhibin- βC and -βE subunits. The fibroblast cells BJ6 did not demonstrate an inhibin -βC and -βE mRNA expression, while inhibin-βC subunit is down-regulated and inhibin-βE is up-regulated in Ishikawa carcinoma cell line after stimulation with interferon-β1a in Ishikawa. DISCUSSION We demonstrated for the first time a functional relationship between interferon and the novel inhibin-βC and -βE subunits. It might be possible that interferon exerts a possible apoptotic function through the βE-subunit, while, by down-regulating the βC isoform, cell proliferation is inhibited. However, the precise function of the novel βC- and βE-subunits are still not known in human endometrial tissue and a possible association with interferon is still unclear and warrants further research.
Collapse
Affiliation(s)
- Julia Jückstock
- 1st Department of Obstetrics and Gynaecology, Ludwig-Maximilians-University Munich, Maistrasse 11, 80337, Munich, Germany
| | | | | | | | | |
Collapse
|
20
|
Brüning A, Matsingou C, Brem GJ, Rahmeh M, Mylonas I. Inhibin beta E is upregulated by drug-induced endoplasmic reticulum stress as a transcriptional target gene of ATF4. Toxicol Appl Pharmacol 2012; 264:300-4. [PMID: 22935518 DOI: 10.1016/j.taap.2012.08.011] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2012] [Revised: 08/02/2012] [Accepted: 08/06/2012] [Indexed: 01/13/2023]
Abstract
Inhibins and activins are gonadal peptide hormones of the transforming growth factor-β super family with important functions in the reproductive system. By contrast, the recently identified inhibin βE subunit, primarily expressed in liver cells, appears to exert functions unrelated to the reproductive system. Previously shown downregulation of inhibin βE in hepatoma cells and anti-proliferative effects of ectopic inhibin βE overexpression indicated growth-regulatory effects of inhibin βE. We observed a selective re-expression of the inhibin βE subunit in HepG2 hepatoblastoma cells, MCF7 breast cancer cells, and HeLa cervical cancer cells under endoplasmic reticulum stress conditions induced by tunicamycin, thapsigargin, and nelfinavir. Analysis of XPB1 splicing and ATF4 activation revealed that inhibin βE re-expression was associated with induction of the endoplasmic reticulum stress reaction by these drugs. Transfection of an ATF4 expression plasmid specifically induced inhibin βE expression in HeLa cells and indicates inhibin βE as a hitherto unidentified target gene of ATF4, a key transcription factor of the endoplasmic reticulum stress response. Therefore, the inhibin βE subunit defines not only a new player but also a possible new marker for drug-induced endoplasmic reticulum stress.
Collapse
Affiliation(s)
- Ansgar Brüning
- Department of Obstetrics and Gynecology, Ludwig-Maximilians-University Munich, Munich, Germany.
| | | | | | | | | |
Collapse
|
21
|
Hedger MP, Winnall WR. Regulation of activin and inhibin in the adult testis and the evidence for functional roles in spermatogenesis and immunoregulation. Mol Cell Endocrinol 2012; 359:30-42. [PMID: 21964464 DOI: 10.1016/j.mce.2011.09.031] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2011] [Revised: 09/16/2011] [Accepted: 09/16/2011] [Indexed: 02/03/2023]
Abstract
Activin A provides a unique link between reproduction and immunity, which is especially significant in the adult testis. This cytokine, together with inhibin B and follistatin acting as regulators of activin A activity, is fundamentally involved in the regulation of spermatogenesis and testicular steroidogenesis. However, activin A also has a much broader role in control of inflammation, fibrosis and immunity. In the Sertoli cell, activin A is regulated by signalling pathways that normally regulate stress and inflammation, signalling pathways that intersect with the classical hormonal regulatory pathways mediated by FSH. Modulation of activin A production and activity during spermatogenesis is implicated in the fine control of the cycle of the seminiferous epithelium. The immunoregulatory properties of activin A also suggest that it may be involved in maintaining testicular immune privilege. Consequently, elevated activin A production within the testis during inflammation and infection may contribute to spermatogenic failure, fibrosis and testicular damage.
Collapse
Affiliation(s)
- Mark P Hedger
- Monash Institute of Medical Research, Monash University, Melbourne, Victoria, Australia.
| | | |
Collapse
|
22
|
Inhibin/activin betaE-subunit in uterine endometrioid adenocarcinoma and endometrial cancer cell lines: From immunohistochemistry to clinical testing? Gynecol Oncol 2011; 122:132-40. [DOI: 10.1016/j.ygyno.2011.03.019] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2011] [Revised: 03/11/2011] [Accepted: 03/18/2011] [Indexed: 01/07/2023]
|
23
|
Abstract
The biological responses of the transforming growth factor-β (TGF-β) superfamily, which includes Activins and Nodal, are induced by activation of a receptor complex and Smads. A type I receptor, which is a component of the complex, is known as an activin receptor-like kinase (ALK); currently seven ALKs (ALK1-ALK7) have been identified in humans. Activins signaling, which is mediated by ALK4 and 7 together with ActRIIA and IIB, plays a critical role in glucose-stimulated insulin secretion, development/neogenesis, and glucose homeostatic control of pancreatic endocrine cells; the insulin gene is regulated by these signaling pathways via ALK7, which is a receptor for Activins AB and B and Nodal. This review discusses signal transduction of ALKs in pancreatic endocrine cells and the role of ALKs in insulin gene regulation.
