1
|
Armirola-Ricaurte C, Zonnekein N, Koutsis G, Amor-Barris S, Pelayo-Negro AL, Atkinson D, Efthymiou S, Turchetti V, Dinopoulos A, Garcia A, Karakaya M, Moris G, Polat AI, Yiş U, Espinos C, Van de Vondel L, De Vriendt E, Karadima G, Wirth B, Hanna M, Houlden H, Berciano J, Jordanova A. Alternative splicing expands the clinical spectrum of NDUFS6-related mitochondrial disorders. Genet Med 2024; 26:101117. [PMID: 38459834 PMCID: PMC11180951 DOI: 10.1016/j.gim.2024.101117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 03/03/2024] [Accepted: 03/04/2024] [Indexed: 03/10/2024] Open
Abstract
PURPOSE We describe 3 families with Charcot-Marie-Tooth neuropathy (CMT), harboring a homozygous NDUFS6 NM_004553.6:c.309+5G>A variant previously linked to fatal Leigh syndrome. We aimed to characterize clinically and molecularly the newly identified patients and understand the mechanism underlying their milder phenotype. METHODS The patients underwent extensive clinical examinations. Exome sequencing was done in 4 affected individuals. The functional effect of the c.309+5G>A variant was investigated in patient-derived EBV-transformed lymphoblasts at the complementary DNA, protein, and mitochondrial level. Alternative splicing was evaluated using complementary DNA long-read sequencing. RESULTS All patients presented with early-onset, slowly progressive axonal CMT, and nystagmus; some exhibited additional central nervous system symptoms. The c.309+5G>A substitution caused the expression of aberrantly spliced transcripts and negligible levels of the canonical transcript. Immunoblotting showed reduced levels of mutant isoforms. No detectable defects in mitochondrial complex stability or bioenergetics were found. CONCLUSION We expand the clinical spectrum of NDUFS6-related mitochondrial disorders to include axonal CMT, emphasizing the clinical and pathophysiologic overlap between these 2 clinical entities. This work demonstrates the critical role that alternative splicing may play in modulating the severity of a genetic disorder, emphasizing the need for careful consideration when interpreting splice variants and their implications on disease prognosis.
Collapse
Affiliation(s)
- Camila Armirola-Ricaurte
- Molecular Neurogenomics group, VIB Center for Molecular Neurology, VIB, Antwerp, Belgium; Molecular Neurogenomics group, Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | - Noortje Zonnekein
- Molecular Neurogenomics group, VIB Center for Molecular Neurology, VIB, Antwerp, Belgium; Molecular Neurogenomics group, Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | - Georgios Koutsis
- Neurogenetics Unit, 1st Department of Neurology, Eginitio Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Silvia Amor-Barris
- Molecular Neurogenomics group, VIB Center for Molecular Neurology, VIB, Antwerp, Belgium; Molecular Neurogenomics group, Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | - Ana Lara Pelayo-Negro
- University Hospital Marqués de Valdecilla (IFIMAV), University of Cantabria, Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Santander, Spain
| | - Derek Atkinson
- Molecular Neurogenomics group, VIB Center for Molecular Neurology, VIB, Antwerp, Belgium; Molecular Neurogenomics group, Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | - Stephanie Efthymiou
- Department of Neuromuscular Disorders, UCL Institute of Neurology, Queen Square, London, United Kingdom
| | - Valentina Turchetti
- Department of Neuromuscular Disorders, UCL Institute of Neurology, Queen Square, London, United Kingdom
| | - Argyris Dinopoulos
- 3rd Department of Pediatrics, Attiko Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Antonio Garcia
- Service of Clinical Neurophysiology, University Hospital Marqués de Valdecilla, Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Santander, Spain
| | - Mert Karakaya
- Institute of Human Genetics, Center for Molecular Medicine Cologne, Center for Rare Diseases, University Hospital of Cologne, University of Cologne, Cologne, Germany
| | - German Moris
- Service of Neurology, University Hospital Central de Asturias, University of Oviedo, Oviedo, Spain
| | - Ayşe Ipek Polat
- Department of Pediatric Neurology, Dokuz Eylül University, Izmir, Turkey
| | - Uluç Yiş
- Department of Pediatric Neurology, Dokuz Eylül University, Izmir, Turkey
| | - Carmen Espinos
- Rare Neurodegenerative Disease Laboratory, Centro de Investigación Príncipe Felipe (CIPF), CIBER on Rare Diseases (CIBERER), Valencia, Spain
| | - Liedewei Van de Vondel
- Translational Neurosciences, Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium; Laboratory of Neuromuscular Pathology, Institute Born-Bunge, University of Antwerp, Antwerp, Belgium
| | - Els De Vriendt
- Molecular Neurogenomics group, VIB Center for Molecular Neurology, VIB, Antwerp, Belgium; Molecular Neurogenomics group, Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | - Georgia Karadima
- Neurogenetics Unit, 1st Department of Neurology, Eginitio Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Brunhilde Wirth
- Institute of Human Genetics, Center for Molecular Medicine Cologne, Center for Rare Diseases, University Hospital of Cologne, University of Cologne, Cologne, Germany
| | - Michael Hanna
- Department of Neuromuscular Disorders, UCL Institute of Neurology, Queen Square, London, United Kingdom
| | - Henry Houlden
- Department of Neuromuscular Disorders, UCL Institute of Neurology, Queen Square, London, United Kingdom
| | - Jose Berciano
- University Hospital Marqués de Valdecilla (IFIMAV), University of Cantabria, Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Santander, Spain
| | - Albena Jordanova
- Molecular Neurogenomics group, VIB Center for Molecular Neurology, VIB, Antwerp, Belgium; Molecular Neurogenomics group, Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium; Department of Medical Chemistry and Biochemistry, Medical University-Sofia, Sofia, Bulgaria.
| |
Collapse
|
2
|
Mahmud S, Biswas S, Afrose S, Mita MA, Hasan MR, Shimu MSS, Paul GK, Chung S, Saleh MA, Alshehri S, Ghoneim MM, Alruwaily M, Kim B. Use of Next-Generation Sequencing for Identifying Mitochondrial Disorders. Curr Issues Mol Biol 2022; 44:1127-1148. [PMID: 35723297 PMCID: PMC8947152 DOI: 10.3390/cimb44030074] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 02/18/2022] [Accepted: 02/24/2022] [Indexed: 12/06/2022] Open
Abstract
Mitochondria are major contributors to ATP synthesis, generating more than 90% of the total cellular energy production through oxidative phosphorylation (OXPHOS): metabolite oxidation, such as the β-oxidation of fatty acids, and the Krebs's cycle. OXPHOS inadequacy due to large genetic lesions in mitochondrial as well as nuclear genes and homo- or heteroplasmic point mutations in mitochondrially encoded genes is a characteristic of heterogeneous, maternally inherited genetic disorders known as mitochondrial disorders that affect multisystemic tissues and organs with high energy requirements, resulting in various signs and symptoms. Several traditional diagnostic approaches, including magnetic resonance imaging of the brain, cardiac testing, biochemical screening, variable heteroplasmy genetic testing, identifying clinical features, and skeletal muscle biopsies, are associated with increased risks, high costs, a high degree of false-positive or false-negative results, or a lack of precision, which limits their diagnostic abilities for mitochondrial disorders. Variable heteroplasmy levels, mtDNA depletion, and the identification of pathogenic variants can be detected through genetic sequencing, including the gold standard Sanger sequencing. However, sequencing can be time consuming, and Sanger sequencing can result in the missed recognition of larger structural variations such as CNVs or copy-number variations. Although each sequencing method has its own limitations, genetic sequencing can be an alternative to traditional diagnostic methods. The ever-growing roster of possible mutations has led to the development of next-generation sequencing (NGS). The enhancement of NGS methods can offer a precise diagnosis of the mitochondrial disorder within a short period at a reasonable expense for both research and clinical applications.
Collapse
Affiliation(s)
- Shafi Mahmud
- Department of Genetic Engineering and Biotechnology, University of Rajshahi, Rajshahi 6205, Bangladesh; (S.B.); (S.A.); (M.A.M.); (M.R.H.); (M.S.S.S.); (G.K.P.); (M.A.S.)
| | - Suvro Biswas
- Department of Genetic Engineering and Biotechnology, University of Rajshahi, Rajshahi 6205, Bangladesh; (S.B.); (S.A.); (M.A.M.); (M.R.H.); (M.S.S.S.); (G.K.P.); (M.A.S.)
| | - Shamima Afrose
- Department of Genetic Engineering and Biotechnology, University of Rajshahi, Rajshahi 6205, Bangladesh; (S.B.); (S.A.); (M.A.M.); (M.R.H.); (M.S.S.S.); (G.K.P.); (M.A.S.)
| | - Mohasana Akter Mita
- Department of Genetic Engineering and Biotechnology, University of Rajshahi, Rajshahi 6205, Bangladesh; (S.B.); (S.A.); (M.A.M.); (M.R.H.); (M.S.S.S.); (G.K.P.); (M.A.S.)
| | - Md. Robiul Hasan
- Department of Genetic Engineering and Biotechnology, University of Rajshahi, Rajshahi 6205, Bangladesh; (S.B.); (S.A.); (M.A.M.); (M.R.H.); (M.S.S.S.); (G.K.P.); (M.A.S.)
| | - Mst. Sharmin Sultana Shimu
- Department of Genetic Engineering and Biotechnology, University of Rajshahi, Rajshahi 6205, Bangladesh; (S.B.); (S.A.); (M.A.M.); (M.R.H.); (M.S.S.S.); (G.K.P.); (M.A.S.)
| | - Gobindo Kumar Paul
- Department of Genetic Engineering and Biotechnology, University of Rajshahi, Rajshahi 6205, Bangladesh; (S.B.); (S.A.); (M.A.M.); (M.R.H.); (M.S.S.S.); (G.K.P.); (M.A.S.)
| | - Sanghyun Chung
- Department of Pathology, College of Korean Medicine, Kyung Hee University, Seoul 02447, Korea;
| | - Md. Abu Saleh
- Department of Genetic Engineering and Biotechnology, University of Rajshahi, Rajshahi 6205, Bangladesh; (S.B.); (S.A.); (M.A.M.); (M.R.H.); (M.S.S.S.); (G.K.P.); (M.A.S.)
| | - Sultan Alshehri
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia;
| | - Momammed M. Ghoneim
- Department of Pharmacy Practice, College of Pharmacy, AlMaarefa University, Ad Diriyah 13713, Saudi Arabia; (M.M.G.); (M.A.)
| | - Maha Alruwaily
- Department of Pharmacy Practice, College of Pharmacy, AlMaarefa University, Ad Diriyah 13713, Saudi Arabia; (M.M.G.); (M.A.)
