1
|
Bakhtyukov AA, Derkach KV, Romanova IV, Sorokoumov VN, Sokolova TV, Govdi AI, Morina IY, Perminova AA, Shpakov AO. Effect of Low-Molecular-Weight Allosteric
Agonists of the Luteinizing Hormone Receptor on Its Expression and Distribution
in Rat Testes. J EVOL BIOCHEM PHYS+ 2021. [DOI: 10.1134/s0022093021020034] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
2
|
A 5-mer peptide derived from hinge region of hFSHR can function as positive allosteric modulator in vivo. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2020; 1863:183492. [PMID: 33065137 DOI: 10.1016/j.bbamem.2020.183492] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 09/01/2020] [Accepted: 09/28/2020] [Indexed: 12/17/2022]
Abstract
Interaction of follicle stimulating hormone (FSH) with its cognate receptor (FSHR) is critical for maintaining reproductive health. FSHR has a large extracellular domain (ECD), composed of leucine rich repeats (LRRs) and hinge region, a transmembrane domain (TMD) and a short C-terminal domain (CTD). In this study, we have identified a short peptidic stretch in the hinge region (hFSHR(271-275)), through extensive computational modeling, docking and MD simulations, that is capable of independently interacting with the extracellular loops of FSHR(TMD). In vitro studies revealed that FSHR(271-275) peptide increased binding of [125I]-FSH to rat Fshr as well as FSH-induced cAMP production. Administration of FSHR(271-275) peptide in immature female rats significantly increased FSH-mediated ovarian weight gain and promoted granulosa cell proliferation. In summary, the results demonstrate that the synthetic peptide corresponding to amino acids 271-275 of hFSHR-hinge region stimulates FSH-FSHR interaction and behaves as positive allosteric modulator of FSHR. The study also lends evidence to the existing proposition that hinge region maintains the receptor in an inactive conformation in the absence of its ligand by engaging in intramolecular interactions with extracellular loops of TMD.
Collapse
|
3
|
Schaarschmidt J, Nagel MBM, Huth S, Jaeschke H, Moretti R, Hintze V, von Bergen M, Kalkhof S, Meiler J, Paschke R. Rearrangement of the Extracellular Domain/Extracellular Loop 1 Interface Is Critical for Thyrotropin Receptor Activation. J Biol Chem 2016; 291:14095-14108. [PMID: 27129207 DOI: 10.1074/jbc.m115.709659] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Indexed: 11/06/2022] Open
Abstract
The thyroid stimulating hormone receptor (TSHR) is a G protein-coupled receptor (GPCR) with a characteristic large extracellular domain (ECD). TSHR activation is initiated by binding of the hormone ligand TSH to the ECD. How the extracellular binding event triggers the conformational changes in the transmembrane domain (TMD) necessary for intracellular G protein activation is poorly understood. To gain insight in this process, the knowledge on the relative positioning of ECD and TMD and the conformation of the linker region at the interface of ECD and TMD are of particular importance. To generate a structural model for the TSHR we applied an integrated structural biology approach combining computational techniques with experimental data. Chemical cross-linking followed by mass spectrometry yielded 17 unique distance restraints within the ECD of the TSHR, its ligand TSH, and the hormone-receptor complex. These structural restraints generally confirm the expected binding mode of TSH to the ECD as well as the general fold of the domains and were used to guide homology modeling of the ECD. Functional characterization of TSHR mutants confirms the previously suggested close proximity of Ser-281 and Ile-486 within the TSHR. Rigidifying this contact permanently with a disulfide bridge disrupts ligand-induced receptor activation and indicates that rearrangement of the ECD/extracellular loop 1 (ECL1) interface is a critical step in receptor activation. The experimentally verified contact of Ser-281 (ECD) and Ile-486 (TMD) was subsequently utilized in docking homology models of the ECD and the TMD to create a full-length model of a glycoprotein hormone receptor.
Collapse
Affiliation(s)
- Joerg Schaarschmidt
- Department of Internal Medicine, University of Leipzig, 04103 Leipzig, Germany
| | - Marcus B M Nagel
- Department of Internal Medicine, University of Leipzig, 04103 Leipzig, Germany,; Department of Proteomics, Helmholtz-Centre for Environmental Research, 04318 Leipzig, Germany
| | - Sandra Huth
- Department of Internal Medicine, University of Leipzig, 04103 Leipzig, Germany
| | - Holger Jaeschke
- Department of Internal Medicine, University of Leipzig, 04103 Leipzig, Germany
| | - Rocco Moretti
- Department of Chemistry and Center for Structural Biology, Vanderbilt University, Nashville, Tennessee 37235
| | - Vera Hintze
- Institute of Materials Science, Max Bergmann Center of Biomaterials, TU Dresden, 01069 Dresden, Germany
| | - Martin von Bergen
- Department of Proteomics, Helmholtz-Centre for Environmental Research, 04318 Leipzig, Germany,; Faculty of Biosciences, Pharmacy and Psychology, Institute of Biochemistry, University of Leipzig, 04103 Leipzig, Germany,; Aalborg University, Department of Chemistry and Bioscience, Fredrik Bajers Vej 7, 9220 Aalborg, Denmark
| | - Stefan Kalkhof
- Department of Proteomics, Helmholtz-Centre for Environmental Research, 04318 Leipzig, Germany,; Department of Bioanalytics, University of Applied Sciences and Arts of Coburg, 96450 Coburg, Germany
| | - Jens Meiler
- Department of Chemistry and Center for Structural Biology, Vanderbilt University, Nashville, Tennessee 37235
| | - Ralf Paschke
- Division of Endocrinology and Metabolism and Arnie Charbonneau Cancer Institute University of Calgary, Calgary, Alberta T2N 1N4, Canada.
| |
Collapse
|
4
|
Cahoreau C, Klett D, Combarnous Y. Structure-function relationships of glycoprotein hormones and their subunits' ancestors. Front Endocrinol (Lausanne) 2015; 6:26. [PMID: 25767463 PMCID: PMC4341566 DOI: 10.3389/fendo.2015.00026] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Accepted: 02/13/2015] [Indexed: 12/22/2022] Open
Abstract
Glycoprotein hormones (GPHs) are the most complex molecules with hormonal activity. They exist only in vertebrates but the genes encoding their subunits' ancestors are found in most vertebrate and invertebrate species although their roles are still unknown. In the present report, we review the available structural and functional data concerning GPHs and their subunits' ancestors.