Collapse
Affiliation(s)
- Rie Watanabe
- Department of Diabetes and Clinical Nutrition, Kyoto University Graduate School of Medicine, Kyoto, Japan
| |
Collapse
|
24
|
Mylonas I, Makovitzky J, Kunze S, Brüning A, Kainer F, Schiessl B. Inhibin-betaC subunit expression in normal and pathological human placental tissues. Syst Biol Reprod Med 2010; 57:197-203. [DOI: 10.3109/19396368.2010.528505] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
25
|
Mylonas I, Brüning A, Shabani N, Kunze S, Kupka MS. Evidence of inhibin/activin subunit betaC and betaE synthesis in normal human endometrial tissue. Reprod Biol Endocrinol 2010; 8:143. [PMID: 21092084 PMCID: PMC3002354 DOI: 10.1186/1477-7827-8-143] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2010] [Accepted: 11/19/2010] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND Inhibins are important regulators of the female reproductive system. Recently, two new inhibin subunits betaC and betaE have been described, although it is unclear if they are synthesized in normal human endometrium. METHODS Samples of human endometrium were obtained from 82 premenopausal, non-pregnant patients undergoing gynecological surgery for benign diseases. Endometrium samples were classified according to anamnestic and histological dating into proliferative (day 1-14, n = 46), early secretory (day 15-22, n = 18) and late secretory phase (day 23-28, n = 18). Immunohistochemical analyses were performed with specific antibodies against inhibin alpha (n = 81) as well as inhibin betaA (n = 82), betaB (n = 82), betaC (n = 74) and betaE (n = 76) subunits. RT-PCR was performed for all inhibin subunits. Correlation was assessed with the Spearman factor to assess the relationship of inhibin-subunits expression within the different endometrial samples. RESULTS The novel inhibin betaC and betaE subunits were found in normal human endometrium by immunohistochemical and molecular techniques. Inhibin alpha, betaA, betaB and betaE subunits showed a circadian expression pattern, being more abundant during the late secretory phase than during the proliferative phase. Additionally, a significant correlation between inhibin alpha and all inhibin beta subunits was observed. CONCLUSIONS The differential expression pattern of the betaC- and betaE-subunits in normal human endometrial tissue suggests that they function in endometrial maturation and blastocyst implantation. However, the precise role of these novel inhibin/activin subunits in human endometrium is unclear and warrants further investigation.
Collapse
Affiliation(s)
- Ioannis Mylonas
- Ludwig-Maximilians-University Munich, 1st Department of Obstetrics and Gynecology, Maistrasse 11, 80337 Munich, Germany
| | - Ansgar Brüning
- Ludwig-Maximilians-University Munich, 1st Department of Obstetrics and Gynecology, Maistrasse 11, 80337 Munich, Germany
| | - Naim Shabani
- Ludwig-Maximilians-University Munich, 1st Department of Obstetrics and Gynecology, Maistrasse 11, 80337 Munich, Germany
- Department of Obstetrics and Gynecology, Klinikum Neuperlach, Munich, Germany
| | - Susanne Kunze
- Ludwig-Maximilians-University Munich, 1st Department of Obstetrics and Gynecology, Maistrasse 11, 80337 Munich, Germany
| | - Markus S Kupka
- Ludwig-Maximilians-University Munich, 1st Department of Obstetrics and Gynecology, Maistrasse 11, 80337 Munich, Germany
| |
Collapse
|
26
|
Magnusson B, Svensson PA, Carlsson LMS, Sjöholm K. Activin B inhibits lipolysis in 3T3-L1 adipocytes. Biochem Biophys Res Commun 2010; 395:373-6. [PMID: 20382119 DOI: 10.1016/j.bbrc.2010.04.022] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2010] [Accepted: 04/05/2010] [Indexed: 01/14/2023]
Abstract
Activin B, consisting of two inhibin betaB (INHBB) subunits, is a hormone known to affect gonadal function, reproduction and fetal development. We have reported that INHBB and activin B receptors are highly expressed in adipocytes suggesting that activin B may have local effects in adipose tissue. In this study, we investigate the effect of activin B on lipolysis, measured as release of non-esterified fatty acids and free glycerol. Recombinant activin B decreased lipolysis in a concentration-dependent manner and increased intracellular triglyceride content in 3T3-L1 adipocytes. siRNA-mediated knock-down of INHBB expression increased lipolysis, and this effect was abolished by addition of recombinant activin B. In line with its inhibitory effect on lipolysis, activin B caused a down regulation of the expression of adipose triglyceride lipase and hormone sensitive lipase, key genes involved in lipolysis. In summary, we suggest that activin B is a novel adipokine that inhibits lipolysis in a paracrine or autocrine manner.
