1
|
Luo YW, Zhu XL, Li MY, Zhou JH, Yang ZM, Tong T, Chen BH, Qin SL, Liu BL, Hu W. Anti-apoptotic effect of adrenomedullin gene delivery on Leydig cells by suppressing TGF-β1 via the Hippo signaling pathway. Reprod Toxicol 2023; 119:108418. [PMID: 37268150 DOI: 10.1016/j.reprotox.2023.108418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 05/06/2023] [Accepted: 05/30/2023] [Indexed: 06/04/2023]
Abstract
This study aims to establish whether adrenomedullin (ADM) is capable to restore the steroidogenic functions of Leydig cells by suppressing transforming growth factor-β1 (TGF-β1) through Hippo signaling. Primary Leydig cells were treated with lipopolysaccharide (LPS), an adeno-associated virus vector that expressed ADM (Ad-ADM) or sh-RNA of TGF-β1 (Ad-sh-TGF-β1). The cell viability and medium concentrations of testosterone were detected. Gene expression and protein levels were determined for steroidogenic enzymes, TGF-β1, RhoA, YAP, TAZ and TEAD1. The role of Ad-ADM in the regulation of TGF-β1 promoter was confirmed by ChIP and Co-IP. Similar to Ad-sh-TGF-β1, Ad-ADM mitigated the decline in the number of Leydig cells and plasma concentrations of testosterone by restoring the gene and protein levels of SF-1, LRH1, NUR77, StAR, P450scc, 3β-HSD, CYP17 and 17β-HSD. Similar to Ad-sh-TGF-β1, Ad-ADM not only inhibited the LPS-induced cytotoxicity and cell apoptosis but also restored the gene and protein levels of SF-1, LRH1, NUR77, StAR, P450scc, 3β-HSD, CYP17 and 17β-HSD, along with the medium concentrations of testosterone in LPS-induced Leydig cells. Like Ad-sh-TGF-β1, Ad-ADM improved LPS-induced TGF-β1 expression. In addition, Ad-ADM suppressed RhoA activation, enhanced the phosphorylation of YAP and TAZ, reduced the expression of TEAD1 which interacted with HDAC5 and then bound to TGF-β1 gene promoter in LPS-exposed Leydig cells. It is thus suspected that ADM can exert anti-apoptotic effect to restore the steroidogenic functions of Leydig cells by suppressing TGF-β1 through Hippo signaling.
Collapse
Affiliation(s)
- You-Wen Luo
- Department of Andrology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
| | - Xia-Lian Zhu
- Department of Nuclear Medicine, The Affiliated Nanhua Hospital, Hengyang Medical School, University of South China, Hengyang, China
| | - Ming-Yong Li
- Department of Urology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
| | - Jian-Hua Zhou
- Department of Andrology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
| | - Zhi-Min Yang
- Department of Andrology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
| | - Tao Tong
- Department of Andrology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
| | - Bing-Hai Chen
- Department of Urology, Affiliated Hospital of Jiangsu University, Zhenjiang, China.
| | - Song-Lin Qin
- Department of Andrology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
| | - Bo-Long Liu
- Department of Andrology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
| | - Wei Hu
- Department of Andrology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China.
| |
Collapse
|
2
|
Yang Q, Ma B, Qiao H, Ma H, Dong Y, Cao L, Ma J, Li Z. TGFB1 represses the expression of SF1 and LRH1 to inhibit E 2 production in rat LCs. Reproduction 2017; 153:621-629. [PMID: 28250236 DOI: 10.1530/rep-16-0044] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2016] [Revised: 02/10/2017] [Accepted: 02/28/2017] [Indexed: 11/08/2022]
Abstract
Leydig cells (LCs) in the adult testis have been identified as the major sites of oestrogen production, which is crucial for mammalian germ cell differentiation. Our previous work showed that transforming growth factor beta 1 (TGFB1) inhibits estradiol (E2) secretion via down-regulating Cyp19 gene expression in mature rat LCs. However, the mechanism remains unclear. In the present study, the effects of TGFB1 on the expression levels of steroidogenic factor 1 (SF1), liver receptor homolog 1 (LRH1), cAMP response element-binding protein (CREB) and cAMP responsive element modulator (CREM) were evaluated both in primary cultured LCs and in rat testis. The involvement of TGFB1 signalling in the regulation of SF1 and LRH1 expression was then validated by applying the inhibitor of the TGFB type 1 receptor (TGFBR1) SB431542. Moreover, the expression of CYP19 in testicular LCs was investigated and the production of E2 in testicular interstitial fluid (TIF) was measured. The results showed that TGFB1 especially down-regulated the expression levels of SF1 and LRH1 both in primary cultured LCs and in rat testis. The down-regulations of TGFB1 in the production of E2 in TIF and the expression of CYP19 in testicular LCs were also observed in vivo These inhibitory effects could be reversed by TGFBR1 inhibitor SB431542. Our findings suggest that TGFB1 may act through the canonical signalling pathway involving ALK5 to restrain SF1 and LRH1 accumulation and eventually attenuate Cyp19 transcription and oestrogen production in LCs.