Collapse
Affiliation(s)
- Claire Cahoreau
- Physiologie de la Reproduction et des Comportements (PRC), Centre National de la Recherche Scientifique, INRA, Nouzilly, France
| | - Danièle Klett
- Physiologie de la Reproduction et des Comportements (PRC), Centre National de la Recherche Scientifique, INRA, Nouzilly, France
| | - Yves Combarnous
- Physiologie de la Reproduction et des Comportements (PRC), Centre National de la Recherche Scientifique, INRA, Nouzilly, France
- *Correspondence: Yves Combarnous, Physiologie de la Reproduction et des Comportements (PRC), Centre National de la Recherche Scientifique, INRA, Nouzilly 37380, France e-mail:
| |
Collapse
|
5
|
The heterodimeric glycoprotein hormone, GPA2/GPB5, regulates ion transport across the hindgut of the adult mosquito, Aedes aegypti. PLoS One 2014; 9:e86386. [PMID: 24466069 PMCID: PMC3896475 DOI: 10.1371/journal.pone.0086386] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2013] [Accepted: 12/06/2013] [Indexed: 11/30/2022] Open
Abstract
A family of evolutionarily old hormones is the glycoprotein cysteine knot-forming heterodimers consisting of alpha- (GPA) and beta-subunits (GPB), which assemble by noncovalent bonds. In mammals, a common glycoprotein hormone alpha-subunit (GPA1) pairs with unique beta-subunits that establish receptor specificity, forming thyroid stimulating hormone (GPA1/TSHβ) and the gonadotropins luteinizing hormone (GPA1/LHβ), follicle stimulating hormone (GPA1/FSHβ), choriogonadotropin (GPA1/CGβ). A novel glycoprotein heterodimer was identified in vertebrates by genome analysis, called thyrostimulin, composed of two novel subunits, GPA2 and GPB5, and homologs occur in arthropods, nematodes and cnidarians, implying that this neurohormone system existed prior to the emergence of bilateral metazoans. In order to discern possible physiological roles of this hormonal signaling system in mosquitoes, we have isolated the glycoprotein hormone genes producing the alpha- and beta-subunits (AedaeGPA2 and AedaeGPB5) and assessed their temporal expression profiles in the yellow and dengue-fever vector, Aedes aegypti. We have also isolated a putative receptor for this novel mosquito hormone, AedaeLGR1, which contains features conserved with other glycoprotein leucine-rich repeating containing G protein-coupled receptors. AedaeLGR1 is expressed in tissues of the alimentary canal such as the midgut, Malpighian tubules and hindgut, suggesting that this novel mosquito glycoprotein hormone may regulate ionic and osmotic balance. Focusing on the hindgut in adult stage A. aegypti, where AedaeLGR1 was highly enriched, we utilized the Scanning Ion-selective Electrode Technique (SIET) to determine if AedaeGPA2/GPB5 modulated cation transport across this epithelial tissue. Our results suggest that AedaeGPA2/GPB5 does indeed participate in ionic and osmotic balance, since it appears to inhibit natriuresis and promote kaliuresis. Taken together, our findings imply this hormone may play an important role in ionic balance when levels of Na+ are limited and levels of K+ are in excess – such as during the digestion and assimilation of erythrocytes following vertebrate blood-feeding by females.
Collapse
|
6
|
Kleinau G, Biebermann H. Constitutive activities in the thyrotropin receptor: regulation and significance. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2014; 70:81-119. [PMID: 24931193 DOI: 10.1016/b978-0-12-417197-8.00003-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
The thyroid-stimulating hormone receptor (TSHR, or thyrotropin receptor) is a family A G protein-coupled receptor. It not only binds thyroid-stimulating hormone (TSH, or thyrotropin) but also interacts with autoantibodies under pathological conditions. The TSHR and TSH are essential for thyroid growth and function and thus for all thyroid hormone-associated physiological superordinated processes, including metabolism and development of the central nervous system. In vitro studies have found that the TSHR permanently stimulates ligand-independent (constitutive) activation of Gs, which ultimately leads to intracellular cAMP accumulation. Furthermore, a vast variety of constitutively activating mutations of TSHR-at more than 50 different amino acid positions-have been reported to enhance basal signaling. These lead in vivo to a "gain-of-function" phenotype of nonautoimmune hyperthyroidism or toxic adenomas. Moreover, many naturally occurring inactivating mutations are known to cause a "loss-of-function" phenotype, resulting in resistance to thyroid hormone or hyperthyrotropinemia. Several of these mutations are also characterized by impaired basal signaling, and these are designated here as "constitutively inactivating mutations" (CIMs). More than 30 amino acid positions with CIMs have been identified so far. Moreover, the permanent TSHR signaling capacity can also be blocked by inverse agonistic antibodies or small drug-like molecules, which both have a potential for clinical usage. In this chapter, information on constitutive activity in the TSHR is described, including up- and downregulation, linked protein conformations, physiological and pathophysiological conditions, and related intracellular signaling.