Collapse
Affiliation(s)
- Björn Magnusson
- Department of Molecular and Clinical Medicine, Institute of Medicine, Sahlgrenska Academy, Gothenburg University, Sahlgrenska Center for Cardiovascular and Metabolic Research, Gothenburg, Sweden
| | | | | | | |
Collapse
|
27
|
Inhibin/activin-betaE subunit is expressed in normal and pathological human placental tissue including chorionic carcinoma cell lines. Arch Gynecol Obstet 2010; 283:223-30. [DOI: 10.1007/s00404-009-1340-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2009] [Accepted: 12/15/2009] [Indexed: 01/22/2023]
|
28
|
Bergauer F, Brüning A, Shabani N, Blankenstein T, Jückstock J, Dian D, Mylonas I. Inhibin/activin-betaE subunit in normal and malignant human cervical tissue and cervical cancer cell lines. J Mol Histol 2009; 40:353-9. [PMID: 20033758 DOI: 10.1007/s10735-009-9246-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2009] [Accepted: 12/07/2009] [Indexed: 01/08/2023]
Abstract
Inhibins are dimeric glycoproteins, composed of an alpha-subunit and one of two possible beta-subunits (betaA or betaB), with substantial roles in human reproduction and in endocrine-responsive tumours. Recently a novel beta subunit named betaE was described, although it is still unclear if normal or cancerous cervical epithelial cells as well as cervical cancer cell lines can synthesise the novel inhibin-betaE subunit. About 4 normal cervical tissue samples together with 10 specimens of well-differentiated squamous cervical cancer and adenocarcinoma of the cervix were immunohistochemical analyzed. Additionally, two cervical carcinoma cell lines (HeLa and CaSki) were analyzed by immunofluorescence and RT-PCR for the expression of this novel subunit. We demonstrated for the first time an immunolabelling of the inhibin-betaE subunit in normal and malignant cervical tissue, as well as cervical cancer cells. Although the physiological role is still quite unclear in cervical tissue, inhibin-betaE might play important roles in carcinogenesis. Moreover, the synthesis of this subunit in cervical carcinoma cell lines of squamous and glandular epithelial origins also allows the use of these cell lines in elucidating its functions in cervical cancer pathogenesis. However, since the expression of the inhibin-betaE is minimal in HeLa cells as assessed by immunofluorescence and RT-PCR, the CaSki cell line might be a better model for further functional experiments regarding cervical cancer pathogenesis.
Collapse
Affiliation(s)
- Florian Bergauer
- 1st Department of Obstetrics and Gynaecology, Ludwig-Maximilians-University Munich, Maistrasse 11, 80337 Munich, Germany
| | | | | | | | | | | | | |
Collapse
|
29
|
Inhibin/activin-betaC and -betaE subunits in the Ishikawa human endometrial adenocarcinoma cell line. Arch Gynecol Obstet 2009; 282:185-91. [DOI: 10.1007/s00404-009-1310-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2009] [Accepted: 11/23/2009] [Indexed: 01/10/2023]
|
30
|
Kreidl E, Oztürk D, Metzner T, Berger W, Grusch M. Activins and follistatins: Emerging roles in liver physiology and cancer. World J Hepatol 2009; 1:17-27. [PMID: 21160961 PMCID: PMC2999257 DOI: 10.4254/wjh.v1.i1.17] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2009] [Revised: 09/10/2009] [Accepted: 09/17/2009] [Indexed: 02/06/2023] Open
Abstract
Activins are secreted proteins belonging to the TGF-β family of signaling molecules. Activin signals are crucial for differentiation and regulation of cell proliferation and apoptosis in multiple tissues. Signal transduction by activins relies mainly on the Smad pathway, although the importance of crosstalk with additional pathways is increasingly being recognized. Activin signals are kept in balance by antagonists at multiple levels of the signaling cascade. Among these, follistatin and FLRG, two members of the emerging family of follistatin-like proteins, can bind secreted activins with high affinity, thereby blocking their access to cell surface-anchored activin receptors. In the liver, activin A is a major negative regulator of hepatocyte proliferation and can induce apoptosis. The functions of other activins expressed by hepatocytes have yet to be more clearly defined. Deregulated expression of activins and follistatin has been implicated in hepatic diseases including inflammation, fibrosis, liver failure and primary cancer. In particular, increased follistatin levels have been found in the circulation and in the tumor tissue of patients suffering from hepatocellular carcinoma as well as in animal models of liver cancer. It has been argued that up-regulation of follistatin protects neoplastic hepatocytes from activin-mediated growth inhibition and apoptosis. The use of follistatin as biomarker for liver tumor development is impeded, however, due to the presence of elevated follistatin levels already during preceding stages of liver disease. The current article summarizes our evolving understanding of the multi-faceted activities of activins and follistatins in liver physiology and cancer.