| | - Bonglee Kim
- Department of Pathology, College of Korean Medicine, Kyung Hee University, Seoul 02447, Korea;
| |
Collapse
|
3
|
Daneshgar N, Leidinger MR, Le S, Hefti M, Prigione A, Dai DF. Activated microglia and neuroinflammation as a pathogenic mechanism in Leigh syndrome. Front Neurosci 2022; 16:1068498. [PMID: 36741056 PMCID: PMC9889986 DOI: 10.3389/fnins.2022.1068498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 12/26/2022] [Indexed: 01/19/2023] Open
Abstract
Neuroinflammation is one of the main mechanisms leading to neuronal death and dysfunction in neurodegenerative diseases. The role of microglia as primary mediators of inflammation is unclear in Leigh syndrome (LS) patients. This study aims to elucidate the role of microglia in LS progression by a detailed multipronged analysis of LS neuropathology, mouse and human induced pluripotent stem cells models of Leigh syndrome. We described brain pathology in three cases of Leigh syndrome and performed immunohistochemical staining of autopsy brain of LS patients. We used mouse model of LS (Ndufs4-/-) to study the effect of microglial partial ablation using pharmacologic approach. Genetically modified human induced pluripotent stem cell (iPS) derived neurons and brain organoid with Ndufs4 mutation were used to investigate the neuroinflammation in LS. We reported a novel observation of marked increased in Iba1+ cells with features of activated microglia, in various parts of brain in postmortem neuropathological examinations of three Leigh syndrome patients. Using an Ndufs4-/- mouse model for Leigh syndrome, we showed that partial ablation of microglia by Pexidartinib initiated at the symptom onset improved neurological function and significantly extended lifespan. Ndufs4 mutant LS brain organoid had elevated NLRP3 and IL6 pro-inflammatory pathways. Ndufs4-mutant LS iPSC neurons were more susceptible to glutamate excitotoxicity, which was further potentiated by IL-6. Our findings of LS human brain pathology, Ndufs4-deficient mouse and iPSC models of LS suggest a critical role of activated microglia in the progression of LS encephalopathy. This study suggests a potential clinical application of microglial ablation and immunosuppression during the active phase of Leigh syndrome.
Collapse
Affiliation(s)
- Nastaran Daneshgar
- Department of Pathology, Carver College of Medicine, University of Iowa, Iowa City, IA, United States
| | - Mariah R. Leidinger
- Department of Pathology, Carver College of Medicine, University of Iowa, Iowa City, IA, United States
| | - Stephanie Le
- Department of General Pediatrics, Neonatology and Pediatric Cardiology, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
| | - Marco Hefti
- Department of Pathology, Carver College of Medicine, University of Iowa, Iowa City, IA, United States
| | - Alessandro Prigione
- Department of General Pediatrics, Neonatology and Pediatric Cardiology, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
| | - Dao-Fu Dai
- Department of Pathology, Carver College of Medicine, University of Iowa, Iowa City, IA, United States
- *Correspondence: Dao-Fu Dai ✉
| |
Collapse
|
4
|
Gong K, Xie L, Wu ZS, Xie X, Zhang XX, Chen JL. Clinical exome sequencing reveals a mutation in PDHA1 in Leigh syndrome: A case of a Chinese boy with lethal neuropathy. Mol Genet Genomic Med 2021; 9:e1651. [PMID: 33661577 PMCID: PMC8123737 DOI: 10.1002/mgg3.1651] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 02/18/2021] [Accepted: 02/18/2021] [Indexed: 12/28/2022] Open
Abstract
Background Leigh syndrome, the most common mitochondrial syndrome in pediatrics, has diverse clinical manifestations and is genetically heterogeneous. Pathogenic mutations in more than 75 genes of two genomes (mitochondrial and nuclear) have been identified. PDHA1 encoding the E1 alpha subunit is an X‐chromosome gene whose mutations cause pyruvate dehydrogenase complex deficiency. Methods Here, we have described a 12‐year‐old boy with lethal neuropathy who almost died of a sudden loss of breathing and successive cardiac arrest. Extracorporeal membrane oxygenation rescued his life. His diagnosis was corrected from Guillain–Barré syndrome to Leigh syndrome 1 month later by clinical exome sequencing. Furthermore, we used software to predict the protein structure caused by frameshift mutations. We treated the boy with vitamin B1, coenzyme Q10, and a ketogenic diet. Results A PDHA1 mutation (NM_000284.4:c.1167_1170del) was identified as the underlying cause. The amino acid mutation was p.Ser390LysfsTer33. Moreover, the protein structure prediction results suggested that the protein structure has changed. The parents of the child were negative, so the mutation was de novo. The comprehensive assessment of the mutation was pathogenic. His condition gradually improved after receiving treatment. Conclusion This case suggests that gene detection should be popularized to improve diagnosis accuracy, especially in developing countries such as China.
Collapse
Affiliation(s)
- Ke Gong
- Department of Cardiovascular Surgery, The Second Xiangya Hospital of Central South University, Central South University, Changsha, China
| | - Li Xie
- Department of Cardiovascular Surgery, The Second Xiangya Hospital of Central South University, Central South University, Changsha, China
| | - Zhong-Shi Wu
- Department of Cardiovascular Surgery, The Second Xiangya Hospital of Central South University, Central South University, Changsha, China
| | - Xia Xie
- Department of Cardiovascular Surgery, The Second Xiangya Hospital of Central South University, Central South University, Changsha, China
| | - Xing-Xing Zhang
- Department of Pediatrics, The Second Xiangya Hospital of Central South University, Central South University, Changsha, China
| | - Jin-Lan Chen
- Department of Cardiovascular Surgery, The Second Xiangya Hospital of Central South University, Central South University, Changsha, China
| |
Collapse
|
5
|
Peralta S, Pinto M, Arguello T, Garcia S, Diaz F, Moraes CT. Metformin delays neurological symptom onset in a mouse model of neuronal complex I deficiency. JCI Insight 2020; 5:141183. [PMID: 33148885 PMCID: PMC7710273 DOI: 10.1172/jci.insight.141183] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 09/21/2020] [Indexed: 12/24/2022] Open
Abstract
Complex I (also known as NADH-ubiquinone oxidoreductase) deficiency is the most frequent mitochondrial disorder present in childhood. NADH-ubiquinone oxidoreductase iron-sulfur protein 3 (NDUFS3) is a catalytic subunit of the mitochondrial complex I; NDUFS3 is conserved from bacteria and essential for complex I function. Mutations affecting complex I, including in the Ndufs3 gene, cause fatal neurodegenerative diseases, such as Leigh syndrome. No treatment is available for these conditions. We developed and performed a detailed molecular characterization of a neuron-specific Ndufs3 conditional KO mouse model. We showed that deletion of Ndufs3 in forebrain neurons reduced complex I activity, altered brain energy metabolism, and increased locomotor activity with impaired motor coordination, balance, and stereotyped behavior. Metabolomics analyses showed an increase of glycolysis intermediates, suggesting an adaptive response to the complex I defect. Administration of metformin to these mice delayed the onset of the neurological symptoms but not of neuronal loss. This improvement was likely related to enhancement of glucose uptake and utilization, which are known effects of metformin in the brain. Despite reports that metformin inhibits complex I activity, our findings did not show worsening a complex I defect nor increases in lactic acid, suggesting that metformin should be further evaluated for use in patients with mitochondrial encephalopathies. Metformin delays onset of mitochondrial encephalopathy in a CNS model of mitochondrial oxidative phosphorylation defect.
Collapse
Affiliation(s)
| | | | | | | | | | - Carlos T Moraes
- Department of Neurology and.,Department of Cell Biology, Miller School of Medicine, University of Miami, Miami, Florida, USA
| |
Collapse
|
6
|
Ogawa E, Fushimi T, Ogawa‐Tominaga M, Shimura M, Tajika M, Ichimoto K, Matsunaga A, Tsuruoka T, Ishige M, Fuchigami T, Yamazaki T, Kishita Y, Kohda M, Imai‐Okazaki A, Okazaki Y, Morioka I, Ohtake A, Murayama K. Mortality of Japanese patients with Leigh syndrome: Effects of age at onset and genetic diagnosis. J Inherit Metab Dis 2020; 43:819-826. [PMID: 31967322 PMCID: PMC7383885 DOI: 10.1002/jimd.12218] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 01/16/2020] [Accepted: 01/17/2020] [Indexed: 01/30/2023]
Abstract
Leigh syndrome is a major phenotype of mitochondrial diseases in children. With new therapeutic options being proposed, assessing the mortality and clinical condition of Leigh syndrome patients is crucial for evaluating therapeutics. As data are scarce in Japan, we analysed the mortality rate and clinical condition of Japanese Leigh syndrome patients that we diagnosed since 2007. Data from 166 Japanese patients diagnosed with Leigh syndrome from 2007 to 2017 were reviewed. Patients' present status, method of ventilation and feeding, and degree of disability as of April 2018 was analysed. Overall, 124 (74.7%) were living, 40 (24.1%) were deceased, and 2 (1.2%) were lost to follow-up. Median age of living patients was 8 years (1-39 years). Median length of disease course was 91 months for living patients and 23.5 months for deceased patients. Nearly 90% of deaths occurred by age 6. Mortality rate of patients with onset before 6 months of age was significantly higher than that of onset after 6 months. All patients with neonatal onset were either deceased or bedridden. MT-ATP6 deficiency caused by m.8993T>G mutation and MT-ND5 deficiency induced a severe form of Leigh syndrome. Patients with NDUFAF6, ECHS1, and SURF1 deficiency had relatively mild symptoms and better survival. The impact of onset age on prognosis varied across the genetic diagnoses. The clinical condition of many patients was poor; however, few did not require mechanical ventilation or tube-feeding and were not physically dependent. Early disease onset and genetic diagnosis may have prognostic value.