Collapse
Affiliation(s)
- Qianqian Yang
- Department of Histology and EmbryologyThe Fourth Military Medical University, Xi'an, Shaanxi, People's Republic of China.,Department of Traditional Chinese MedicineXijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi, People's Republic of China
| | - Binfang Ma
- Department of Histology and EmbryologyThe Fourth Military Medical University, Xi'an, Shaanxi, People's Republic of China
| | - Huilian Qiao
- Department of Histology and EmbryologyThe Fourth Military Medical University, Xi'an, Shaanxi, People's Republic of China
| | - He Ma
- Department of Histology and EmbryologyThe Fourth Military Medical University, Xi'an, Shaanxi, People's Republic of China
| | - Yuhang Dong
- Department of Histology and EmbryologyThe Fourth Military Medical University, Xi'an, Shaanxi, People's Republic of China
| | - Liang Cao
- Department of Traditional Chinese MedicineXijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi, People's Republic of China
| | - Jing Ma
- Department of Traditional Chinese MedicineXijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi, People's Republic of China
| | - Zhen Li
- Department of Histology and EmbryologyThe Fourth Military Medical University, Xi'an, Shaanxi, People's Republic of China
| |
Collapse
|
3
|
Wang Y, Bilandzic M, Ooi GT, Findlay JK, Stenvers KL. Endogenous inhibins regulate steroidogenesis in mouse TM3 Leydig cells by altering SMAD2 signalling. Mol Cell Endocrinol 2016; 436:68-77. [PMID: 27465829 DOI: 10.1016/j.mce.2016.07.026] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2016] [Revised: 07/20/2016] [Accepted: 07/21/2016] [Indexed: 12/28/2022]
Abstract
This study tested the hypothesis that inhibins act in an autocrine manner on Leydig cells using a pre-pubertal Leydig cell line, TM3, as a model of immature Leydig cells. The expression of Inha, Inhba, and Inhbb in TM3 cells was determined by RT-PCR and the production of the inhibin-alpha subunit was confirmed by western blot. Knockdown of Inha expression resulted in significant decreases in the expression of Leydig cell markers Cyp17a1, Cyp11a1, Nr5a1, and Insl3. Western blot showed that activin A, TGFβ1 and TGFβ2 activated SMAD2, and that knockdown of Inha expression in TM3 cells enhanced both activin A- and TGFβ-induced SMAD2 activation. SB431542, a chemical inhibitor of the TGFβ/activin type I receptors, blocked ligand-induced SMAD2 activation and the downregulation of Cyp17a1 expression. Our findings demonstrate that TGFβs and activin A negatively regulate steroidogenic gene expression in TM3 cells via ALK4/5 and SMAD2 and endogenous inhibins can counter this regulation.
Collapse
Affiliation(s)
- Yao Wang
- Hudson Institute of Medical Research, 27-31 Wright Street, Clayton, Victoria, 3168, Australia; Department of Molecular and Translational Science, Monash University, Clayton, Victoria, 3168, Australia.