Collapse
Affiliation(s)
- Emanuel Kreidl
- Emanuel Kreidl, Deniz Öztürk, Thomas Metzner, Walter Berger, Michael Grusch, Institute of Cancer Research, Department of Medicine I, Medical University of Vienna, Borschkegasse 8a, Vienna A-1090, Austria
| | | | | | | | | |
Collapse
|
31
|
Bloise E, Couto HL, Massai L, Ciarmela P, Mencarelli M, Borges LE, Muscettola M, Grasso G, Amaral VF, Cassali GD, Petraglia F, Reis FM. Differential expression of follistatin and FLRG in human breast proliferative disorders. BMC Cancer 2009; 9:320. [PMID: 19740438 PMCID: PMC2749060 DOI: 10.1186/1471-2407-9-320] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2009] [Accepted: 09/09/2009] [Indexed: 01/11/2023] Open
Abstract
Background Activins are growth factors acting on cell growth and differentiation. Activins are expressed in high grade breast tumors and they display an antiproliferative effect inducing G0/G1 cell cycle arrest in breast cancer cell lines. Follistatin and follistatin- related gene (FLRG) bind and neutralize activins. In order to establish if these activin binding proteins are involved in breast tumor progression, the present study evaluated follistatin and FLRG pattern of mRNA and protein expression in normal human breast tissue and in different breast proliferative diseases. Methods Paraffin embedded specimens of normal breast (NB - n = 8); florid hyperplasia without atypia (FH - n = 17); fibroadenoma (FIB - n = 17); ductal carcinoma in situ (DCIS - n = 10) and infiltrating ductal carcinoma (IDC - n = 15) were processed for follistatin and FLRG immunohistochemistry and in situ hybridization. The area and intensity of chromogen epithelial and stromal staining were analyzed semi-quantitatively. Results Follistatin and FLRG were expressed both in normal tissue and in all the breast diseases investigated. Follistatin staining was detected in the epithelial cytoplasm and nucleus in normal, benign and malignant breast tissue, with a stronger staining intensity in the peri-alveolar stromal cells of FIB at both mRNA and protein levels. Conversely, FLRG area and intensity of mRNA and protein staining were higher both in the cytoplasm and in the nucleus of IDC epithelial cells when compared to NB, while no significant changes in the stromal intensity were observed in all the proliferative diseases analyzed. Conclusion The present findings suggest a role for follistatin in breast benign disease, particularly in FIB, where its expression was increased in stromal cells. The up regulation of FLRG in IDC suggests a role for this protein in the progression of breast malignancy. As activin displays an anti-proliferative effect in human mammary cells, the present findings indicate that an increased FST and FLRG expression in breast proliferative diseases might counteract the anti-proliferative effects of activin in human breast cancer.
Collapse
Affiliation(s)
- Enrrico Bloise
- Departments of Obstetrics & Gynecology and Physiology, Federal University of Minas Gerais, Belo Horizonte, Brazil.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Implication of activin E in glucose metabolism: Transcriptional regulation of the inhibin/activin βE subunit gene in the liver. Life Sci 2009; 85:534-40. [DOI: 10.1016/j.lfs.2009.08.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2009] [Revised: 06/08/2009] [Accepted: 08/11/2009] [Indexed: 11/21/2022]
|
33
|
Mechanism of liver regeneration after liver resection and portal vein embolization (ligation) is different? ACTA ACUST UNITED AC 2009; 16:292-9. [PMID: 19333540 DOI: 10.1007/s00534-009-0058-x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2008] [Accepted: 11/09/2008] [Indexed: 12/22/2022]
Abstract
Whether or not liver regeneration after portal branch embolization (PE) (ligation, PVL) in the non-embolized (ligated) lobe is by the same mechanism as regeneration in the remnant lobe after liver resection has been reviewed. Portal vein branch embolization and heat shock protein are then discussed. Tumor growth accelerated in the remnant liver after hepatectomy. In contrast, PE or PVL resulted in marked contralateral hepatic hypertrophy and significant reduction of tumor growth in the non-embolized (non-ligated) lobes. Follistatin administration significantly increased liver regeneration after hepatectomy in rats. In contrast, regeneration of non-ligated lobes after PVL was not accelerated by exogenous follistatin. Tumor growth also was not accelerated. The liver regeneration rate peaked at 48-72 h in the nonligated lobe after PVL, a delay of 24 h compared with the remnant liver after hepatectomy. In the postoperative early stage, the expression of activin betaA, betaC, and betaE mRNAs was stronger in PVL than in hepatectomy. At 72 h the expression of activin receptor type IIA mRNA reached a peak in hepatectomy, but was significantly lower in PVL. Thus, regulation of activin signaling through receptors is one of the factors determining liver regeneration after hepatectomy and PVL. These serial experimental results imply that the mechanism of liver regeneration after portal branch ligation (embolization) is different from that after hepatectomy. Heat shock protein was induced in the liver experimentally by intermittent ischemic preconditioning and could play some beneficial role in the recovery of liver function after hepatectomy, even in cirrhotic patients. When heat shock protein following right portal vein embolization in both the embolized and non-embolized hepatic lobes was investigated in clinical cases, a two to fourfold increase in HSP70 was induced in the non-embolized lobe compared with the embolized lobe. Oral administration of geranylgeranylacetone (a non-toxic HSP inducer) suppressed inflammatory responses and improved survival after 95% hepatectomy by induction of HSP70 in rats.