Collapse
Affiliation(s)
- Erika Ogawa
- Department of MetabolismChiba Children's HospitalChibaJapan
- Department of Pediatrics and Child HealthNihon University School of MedicineTokyoJapan
| | - Takuya Fushimi
- Department of MetabolismChiba Children's HospitalChibaJapan
| | | | - Masaru Shimura
- Department of MetabolismChiba Children's HospitalChibaJapan
| | - Makiko Tajika
- Department of MetabolismChiba Children's HospitalChibaJapan
| | - Keiko Ichimoto
- Department of MetabolismChiba Children's HospitalChibaJapan
| | | | | | - Mika Ishige
- Department of Pediatrics and Child HealthNihon University School of MedicineTokyoJapan
| | - Tatsuo Fuchigami
- Department of Pediatrics and Child HealthNihon University School of MedicineTokyoJapan
| | - Taro Yamazaki
- Department of PediatricsSaitama Medical UniversitySaitamaJapan
| | - Yoshihito Kishita
- Intractable Disease Research CenterGraduate School of Medicine, Juntendo UniversityTokyoJapan
| | - Masakazu Kohda
- Intractable Disease Research CenterGraduate School of Medicine, Juntendo UniversityTokyoJapan
| | - Atsuko Imai‐Okazaki
- Intractable Disease Research CenterGraduate School of Medicine, Juntendo UniversityTokyoJapan
| | - Yasushi Okazaki
- Intractable Disease Research CenterGraduate School of Medicine, Juntendo UniversityTokyoJapan
| | - Ichiro Morioka
- Department of Pediatrics and Child HealthNihon University School of MedicineTokyoJapan
| | - Akira Ohtake
- Department of PediatricsSaitama Medical UniversitySaitamaJapan
- Department of Clinical GenomicsSaitama Medical UniversitySaitamaJapan
| | - Kei Murayama
- Department of MetabolismChiba Children's HospitalChibaJapan
- Intractable Disease Research CenterGraduate School of Medicine, Juntendo UniversityTokyoJapan
| |
Collapse
|
7
|
Hong CM, Na JH, Park S, Lee YM. Clinical Characteristics of Early-Onset and Late-Onset Leigh Syndrome. Front Neurol 2020; 11:267. [PMID: 32351444 PMCID: PMC7174756 DOI: 10.3389/fneur.2020.00267] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Accepted: 03/20/2020] [Indexed: 01/30/2023] Open
Abstract
Background: Leigh syndrome (LS) is the most common pediatric mitochondrial diseases caused by MRC defect. LS patients typically have onset age before 2 years old and have various clinical features. The purpose of this study was to evaluate the various characteristics between the group that were early onset and late onset patients. Methods: The medical records of this study used records between 2006 and 2017 (N = 110). Clinical characteristics, diagnostic evaluations, and neuro image studying of LS were reviewed in our study. We statistically analyzed data from patients diagnosed with LS at our hospital by using subgroup analysis was performed to divide patients according to the onset age. Results: Among the patients, 89 patients (80.9%) had the onset age before 2 years old, and 21 patents (19.1%) had onset age after 2 years old. In subgroup analysis first clinical presentation age, diagnosis age and several onset symptoms in the clinical characteristics were statistically significant. Early onset age group showed delayed development and late onset age group showed motor weakness and ataxia. However, Diagnostics evaluation and MRI findings showed no significant differences. The clinical status monitored during the last visit showed statistically significant differences in the clinical severity. In the early onset age group clinical status was more severe than late onset age group. Conclusions: Although the onset of Leigh syndrome is known to be under 2 years, there are many late onset cases were existed more than expected. Early onset LS patients have poor prognosis compare with late onset LS patients. Therefore, the specific phenotype according to the age of onset should be well-observed. Onset of LS is important in predicting clinical severity or prognosis, and it is necessary to provide individualized treatment or follow-up protocols for each patient.
Collapse
Affiliation(s)
- Chan-Mi Hong
- Departments of Pediatrics, Yonsei University College of Medicine, Seoul, South Korea
| | - Ji-Hoon Na
- Departments of Pediatrics, Yonsei University College of Medicine, Seoul, South Korea
| | - Soyoung Park
- Department of Pediatrics, Soon Chun Hyang University Hospital and College of Medicine, Soonchunhyang University, Bucheon-si, South Korea
| | - Young-Mock Lee
- Departments of Pediatrics, Yonsei University College of Medicine, Seoul, South Korea
| |
Collapse
|
8
|
Trumpff C, Marsland AL, Sloan RP, Kaufman BA, Picard M. Predictors of ccf-mtDNA reactivity to acute psychological stress identified using machine learning classifiers: A proof-of-concept. Psychoneuroendocrinology 2019; 107:82-92. [PMID: 31112904 PMCID: PMC6637411 DOI: 10.1016/j.psyneuen.2019.05.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Revised: 03/21/2019] [Accepted: 05/01/2019] [Indexed: 12/15/2022]
Abstract
OBJECTIVE We have previously found that acute psychological stress may affect mitochondria and trigger an increase in serum mitochondrial DNA, known as circulating cell-free mtDNA (ccf-mtDNA). Similar to other stress reactivity measures, there are substantial unexplained inter-individual differences in the magnitude of ccf-mtDNA reactivity, as well as within-person differences across different occasions of testing. Here, we sought to identify psychological and physiological predictors of ccf-mtDNA reactivity using machine learning-based multivariate classifiers. METHOD We used data from serum ccf-mtDNA concentration measured pre- and post-stress in 46 healthy midlife adults tested on two separate occasions. To identify variables predicting the magnitude of ccf-mtDNA reactivity, two multivariate classification models, partial least-squares discriminant analysis (PLS-DA) and random forest (RF), were trained to discriminate between high and low ccf-mtDNA responders. Potential predictors used in the models included state variables such as physiological measures and affective states, and trait variables such as sex and personality measures. Variables identified across both models were considered to be predictors of ccf-mtDNA reactivity and selected for downstream analyses. RESULTS Identified predictors were significantly enriched for state over trait measures (X2 = 7.03; p = 0.008) and for physiological over psychological measures (X2 = 4.36; p = 0.04). High responders were more likely to be male (X2 = 26.95; p < 0.001) and differed from low-responders on baseline cardiovascular and autonomic measures, and on stress-induced reduction in fatigue (Cohen's d = 0.38-0.73). These group-level findings also accurately accounted for within-person differences in 90% of cases. CONCLUSION These results suggest that acute cardiovascular and psychological indices, rather than stable individual traits, predict stress-induced ccf-mtDNA reactivity. This work provides a proof-of-concept that machine learning approaches can be used to explore determinants of inter-individual and within-person differences in stress psychophysiology.
Collapse
Affiliation(s)
- Caroline Trumpff
- Department of Psychiatry, Division of Behavioral Medicine, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - Anna L Marsland
- Department of Psychology, University of Pittsburgh, Pittsburgh, PA, 15260, USA
| | - Richard P Sloan
- Department of Psychiatry, Division of Behavioral Medicine, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - Brett A Kaufman
- University of Pittsburgh School of Medicine, Division of Cardiology, Center for Metabolism and Mitochondrial Medicine and Vascular Medicine Institute, Pittsburgh, PA, 15261, USA
| | - Martin Picard
- Department of Psychiatry, Division of Behavioral Medicine, Columbia University Irving Medical Center, New York, NY, 10032, USA; Department of Neurology, H. Houston Merritt Center, Columbia Translational Neuroscience Initiative, Columbia University Irving Medical Center, New York, NY, 10032, USA; Columbia Aging Center, Columbia University Mailman School of Public Health, New York, NY, 10032, USA.
| |
Collapse
|
9
|
Trumpff C, Marsland AL, Basualto-Alarcón C, Martin JL, Carroll JE, Sturm G, Vincent AE, Mosharov EV, Gu Z, Kaufman BA, Picard M. Acute psychological stress increases serum circulating cell-free mitochondrial DNA. Psychoneuroendocrinology 2019; 106:268-276. [PMID: 31029929 PMCID: PMC6589121 DOI: 10.1016/j.psyneuen.2019.03.026] [Citation(s) in RCA: 94] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 03/20/2019] [Accepted: 03/25/2019] [Indexed: 01/09/2023]
Abstract
Intrinsic biological mechanisms transduce psychological stress into physiological adaptation that requires energy, but the role of mitochondria and mitochondrial DNA (mtDNA) in this process has not been defined in humans. Here, we show that similar to physical injury, exposure to psychological stress increases serum circulating cell-free mtDNA (ccf-mtDNA) levels. Healthy midlife adults exposed on two separate occasions to a brief psychological challenge exhibited a 2-3-fold increase in ccf-mtDNA, with no change in ccf-nuclear DNA levels, establishing the magnitude and specificity for ccf-mtDNA reactivity. In cell-based studies, we show that glucocorticoid signaling - a consequence of psychological stress in humans - is sufficient to induce mtDNA extrusion in a time frame consistent with stress-induced ccf-mtDNA increase. Collectively, these findings provide evidence that acute psychological stress induces ccf-mtDNA and implicate neuroendocrine signaling as a potential trigger for ccf-mtDNA release. Further controlled work is needed to confirm that observed increases in ccf-mtDNA result from stress exposure and to determine the functional significance of this effect.
Collapse
Affiliation(s)
- Caroline Trumpff
- Department of Psychiatry, Division of Behavioral Medicine, Columbia University Irving Medical Center, New York, NY, 10032, USA; New York State Psychiatric Institute, New York, NY, 10032, USA
| | - Anna L Marsland
- Department of Psychology, University of Pittsburgh, Pittsburgh, PA, 15260, USA.
| | - Carla Basualto-Alarcón
- Universidad de Aysén, Coyhaique, Chile; Anatomy and Legal Medicine Department, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - James L Martin
- Department of Medicine, Division of Cardiology, Vascular Medicine Institute, Center for Metabolism and Mitochondrial Medicine, University of Pittsburgh Medical School, Pittsburgh, PA, 15261, USA
| | - Judith E Carroll
- Cousins Center for Psychoneuroimmunology, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, CA, 90095, USA
| | - Gabriel Sturm
- Department of Psychiatry, Division of Behavioral Medicine, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - Amy E Vincent
- Department of Psychiatry, Division of Behavioral Medicine, Columbia University Irving Medical Center, New York, NY, 10032, USA; Wellcome Trust Centre for Mitochondrial Research, Institute of Neurosciences, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| | - Eugene V Mosharov
- Department of Psychiatry, Division of Behavioral Medicine, Columbia University Irving Medical Center, New York, NY, 10032, USA; New York State Psychiatric Institute, New York, NY, 10032, USA; Department of Neurology, H. Houston Merritt Center, Columbia Translational Neuroscience Initiative, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - Zhenglong Gu
- Division of Nutritional Sciences, Cornell University, Ithaca, New York, NY, 14850, USA
| | - Brett A Kaufman
- Department of Medicine, Division of Cardiology, Vascular Medicine Institute, Center for Metabolism and Mitochondrial Medicine, University of Pittsburgh Medical School, Pittsburgh, PA, 15261, USA.
| | - Martin Picard
- Department of Psychiatry, Division of Behavioral Medicine, Columbia University Irving Medical Center, New York, NY, 10032, USA; New York State Psychiatric Institute, New York, NY, 10032, USA; Department of Neurology, H. Houston Merritt Center, Columbia Translational Neuroscience Initiative, Columbia University Irving Medical Center, New York, NY, 10032, USA; Columbia Aging Center, Columbia University Mailman School of Public Health, New York, NY, 10032, USA.
| |
Collapse
|
10
|
Angural A, Sharma I, Pandoh P, Sharma V, Spolia A, Rai E, Singh V, Razdan S, Pandita KK, Sharma S. A case report on a novel MT-ATP6 gene variation in atypical mitochondrial Leigh syndrome associated with bilateral basal ganglia calcifications. Mitochondrion 2018; 46:209-213. [PMID: 29929013 DOI: 10.1016/j.mito.2018.06.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Revised: 06/01/2018] [Accepted: 06/15/2018] [Indexed: 01/30/2023]
Abstract
Leigh Syndrome (LS) is a rare, hereditary progressive neurodegenerative disorder of infancy or early childhood associated with a highly variable clinical presentation even among siblings. Further, genetic heterogeneity makes its diagnosis complicated. Its causative genetic variations are notified in some of the mitochondrial and nuclear genes. Here, we report an atypical case of LS in a 9-year-old boy associated with a novel variation in MT-ATP6 gene. The atypical findings were Bilateral Basal Ganglia Calcification (BGC) and late survival age in the patient. Analyses of the Whole Mitochondrial Genome Sequencing (WMGS) results of the recruited patient and his mother at different read coverage, first at 100× and later repeated at 500×, revealed a novel disease-associated variation in the already known disease-associated MT-ATP6 gene. In conclusion, the present study indicates amalgamation of both neuro-imaging and Next Generation Sequencing (NGS) Technologies aiding the proper diagnosis of LS in atypical cases.