Collapse
Affiliation(s)
- Gunnar Kleinau
- Institute of Experimental Pediatric Endocrinology, Charité-Universitätsmedizin Berlin, Berlin, Germany.
| | - Heike Biebermann
- Institute of Experimental Pediatric Endocrinology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
7
|
Kleinau G, Neumann S, Grüters A, Krude H, Biebermann H. Novel insights on thyroid-stimulating hormone receptor signal transduction. Endocr Rev 2013; 34:691-724. [PMID: 23645907 PMCID: PMC3785642 DOI: 10.1210/er.2012-1072] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The TSH receptor (TSHR) is a member of the glycoprotein hormone receptors, a subfamily of family A G protein-coupled receptors. The TSHR is of great importance for the growth and function of the thyroid gland. The TSHR and its endogenous ligand TSH are pivotal proteins with respect to a variety of physiological functions and malfunctions. The molecular events of TSHR regulation can be summarized as a process of signal transduction, including signal reception, conversion, and amplification. The steps during signal transduction from the extra- to the intracellular sites of the cell are not yet comprehensively understood. However, essential new insights have been achieved in recent years on the interrelated mechanisms at the extracellular region, the transmembrane domain, and intracellular components. This review contains a critical summary of available knowledge of the molecular mechanisms of signal transduction at the TSHR, for example, the key amino acids involved in hormone binding or in the structural conformational changes that lead to G protein activation or signaling regulation. Aspects of TSHR oligomerization, signaling promiscuity, signaling selectivity, phenotypes of genetic variations, and potential extrathyroidal receptor activity are also considered, because these are relevant to an understanding of the overall function of the TSHR, including physiological, pathophysiological, and pharmacological perspectives. Directions for future research are discussed.
Collapse
Affiliation(s)
- Gunnar Kleinau
- Institute of Experimental Pediatric Endocrinology, Charité-Universitätsmedizin Berlin, Ostring 3, Augustenburger Platz 1, 13353 Berlin, Germany.
| | | | | | | | | |
Collapse
|
8
|
Kreuchwig A, Kleinau G, Krause G. Research resource: novel structural insights bridge gaps in glycoprotein hormone receptor analyses. Mol Endocrinol 2013; 27:1357-63. [PMID: 23798574 DOI: 10.1210/me.2013-1115] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
The first version of a glycoprotein hormone receptor (GPHR) information resource was designed to link functional with structural GPHR information, in order to support sequence-structure-function analysis of the LH, FSH, and TSH receptors (http://ssfa-gphr.de). However, structural information on a binding- and signaling-sensitive extracellular fragment (∼100 residues), the hinge region, had been lacking. A new FSHR crystal structure of the hormone-bound extracellular domain has recently been solved. The structure comprises the leucine-rich repeat domain and most parts of the hinge region. We have not only integrated the new FSHR/FSH structure and the derived homology models of TSHR/TSH, LHCGR/CG, and LHCGR/LH into our web-based information resource, but have additionally provided novel tools to analyze the advanced structural features, with the common characteristics and distinctions between GPHRs, in a more precise manner. The hinge region with its second hormone-binding site allows us to assign functional data to the new structural features between hormone and receptor, such as binding details of a sulfated tyrosine (conserved throughout the GPHRs) extending into a pocket of the hormone. We have also implemented a protein interface analysis tool that enables the identification and visualization of extracellular contact points between interaction partners. This provides a starting point for comparing the binding patterns of GPHRs. Together with the mutagenesis data stored in the database, this will help to decipher the essential residues for ligand recognition and the molecular mechanisms of signal transduction, extending from the extracellular hormone-binding site toward the intracellular G protein-binding sites.
Collapse
Affiliation(s)
- Annika Kreuchwig
- Leibniz-Institut für Molekulare Pharmakologie, 13125 Berlin, Germany
| | | | | |
Collapse
|
9
|
Troppmann B, Kleinau G, Krause G, Gromoll J. Structural and functional plasticity of the luteinizing hormone/choriogonadotrophin receptor. Hum Reprod Update 2013; 19:583-602. [DOI: 10.1093/humupd/dmt023] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
10
|
Krause G, Kreuchwig A, Kleinau G. Extended and structurally supported insights into extracellular hormone binding, signal transduction and organization of the thyrotropin receptor. PLoS One 2012; 7:e52920. [PMID: 23300822 PMCID: PMC3531376 DOI: 10.1371/journal.pone.0052920] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2012] [Accepted: 11/23/2012] [Indexed: 11/18/2022] Open
Abstract
The hormone thyrotropin (TSH) and its receptor (TSHR) are crucial for the growth and function of the thyroid gland. The TSHR is evolutionary linked with the receptors of follitropin (FSHR) and lutropin/choriogonadotropin (LHR) and their sequences and structures are similar. The extracellular region of TSHR contains more than 350 amino acids and binds hormone and antibodies. Several important questions related to functions and mechanisms of TSHR are still not comprehensively understood. One major reason for these open questions is the lack of any structural information about the extracellular segment of TSHR that connects the N-terminal leucine-rich repeat domain (LRRD) with the transmembrane helix (TMH) 1, the hinge region. It has been shown experimentally that this segment is important for fine tuning of signaling and ligand interactions. A new crystal structure containing most of the extracellular hFSHR region in complex with hFSH has recently been published. Now, we have applied these new structural insights to the homologous TSHR and have generated a structural model of the TSHR LRRD/hinge-region/TSH complex. This structural model is combined and evaluated with experimental data including hormone binding (bTSH, hTSH, thyrostimulin), super-agonistic effects, antibody interactions and signaling regulation. These studies and consideration of significant and non-significant amino acids have led to a new description of mechanisms at the TSHR, including ligand-induced displacements of specific hinge region fragments. This event triggers conformational changes at a convergent center of the LRRD and the hinge region, activating an “intramolecular agonistic unit” close to the transmembrane domain.