Collapse
|
34
|
Mylonas I, Makovitzky J, Shabani N, Gingelmaier A, Dian D, Kuhn C, Schulze S, Kunze S, Jeschke U, Friese K. Development and characterisation of an antibody for the immunohistochemical detection of inhibin/activin betaE (betaE) in normal human ovarian and placental tissue. Acta Histochem 2009; 111:366-71. [PMID: 19195688 DOI: 10.1016/j.acthis.2008.11.018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Inhibin/activin subunits are homologues to each other and belong to the transforming growth factor-beta (TGF-beta) family of proteins. These proteins have been demonstrated to be disulphide-linked dimers, which have a common alpha-subunit but just one of two beta-subunits, differentiated in inhibin A (alpha-betaA) and in inhibin B (alpha-betaB). Recently, an additional beta-subunit has been identified, determined as betaE and being primarily synthesized in liver tissue. However, since no antibody against the betaE subunit is commercially available, limited data on histological immunodistribution of this inhibin subunit in gynaecological organs exist. Therefore, the aims of the present study were the synthesis and evaluation of a specific antibody against the inhibin-betaE subunit. In this study, we describe the characterisation of a polyclonal antibody against the inhibin-betaE subunit. This antibody demonstrated a specific reaction in both western blot analysis and immunohistochemistry. Moreover, we demonstrated positive immunolabelling in normal human ovary and placenta. The role of this novel subunit is intriguing, especially within the view that the other inhibin/activin subunits might have substantial functions in human reproduction and carcinogenesis. However, the function of this subunit in humans remains still unclear and warrants further research.
Collapse
Affiliation(s)
- Ioannis Mylonas
- 1st Department of Obstetrics and Gynaecology, Ludwig-Maximilians-University Munich, Maistrasse 11, 80337 Munich, Germany.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Yang YG, Liu XJ, Zhang JH. Advances in research of activins C and E. Shijie Huaren Xiaohua Zazhi 2008; 16:1559-1567. [DOI: 10.11569/wcjd.v16.i14.1559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Activins, which consist of two disulfide-linked β subunits, are members of the transforming growth factor β (TGF-β) superfamily of growth factors. Four mammalian activin β subunits, termed as βA, βB, βC, and βE respectively, have been identified. Activin A, the homodimer of two βA subunits, is a pleiotropic cytokine and is expressed in many tissues and cells. There has been compelling evidence that activin A is involved in the regulation of reproductive biology, embryonic development, erythroid differentiation, systemic inflammation, induced apoptosis, tissue repair, fibrogenesis and so on, through classic activin signaling pathway. βC and βE subunits, which are almost exclusively expressed in the liver, are still quite incompletely understood. In this review, we summarize and discuss the function of βC and βE subunits in liver. Further research should be made to understand the biological role of the βC and βE subunits.
Collapse
|
36
|
Deli A, Kreidl E, Santifaller S, Trotter B, Seir K, Berger W, Schulte-Hermann R, Rodgarkia-Dara C, Grusch M. Activins and activin antagonists in hepatocellular carcinoma. World J Gastroenterol 2008; 14:1699-709. [PMID: 18350601 PMCID: PMC2695910 DOI: 10.3748/wjg.14.1699] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
In many parts of the world hepatocellular carcinoma (HCC) is among the leading causes of cancer-related mortality but the underlying molecular pathology is still insufficiently understood. There is increasing evidence that activins, which are members of the transforming growth factor β (TGFβ) superfamily of growth and differentiation factors, could play important roles in liver carcinogenesis. Activins are disulphide-linked homo- or heterodimers formed from four different β subunits termed βA, βB, βC, and βE, respectively. Activin A, the dimer of two βA subunits, is critically involved in the regulation of cell growth, apoptosis, and tissue architecture in the liver, while the hepatic function of other activins is largely unexplored so far. Negative regulators of activin signals include antagonists in the extracellular space like the binding proteins follistatin and FLRG, and at the cell membrane antagonistic co-receptors like Cripto or BAMBI. Additionally, in the intracellular space inhibitory Smads can modulate and control activin activity. Accumulating data suggest that deregulation of activin signals contributes to pathologic conditions such as chronic inflammation, fibrosis and development of cancer. The current article reviews the alterations in components of the activin signaling pathway that have been observed in HCC and discusses their potential significance for liver tumorigenesis.
Collapse
|
37
|
Grusch M, Drucker C, Peter-Vörösmarty B, Erlach N, Lackner A, Losert A, Macheiner D, Schneider WJ, Hermann M, Groome NP, Parzefall W, Berger W, Grasl-Kraupp B, Schulte-Hermann R. Deregulation of the activin/follistatin system in hepatocarcinogenesis. J Hepatol 2006; 45:673-80. [PMID: 16935389 DOI: 10.1016/j.jhep.2006.06.014] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2006] [Revised: 05/23/2006] [Accepted: 06/27/2006] [Indexed: 12/04/2022]
Abstract
BACKGROUND/AIMS Activins A and E negatively regulate hepatic cell number by inhibiting cell replication and inducing apoptosis. Follistatin and follistatin-like 3 bind activins and antagonise their biological activities. Aim of our study was to investigate, whether activins and follistatins may play a role in hepatocarcinogenesis. METHODS Expression levels of follistatin, follistatin-like 3, and activin subunits beta(A) as well as beta(E) were investigated in chemically induced rat and human liver tumours by real-time PCR and immunohistochemistry. In addition, the effects of follistatin and activin A on DNA synthesis of normal as well as preneoplastic hepatocytes and hepatoma cells were analysed. RESULTS Follistatin was overexpressed while both activin subunits were downregulated in the majority of rat and human liver tumours. Follistatin-like 3 expression was low in normal but enhanced in malignant rat liver. In human normal liver, in contrast, it was abundantly expressed but downregulated in liver cancer. Administration of follistatin to normal and preneoplastic hepatocytes stimulated DNA synthesis preferentially in preneoplastic rat hepatocytes, whereas activin A repressed it. CONCLUSIONS The balanced expression of follistatins and activins becomes deregulated during hepatocarcinogenesis. The sensitivity of preneoplastic hepatocytes to activin signals suggests the activin/follistatin system as promising target for therapeutic intervention.