Collapse
Affiliation(s)
- Arshia Angural
- Human Genetics Research Group, School of Biotechnology, Shri Mata Vaishno Devi University, Katra, Jammu and Kashmir 182320, India
| | - Indu Sharma
- Human Genetics Research Group, School of Biotechnology, Shri Mata Vaishno Devi University, Katra, Jammu and Kashmir 182320, India
| | - Pranav Pandoh
- Acharya Shri Chander College of Medical Sciences and Hospital, Sidra, Jammu and Kashmir 180017, India
| | - Varun Sharma
- Human Genetics Research Group, School of Biotechnology, Shri Mata Vaishno Devi University, Katra, Jammu and Kashmir 182320, India
| | - Akshi Spolia
- Human Genetics Research Group, School of Biotechnology, Shri Mata Vaishno Devi University, Katra, Jammu and Kashmir 182320, India
| | - Ekta Rai
- Human Genetics Research Group, School of Biotechnology, Shri Mata Vaishno Devi University, Katra, Jammu and Kashmir 182320, India
| | - Vinod Singh
- Human Genetics Research Group, School of Biotechnology, Shri Mata Vaishno Devi University, Katra, Jammu and Kashmir 182320, India
| | - Sushil Razdan
- Neurology Clinic, 7 Bhagwati Nagar, Jammu and Kashmir 180001, India; Shri Mata Vaishno Devi Narayana Superspeciality Hospital, Katra, Jammu and Kashmir 182320, India
| | - Kamal Kishore Pandita
- Shri Mata Vaishno Devi Narayana Superspeciality Hospital, Katra, Jammu and Kashmir 182320, India; Health Clinic, H. No. 62, Lane 11, Swam Vihar, Muthi, Jammu and Kashmir 181205, India.
| | - Swarkar Sharma
- Human Genetics Research Group, School of Biotechnology, Shri Mata Vaishno Devi University, Katra, Jammu and Kashmir 182320, India.
| |
Collapse
|
11
|
Halmagyi GM, Pamphlett R, Curthoys IS. Seesaw nystagmus and ocular tilt reaction due to adult Leigh's disease. Neuroophthalmology 2018. [DOI: 10.1080/01658107.1992.11978662] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022] Open
Affiliation(s)
| | | | - Ian S. Curthoys
- Department of Psychology, University of Sydney; Sydney, Australia
| |
Collapse
|
12
|
Wang A, Mouser J, Pitt J, Promislow D, Kaeberlein M. Rapamycin enhances survival in a Drosophila model of mitochondrial disease. Oncotarget 2018; 7:80131-80139. [PMID: 27741510 PMCID: PMC5348310 DOI: 10.18632/oncotarget.12560] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Accepted: 09/27/2016] [Indexed: 11/25/2022] Open
Abstract
Pediatric mitochondrial disorders are a devastating category of diseases caused by deficiencies in mitochondrial function. Leigh Syndrome (LS) is the most common of these diseases with symptoms typically appearing within the first year of birth and progressing rapidly until death, usually by 6-7 years of age. Our lab has recently shown that genetic inhibition of the mechanistic target of rapamycin (TOR) rescues the short lifespan of yeast mutants with defective mitochondrial function, and that pharmacological inhibition of TOR by administration of rapamycin significantly rescues the shortened lifespan, neurological symptoms, and neurodegeneration in a mouse model of LS. However, the mechanism by which TOR inhibition exerts these effects, and the extent to which these effects can extend to other models of mitochondrial deficiency, are unknown. Here, we probe the effects of TOR inhibition in a Drosophila model of complex I deficiency. Treatment with rapamycin robustly suppresses the lifespan defect in this model of LS, without affecting behavioral phenotypes. Interestingly, this increased lifespan in response to TOR inhibition occurs in an autophagy-independent manner. Further, we identify a fat storage defect in the ND2 mutant flies that is rescued by rapamycin, supporting a model that rapamycin exerts its effects on mitochondrial disease in these animals by altering metabolism.
Collapse
Affiliation(s)
- Adrienne Wang
- University of Washington, Department of Pathology, Seattle, WA, USA
| | - Jacob Mouser
- University of Washington, Department of Pathology, Seattle, WA, USA
| | - Jason Pitt
- University of Washington, Department of Pathology, Seattle, WA, USA
| | - Daniel Promislow
- University of Washington, Department of Pathology, Seattle, WA, USA.,University of Washington, Department of Biology, Seattle, WA, USA
| | - Matt Kaeberlein
- University of Washington, Department of Pathology, Seattle, WA, USA
| |
Collapse
|
13
|
Abstract
The hypermetabolic effects of thyroid hormones (THs), the major endocrine regulators of metabolic rate, are widely recognized. Although, the cellular mechanisms underlying these effects have been extensively investigated, much has yet to be learned about how TH regulates diverse cellular functions. THs have a profound impact on mitochondria, the organelles responsible for the majority of cellular energy production, and several studies have been devoted to understand the respective importance of the nuclear and mitochondrial pathways for organelle activity. During the last decades, several new aspects of both THs (i.e., metabolism, transport, mechanisms of action, and the existence of metabolically active TH derivatives) and mitochondria (i.e., dynamics, respiratory chain organization in supercomplexes, and the discovery of uncoupling proteins other than uncoupling protein 1) have emerged, thus opening new perspectives to the investigation of the complex relationship between thyroid and the mitochondrial compartment. In this review, in the light of an historical background, we attempt to point out the present findings regarding thyroid physiology and the emerging recognition that mitochondrial dynamics as well as the arrangement of the electron transport chain in mitochondrial cristae contribute to the mitochondrial activity. We unravel the genomic and nongenomic mechanisms so far studied as well as the effects of THs on mitochondrial energetics and, principally, uncoupling of oxidative phosphorylation via various mechanisms involving uncoupling proteins. The emergence of new approaches to the question as to what extent and how the action of TH can affect mitochondria is highlighted. © 2016 American Physiological Society. Compr Physiol 6:1591-1607, 2016.
Collapse
Affiliation(s)
- Antonia Lanni
- Dipartimento di Scienze e Tecnologie Ambientali, Biologiche e Farmaceutiche, Seconda Università degli Studi di Napoli, Caserta, Italy
| | - Maria Moreno
- Dipartimento di Scienze e Tecnologie, Università degli Studi del Sannio, Benevento, Italy
| | - Fernando Goglia
- Dipartimento di Scienze e Tecnologie, Università degli Studi del Sannio, Benevento, Italy
| |
Collapse
|
14
|
Lake NJ, Compton AG, Rahman S, Thorburn DR. Leigh syndrome: One disorder, more than 75 monogenic causes. Ann Neurol 2015; 79:190-203. [PMID: 26506407 DOI: 10.1002/ana.24551] [Citation(s) in RCA: 341] [Impact Index Per Article: 34.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Revised: 10/16/2015] [Accepted: 10/18/2015] [Indexed: 12/19/2022]
Abstract
Leigh syndrome is the most common pediatric presentation of mitochondrial disease. This neurodegenerative disorder is genetically heterogeneous, and to date pathogenic mutations in >75 genes have been identified, encoded by 2 genomes (mitochondrial and nuclear). More than one-third of these disease genes have been characterized in the past 5 years alone, reflecting the significant advances made in understanding its etiological basis. We review the diverse biochemical and genetic etiology of Leigh syndrome and associated clinical, neuroradiological, and metabolic features that can provide clues for diagnosis. We discuss the emergence of genotype-phenotype correlations, insights gleaned into the molecular basis of disease, and available therapeutic options.
Collapse
Affiliation(s)
- Nicole J Lake
- Murdoch Childrens Research Institute, Royal Children's Hospital, Melbourne, Victoria, Australia.,Department of Paediatrics, University of Melbourne, Melbourne, Victoria, Australia
| | - Alison G Compton
- Murdoch Childrens Research Institute, Royal Children's Hospital, Melbourne, Victoria, Australia.,Department of Paediatrics, University of Melbourne, Melbourne, Victoria, Australia
| | - Shamima Rahman
- Mitochondrial Research Group, Genetics and Genomic Medicine, Institute of Child Health, University College London and Metabolic Unit, Great Ormond Street Hospital, London, United Kingdom
| | - David R Thorburn
- Murdoch Childrens Research Institute, Royal Children's Hospital, Melbourne, Victoria, Australia.,Department of Paediatrics, University of Melbourne, Melbourne, Victoria, Australia.,Victorian Clinical Genetic Services, Royal Children's Hospital, Melbourne, Victoria, Australia
| |
Collapse
|
15
|
Abstract
Leigh syndrome (LS) is the most common pediatric presentation of a defined mitochondrial disease. This progressive encephalopathy is characterized pathologically by the development of bilateral symmetrical lesions in the brainstem and basal ganglia that show gliosis, vacuolation, capillary proliferation, relative neuronal preservation, and by hyperlacticacidemia in the blood and/or cerebrospinal fluid. Understanding the molecular mechanisms underlying this unique pathology has been challenging, particularly in view of the heterogeneous and not yet fully determined genetic basis of LS. Moreover, animal models that mimic features of LS have only been created relatively recently. Here, we review the pathology of LS and consider what might be the molecular mechanisms underlying its pathogenesis. Data from a wide range of sources, including patient samples, animal models, and studies of hypoxic-ischemic encephalopathy (a condition that shares features with LS), were used to provide insight into the pathogenic mechanisms that may drive lesion development. Based on current data, we suggest that severe ATP depletion, gliosis, hyperlacticacidemia, reactive oxygen species, and potentially excitotoxicity cumulatively contribute to the neuropathogenesis of LS. An intimate understanding of the molecular mechanisms causing LS is required to accelerate the development of LS treatments.