| | - Maree Bilandzic
- Hudson Institute of Medical Research, 27-31 Wright Street, Clayton, Victoria, 3168, Australia; Department of Molecular and Translational Science, Monash University, Clayton, Victoria, 3168, Australia
| | - Guck T Ooi
- Sun BioMedical Technologies, 209 W. Ridgecrest Blvd, Suite A, Ridgecrest, CA, 93555, USA
| | - Jock K Findlay
- Hudson Institute of Medical Research, 27-31 Wright Street, Clayton, Victoria, 3168, Australia; Department of Molecular and Translational Science, Monash University, Clayton, Victoria, 3168, Australia
| | - Kaye L Stenvers
- Hudson Institute of Medical Research, 27-31 Wright Street, Clayton, Victoria, 3168, Australia; Department of Anatomy and Developmental Biology, Monash University, Clayton, Victoria, 3168, Australia
| |
Collapse
|
4
|
|
5
|
Liu ML, Wang H, Wang ZR, Zhang YF, Chen YQ, Zhu FH, Zhang YQ, Ma J, Li Z. TGF-β1 regulation of estrogen production in mature rat Leydig cells. PLoS One 2013; 8:e60197. [PMID: 23555924 PMCID: PMC3612063 DOI: 10.1371/journal.pone.0060197] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2012] [Accepted: 02/22/2013] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND Besides androgens, estrogens produced in Leydig cells are also crucial for mammalian germ cell differentiation. Transforming growth factor-β1 (TGF-β1) is now known to have multiple effects on regulation of Leydig cell function. The objective of the present study is to determine whether TGF-β1 regulates estradiol (E2) synthesis in adult rat Leydig cells and then to assess the impact of TGF-β1 on Cx43-based gap junctional intercellular communication (GJIC) between Leydig cells. METHODOLOGY/PRINCIPAL FINDINGS Primary cultured Leydig cells were incubated in the presence of recombinant TGF-β1 and the production of E2 as well as testosterone (T) were measured by RIA. The activity of P450arom was addressed by the tritiated water release assay and the expression of Cyp19 gene was evaluated by Western blotting and real time RT-PCR. The expression of Cx43 and GJIC were investigated with immunofluorescence and fluorescence recovery after photo-bleaching (FRAP), respectively. Results from this study show that TGF-β1 down-regulates the level of E2 secretion and the activity of P450arom in a dose-dependent manner in adult Leydig cells. In addition, the expression of Cx43 and GJIC was closely related to the regulation of E2 and TGF-β1, and E2 treatment in turn restored the inhibition of TGF-β1 on GJIC. CONCLUSIONS Our results indicate, for the first time in adult rat Leydig cells, that TGF-β1 suppresses P450arom activity, as well as the expression of the Cyp19 gene, and that depression of E2 secretion leads to down-regulation of Cx43-based GJIC between Leydig cells.
Collapse
Affiliation(s)
- Man-Li Liu
- Department of Traditional Chinese Medicine, Xijing Hospital, the Fourth Military Medical University, Xi'an, People's Republic of China
- Department of Human Anatomy and Histology and Embryology, the Fourth Military Medical University, Xi'an, People's Republic of China
| | - Huan Wang
- Department of Dermatology, Tangdu Hospital, the Fourth Military Medical University, Xi'an, People's Republic of China
| | - Zong-Ren Wang
- Department of Traditional Chinese Medicine, Xijing Hospital, the Fourth Military Medical University, Xi'an, People's Republic of China
| | - Yu-Fen Zhang
- Department of Traditional Chinese Medicine, Xijing Hospital, the Fourth Military Medical University, Xi'an, People's Republic of China
| | - Yan-Qiu Chen
- Department of Traditional Chinese Medicine, Xijing Hospital, the Fourth Military Medical University, Xi'an, People's Republic of China
| | - Fang-Hong Zhu
- Department of Traditional Chinese Medicine, Xijing Hospital, the Fourth Military Medical University, Xi'an, People's Republic of China
| | - Yuan-Qiang Zhang
- Department of Human Anatomy and Histology and Embryology, the Fourth Military Medical University, Xi'an, People's Republic of China
| | - Jing Ma
- Department of Traditional Chinese Medicine, Xijing Hospital, the Fourth Military Medical University, Xi'an, People's Republic of China
| | - Zhen Li