Collapse
Affiliation(s)
- Michael Grusch
- Department of Medicine I, Division: Institute of Cancer Research, Medical University of Vienna, Borschkegasse 8a, A-1090 Vienna, Austria.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Rodgarkia-Dara C, Vejda S, Erlach N, Losert A, Bursch W, Berger W, Schulte-Hermann R, Grusch M. The activin axis in liver biology and disease. Mutat Res 2006; 613:123-37. [PMID: 16997617 DOI: 10.1016/j.mrrev.2006.07.002] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2006] [Revised: 07/27/2006] [Accepted: 07/27/2006] [Indexed: 12/22/2022]
Abstract
Activins are a closely related subgroup within the TGFbeta superfamily of growth and differentiation factors. They consist of two disulfide-linked beta subunits. Four mammalian activin beta subunits termed beta(A), beta(B), beta(C), and beta(E), respectively, have been identified. Activin A, the homodimer of two beta(A) subunits, has important regulatory functions in reproductive biology, embryonic development, inflammation, and tissue repair. Several intra- and extracellular antagonists, including the activin-binding proteins follistatin and follistatin-related protein, serve to fine-tune activin A activity. In the liver there is compelling evidence that activin A is involved in the regulation of cell number by inhibition of hepatocyte replication and induction of apoptosis. In addition, activin A stimulates extracellular matrix production in hepatic stellate cells and tubulogenesis of sinusoidal endothelial cells, and thus contributes to restoration of tissue architecture during liver regeneration. Accumulating evidence from animal models and from patient data suggests that deregulation of activin A signaling contributes to pathologic conditions such as hepatic inflammation and fibrosis, acute liver failure, and development of liver cancer. Increased production of activin A was suggested to be a contributing factor to impaired hepatocyte regeneration in acute liver failure and to overproduction of extracellular matrix in liver fibrosis. Recent evidence suggests that escape of (pre)neoplastic hepatocytes from growth control by activin A through overexpression of follistatin and reduced activin production contributes to hepatocarcinogenesis. The role of the activin subunits beta(C) and beta(E), which are both highly expressed in hepatocytes, is still quite incompletely understood. Down-regulation in liver tumors and a growth inhibitory function similar to that of beta(A) has been shown for beta(E). Contradictory results with regard to cell proliferation have been reported for beta(C). The profound involvement of the activin axis in liver biology and in the pathogenesis of severe hepatic diseases suggests activin as potential target for therapeutic interventions.
Collapse
Affiliation(s)
- Chantal Rodgarkia-Dara
- Department of Medicine I, Division: Institute of Cancer Research, Medical University of Vienna, Borschkegasse 8a, A-1090 Vienna, Austria
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Ushiro Y, Hashimoto O, Seki M, Hachiya A, Shoji H, Hasegawa Y. Analysis of the function of activin betaC subunit using recombinant protein. J Reprod Dev 2006; 52:487-95. [PMID: 16627954 DOI: 10.1262/jrd.17110] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Activins, TGF-beta superfamily members, have multiple functions in a variety of cells and tissues. Additional activin beta subunit genes, betaC and betaE, have been identified in humans and rodents. To explore the role of activin betaC subunit, we generated recombinant human activin C using Chinese hamster ovary cells. Recombinant activin C from the conditioned medium was purified by consecutive hydrophobic, size-exclusion, and high performance liquid chromatography. SDS-PAGE and Western blot analysis of the purified protein revealed that activin C formed disulfide bridges. However, activin C had no effect on the proliferation of cultured liver cells. Furthermore, there were no significant differences in erythroid differentiation and follicle stimulating hormone secretion in vitro. It was also shown that immunoreactive bands indicated the hetrodimer of activin betaC, and inhibin alpha subunits were detected in the conditioned medium from the activin C-producing cells, which were stably transfected with inhibin alpha subunit cDNA. This suggests that activin betaC subunit may have been present and that it may exert its effect as inhibin C.