Collapse
|
16
|
García-Corzo L, Luna-Sánchez M, Doerrier C, Ortiz F, Escames G, Acuña-Castroviejo D, López LC. Ubiquinol-10 ameliorates mitochondrial encephalopathy associated with CoQ deficiency. Biochim Biophys Acta Mol Basis Dis 2014; 1842:893-901. [PMID: 24576561 DOI: 10.1016/j.bbadis.2014.02.008] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2013] [Revised: 01/30/2014] [Accepted: 02/17/2014] [Indexed: 12/13/2022]
Abstract
Coenzyme Q10 (CoQ10) deficiency (MIM 607426) causes a mitochondrial syndrome with variability in the clinical presentations. Patients with CoQ10 deficiency show inconsistent responses to oral ubiquinone-10 supplementation, with the highest percentage of unsuccessful results in patients with neurological symptoms (encephalopathy, cerebellar ataxia or multisystemic disease). Failure in the ubiquinone-10 treatment may be the result of its poor absorption and bioavailability, which may be improved by using different pharmacological formulations. In a mouse model (Coq9(X/X)) of mitochondrial encephalopathy due to CoQ deficiency, we have evaluated oral supplementation with water-soluble formulations of reduced (ubiquinol-10) and oxidized (ubiquinone-10) forms of CoQ10. Our results show that CoQ10 was increased in all tissues after supplementation with ubiquinone-10 or ubiquinol-10, with the tissue levels of CoQ10 with ubiquinol-10 being higher than with ubiquinone-10. Moreover, only ubiquinol-10 was able to increase the levels of CoQ10 in mitochondria from cerebrum of Coq9(X/X) mice. Consequently, ubiquinol-10 was more efficient than ubiquinone-10 in increasing the animal body weight and CoQ-dependent respiratory chain complex activities, and reducing the vacuolization, astrogliosis and oxidative damage in diencephalon, septum-striatum and, to a lesser extent, in brainstem. These results suggest that water-soluble formulations of ubiquinol-10 may improve the efficacy of CoQ10 therapy in primary and secondary CoQ10 deficiencies, other mitochondrial diseases and neurodegenerative diseases.
Collapse
Affiliation(s)
- Laura García-Corzo
- Departamento de Fisiología, Facultad de Medicina, Universidad de Granada, Granada, Spain; Instituto de Biotecnología, Centro de Investigación Biomédica, Parque Tecnológico de Ciencias de la Salud, Armilla, Granada, Spain
| | - Marta Luna-Sánchez
- Departamento de Fisiología, Facultad de Medicina, Universidad de Granada, Granada, Spain; Instituto de Biotecnología, Centro de Investigación Biomédica, Parque Tecnológico de Ciencias de la Salud, Armilla, Granada, Spain
| | - Carolina Doerrier
- Departamento de Fisiología, Facultad de Medicina, Universidad de Granada, Granada, Spain; Instituto de Biotecnología, Centro de Investigación Biomédica, Parque Tecnológico de Ciencias de la Salud, Armilla, Granada, Spain
| | - Francisco Ortiz
- Departamento de Fisiología, Facultad de Medicina, Universidad de Granada, Granada, Spain; Instituto de Biotecnología, Centro de Investigación Biomédica, Parque Tecnológico de Ciencias de la Salud, Armilla, Granada, Spain
| | - Germaine Escames
- Departamento de Fisiología, Facultad de Medicina, Universidad de Granada, Granada, Spain; Instituto de Biotecnología, Centro de Investigación Biomédica, Parque Tecnológico de Ciencias de la Salud, Armilla, Granada, Spain
| | - Darío Acuña-Castroviejo
- Departamento de Fisiología, Facultad de Medicina, Universidad de Granada, Granada, Spain; Instituto de Biotecnología, Centro de Investigación Biomédica, Parque Tecnológico de Ciencias de la Salud, Armilla, Granada, Spain
| | - Luis C López
- Departamento de Fisiología, Facultad de Medicina, Universidad de Granada, Granada, Spain; Instituto de Biotecnología, Centro de Investigación Biomédica, Parque Tecnológico de Ciencias de la Salud, Armilla, Granada, Spain.
| |
Collapse
|
17
|
Johnson SC, Yanos ME, Kayser EB, Quintana A, Sangesland M, Castanza A, Uhde L, Hui J, Wall VZ, Gagnidze A, Oh K, Wasko BM, Ramos FJ, Palmiter RD, Rabinovitch PS, Morgan PG, Sedensky MM, Kaeberlein M. mTOR inhibition alleviates mitochondrial disease in a mouse model of Leigh syndrome. Science 2013; 342:1524-8. [PMID: 24231806 PMCID: PMC4055856 DOI: 10.1126/science.1244360] [Citation(s) in RCA: 414] [Impact Index Per Article: 34.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Mitochondrial dysfunction contributes to numerous health problems, including neurological and muscular degeneration, cardiomyopathies, cancer, diabetes, and pathologies of aging. Severe mitochondrial defects can result in childhood disorders such as Leigh syndrome, for which there are no effective therapies. We found that rapamycin, a specific inhibitor of the mechanistic target of rapamycin (mTOR) signaling pathway, robustly enhances survival and attenuates disease progression in a mouse model of Leigh syndrome. Administration of rapamycin to these mice, which are deficient in the mitochondrial respiratory chain subunit Ndufs4 [NADH dehydrogenase (ubiquinone) Fe-S protein 4], delays onset of neurological symptoms, reduces neuroinflammation, and prevents brain lesions. Although the precise mechanism of rescue remains to be determined, rapamycin induces a metabolic shift toward amino acid catabolism and away from glycolysis, alleviating the buildup of glycolytic intermediates. This therapeutic strategy may prove relevant for a broad range of mitochondrial diseases.
Collapse
Affiliation(s)
- Simon C. Johnson
- Department of Pathology, University of Washington, Seattle, WA 98195, USA
| | - Melana E. Yanos
- Department of Pathology, University of Washington, Seattle, WA 98195, USA
- Department of Psychology, University of Washington, Seattle, WA 98195, USA
| | - Ernst-Bernhard Kayser
- Anesthesiology and Pain Medicine, Seattle Children’s Hospital, Seattle, WA 98105, USA
| | - Albert Quintana
- Howard Hughes Medical Institute and Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Maya Sangesland
- Department of Pathology, University of Washington, Seattle, WA 98195, USA
| | - Anthony Castanza
- Department of Pathology, University of Washington, Seattle, WA 98195, USA
| | - Lauren Uhde
- Department of Pathology, University of Washington, Seattle, WA 98195, USA
| | - Jessica Hui
- Department of Pathology, University of Washington, Seattle, WA 98195, USA
| | - Valerie Z. Wall
- Department of Pathology, University of Washington, Seattle, WA 98195, USA
| | - Arni Gagnidze
- Department of Pathology, University of Washington, Seattle, WA 98195, USA
| | - Kelly Oh
- Department of Pathology, University of Washington, Seattle, WA 98195, USA
| | - Brian M. Wasko
- Department of Pathology, University of Washington, Seattle, WA 98195, USA
| | - Fresnida J. Ramos
- Department of Pathology, University of Washington, Seattle, WA 98195, USA
| | - Richard D. Palmiter
- Howard Hughes Medical Institute and Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | | | - Philip G. Morgan
- Anesthesiology and Pain Medicine, Seattle Children’s Hospital, Seattle, WA 98105, USA
| | - Margaret M. Sedensky
- Anesthesiology and Pain Medicine, Seattle Children’s Hospital, Seattle, WA 98105, USA
| | - Matt Kaeberlein
- Department of Pathology, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|
18
|
A hemizygous GYG2 mutation and Leigh syndrome: a possible link? Hum Genet 2013; 133:225-34. [DOI: 10.1007/s00439-013-1372-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2013] [Accepted: 09/29/2013] [Indexed: 11/26/2022]
|
19
|
Novel mitochondrial C15620A variant may modulate the phenotype of mitochondrial G11778A mutation in a Chinese family with Leigh syndrome. Neuromolecular Med 2013; 16:119-26. [PMID: 24062162 DOI: 10.1007/s12017-013-8264-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2013] [Accepted: 09/03/2013] [Indexed: 01/25/2023]
Abstract
We report a case of 3-year-old boy who presented with Leigh syndrome but carried a mitochondrial G11778A mutation in the fourth subunit of the NADH dehydrogenase gene (MTND4). Additional to G11778A mutation, a novel C15620A variant was detected, which resulted in the conversion from leucine to isoleucine in the mitochondrial cytochrome b gene. As G11778A mutation is the most common mutation associated with Leber's hereditary optic neuropathy (LHON), given the unusual phenotype, the C15620A mutation was postulated to influence the pathogenicity of the G11778A mutation. This case further expands the clinical spectrum associated with the primary G11778A LHON mutation.
Collapse
|
20
|
Shrikhande DY, Kalakoti P, Syed MMA, Ahya K, Singh G. A rare mitochondrial disorder: Leigh syndrome--a case report. Ital J Pediatr 2010; 36:62. [PMID: 20843336 PMCID: PMC2949674 DOI: 10.1186/1824-7288-36-62] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2010] [Accepted: 09/15/2010] [Indexed: 11/17/2022] Open
Abstract
Leigh syndrome is a rare progressive neurodegenerative, mitochondrial disorder of childhood with only a few cases documented from India. The clinical presentation of Leigh syndrome is highly variable. However, in most cases it presents as a progressive neurological disease with motor and intellectual developmental delay and signs and symptoms of brain stem and/or basal ganglia involvement. Raised lactate levels in blood and/or cerebrospinal fluid is noted. It is the neuroimaging, mainly the Magnetic Resonance Imaging showing characteristic symmetrical necrotic lesions in the basal ganglia and/or brain stem that leads to the diagnosis. Here, we report a case of 7 months old female child presenting to us with status epilepticus, delayed developmental milestones and regression of the achieved milestones suspected to be a case of neurodegenerative disorder, which on MRI was diagnosed as Leigh syndrome.
Collapse
Affiliation(s)
| | | | | | - Kunal Ahya
- Rural Medical College, Loni, Maharashtra, India
| | - Gurmeet Singh
- Department of Pediatrics, Rural Medical College, Loni, Maharashtra, India
| |
Collapse
|
21
|
Wang Z, Qi XK, Yao S, Chen B, Luan X, Zhang W, Han M, Yuan Y. Phenotypic patterns of MELAS/LS overlap syndrome associated with m.13513G>A mutation, and neuropathological findings in one autopsy case. Neuropathology 2010; 30:606-14. [DOI: 10.1111/j.1440-1789.2010.01115.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
22
|
Hicks D, Lampe AK, Laval SH, Allamand V, Jimenez-Mallebrera C, Walter MC, Muntoni F, Quijano-Roy S, Richard P, Straub V, Lochmüller H, Bushby KMD. Cyclosporine A treatment for Ullrich congenital muscular dystrophy: a cellular study of mitochondrial dysfunction and its rescue. Brain 2009; 132:147-55. [DOI: 10.1093/brain/awn289] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
23
|
Menzies KJ, Robinson BH, Hood DA. Effect of thyroid hormone on mitochondrial properties and oxidative stress in cells from patients with mtDNA defects. Am J Physiol Cell Physiol 2008; 296:C355-62. [PMID: 19036942 DOI: 10.1152/ajpcell.00415.2007] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Mitochondrial (mt)DNA mutations contribute to various disease states characterized by low ATP production. In contrast, thyroid hormone [3,3',5-triiodothyronine (T(3))] induces mitochondrial biogenesis and enhances ATP generation within cells. To evaluate the role of T(3)-mediated mitochondrial biogenesis in patients with mtDNA mutations, three fibroblast cell lines with mtDNA mutations were evaluated, including two patients with Leigh's syndrome and one with hypertrophic cardiomyopathy. Compared with control cells, patient fibroblasts displayed similar levels of mitochondrial mass, peroxisome proliferator-activated receptor-gamma coactivator-1alpha (PGC-1alpha), mitochondrial transcription factor A (Tfam), and uncoupling protein 2 (UCP2) protein expression. However, patient cells exhibited a 1.6-fold elevation in ROS production, a 1.7-fold elevation in cytoplasmic Ca2+ levels, a 1.2-fold elevation in mitochondrial membrane potential, and 30% less complex V activity compared with control cells. Patient cells also displayed 20-25% reductions in both cytochrome c oxidase (COX) activity and MnSOD protein levels compared with control cells. After T(3) treatment of patient cells, ROS production was decreased by 40%, cytoplasmic Ca2+ was reduced by 20%, COX activity was increased by 1.3-fold, and ATP levels were elevated by 1.6-fold, despite the absence of a change in mitochondrial mass. There were no significant alterations in the protein expression of PGC-1alpha, Tfam, or UCP2 in either T(3)-treated patient or control cells. However, T(3) restored the mitochondrial membrane potential, complex V activity, and levels of MnSOD to normal values in patient cells and elevated MnSOD levels by 21% in control cells. These results suggest that T(3) acts to reduce cellular oxidative stress, which may help attenuate ROS-mediated damage, along with improving mitochondrial function and energy status in cells with mtDNA defects.