- Department of Human Anatomy and Histology and Embryology, the Fourth Military Medical University, Xi'an, People's Republic of China
| |
Collapse
|
6
|
Gonzalez CR, Vallcaneras SS, Calandra RS, Gonzalez Calvar SI. Involvement of KLF14 and egr-1 in the TGF-beta1 action on Leydig cell proliferation. Cytokine 2013; 61:670-5. [PMID: 23317878 DOI: 10.1016/j.cyto.2012.12.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2012] [Revised: 11/28/2012] [Accepted: 12/07/2012] [Indexed: 11/17/2022]
Abstract
Transforming growth factor β1 (TGF-β1) is a pleiotropic cytokine that modulates cell homeostasis. In Leydig cells, TGF-β1 exerts stimulatory and inhibitory effect depending on the type I receptor involved in the signaling pathway. The aim of the present work was to study the signaling mechanisms and the intermediates involved in the action of TGF-β1 on TM3 Leydig cell proliferation in the presence or absence of progesterone. The MTT assay showed that the presence of progesterone in the culture media lead to a proliferative effect that was blocked by Ru 486, an inhibitor of progesterone receptor; and ALK-5 did not participate in this effect. TGF-β1 (1 ng/ml) increased the expression of p15 (an inhibitor of cell cycle) in TM3 Leydig cells, and this effect was blocked by progesterone (1μM). The expression of PCNA presented a higher increase in the cell cultured with TGF-β1 plus progesterone than in cells cultured only with TGF-β1. Progesterone induced the gene expression of endoglin, a cofactor of TGF-β1 receptor that leads to a stimulatory signaling pathway, despite of the absence of progesterone response element in endoglin gene. In addition, the presence of progesterone induced the gene expression of egr-1 and also KLF14, indicating that this steroid channels the signaling pathway into a non-canonical mechanism. In conclusion, these findings suggest that the proliferative action of TGF-β1 involves endoglin. This co-receptor might be induced by KLF14 which is probably activated by progesterone.
Collapse
Affiliation(s)
- C R Gonzalez
- Research Center of Biomedical Biotechnology, Environmental and Diagnostic Studies, Maimónides University, Hidalgo 775, 1405 Buenos Aires, Argentina.
| | | | | | | |
Collapse
|
7
|
Fan YS, Hu YJ, Yang WX. TGF-β superfamily: how does it regulate testis development. Mol Biol Rep 2011; 39:4727-41. [DOI: 10.1007/s11033-011-1265-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2011] [Accepted: 09/14/2011] [Indexed: 12/26/2022]
|
8
|
Saotome K, Isomura T, Seki T, Nakamura Y, Nakamura M. Structural changes in gonadal basement membranes during sex differentiation in the frog Rana rugosa. ACTA ACUST UNITED AC 2010; 313:369-80. [PMID: 20535767 DOI: 10.1002/jez.607] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Here we report that structural changes in gonadal basement membranes during sex differentiation in the frog Rana rugosa are revealed using an antibody to its laminin component. Immunohistochemical staining indicated that the first sexual dimorphism appeared in testicular cords and ovarian cavities in differentiating gonads of tadpoles at St. 25-3W, three weeks after they reached St. 25. During development, as the testis enlarged, testicular cord partitions appeared to form by invagination of the testicular epithelium. Ovarian cavities also increased in volume. Laminin-positive basement membranes initially surrounded a partial surface of oocytes close to the ovarian cavity, fully covering growing oocytes by St. X. Laminin-reactive signals were present in somatic cells outside seminiferous tubules in the testis and outside oocytes in one-year-old frogs. BrdU-labeling showed that the number of dividing germ cells increased continuously in male gonads but increased in females only up to St. V, declining at St. X and thereafter. The number of dividing germ cells declined when the basement membranes had fully covered the oocytes. Together, these findings suggest that the first sexual dimorphism in the gonad of R. rugosa first appears as a structural change in the basement membranes. Finally, we speculate that the basement membrane on the surface of oocytes may affect their proliferation in this species.