Collapse
Affiliation(s)
- Yuuki Ushiro
- Laboratory of Experimental Animal Science, Faculty of Veterinary Medicine, Kitasato University School of Veterinary Medicine and Animal Sciences, Japan
| | | | | | | | | | | |
Collapse
|
40
|
Gold EJ, Monaghan MA, Fleming JS. Rat activin-betaE mRNA expression during development and in acute and chronic liver injury. J Mol Genet Med 2006; 2:93-100. [PMID: 19565003 PMCID: PMC2702058 DOI: 10.4172/1747-0862.1000019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2006] [Revised: 03/06/2006] [Accepted: 03/08/2006] [Indexed: 11/20/2022] Open
Abstract
Activin-βE mRNA expression was investigated in male and female rats using gel-based and quantitative RT-PCR, in fetal and post-natal liver during development and in a variety of tissues from 200 gm adult animals. Activin-βE expression was also assessed in rat liver after partial hepatectomy, and after repeated toxic insult. Male Sprague Dawley rats were subjected to partial hepatectomy or sham operations. Samples were collected from the caudate liver lobe during regeneration, from 12 to 240 hr after surgery. Three groups of 5 male rats were treated with CCl4 for 0 (control), 5 or 10 weeks, to induce liver fibrosis and cirrhosis. Activin-βE mRNA was predominantly expressed in liver, with much lower amounts of mRNA observed in pituitary, adrenal gland and spleen, in both males and females. Low activin-βE expression was observed in liver at fetal day 16, with higher levels seen between post-natal days 3 and 35 and a further increase noted by day 47, in both males and females. Liver activin-βE mRNA concentrations did not change from control values 12-72 hr after PHx, but significantly increased over six fold, 168 hr post-hepatectomy, when liver mass was restored. Activin-βE mRNA was up-regulated after 5 weeks of CCl4 treatment, but not after 10 weeks. The changes in activin-βE mRNA concentrations after liver insult did not always parallel those reported for the activin-βC subunit, suggesting activin-βE may have an independent role in liver under certain conditions.
Collapse
Affiliation(s)
- Elspeth J Gold
- Centre for Urological Research, Monash Institute of Medical Research, Monash University, Clayton, Victoria 3168, Australia
| | | | | |
Collapse
|
41
|
Hashimoto O, Ushiro Y, Sekiyama K, Yamaguchi O, Yoshioka K, Mutoh KI, Hasegawa Y. Impaired growth of pancreatic exocrine cells in transgenic mice expressing human activin betaE subunit. Biochem Biophys Res Commun 2006; 341:416-24. [PMID: 16426570 DOI: 10.1016/j.bbrc.2005.12.205] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2005] [Accepted: 12/30/2005] [Indexed: 12/22/2022]
Abstract
Activins, TGF-beta superfamily members, have multiple functions in a variety of cells and tissues. Recently, additional activin beta subunit genes, betaC and betaE, have been identified. To explore the role of activin E, we created transgenic mice overexpressing human activin betaE subunit. There were pronounced differences in the pancreata of the transgenic animals as compared with their wild-type counterparts. Pancreatic weight, expressed relative to total body weight, was significantly reduced. Histologically, adipose replacement of acini in the exocrine pancreas was observed. There was a significant decrease in the number of PCNA-positive cells in the acinar cells, indicating reduced proliferation in the exocrine pancreas of the transgenic mice. However, quantitative pancreatic morphometry showed that the total number and mass of the islets of the transgenic mice were comparable with those of the nontransgenic control mice. Our findings suggest a role for activin E in regulating the proliferation of pancreatic exocrine cells.
Collapse
Affiliation(s)
- Osamu Hashimoto
- Laboratory of Experimental Animal Science, Faculty of Veterinary Medicine, Kitasato University, School of Veterinary Medicine and Animal Sciences, Towada, Aomori 034-8628, Japan.
| | | | | | | | | | | | | |
Collapse
|
42
|
Butler CM, Gold EJ, Risbridger GP. Should activin betaC be more than a fading snapshot in the activin/TGFbeta family album? Cytokine Growth Factor Rev 2005; 16:377-85. [PMID: 15925536 DOI: 10.1016/j.cytogfr.2005.04.005] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2005] [Revised: 04/13/2005] [Accepted: 04/13/2005] [Indexed: 10/25/2022]
Abstract
The activin growth factors consist of dimeric proteins made up of activin beta subunits and have been shown to be essential regulators of diverse systems in physiology. Four subunits are known to be expressed in mammalian cells: betaA, betaB, betaC, and betaE. Surprisingly, deletion of activin betaC and betaE subunits in vivo does not affect embryonic development or adult physiology which has led to the activin betaC and betaE subunits being regarded as non-essential and unimportant. The steady accumulation of circumstantial evidence to the contrary has led this lab to reassess the role of the activin betaC subunit. Activin betaC protein is expressed more widely than indicated by mRNA localisation. Experiments overexpressing activin betaC subunit or adding exogenous Activin C in vitro are contradictory but suggest roles for activin betaC in regulating Activin A action in apoptosis and homeostasis. Sequestration of betaA subunits by dimerisation with betaC subunits to form Activin AC represents an intracellular regulator of Activin A bioactivity. Activins play a pivotal role in normal physiology and carcinogenesis, so any molecule, such as the activin betaC subunit, that can affect activin action is potentially significant. Advancing our understanding of the physiological role of the activin betaC subunit requires new tools and reagents. Direct detection of the Activin AC dimer will be essential and will necessitate the purification of heteromeric Activin AC protein. In addition, there is a need for the development of an in vivo model of activin betaC subunit overexpression. With development of these tools, research into activin action in development and physiology can expand to include the less well understood members of the activin family such as activin betaC.