Collapse
Affiliation(s)
- Keir J Menzies
- School of Kinesiology and Health Science, Farqhuarson Life Science Bldg., Rm. 302, York Univ., Toronto, ON M3JIP3, Canada
| | | | | |
Collapse
|
24
|
Staley KJ, Sims KB, Grant PE, Hedley-Whyte ET. Case records of the Massachusetts General Hospital. Case 28-2008. An 8-day-old infant with congenital deafness, lethargy, and hypothermia. N Engl J Med 2008; 359:1156-67. [PMID: 18784106 DOI: 10.1056/nejmcpc0804642] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Affiliation(s)
- Kevin J Staley
- Department of Pediatric Neurology, Massachusetts General Hospital, USA
| | | | | | | |
Collapse
|
25
|
Tay SKH, Sacconi S, Akman HO, Morales JF, Morales A, De Vivo DC, Shanske S, Bonilla E, DiMauro S. Unusual clinical presentations in four cases of Leigh disease, cytochrome C oxidase deficiency, and SURF1 gene mutations. J Child Neurol 2005; 20:670-4. [PMID: 16225813 DOI: 10.1177/08830738050200080701] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Mutations in the SURF1 gene are the most frequent causes of Leigh disease with cytochrome c oxidase deficiency. We describe four children with novel SURF1 mutations and unusual features: three had prominent renal symptoms and one had ragged red fibers in the muscle biopsy. We identified five pathogenic mutations in SURF1: two mutations were novel, an in-frame nonsense mutation (834G-->A) and an out-of-frame duplication (820-824dupTACAT). Although renal manifestations have not been described in association with SURF1 mutations, they can be part of the clinical presentation. Likewise, mitochondrial proliferation in muscle (with ragged red fibers) is most unusual in Leigh disease but might be part of an emerging phenotype.
Collapse
Affiliation(s)
- Stacey K H Tay
- Department of Neurology, Columbia University, New York, NY, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Knudsen TB, Green ML. Response characteristics of the mitochondrial DNA genome in developmental health and disease. ACTA ACUST UNITED AC 2005; 72:313-29. [PMID: 15662705 DOI: 10.1002/bdrc.20028] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
This review focuses on mitochondrial biology in mammalian development; specifically, the dynamics of information transfer from nucleus to mitochondrion in the regulation of mitochondrial DNA genomic expression, and the reverse signaling of mitochondrion to nucleus as an adaptive response to the environment. Data from recent studies suggest that the capacity of embryonic cells to react to oxygenation involves a tradeoff between factors that influence prenatal growth/development and postnatal growth/function. For example, mitochondrial DNA replication and metabolic set points in nematodes may be determined by mitochondrial activity early in life. The mitochondrial drug PK11195, a ligand of the peripheral benzodiazepine receptor, has antiteratogenic and antidisease action in several developmental contexts in mice. Protein malnutrition during early life in rats can program mitochondrial DNA levels in adult tissues and, in humans, epidemiological data suggest an association between impaired fetal growth and insulin resistance. Taken together, these findings raise the provocative hypothesis that environmental programming of mitochondrial status during early life may be linked with diseases that manifest during adulthood. Genetic defects that affect mitochondrial function may involve the mitochondrial DNA genome directly (maternal inheritance) or indirectly (Mendelian inheritance) through nuclear-coded mitochondrial proteins. In a growing number of cases, the depletion of, or deletion in, mitochondrial DNA is seen to be secondary to mutation of key nuclear-coded mitochondrial proteins that affect mitochondrial DNA replication, expression, or stability. These defects of intergenomic regulation may disrupt the normal cross-talk or structural compartmentation of signals that ultimately regulate mitochondrial DNA integrity and copy number, leading to depletion of mitochondrial DNA.
Collapse
Affiliation(s)
- Thomas B Knudsen
- Department of Molecular, Cellular and Craniofacial Biology, School of Dentistry, Birth Defects Center, University of Louisville, Louisville, Kentucky 40202, USA.
| | | |
Collapse
|
27
|
Abstract
We report a case of anesthesia for elective outpatient third molar extraction in a juvenile with Leigh disease, a progressive neurodegenerative disorder related to respiratory chain deficiency. This syndrome usually presents in infancy and is characterized by nervous system dysfunction and respiratory abnormalities. Anesthesia has been reported to aggravate respiratory symptoms and frequently precipitate respiratory failure. Preoperative swallowing difficulty or respiratory symptoms should be carefully diagnosed, because they can be a warning sign of postoperative complications or mortality. Adverse effects of anesthesia may quickly lead into metabolic acidosis. Anesthetics should be carefully chosen that do not interfere with mitochondrial respiration, which can lead to lactic acidosis.
Collapse
Affiliation(s)
- Zachary Ellis
- University of Texas Dental School, Health Science Center, San Antonio, Texas and
| | - Charles Bloomer
- private practice, Abilene, Texas
- Address correspondence to Dr Charles R. Bloomer, 5200 Buffalo Gap Rd, Suite B, Abilene, TX 79606;
| |
Collapse
|
28
|
Mallo Castaño J, Castañón López L, Herrero Mendoza B, Robles García B, Goded Rambaud F. Síndrome de Leigh con déficit de los complejos I, III y IV de la cadena respiratoria mitocondrial. An Pediatr (Barc) 2005; 62:161-5. [PMID: 15701314 DOI: 10.1157/13071315] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Leigh disease is a clinically heterogeneous and infrequent disorder in the pediatric age group. Inheritance is variable. It results from a genetic defect producing deficiencies in enzyme complexes and functional disturbance of the mitochondria. The prognosis is poor and effective treatment is lacking. We present the case of a 1-month-old boy with early manifestation and rapid progression of Leigh disease due to deficiency of mitochondrial respiratory chain complexes I, III and IV.
Collapse
|
29
|
Sudo A, Honzawa S, Nonaka I, Goto YI. Leigh syndrome caused by mitochondrial DNA G13513A mutation: frequency and clinical features in Japan. J Hum Genet 2004; 49:92-96. [PMID: 14730434 DOI: 10.1007/s10038-003-0116-1] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2003] [Accepted: 11/18/2003] [Indexed: 10/26/2022]
Abstract
The mitochondrial DNA (mtDNA) G13513A mutation in the ND5 subunit gene has been recently reported as a common cause of some phenotypes of mitochondrial myopathy. Until now, the prevalence and characteristics of this mutation in Leigh syndrome (LS) has not been determined. We screened 84 patients with Leigh syndrome (LS) and found the mutation in six (7%) of them. The proportions of mutant mtDNA in muscles were relatively low (42-70%). The onset of symptoms for patients with this mutation was from 9 months to 5 years. It should be noted that five patients had cardiac conduction abnormalities, particularly Wolff-Parkinson-White (WPW) syndrome (three patients). This study suggests that G13513A mutation is a frequent cause of LS and that patients with this mutation may have a characteristic clinical course.
Collapse
Affiliation(s)
- Akira Sudo
- Department of Mental Retardation and Birth Defect Research, National Institute of Neuroscience, NCNP, 4-1-1 Ogawahigashi, Kodaira, Tokyo 187-8502, Japan
- Department of Child Neurology, National Center Hospital for Mental, Nervous, and Muscular Disorders, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Shiho Honzawa
- Department of Mental Retardation and Birth Defect Research, National Institute of Neuroscience, NCNP, 4-1-1 Ogawahigashi, Kodaira, Tokyo 187-8502, Japan
- Department of Pediatrics, Koshigaya Hospital, Dokkyo University School of Medicine, Saitama, Japan
| | - Ikuya Nonaka
- Department of Child Neurology, National Center Hospital for Mental, Nervous, and Muscular Disorders, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Yu-Ichi Goto
- Department of Mental Retardation and Birth Defect Research, National Institute of Neuroscience, NCNP, 4-1-1 Ogawahigashi, Kodaira, Tokyo 187-8502, Japan.
| |
Collapse
|
30
|
Abstract
Leigh disease is an inherited progressive mitochondrial neurodegenerative disease that affects the neurological, respiratory and cardiovascular systems and is associated with retardation of the intellectual and physical development. This report describes the case of a 4-year-old boy with Leigh disease who presented with self-inflicted traumatic injury to the teeth, alveolar bone, lips and tongue during repeated episodes of intense orofacial spasms. Conservative management of the injury included repositioning the fractured alveolar bone, splinting the traumatized teeth and planning for a mouthguard. However, after a second incident of severe self-induced injury to the teeth and alveolar bone, extraction of the anterior teeth became inevitable to protect the child from further self-mutilation and to allow healing of the injured tissues.
Collapse
Affiliation(s)
- M Diab
- Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Canada.
| |
Collapse
|
31
|
Cooper MA, Fox R. Anesthesia for corrective spinal surgery in a patient with Leigh's disease. Anesth Analg 2003; 97:1539-1541. [PMID: 14570684 DOI: 10.1213/01.ane.0000081787.94275.de] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
UNLABELLED We report a case of anesthesia for posterior spinal fusion in a woman with Leigh's disease. This is a syndrome with a heterogeneous phenotype including ocular signs, motor signs, and respiratory disorder. It is associated with defects in the enzymes of the mitochondrial respiratory chain and central neural degeneration. Anesthesia is associated with worsening of the respiratory symptoms. Our patient underwent major spinal surgery as a palliative procedure. Her postoperative course was complicated by acute lung injury and sepsis. She ultimately failed a prolonged respiratory wean. Serial magnetic resonance imaging revealed a rapidly progressive necrosis of her brain stem and cervical spinal cord consistent with activation of her underlying Leigh's disease. This is the first report of spinal surgery in this patient group. It is also the first radiological demonstration of Leigh's disease reactivation in the postoperative period. Anesthesia and surgery are hazardous in this patient population, and respiratory symptoms make this a high-risk group. Surgery should only be undertaken with caution and after frank consent. Early postoperative imaging is recommended if there are respiratory complications. No drug prophylaxis has been shown to alter disease activation. IMPLICATIONS Patients suffering from Leigh's disease are at high risk of serious postoperative respiratory morbidity. We present a case that demonstrates delayed respiratory complications and link this postoperative adverse outcome to aggressive reactivation of the underlying neurodegenerative condition.