Collapse
Affiliation(s)
- Gerd Krause
- Leibniz-Institut für Molekulare Pharmakologie, Berlin, Germany
| | | | - Gunnar Kleinau
- Institute of Experimental Pediatric Endocrinology, Charité Universitätsmedizin Berlin, Berlin, Germany
- * E-mail:
| |
Collapse
|
11
|
Majumdar R, Dighe RR. The hinge region of human thyroid-stimulating hormone (TSH) receptor operates as a tunable switch between hormone binding and receptor activation. PLoS One 2012; 7:e40291. [PMID: 22792265 PMCID: PMC3391290 DOI: 10.1371/journal.pone.0040291] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2012] [Accepted: 06/05/2012] [Indexed: 01/12/2023] Open
Abstract
The mechanism by which the hinge regions of glycoprotein hormone receptors couple hormone binding to activation of downstream effecters is not clearly understood. In the present study, agonistic (311.62) and antagonistic (311.87) monoclonal antibodies (MAbs) directed against the TSH receptor extracellular domain were used to elucidate role of the hinge region in receptor activation. MAb 311.62 which identifies the LRR/Cb-2 junction (aa 265–275), increased the affinity of TSHR for the hormone while concomitantly decreasing its efficacy, whereas MAb 311.87 recognizing LRR 7–9 (aa 201–259) acted as a non-competitive inhibitor of Thyroid stimulating hormone (TSH) binding. Binding of MAbs was sensitive to the conformational changes caused by the activating and inactivating mutations and exhibited differential effects on hormone binding and response of these mutants. By studying the effects of these MAbs on truncation and chimeric mutants of thyroid stimulating hormone receptor (TSHR), this study confirms the tethered inverse agonistic role played by the hinge region and maps the interactions between TSHR hinge region and exoloops responsible for maintenance of the receptor in its basal state. Mechanistic studies on the antibody-receptor interactions suggest that MAb 311.87 is an allosteric insurmountable antagonist and inhibits initiation of the hormone induced conformational changes in the hinge region, whereas MAb 311.62 acts as a partial agonist that recognizes a conformational epitope critical for coupling of hormone binding to receptor activation. The hinge region, probably in close proximity with the α-subunit in the hormone-receptor complex, acts as a tunable switch between hormone binding and receptor activation.
Collapse
MESH Headings
- Algorithms
- Allosteric Regulation
- Amino Acid Motifs
- Amino Acid Sequence
- Amino Acid Substitution
- Animals
- Antibodies, Monoclonal, Murine-Derived/immunology
- Antibodies, Monoclonal, Murine-Derived/pharmacology
- Binding, Competitive
- Cattle
- Cell Surface Display Techniques
- Cyclic AMP/metabolism
- Epitope Mapping
- HEK293 Cells
- Humans
- Mutagenesis, Site-Directed
- Peptide Fragments/chemistry
- Peptide Fragments/immunology
- Protein Binding
- Protein Structure, Tertiary
- Receptors, Thyrotropin/chemistry
- Receptors, Thyrotropin/genetics
- Receptors, Thyrotropin/immunology
- Receptors, Thyrotropin/metabolism
- Second Messenger Systems
- Thyrotropin/metabolism
- Thyrotropin/physiology
Collapse
Affiliation(s)
- Ritankar Majumdar
- Department of Molecular Reproduction, Development and Genetics,Indian Institute of Science, Bangalore, Karnataka, India
| | - Rajan R. Dighe
- Department of Molecular Reproduction, Development and Genetics,Indian Institute of Science, Bangalore, Karnataka, India
- * E-mail:
| |
Collapse
|
12
|
Capalbo A, Sagnella F, Apa R, Fulghesu AM, Lanzone A, Morciano A, Farcomeni A, Gangale MF, Moro F, Martinez D, Ciardulli A, Palla C, Uras ML, Spettu F, Cappai A, Carcassi C, Neri G, Tiziano FD. The 312N variant of the luteinizing hormone/choriogonadotropin receptor gene (LHCGR) confers up to 2·7-fold increased risk of polycystic ovary syndrome in a Sardinian population. Clin Endocrinol (Oxf) 2012; 77:113-9. [PMID: 22356187 DOI: 10.1111/j.1365-2265.2012.04372.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
OBJECTIVE Polycystic ovary syndrome (PCOS) is a frequent condition, affecting about 15% of women of reproductive age. Because of its familial occurrence, a multifactorial model of susceptibility, including both genetic and environmental factors, has been proposed. However, the identification of genetic factors has been elusive. DESIGN Case-control study aimed at evaluating possible associations between functionally relevant variants of the luteinizing hormone/choriogonadotrophin receptor gene (LHCGR) and PCOS phenotype. PATIENTS A total of 198 PCOS and 187 non-PCOS women, aged 14-35 years, of Sardinian origin, were referred to the outpatient clinic of the Department of Obstetrics and Gynaecology of the University of Cagliari (Sardinia). PCOS diagnosis was based on the Rotterdam criteria. MEASUREMENTS We determined the genotype of ins18LQ, S291N and S312N variants at the LHCGR locus. Genotype was related to the presence or absence of PCOS and to several clinical and biochemical characteristics. RESULTS The presence of at least one 312N allele was strongly associated with PCOS risk (OR, 2·04; 95% CI, 1·32-3·14; χ(2) , 10·47; P = 0·001). 312N homozygosity was associated with a further risk increase (OR, 2·73; 95% CI, 1·25-5·95; χ(2) , 6·65; P = 0·01). The number of ins18LQ alleles was associated with LH serum levels in controls (χ(2) , 8·04, P = 0·017). CONCLUSIONS For the first time, we have identified a genetic variant that is strongly associated with PCOS in an isolated population. These results, if confirmed in other cohorts, may provide the opportunity to test the S312N genotype at the LHCGR locus in fertile women to assess the risk of PCOS. The avoidance of triggering factors like weight increase may improve the reproductive outcome of potentially at-risk subjects.