Collapse
Affiliation(s)
- Christopher M Butler
- Centre for Urological Research, Monash Institute for Medical Research, Monash Medical Centre, Clayton, Vic., Australia.
| | | | | |
Collapse
|
43
|
Takamura K, Tsuchida K, Miyake H, Tashiro S, Sugino H. Activin and activin receptor expression changes in liver regeneration in rat. J Surg Res 2005; 126:3-11. [PMID: 15916968 DOI: 10.1016/j.jss.2005.01.002] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2004] [Revised: 12/01/2004] [Accepted: 01/02/2005] [Indexed: 12/23/2022]
Abstract
BACKGROUND This study aimed to investigate regulatory mechanisms of hepatocyte proliferation by comparing liver regeneration of the remnant lobe after 70% partial hepatectomy (PH) and portal vein branch ligation (PBL) in rat. METHODS Expressions of activins betaA, betaC, and betaE and their receptors were investigated after PH and PBL. The proliferating cell nuclear antigen (PCNA) labeling index was used to monitor hepatocyte proliferation. RESULTS The PCNA labeling index in the regenerative lobe of PBL rats reached a peak at 48 h, a delay of 24 h compared with the remnant lobe in PH rats. In the postoperative early stage, the expression of activin betaA, betaC, and betaE mRNAs was stronger in PBL than PH. At 72 h the expression of activin receptor type IIA mRNA reached a peak in PH but was significantly lower in PBL. CONCLUSIONS Hepatocyte proliferation, and the regulated expression of activins and their receptors, differs during liver regeneration after PH and PBL in the rat. Thus, regulation of activin signaling through receptors is one of the factors determining liver regeneration after PH and PBL.
Collapse
Affiliation(s)
- Kazuhito Takamura
- Department of Digestive Surgery, University of Tokushima, Tokushima 770-8503, Japan.
| | | | | | | | | |
Collapse
|
44
|
Mellor SL, Ball EMA, O'Connor AE, Ethier JF, Cranfield M, Schmitt JF, Phillips DJ, Groome NP, Risbridger GP. Activin betaC-subunit heterodimers provide a new mechanism of regulating activin levels in the prostate. Endocrinology 2003; 144:4410-9. [PMID: 12960042 DOI: 10.1210/en.2003-0225] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Activins are formed by dimerization of beta-subunits and, as members of the TGF-beta superfamily, have diverse roles as potent growth and differentiation factors. As the biological function of the activin C homodimer (betaC-betaC) is unknown, we sought to compare activin A (betaA-betaA), B (betaB-betaB), and C homodimer bioactivities and to investigate the consequences of activin betaC-subunit overexpression in prostate tumor cells. Exogenous activin A and B homodimers inhibited cell growth and activated activin-responsive promoters. In contrast, the activin C homodimer was unable to elicit these responses. We previously showed that the activin betaC-subunit heterodimerized with activin betaA in vitro to form activin AC. Therefore, we hypothesize that the activin betaC-subunit regulates the levels of bioactive activin A by the formation of activin AC heterodimers. To test this hypothesis, we measured activin AC heterodimer production using a novel specific two-site ELISA that we developed for this purpose. In the PC3 human prostate tumor cell line, activin betaC-subunit overexpression increased activin AC heterodimer levels, concomitantly reduced activin A levels, and decreased activin signaling. Overall, these data are consistent with a role for the activin betaC-subunit as a regulatory mechanism to reduce activin A secretion via intracellular heterodimerization.
Collapse
Affiliation(s)
- Sally L Mellor
- Monash Institute of Reproduction and Development, Monash University, Melbourne, Victoria 3168, Australia
| | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Chabicovsky M, Herkner K, Rossmanith W. Overexpression of activin beta(C) or activin beta(E) in the mouse liver inhibits regenerative deoxyribonucleic acid synthesis of hepatic cells. Endocrinology 2003; 144:3497-504. [PMID: 12865331 DOI: 10.1210/en.2003-0388] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Activins are dimeric growth factors composed of beta-subunits, four of which have been isolated so far. Whereas activin beta(A) and beta(B) are expressed in many tissues, the expression of activin beta(C) and beta(E) is confined to the liver. To date no biological role or activity has been assigned to activins formed from beta(C) or beta(E) subunits (activin C and E). Because activin A (beta(A)beta(A)), among its various functions in other tissues, appears to be a negative regulator of liver growth, we hypothesized a similar role for activin C and E. Using a nonviral gene transfer system we specifically delivered genes encoding activin beta(C), beta(E), or beta(A) to the mouse liver. The mRNA analysis and reporter gene coexpression both indicated a reproducible temporal and spatial transgene expression pattern. The effects of activin overexpression were studied in the context of a regenerative proliferation of hepatic cells, a result of the tissue damage associated with the hydrodynamics based gene transfer procedure. Activin beta(C), beta(E), or beta(A) expression, all temporarily inhibited regenerative DNA synthesis of hepatocytes and nonparenchymal cells, though to a varying degree. This first report of a biological activity of activin C and E supports an involvement in liver tissue homeostasis and further emphasizes the role of the growing activin family in liver physiology.
Collapse
Affiliation(s)
- Monika Chabicovsky
- Department of Toxicology, Institute for Cancer Research, Institute of Anatomy, University of Vienna, 1090 Vienna, Austria
| | | | | |
Collapse
|