Collapse
Affiliation(s)
- Michael A Cooper
- From the Department of Anesthesia, The Royal National Orthopaedic Hospital, Stanmore, Middlesex, UK
| | | |
Collapse
|
32
|
Thorburn DR, Dahl HH. Mitochondrial disorders: genetics, counseling, prenatal diagnosis and reproductive options. AMERICAN JOURNAL OF MEDICAL GENETICS 2002; 106:102-14. [PMID: 11579429 DOI: 10.1002/ajmg.1380] [Citation(s) in RCA: 103] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Most patients with mitochondrial disorders are diagnosed by finding a respiratory chain enzyme defect or a mutation in the mitochondrial DNA (mtDNA). The provision of accurate genetic counseling and reproductive options to these families is complicated by the unique genetic features of mtDNA that distinguish it from Mendelian genetics. These include maternal inheritance, heteroplasmy, the threshold effect, the mitochondrial bottleneck, tissue variation, and selection. Although we still have much to learn about mtDNA genetics, it is now possible to provide useful guidance to families with an mtDNA mutation or a respiratory chain enzyme defect. We describe a range of current reproductive options that may be considered for prevention of transmission of mtDNA mutations, including the use of donor oocytes, prenatal diagnosis (by chorionic villus sampling or amniocentesis), and preimplantation genetic diagnosis, plus possible future options such as nuclear transfer and cytoplasmic transfer. For common mtDNA mutations associated with mitochondrial cytopathies (such as NARP, Leigh Disease, MELAS, MERRF, Leber's Hereditary Optic Neuropathy, CPEO, Kearns-Sayre syndrome, and Pearson syndrome), we summarize the available data on recurrence risk and discuss the relative advantages and disadvantages of reproductive options.
Collapse
Affiliation(s)
- D R Thorburn
- Mitochondrial Research Laboratory, Murdoch Children's Research Institute, Parkville, Victoria, Australia.
| | | |
Collapse
|
33
|
Doorenbos CJ. Bicarbonate–Lactate Peritoneal Dialysis in a Patient with a Mitochondriopathy. Perit Dial Int 2001. [DOI: 10.1177/089686080102100515] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Affiliation(s)
- Cornelius J. Doorenbos
- Department of Internal Medicine and Nephrology Deventer Hospital Deventer, The Netherlands
| |
Collapse
|
34
|
Cacić M, Wilichowski E, Mejaski-Bosnjak V, Fumić K, Lujić L, Marusić Della Marina B, Hanefeld F. Cytochrome c oxidase partial deficiency-associated Leigh disease presenting as an extrapyramidal syndrome. J Child Neurol 2001; 16:616-9. [PMID: 11510939 DOI: 10.1177/088307380101600818] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Leigh disease is a subacute neurodegenerative disorder characterized by symmetric necrotic lesions in the basal ganglia, cerebellum, thalamus, brain stem, and optical nerves and caused by altered oxidative phosphorylation. We describe the clinical, biochemical, neuroimaging, and molecular studies of a 19-year-old boy with early-onset Leigh disease manifesting as severe extrapyramidal disorder with generalized dystonia and choreoathetosis. He was born of healthy parents after an uneventful pregnancy and delivery. At the age of 2 1/2 years, after a minor respiratory infection, he developed unstable, broad-based gait and tremor of the hands. These symptoms persisted for the next several years, when ataxia became more prominent. Difficulty in swallowing, dysarthria, trunk dystonia, and marked dyskinesia of the arms and hands gradually developed. Nystagmus, transient ptosis, and strabismus also appeared. Abnormal laboratory findings included elevated plasma and cerebrospinal fluid lactate and pyruvate, with an abnormal lactate/pyruvate ratio. Cranial computed tomography and magnetic resonance imaging demonstrated signs of cerebellar atrophy, bilateral and symmetric hypodensities in the lentiform nucleus and thalamus, and transient hyperintensities of cerebral peduncles in T2-weighted sequences suggestive of Leigh disease. Muscle biopsy revealed isolated fiber atrophy, necrotic fibers undergoing phagocytosis, and no ragged-red fibers. The measured catalytic activity of cytochrome c oxidase in skeletal muscle homogenates demonstrated a partial cytochrome c oxidase deficiency No abnormalities in the mitochondrial genome and in the SURF-1 gene were found. The boy is currently receiving levodopa therapy, creatine monohydrate, and a high dosage of thiamine and lipoic acid, his condition is stabilized, and extrapyramidal symptoms are less pronounced.
Collapse
Affiliation(s)
- M Cacić
- Department of Pediatrics, Children's Hospital Zagreb, Croatia
| | | | | | | | | | | | | |
Collapse
|
35
|
Savasta S, Comi GP, Perini MP, Lupi A, Strazzer S, Rognoni F, Rossoni R. Leigh disease: clinical, neuroradiologic, and biochemical study of three new cases with cytochrome c oxidase deficiency. J Child Neurol 2001; 16:608-13. [PMID: 11510937 DOI: 10.1177/088307380101600816] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Three cases of Leigh disease are described. In all three, symptoms began in the first months of life, with muscle hypotonia, lactic acidosis, and psychomotor delay. The diagnosis was made on the basis of the clinical characteristics, biochemical abnormalities, and typical brain magnetic resonance imaging with symmetric lesions suggesting bilateral necrosis at the level of the basal ganglia and of the midbrain. Cytochrome c oxidase (complex IV of the mitochondrial respiratory chain) deficiency was demonstrated in muscle tissue in all patients and confirmed in skin fibroblasts in patient 3. A genetic heterogeneity was present in these patients since only one had a SURF-1 gene mutation. The clinical, biochemical, and neuroradiologic aspects are discussed. Finally, the finding of facial dysmorphisms in the cytochrome c oxidase deficiency observed in one of the described cases is of extreme interest; to our knowledge, this association has never been reported in the literature.
Collapse
Affiliation(s)
- S Savasta
- Division of Pediatrics and Neonatology, Istituti Ospitaleri, Cremona, Italy.
| | | | | | | | | | | | | |
Collapse
|
36
|
Péquignot MO, Dey R, Zeviani M, Tiranti V, Godinot C, Poyau A, Sue C, Di Mauro S, Abitbol M, Marsac C. Mutations in the SURF1 gene associated with Leigh syndrome and cytochrome C oxidase deficiency. Hum Mutat 2001; 17:374-81. [PMID: 11317352 DOI: 10.1002/humu.1112] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Cytochrome c oxidase (COX) deficiency is one of the major causes of Leigh Syndrome (LS), a fatal encephalopathy of infancy or childhood, characterized by symmetrical lesions in the basal ganglia and brainstem. Mutations in the nuclear genes encoding COX subunits have not been found in patients with LS and COX deficiency, but mutations have been identified in SURF1. SURF1 encodes a factor involved in COX biogenesis. To date, 30 different mutations have been reported in 40 unrelated patients. We aim to provide an overview of all known mutations in SURF1, and to propose a common nomenclature. Twelve of the mutations were insertion/deletion mutations in exons 1, 4, 6, 8, and 9; 10 were missense/nonsense mutations in exons 2, 4, 5, 7, and 8; and eight were detected at splicing sites in introns 3 to 7. The most frequent mutation was 312_321del 311_312insAT which was found in 12 patients out of 40. Twenty mutations have been described only once. We also list all polymorphisms discovered to date.
Collapse
|
37
|
Wakshlag JJ, de Lahunta A, Robinson T, Cooper BJ, Brenner O, O'Toole TD, Olson J, Beckman KB, Glass E, Reynolds AJ. Subacute necrotising encephalopathy in an Alaskan husky. J Small Anim Pract 1999; 40:585-9. [PMID: 10664957 DOI: 10.1111/j.1748-5827.1999.tb03028.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A 29-month-old female Alaskan husky was presented recumbent, tetraparetic and in a state of dementia, with blindness and cranial nerve deficits. The dog's progress was followed for over two months, as the signs resolved to an non-progressive mild hypermetria with slight proprioceptive ataxia, a diminished menace response and inability to prehend food. Magnetic resonance imaging (MRI) revealed bilateral cavitation extending from the thalamus to the medulla, with less pronounced degenerative lesions in the caudate nucleus, putamen and claustrum. Cerebrospinal fluid lactate and pyruvate concentrations were in their normal ranges. Necropsy and histological examination confirmed the MRI findings as well as neuronal degeneration of the cerebellar cortex in the vermis and degenerative changes in the neocortex at the depths of the cerebral sulci. In view of the similarity of lesions to subacute necrotising encephalomyelopathy, known as Leigh's disease in humans, a tentative diagnosis of a mitochondrial encephalopathy was made.
Collapse
Affiliation(s)
- J J Wakshlag
- Cornell University College of Veterinary Medicine, Ithaca, NY 14853, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Lin YC, Lee WT, Wang PJ, Shen YZ. Vocal cord paralysis and hypoventilation in a patient with suspected Leigh disease. Pediatr Neurol 1999; 20:223-5. [PMID: 10207933 DOI: 10.1016/s0887-8994(98)00137-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The authors report the case of a 16-month-old male with suspected Leigh disease, which was diagnosed on the basis of the clinical manifestations, abnormal lactate stimulation test, proton magnetic resonance spectroscopy, and neuroradiologic findings. Progressive stridor resulting from bilateral vocal cord paralysis and hypoventilation was evident. The authors suggest that for infants or children who exhibit vocal cord paralysis, mitochondrial disorders, such as Leigh disease, should be considered.
Collapse
Affiliation(s)
- Y C Lin
- Department of Pediatrics, National Taiwan University Hospital, Taipei, Taiwan
| | | | | | | |
Collapse
|
39
|
Zhu Z, Yao J, Johns T, Fu K, De Bie I, Macmillan C, Cuthbert AP, Newbold RF, Wang J, Chevrette M, Brown GK, Brown RM, Shoubridge EA. SURF1, encoding a factor involved in the biogenesis of cytochrome c oxidase, is mutated in Leigh syndrome. Nat Genet 1998; 20:337-43. [PMID: 9843204 DOI: 10.1038/3804] [Citation(s) in RCA: 429] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Leigh Syndrome (LS) is a severe neurological disorder characterized by bilaterally symmetrical necrotic lesions in subcortical brain regions that is commonly associated with systemic cytochrome c oxidase (COX) deficiency. COX deficiency is an autosomal recessive trait and most patients belong to a single genetic complementation group. DNA sequence analysis of the genes encoding the structural subunits of the COX complex has failed to identify a pathogenic mutation. Using microcell-mediated chromosome transfer, we mapped the gene defect in this disorder to chromosome 9q34 by complementation of the respiratory chain deficiency in patient fibroblasts. Analysis of a candidate gene (SURF1) of unknown function revealed several mutations, all of which predict a truncated protein. These data suggest a role for SURF1 in the biogenesis of the COX complex and define a new class of gene defects causing human neurodegenerative disease.