Collapse
Affiliation(s)
- A Capalbo
- Istituto di Genetica Medica, Università Cattolica del Sacro Cuore, Roma, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Kleinau G, Mueller S, Jaeschke H, Grzesik P, Neumann S, Diehl A, Paschke R, Krause G. Defining structural and functional dimensions of the extracellular thyrotropin receptor region. J Biol Chem 2011; 286:22622-31. [PMID: 21525003 DOI: 10.1074/jbc.m110.211193] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The extracellular region of the thyrotropin receptor (TSHR) can be subdivided into the leucine-rich repeat domain (LRRD) and the hinge region. Both the LRRD and the hinge region interact with thyrotropin (TSH) or autoantibodies. Structural data for the TSHR LRRD were previously determined by crystallization (amino acids Glu(30)-Thr(257), 10 repeats), but the structure of the hinge region is still undefined. Of note, the amino acid sequence (Trp(258)-Tyr(279)) following the crystallized LRRD comprises a pattern typical for leucine-rich repeats with conserved hydrophobic side chains stabilizing the repeat fold. Moreover, functional data for amino acids between the LRRD and the transmembrane domain were fragmentary. We therefore investigated systematically these TSHR regions by mutagenesis to reveal insights into their functional contribution and potential structural features. We found that mutations of conserved hydrophobic residues between Thr(257) and Tyr(279) cause TSHR misfold, which supports a structural fold of this peptide, probably as an additional leucine-rich repeat. Furthermore, we identified several new mutations of hydrophilic amino acids in the entire hinge region leading to partial TSHR inactivation, indicating that these positions are important for intramolecular signal transduction. In summary, we provide new information regarding the structural features and functionalities of extracellular TSHR regions. Based on these insights and in context with previous results, we suggest an extracellular activation mechanism that supports an intramolecular agonistic unit as a central switch for activating effects at the extracellular region toward the serpentine domain.
Collapse
Affiliation(s)
- Gunnar Kleinau
- Department for Structural Biology, Leibniz-Institut für Molekulare Pharmakologie, D-13125 Berlin, Germany
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Mueller S, Jaeschke H, Günther R, Paschke R. The hinge region: an important receptor component for GPHR function. Trends Endocrinol Metab 2010; 21:111-22. [PMID: 19819720 DOI: 10.1016/j.tem.2009.09.001] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2009] [Revised: 09/11/2009] [Accepted: 09/11/2009] [Indexed: 11/24/2022]
Abstract
Glycoprotein hormone receptors (GPHRs) are members of the seven-transmembrane-spanning receptor family characterized by a large ectodomain. The hinge region belongs to a part of the GPHR ectodomain for which the three-dimensional structure has not yet been deciphered, leaving important questions unanswered concerning ligand binding and GPHR activation. Recent publications indicate that specific residues of the hinge region mediate hormone binding, receptor activation and/or intramolecular signaling for the three GPHRs, emphasizing the importance of this region. Based on these findings, the hinge region is involved at least in part in hormone binding and receptor activation. This review summarizes functional data regarding the hinge region, demonstrating that this receptor portion represents a link between ligand binding and subsequent GPHR activation.
Collapse
MESH Headings
- Amino Acid Sequence
- Humans
- Models, Biological
- Molecular Sequence Data
- Protein Folding
- Protein Structure, Tertiary/physiology
- Receptors, FSH/chemistry
- Receptors, FSH/physiology
- Receptors, LH/chemistry
- Receptors, LH/physiology
- Receptors, Pituitary Hormone/chemistry
- Receptors, Pituitary Hormone/immunology
- Receptors, Pituitary Hormone/physiology
- Receptors, Thyrotropin/chemistry
- Receptors, Thyrotropin/immunology
- Receptors, Thyrotropin/physiology
- Sequence Homology, Amino Acid
Collapse
Affiliation(s)
- Sandra Mueller
- Third Medical Department, University of Leipzig, Liebigstrasse 20, 04103 Leipzig, Germany
| | | | | | | |
Collapse
|
15
|
Mueller S, Kleinau G, Szkudlinski MW, Jaeschke H, Krause G, Paschke R. The superagonistic activity of bovine thyroid-stimulating hormone (TSH) and the human TR1401 TSH analog is determined by specific amino acids in the hinge region of the human TSH receptor. J Biol Chem 2009; 284:16317-16324. [PMID: 19386596 DOI: 10.1074/jbc.m109.005710] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Bovine TSH (bTSH) has a higher affinity to the human TSHR (hTSHR) and a higher signaling activity than human TSH (hTSH). The molecular reasons for these phenomena are unknown. Distinct negatively charged residues (Glu297, Glu303, and Asp382) in the hinge region of the hTSHR are known to be important for bTSH binding and signaling. To investigate the potential relevance of these positions for differences between bTSH and hTSH in the interaction to the hTSHR, we determined bTSH- and hTSH-mediated cAMP production of several substitutions at these three hinge residues. To examine specific variations of hTSH, we also investigated the superagonistic hTSH analog TR1401 (TR1401), whose sequence differs from hTSH by four additional positively charged amino acids that are also present in bTSH. To characterize possible interactions between the acidic hTSHR positions Glu297, Glu303, or Asp382 and the additional basic residues of TR1401, we investigated TR1401 binding and signaling properties. Our data reveal increased cAMP signaling of the hTSHR using TR1401 and bTSH compared with hTSH. Whereas Asp382 seems to be important for bTSH- and TR1401-mediated but not for hTSH-mediated signaling, the substitution E297K exhibits a decreased signaling for all three TSH variants. Interestingly, bTSH and TR1401 showed only a slightly different binding pattern. These observations imply that specific residues of the hinge region are mediators of the superagonistic activity of bTSH and TR1401 in contrast to hTSH. Moreover, the simultaneous localization of binding components in the glycoprotein hormone molecule and the receptor hinge region permits important reevaluation of interacting hormone receptor domains.