Collapse
Affiliation(s)
- Kazuhiro Saotome
- Department of Biology, Faculty of Education and Integrated Arts and Sciences, Waseda University, Shinjuku-ku, Tokyo, Japan
| | | | | | | | | |
Collapse
|
9
|
Gonzalez CR, Gonzalez B, Rulli SB, Huhtaniemi I, Calandra RS, Gonzalez-Calvar SI. TGF-beta1 system in Leydig cells. Part I: effect of hCG and progesterone. J Reprod Dev 2010; 56:389-95. [PMID: 20431248 DOI: 10.1262/jrd.09-166n] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Transforming growth factor beta 1 (TGF-beta1) modulates male reproductive function. Genetically modified mice overexpressing alpha/beta subunits of hCG (hCG+) show Leydig cell hyperplasia/hypertrophy at prepuberty that disappears as the mice approach adulthood. In this study we analyzed the gene expression of TGF-beta1, its specific receptors, type II (TGF-betaRII) and type I (activin receptor-like kinase 1 and 5: ALK1 and ALK5), and co-receptor endoglin (CD105) in purified Leydig cells from hCG+ and wild-type mice at 3 and 8 weeks of age and the occurrence of TGF-beta1, ALK1 and ALK5 by immunohistochemistry. The expression of TGF-beta1 was higher in hCG+ mice at both ages studied, and no changes were observed in TGF-betaRII. ALK5 diminished with age in wild-type mice, whereas ALK1 decreased in hCG+ mice at 8 weeks of age. Endoglin expression showed a marked increase in 3-week-old hCG+ animals. In vitro incubation of Leydig cells from wild-type animals with hCG (10 IU/ml) increased TGF-beta1 and ALK5 expression. Progesterone (10(-6) M) induced endoglin expression. These studies provide novel evidence for differential gene and protein expression of ALK1 and ALK5 at different ages and endoglin expression and hormonal, in purified Leydig cells.
Collapse
|
10
|
Abstract
A large body of evidence points to the existence of a close, dynamic relationship between the immune system and the male reproductive tract, which has important implications for our understanding of both systems. The testis and the male reproductive tract provide an environment that protects the otherwise highly immunogenic spermatogenic cells and sperm from immunological attack. At the same time, secretions of the testis, including androgens, influence the development and mature functions of the immune system. Activation of the immune system has negative effects on both androgen and sperm production, so that systemic or local infection and inflammation compromise male fertility. The mechanisms underlying these interactions have begun to receive the attention from reproductive biologists and immunologists that they deserve, but many crucial details remain to be uncovered. A complete picture of male reproductive tract function and its response to toxic agents is contingent upon continued exploration of these interactions and the mechanisms involved.
Collapse
Key Words
- cytokines
- immunity
- immunoregulation
- inflammation
- leydig cell
- lymphocytes
- macrophages
- nitric oxide
- prostanoids
- seminal plasma
- sertoli cell
- sperm
- spermatogenesis
- steroidogenesis
- toll-like receptors
- 16:0a-lpc, 1-palmitoyl-sn-glycero-3-phosphocholine
- 18:1a-lpc, 1-oleoyl-sn-glycero-3-phosphocholine
- 18:2a-lpc, 1-linoleoyl-sn-glycero-3-phosphocholine
- 20:4a-lpc, 1-arachidonyl-sn-glycero-3-phosphocholine
- aid, acquired immune deviation
- aire, autoimmune regulator
- ap1, activated protein 1
- apc, antigen-presenting cell
- bambi, bmp and activin membrane-bound inhibitor
- bmp, bone morphogenetic protein
- cox, cyclooxygenase
- crry, complement receptor-related protein
- ctl, cytotoxic t lymphocyte
- eao, experimental autoimmune orchitis
- eds, ethane dimethane sulfonate
- enos, endothelial nos
- fadd, fas-associated death domain protein
- fasl, fas ligand
- fsh, follicle-stimulating hormone
- gc, glucocorticoid
- hcg, human chorionic gonadotropin
- hla, human leukocyte antigen
- hmgb1, high mobility group box chromosomal protein 1
- ice, il1 converting enzyme
- ifn, interferon
- ifnar, ifnα receptor
- il, interleukin
- il1r, interleukin 1 receptor
- il1ra, il1 receptor antagonist
- inos, inducible nitric oxide synthase
- irf, interferon regulatory factor
- jak/stat, janus kinase/signal transducers and activators of transcription
- jnk, jun n-terminal kinase
- lh, luteinizing hormone
- lpc, lysoglycerophosphatidylcholine
- lps, lipopolysaccharide
- map, mitogen-activated protein
- mhc, major histocompatibility complex
- mif, macrophage migration inhibitory factor
- myd88, myeloid differentiation primary response protein 88
- nfκb, nuclear factor kappa b
- nk, cell natural killer cell
- nkt cell, natural killer t cell
- nlr, nod-like receptor
- nnos, neuronal nos
- nod, nucleotide binding oligomerization domain
- p450c17, 17α-hydroxylase/c17-c20 lyase
- p450scc, cholesterol side-chain cleavage complex
- paf, platelet-activating factor
- pamp, pathogen-associated molecular pattern
- pc, phosphocholine
- pg, prostaglandin
- pges, pge synthase
- pgi, prostacyclin