Collapse
Affiliation(s)
- Sandra Mueller
- From the III Medical Department, University of Leipzig, Philipp-Rosenthal-Strasse 27, D-04103 Leipzig, Germany
| | - Gunnar Kleinau
- Leibniz-Institut für Molekulare Pharmakologie, Robert-Roessle-Strasse 10, D-13125 Berlin, Germany
| | | | - Holger Jaeschke
- From the III Medical Department, University of Leipzig, Philipp-Rosenthal-Strasse 27, D-04103 Leipzig, Germany
| | - Gerd Krause
- Leibniz-Institut für Molekulare Pharmakologie, Robert-Roessle-Strasse 10, D-13125 Berlin, Germany
| | - Ralf Paschke
- From the III Medical Department, University of Leipzig, Philipp-Rosenthal-Strasse 27, D-04103 Leipzig, Germany.
| |
Collapse
|
16
|
Kleinau G, Krause G. Thyrotropin and homologous glycoprotein hormone receptors: structural and functional aspects of extracellular signaling mechanisms. Endocr Rev 2009; 30:133-51. [PMID: 19176466 DOI: 10.1210/er.2008-0044] [Citation(s) in RCA: 91] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The TSH receptor (TSHR) together with the homologous lutropin/choriogonadotropin receptor and the follitropin receptor are glycoprotein hormone receptors (GPHRs). They constitute a subfamily of the rhodopsin-like G protein-coupled receptors with seven transmembrane helices. GPHRs and their corresponding hormones are pivotal proteins with respect to a variety of physiological functions. The identification and characterization of intra- and intermolecular signaling determinants as well as signaling mechanisms are prerequisites to gaining molecular insights into functions and (pathogenic) dysfunctions of GPHRs. Knowledge about activation mechanisms is fragmentary, and the specific aspects have still not been understood in their entirety. Therefore, here we critically review the data available for these receptors and bring together structural and functional findings with a focus on the important large extracellular portion of the TSHR. One main focus is the particular function of structural determinants in the initial steps of the activation such as: 1) hormone binding at the extracellular site; 2) hormone interaction at a second binding site in the hinge region; 3) signal regulation via sequence motifs in the hinge region; and 4) synergistic signal amplification by cooperative effects of the extracellular loops toward the transmembrane region. Comparison and consolidation of data from the homologous glycoprotein hormone receptors TSHR, follitropin receptor, and lutropin/choriogonadotropin receptor provide an overview of extracellular mechanisms of signal initiation, conduction, and regulation at the TSHR and homologous receptors. Finally, we address the issue of structural implications and suggest a refined scenario for the initial signaling process on GPHRs.
Collapse
Affiliation(s)
- Gunnar Kleinau
- Leibniz-Institut für Molekulare Pharmakologie, Berlin, Germany
| | | |
Collapse
|
17
|
Kleinau G, Jaeschke H, Mueller S, Raaka BM, Neumann S, Paschke R, Krause G. Evidence for cooperative signal triggering at the extracellular loops of the TSH receptor. FASEB J 2008; 22:2798-808. [PMID: 18381815 PMCID: PMC2493456 DOI: 10.1096/fj.07-104711] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2007] [Accepted: 02/28/2008] [Indexed: 12/20/2022]
Abstract
The mechanisms governing transition of the thyroid stimulating hormone (TSH) receptor (TSHR) from basal to active conformations are poorly understood. Considering that constitutively activating mutations (CAMs) and inactivating mutations in each of the extracellular loops (ECLs) trigger only partial TSHR activation or inactivation, respectively, we hypothesized that full signaling occurs via multiple extracellular signal propagation events. Therefore, individual CAMs in the extracellular region were combined to create double and triple mutants. In support of our hypothesis, combinations of mutants in the ECLs are in some cases additive, while in others they are even synergistic, with triple mutant I486A/I568V/V656F exhibiting a 70-fold increase in TSH-independent signaling. The proximity but likely different spatial orientation of the residues of activating and inactivating mutations in each ECL supports a dual functionality to facilitate signal induction and conduction, respectively. This is the first report for G-protein coupled receptors, suggesting that multiple and cooperative signal propagating events at all three ECLs are required for full receptor activation. Our findings provide new insights concerning molecular signal transmission from extracellular domains toward the transmembrane helix bundle of the glycoprotein hormone receptors.
Collapse
Affiliation(s)
- Gunnar Kleinau
- Leibniz-Institut für Molekulare Pharmakologie, Robert-Rössle-Str.10, D-13125 Berlin, Germany
| | | | | | | | | | | | | |
Collapse
|
18
|
Smit MJ, Vischer HF, Bakker RA, Jongejan A, Timmerman H, Pardo L, Leurs R. Pharmacogenomic and Structural Analysis of Constitutive G Protein–Coupled Receptor Activity. Annu Rev Pharmacol Toxicol 2007; 47:53-87. [PMID: 17029567 DOI: 10.1146/annurev.pharmtox.47.120505.105126] [Citation(s) in RCA: 138] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
G protein-coupled receptors (GPCRs) respond to a chemically diverse plethora of signal transduction molecules. The notion that GPCRs also signal without an external chemical trigger, i.e., in a constitutive or spontaneous manner, resulted in a paradigm shift in the field of GPCR pharmacology. The discovery of constitutive GPCR activity and the fact that GPCR binding and signaling can be strongly affected by a single point mutation drew attention to the evolving area of GPCR pharmacogenomics. For a variety of GPCRs, point mutations have been convincingly linked to human disease. Mutations within conserved motifs, known to be involved in GPCR activation, might explain the properties of some naturally occurring, constitutively active GPCR variants linked to disease. In this review, we provide a brief historical introduction to the concept of constitutive receptor activity and the pharmacogenomic and structural aspects of constitutive receptor activity.
Collapse
Affiliation(s)
- Martine J Smit
- Leiden/Amsterdam Center for Drug Research, Division of Medicinal Chemistry, Vrije Universiteit, Faculty of Sciences, Department of Chemistry, 1081 HV Amsterdam, The Netherlands.
| | | | | | | | | | | | | |
Collapse
|
19
|
Puett D, Li Y, DeMars G, Angelova K, Fanelli F. A functional transmembrane complex: the luteinizing hormone receptor with bound ligand and G protein. Mol Cell Endocrinol 2007; 260-262:126-36. [PMID: 17059864 PMCID: PMC1866297 DOI: 10.1016/j.mce.2006.05.009] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2006] [Accepted: 05/11/2006] [Indexed: 02/08/2023]
Abstract
The luteinizing hormone receptor (LHR) is one of eight members in a cluster of the rhodopsin family of the large G protein-coupled receptor (GPCR) superfamily that contains some 800-900 genes in the human genome. LHR, along with its paralogons, follicle stimulating hormone receptor (FSHR) and thyroid stimulating hormone receptor, form one of the three classes in this cluster; the two other classes contain the relaxin-binding GPCRs and orphan GPCRs. These GPCRs are characterized by a relatively large ectodomain (ECD) containing leucine-rich-repeats (LRRs); in the class of glycoprotein hormone receptors, the LRR region is capped by N-terminal and C-terminal cysteine-rich regions. Binding of human chorionic gonadotropin (hCG) or luteinizing hormone to the LHR-ECD triggers a conformational change of the transmembrane region of the receptor facilitating binding and activation of Gs, followed by effector enzyme activation and subsequent intracellular signaling. Viewing LHR as a transmembrane anchoring protein that sequentially binds hCG and Gs to give the hCG-LHR-Gs complex, numerous interactions and conformational changes must be considered. There is, unfortunately, a paucity of structural data on LHR, but crystal structures exist for hCG, the homologous FSH-FSHR-ECD (N-terminal fragment) complex, rhodopsin (in the inactive state), an active form of Galphas (transducin), and the betagamma heterodimer. Using a combined experimental (site-directed mutagenesis followed by characterization in transfected cells) and computational (homology modeling and molecular dynamics simulations) approach, good working models are being developed for the protein-protein interaction faces and, in some cases, the ensuing conformational changes induced by complex formation. hCG binding to the LHR-ECD appears to involve several LRRs; LHR activation can be described in terms of disrupting a network of H-bonds in the cytosolic halves of helices 1-3, 6, and 7; and binding of LHR to Gs involves, in large part, intracellular loop 2 binding, presumably to Gsalpha at its C-terminus. Major gaps exist in our understanding at the molecular level of the six-polypeptide chain complex, hCG-LHR-Gs, but considerable progress has been made in the past few years.
Collapse
Affiliation(s)
- D Puett
- Department of Biochemistry & Molecular Biology, Life Sciences Building, University of Georgia, 120 Green Street, Athens, GA 30602-7229, USA.
| | | | | | | | | |
Collapse
|
20
|
Meehan TP, Narayan P. Constitutively active luteinizing hormone receptors: consequences of in vivo expression. Mol Cell Endocrinol 2007; 260-262:294-300. [PMID: 17045736 PMCID: PMC1800889 DOI: 10.1016/j.mce.2006.03.045] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2006] [Accepted: 03/02/2006] [Indexed: 11/17/2022]
Abstract
Activating mutations in the luteinizing hormone receptor (LHR) gene are one of the most common mutations found in the gonadotropin receptor genes. Human males with these mutations exhibit precocious puberty while females do not have an obvious phenotype. To better understand the pathophysiology of premature LHR activation, transgenic mice have been generated with an activating mutation in LHR and a genetically engineered ligand-activated LHR. This review will summarize the major findings obtained with these two genetically modified mouse models and briefly discuss the similarities and differences between them and with the human phenotype.
Collapse
Affiliation(s)
| | - Prema Narayan
- * Corresponding author: Department of Physiology,
School of Medicine, Southern Illinois University, Life Science III, Mailcode
6523, Carbondale IL, 62901, USA, Tel: 618-453-1567, Fax: 618-453-1517,
| |
Collapse
|
21
|
Significance of Ectodomain Cysteine Boxes 2 and 3 for the Activation Mechanism of the Thyroid-stimulating Hormone Receptor. J Biol Chem 2006. [DOI: 10.1016/s0021-9258(19)84077-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
22
|
Mueller S, Kleinau G, Jaeschke H, Neumann S, Krause G, Paschke R. Significance of ectodomain cysteine boxes 2 and 3 for the activation mechanism of the thyroid-stimulating hormone receptor. J Biol Chem 2006; 281:31638-46. [PMID: 16899458 DOI: 10.1074/jbc.m604770200] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Recently, we identified constitutively activating mutations at positions Asp-403, Glu-404, and Asn-406 in the third extracellular cysteine box (C-b3) of the thyroid-stimulating hormone receptor. We hypothesized that this region could act as a molecular interface between the extracellular and serpentine domain. In this study we present a model for properties of potential interaction partners for this region. Moreover, we show that Pro-400 and Pro-407 adjacent to this epitope are also important for stabilizing the partially active, basal conformation of the wild-type (WT) thyroid-stimulating hormone receptor. Furthermore, the mutation K291A in the second extracellular cysteine box (C-b2) was identified as a new constitutively activating mutation that releases the basal conformation of the WT receptor like the known tryptic cleavage in its close vicinity. Taken together, we provide an activation scenario at the C-b2/C-b3 unit. Three anchor fragments (anchors I-III) most likely constrain the basal conformation. The three anchor fragments are tightly packed. A disulfide bridge holds the C-b2/C-b3 portions in close positions. Independent of the type of conformational interference such as side chain modifications, tryptic cleavage, or hormone stimulation that act on the constrained C-b2/C-b3 WT conformation, it will always release one of the anchor fragments. Subsequently, this results in a conformational displacement of the C-b2/C-b3 portions relative to each other, inducing receptor activation.