- pla2, phospholipase a2
- pmn, polymorphonuclear phagocyte
- pparγ, peroxisome proliferator-activated receptor γ
- rig, retinoic acid-inducible gene
- rlh, rig-like helicase
- ros, reactive oxygen species
- star, steroidogenic acute regulatory
- tcr, t cell receptor
- tgf, transforming growth factor
- th cell, helper t cell
- tir, toll/il1r
- tlr, toll-like receptor
- tnf, tumor necrosis factor
- tnfr, tnf receptor
- tr1, t regulatory 1
- tradd, tnfr-associated death domain protein
- traf, tumor necrosis factor receptor-associated factor
- treg, regulatory t cell
- trif, tir domain-containing adaptor protein inducing interferon β
- tx, thromboxane
- txas, thromboxane a synthase
Collapse
|
11
|
Le Magueresse-Battistoni B. Proteases and their cognate inhibitors of the serine and metalloprotease subclasses, in testicular physiology. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2009; 636:133-53. [PMID: 19856166 DOI: 10.1007/978-0-387-09597-4_8] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
12
|
Sommer F, Pollinger K, Brandl F, Weiser B, Teßmar J, Blunk T, Göpferich A. Hyalocyte proliferation and ECM accumulation modulated by bFGF and TGF-β1. Graefes Arch Clin Exp Ophthalmol 2008; 246:1275-84. [DOI: 10.1007/s00417-008-0846-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2008] [Revised: 04/01/2008] [Accepted: 04/03/2008] [Indexed: 11/28/2022] Open
|
13
|
Le Magueresse-Battistoni B. Serine proteases and serine protease inhibitors in testicular physiology: the plasminogen activation system. Reproduction 2007; 134:721-9. [DOI: 10.1530/rep-07-0114] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The testis is an organ in which a series of radical remodeling events occurs during development and in adult life. These events likely rely on a sophisticated network of proteases and complementary inhibitors, including the plasminogen activation system. This review summarizes our current knowledge on the testicular occurrence and expression pattern of members of the plasminogen activation system. The various predicted functions for these molecules in the establishment and maintenance of the testicular architecture and in the process of spermatogenesis are presented.
Collapse
|
14
|
Baron D, Montfort J, Houlgatte R, Fostier A, Guiguen Y. Androgen-induced masculinization in rainbow trout results in a marked dysregulation of early gonadal gene expression profiles. BMC Genomics 2007; 8:357. [PMID: 17916255 PMCID: PMC2099445 DOI: 10.1186/1471-2164-8-357] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2007] [Accepted: 10/04/2007] [Indexed: 11/27/2022] Open
Abstract
Background Fish gonadal sex differentiation is affected by sex steroids treatments providing an efficient strategy to control the sexual phenotype of fish for aquaculture purposes. However, the biological effects of such treatments are poorly understood. The aim of this study was to identify the main effects of an androgen masculinizing treatment (11β-hydroxyandrostenedione, 11βOHΔ4, 10 mg/kg of food for 3 months) on gonadal gene expression profiles of an all-female genetic population of trout. To characterize the most important molecular features of this process, we used a large scale gene expression profiling approach using rainbow trout DNA microarrays combined with a detailed gene ontology (GO) analysis. Results 2,474 genes were characterized as up-regulated or down-regulated in trout female gonads masculinized by androgen in comparison with control male or female gonads from untreated all-male and all-female genetic populations. These genes were classified in 13 k-means clusters of temporally correlated expression profiles. Gene ontology (GO) data mining revealed that androgen treatment triggers a marked down-regulation of genes potentially involved in early oogenesis processes (GO 'mitotic cell cycle', 'nucleolus'), an up-regulation of the translation machinery (GO 'ribosome') along with a down-regulation of proteolysis (GO 'proteolysis', 'peptidase' and 'metallopeptidase activity'). Genes considered as muscle fibres markers (GO 'muscle contraction') and genes annotated as structural constituents of the extracellular matrix (GO 'extracellular matrix') or related to meiosis (GO 'chromosome' and 'meiosis') were found significantly enriched in the two clusters of genes specifically up-regulated in androgen-treated female gonads. GO annotations 'Sex differentiation' and 'steroid biosynthesis' were enriched in a cluster of genes with high expression levels only in control males. Interestingly none of these genes were stimulated by the masculinizing androgen treatment. Conclusion This study provides evidence that androgen masculinization results in a marked dysregulation of early gene expression profiles when compared to natural testicular or ovarian differentiation. Based on these results we suggest that, in our experimental conditions, androgen masculinization proceeds mainly through an early inhibition of female development.