Collapse
Affiliation(s)
- Sandra Mueller
- III Medical Department, University of Leipzig, Philipp-Rosenthal-Strasse 27, D-04103 Leipzig, Germany
| | | | | | | | | | | |
Collapse
|
23
|
Lohstroh P, Dong H, Chen J, Gee N, Xu X, Lasley B. Daily immunoactive and bioactive human chorionic gonadotropin profiles in periimplantation urine samples. Biol Reprod 2006; 75:24-33. [PMID: 16525035 DOI: 10.1095/biolreprod.105.048363] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
A need exists for broadly applicable biomarkers of pregnancy outcome in population-based studies that assess environmental hazards to human reproduction. Previous studies have demonstrated that during the periimplantation period, measures of the circulating levels of immunoreactive hCG (IhCG) are not predictive of pregnancy outcome, whereas measurements of the circulating levels of bioactive hCG (BhCG) provide information relating to pregnancy outcome and might provide the basis for an early biomarker of pregnancy outcome. However, for this biomarker to have broad application in population-based studies, it must be adapted to urinary hCG metabolites. The principle objective of the present study was to characterize the periimplantation excretion patterns of urinary hCG metabolites of pregnancies that resulted in live birth (LB), early pregnancy loss (EPL), and recognized clinical abortion (CAB) with an immunoenzymometric assay specific to intact hCG and an LH/chorionic gonadotropin cellular bioassay as the basis for a preliminary comparison between successful (LB) and failing (EPL and CAB) outcome groups. Automated immunoassays for FSH and hCG were used to define each conceptive cycle's implantation window. The timing of first hCG detection was significantly later for the EPL group. Pregnancies that resulted in LB had consistently rising average daily IhCG and BhCG levels, with no significant differences when average daily IhCG and BhCG measurements were compared (Student t-test, P>0.05), whereas pregnancies that resulted in CAB and EFL had lower average daily IhCG and BhCG levels that increased inconsistently. These findings demonstrate that critical information related to pregnancy outcome may be present when multiple urinary hCG isoforms are measured. Further data suggest that the rate of change for the ratio of daily BhCG over IhCG levels might be useful as the basis of a broadly applicable early biomarker for pregnancy outcome.
Collapse
Affiliation(s)
- Pete Lohstroh
- Center for Health and the Environment, University of California, Davis, California 95616-8615, USA
| | | | | | | | | | | |
Collapse
|
24
|
Kleinau G, Jäschke H, Neumann S, Lättig J, Paschke R, Krause G. Identification of a novel epitope in the thyroid-stimulating hormone receptor ectodomain acting as intramolecular signaling interface. J Biol Chem 2004; 279:51590-600. [PMID: 15345720 DOI: 10.1074/jbc.m404748200] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Glycoprotein hormone receptors (GPHRs) differ from the other seven transmembrane receptors mainly through a complex activation mechanism that requires the binding of a large hormone toward a large N-terminal ectodomain. The intramolecular mechanism of the signal transduction to the serpentine domain upon hormone binding at the ectodomain is not understood. To identify determinants at the GPHR ectodomain that may be involved in signal transduction, we first searched for homologous structural features. Based on high sequence similarity to the determined structures of the Nogo-receptor ectodomain and the intermolecular complex of the Interleukin-8 ligand (IL8) and the N-terminal peptide of the IL8 receptor (IL8RA), the hypothesis was developed that portions of the intramolecular components, Cysteine-box-2 and Cysteine-box-3, of the GPHR ectodomain interact and localize at the interface between ectodomain and serpentine domain. Indeed, point mutations within the D403EFN406 motif at Cysteine-box-3 of the thyrotropin receptor resulted in increased basal cAMP levels, suggesting that this motif may be important for transduction of the signal from the ectodomain to the transmembrane domain. New indications are provided about the tight spatial cooperation and relative location of the new epitope and other determinants at the thyrotropin receptor ectodomain, such as the leucine-rich repeat motif Ser281 and the cysteine boxes. According to the high sequence conservation, the results are of general relevance for the signal transduction mechanism of other glycoprotein hormone receptors such as choriogonadotrophic/luteinizing hormone receptor and follicle-stimulating hormone receptor.
Collapse
Affiliation(s)
- Gunnar Kleinau
- Forschungsinstitut für Molekulare Pharmakologie, D-13125 Berlin, Germany
| | | | | | | | | | | |
Collapse
|
25
|
van Straten NCR, van Berkel THJ, Demont DR, Karstens WJF, Merkx R, Oosterom J, Schulz J, van Someren RG, Timmers CM, van Zandvoort PM. Identification of Substituted 6-Amino-4-phenyltetrahydroquinoline Derivatives: Potent Antagonists for the Follicle-Stimulating Hormone Receptor. J Med Chem 2004; 48:1697-700. [PMID: 15771412 DOI: 10.1021/jm049676l] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Substituted 6-amino-4-phenyl-tetrahydroquinoline derivatives are described that are antagonists for the G(s)-protein-coupled human follicle-stimulating hormone (FSH) receptor. These compounds show high antagonistic efficacy in vitro using a CHO cell line expressing the human FSH receptor. Antagonist 10 also showed a submicromolar IC(50) in a more physiologically relevant rat granulosa cell assay and was found to significantly inhibit follicle growth and ovulation in an ex vivo mouse model. This compound class may open the way toward a novel, nonsteroidal approach for contraception.
Collapse
Affiliation(s)
- Nicole C R van Straten
- Lead Discovery Unit, Research and Development, N.V. Organon, P.O. Box 20, 5340 BH Oss, The Netherlands.
| | | | | | | | | | | | | | | | | | | |
Collapse
|