Collapse
Affiliation(s)
- Daniel Baron
- INRA, UR1037 SCRIBE, IFR140, Ouest-Genopole, F-35000 Rennes, France.
| | | | | | | | | |
Collapse
|
15
|
Müller R, Klug J, Rodewald M, Meinhardt A. Macrophage migration inhibitory factor suppresses transforming growth factor-β2 secretion in cultured rat testicular peritubular cells. Reprod Fertil Dev 2005; 17:435-8. [PMID: 15899155 DOI: 10.1071/rd04061] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2004] [Accepted: 01/09/2005] [Indexed: 11/23/2022] Open
Abstract
Cytokines have direct effects on testicular cell functions and a number of cytokines are produced constitutively within the testis, even in the absence of immune-activation events. There is clear evidence that cytokines play a dual role as important regulatory factors in the normal function of the testis, as well as in testicular inflammation. The pro-inflammatory cytokine macrophage migration inhibitory factor (MIF) is expressed locally in the testis and has direct effects on peritubular cells, which, in turn, produce anti-inflammatory mediators, including transforming growth factor (TGF)-β2. In the present study, we investigated the function of MIF by examining its effect on the secretion of TGF-β2 in peritubular cells. Expression of TGF-β2 mRNA was shown by reverse transcription–polymerase chain reaction in peritubular cells isolated from 19-day-old rat testis. The addition of recombinant MIF to cultured peritubular cells resulted in a dose-dependent decrease in TGF-β2 secretion up to 52% of control levels after 48 h, which was significant for all doses investigated (10–100 ng mL−1 MIF). Inhibition of TGF-β2 secretion was sustained for 72 h for the highest dose of MIF used (100 ng mL−1). No effect of MIF was observed on TGF-β2 mRNA expression levels, as shown by real-time polymerase chain reaction. These results suggest that the pro-inflammatory cytokine MIF can shift the cytokine balance from the immunosuppressive state towards an inflammatory reaction, potentially through the inhibition of TGF-β2 secretion by peritubular cells.
Collapse
Affiliation(s)
- Ruth Müller
- Department of Anatomy and Cell Biology, Justus-Liebig-University, Giessen, Germany
| | | | | | | |
Collapse
|
16
|
Millena AC, Reddy SC, Bowling GH, Khan SA. Autocrine regulation of steroidogenic function of Leydig cells by transforming growth factor-alpha. Mol Cell Endocrinol 2004; 224:29-39. [PMID: 15353178 DOI: 10.1016/j.mce.2004.07.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2004] [Revised: 07/08/2004] [Accepted: 07/12/2004] [Indexed: 11/20/2022]
Abstract
We have determined the effects of LH on the expression of transforming growth factor-alpha (TGFalpha) and epidermal growth factor receptor (EGFR) system in rat Leydig cells and investigated its role in steroidogenesis. LH and TGFalpha/epidermal growth factor (EGF) significantly increased the levels of TGFalpha mRNA and protein, and the levels of EGFR protein in immature rat Leydig cells (ILC). Treatment with TGFalpha or EGF for 24h resulted in significant increase in androgen production in ILC. The increase in androgen production in response to TGFalpha was associated with increased mRNA levels of SR-BI, steroidogenic acute regulatory (StAR) and P450scc but not of 3beta-hydroxysteroid dehydrogenase (3beta-HSD) and P450c17. TGFalpha also caused a marked increase in the levels StAR protein in ILC. EGFR inhibitor (AG1478) blocked the effects of TGFalpha while MEK-inhibitor (PD98059) potentiated TGFalpha or LH effects on steroidogenesis. A PKA inhibitor (H89) blocked both TGFalpha and LH effects on steroidogenesis. We conclude that TGFalpha plays an autocrine role in LH dependent development and function of Leydig cells.
Collapse
Affiliation(s)
- Ana Cecilia Millena
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | | | | | | |
Collapse
|