Collapse
Affiliation(s)
- Z Zhu
- Montreal Neurological Institute, Quebec, Canada
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Shenkman Z, Krichevski I, Elpeleg ON, Joseph A, Kadari A. Anaesthetic management of a patient with Leigh's syndrome. Can J Anaesth 1997; 44:1091-5. [PMID: 9350370 DOI: 10.1007/bf03019232] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
PURPOSE Leigh's syndrome, a progressive neurodegenerative disorder of infancy and childhood, is clinically characterized mainly by developmental delay, nervous system dysfunction and respiratory abnormalities such as aspiration, wheezing, breathing difficulties, gasping, hypoventilation and apnoea. Acute exacerbation and respiratory failure may follow surgery, general anaesthesia or intercurrent illnesses. Hyperlecithinemia is variably present. Histopathological findings include necrosis, vascular proliferation, astrocytosis and demyelination of several brain areas. We present a 30-month-old patient with Leigh's syndrome anaesthetized for extracorporeal shockwave lithotripsy, and describe the anaesthetic considerations. CLINICAL FEATURES Leigh's syndrome was diagnosed at five months of age based on failure to thrive, lethargy, hypotonicity, choreo-athetosis and lactic acidaemia, with basal ganglia hypodense areas demonstrated by brain computerized tomographic scan. Muscle pyruvate dehydrogenase complex and NADH coenzyme Q oxidoreductase activity were 25% and 13% of control. No preoperative respiratory symptoms or signs were present. Preoperative fasting lasted two hours and gastric aspiration was negative. Anaesthesia was induced with ketamine and midazolam im, and N2O in oxygen, and maintained with propotol and N2O. No volatile anaesthetics were used. Intravenous fluids given were 1/2 normal saline and glucose 5% administered. Besides laryngospasm during anaesthetic induction, relieved by sublingual succinylcholine injection, the perianaesthetic course was uneventful. The lungs were mechanically ventilated and lithotripsy was performed. No adverse sequelae have occurred, and the patient was discharged one day later. CONCLUSION Perioperative management of patients with Leigh's syndrome requires cautious attention to the metabolic, neurological and respiratory aspects of the disease, and appropriate selection of anaesthetic drugs.
Collapse
Affiliation(s)
- Z Shenkman
- Department of Anesthesiology and CCM, Hadassah University Hospital, Jerusalem, Israel
| | | | | | | | | |
Collapse
|
41
|
García-Silva MT, Ribes A, Campos Y, Garavaglia B, Arenas J. Syndrome of encephalopathy, petechiae, and ethylmalonic aciduria. Pediatr Neurol 1997; 17:165-70. [PMID: 9367300 DOI: 10.1016/s0887-8994(97)00048-9] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
We report a boy 20 months of age with encephalopathy, petechiae, and ethylmalonic aciduria (EPEMA). Other clinical features were severe hypotonia, orthostatic acrocyanosis, and chronic diarrhea. Magnetic resonance imaging (MRI) of the brain demonstrated bilateral lesions in the lenticular and caudate nuclei, periaqueductal region, subcortical areas, white matter, and brainstem. Short and medium chain Acyl-CoA dehydrogenase and cytochrome c oxidase (COX) activities in fibroblasts were normal. Muscle histochemistry disclosed diffuse COX deficiency, and respiratory chain activities in muscle disclosed severe COX deficiency. Twelve other patients with similar clinical features have been reported. Muscle COX activity, studied only in four, demonstrated a clear-cut defect.
Collapse
|
42
|
Naito E, Ito M, Yokota I, Saijo T, Matsuda J, Osaka H, Kimura S, Kuroda Y. Biochemical and molecular analysis of an X-linked case of Leigh syndrome associated with thiamin-responsive pyruvate dehydrogenase deficiency. J Inherit Metab Dis 1997; 20:539-48. [PMID: 9266390 DOI: 10.1023/a:1005305614374] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
We report molecular analysis of thiamin-responsive pyruvate dehydrogenase complex (PDHC) deficiency in a patient with an X-linked form of Leigh syndrome. PDHC activity in cultured lymphoblastoid cells of this patient and his asymptomatic mother were normal in the presence of a high thiamin pyrophosphate (TPP) concentration (0.4 mmol/L). However, in the presence of a low concentration (1 x 10(-4) mmol/L) of TPP, the activity was significantly decreased, indicating that PDHC deficiency in this patient was due to decreased affinity of PDHC for TPP. The patient's older brother also was diagnosed as PDHC deficiency with Leigh syndrome, suggesting that PDHC deficiency in these two brothers was not a de novo mutation. Sequencing of the X-linked PDHC E1 alpha subunit revealed a C-->G point mutation at nucleotide 787, resulting in a substitution of glycine for arginine 263. Restriction enzyme analysis of the E1 alpha gene revealed that the mother was a heterozygote, indicating that thiamin-responsive PDHC deficiency associated with Leigh syndrome due to this mutation is transmitted by X-linked inheritance.
Collapse
Affiliation(s)
- E Naito
- Department of Pediatrics, School of Medicine, University of Tokushima, Japan
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Abstract
A two-and-a-half-year-old male child presented with recurrent attacks of intractable vomiting, psychomotor retardation since 14 months of age. He had also lower cranial nerve palsy and corticospinal involvement. Magnetic resonance imaging had shown multiple well circumscribed areas of hypointusity in T1 weighted image which were brightly hyperintense in heavily T2-weighted image. The lesions were seen in basal ganglia, thalamii and brainstem and spared mamillary bodies. Magnetic resonance spectroscopy demonstrated lactate peak in the affected areas confirming the diagnosis of Leigh's disease. The child responded well to large dose of vitamin 'B' therapy.
Collapse
Affiliation(s)
- D Ghosh
- Department of Neurology, Post-Graduate Institute of Medical Education and Research, Chandigarh
| | | |
Collapse
|
44
|
Rahman S, Blok RB, Dahl HH, Danks DM, Kirby DM, Chow CW, Christodoulou J, Thorburn DR. Leigh syndrome: clinical features and biochemical and DNA abnormalities. Ann Neurol 1996; 39:343-51. [PMID: 8602753 DOI: 10.1002/ana.410390311] [Citation(s) in RCA: 528] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
We investigated the etiology of Leigh syndrome in 67 Australian cases from 56 pedigrees, 35 with a firm diagnosis and 32 with some atypical features. Biochemical or DNA defects were determined in both groups, ie, 80% in the tightly defined group and 41% in the "Leigh-like" group. Eleven patients had mitochondrial DNA point mutations (nucleotide [nt] 8993 T to G, nt 8993 T to C, or nt 8344 A to G) and 1 Leigh-like patient had a heteroplasmic deletion. Twenty-nine patients had enzyme defects, ie, 13 respiratory chain complex I, 9 complex IV, and 7 pyruvate dehydrogenase complex (PDHC). Complex I deficiency is more common than recognized previously. Six PDHC-deficient patients had mutations in the X-chromosomal gene encoding the E1alpha subunit of PDHC. Parental consanguinity suggested autosomal recessive inheritance in two complex IV-deficient sibships. We found no strong correlation between the clinical features and basic defects. An assumption of autosomal recessive inheritance (frequently made in the past) would have been wrong in nearly one-half (11 of 28 tightly defined and 18 of 41 total patients) of those in whom a cause was found. A specific defect must be identified if reliable genetic counseling is to be provided.
Collapse
Affiliation(s)
- S Rahman
- Murdoch Institute, Royal Children's Hospital, Parkville, Victoria, Australia
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Abstract
Mitochondrial defects, defects in gluconeogenesis, and biotin-responsive multiple carboxylase deficiency are disorders characterized by primary lactic acidosis. In this review, characteristic findings in magnetic resonance imaging (MRI) of the brain, as related to histopathological abnormalities, are described for the different disorders and the diagnostic value of the MRI findings is discussed. Inborn errors of metabolism with primary lactic acidosis should be considered in particular when MRI shows lesions similar to or reminiscent of effects of focal or generalized hypoxia-ischaemia, or when MRI shows signs of chronic neurodegeneration, but rarely in cases with predominantly white-matter changes.
Collapse
Affiliation(s)
- M S van der Knaap
- Department of Pediatrics, Free University Hospital, Amsterdam, The Netherlands
| | | | | |
Collapse
|
46
|
Abstract
Congenital lactic acidoses form a heterogeneous group of disorders: this paper considers primarily defects of the pyruvate dehydrogenase complex and the respiratory chain. Attempts to treat these disorders are hampered by uncertainty concerning the pathophysiology and by the central role of the enzymes in cellular metabolism. Few strategies are of proven efficacy, though many have been tried, including dietary manipulation, enhancement of residual enzyme activity, artificial electron acceptors and free-radical scavengers. Evaluation of treatment is complicated by the rarity, heterogeneity and unpredictable course of the diseases. Double-blind placebo-controlled trials are needed.
Collapse
Affiliation(s)
- A A Morris
- Metabolic Unit, London Centre for Paediatric Endocrinology and Metabolism, UK
| | | |
Collapse
|
47
|
Ruitenbeek W, Wendel U, Hamel BC, Trijbels JM. Genetic counselling and prenatal diagnosis in disorders of the mitochondrial energy metabolism. J Inherit Metab Dis 1996; 19:581-7. [PMID: 8884581 DOI: 10.1007/bf01799118] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Point mutations in mitochondrial DNA, as found in MELAS, MERRF, NARP and other syndromes, are inherited via the maternal lineage. Genetic counselling can be beneficial, but prenatal diagnosis is not advantageous in these syndromes. Empirical data about the recurrence risk can be applied in Leber disease (LHON). Mitochondrial disorders not associated with a point mutation have a sporadic nature (large deletions/duplications in mitochondrial DNA) or are transmitted according to Mendelian laws. Autosomal dominant inheritance is likely to be found in disorders with depletion of mitochondrial DNA. X-linked mode of inheritance is seen in Menkes disease, Barth syndrome, and in deficiencies of the E1 alpha subunit of the pyruvate dehydrogenase complex. Mutation analysis or linkage studies can be applied for carrier detection and prenatal diagnosis in these three types of mitochondriopathies. The majority of the disorders with a disturbed mitochondrial energy metabolism are likely inherited in an autosomal recessive mode. Prenatal diagnosis can be performed in the cases of cytochrome c oxidase and NADH dehydrogenase deficiencies in chorionic villi in selected families.
Collapse
Affiliation(s)
- W Ruitenbeek
- Department of Pediatrics, University Hospital Nijmegen, The Netherlands
| | | | | | | |
Collapse
|
48
|
van der Knaap MS, Valk J, Barth PG, Smit LM, van Engelen BG, Tortori Donati P. Leukoencephalopathy with swelling in children and adolescents: MRI patterns and differential diagnosis. Neuroradiology 1995; 37:679-86. [PMID: 8748906 DOI: 10.1007/bf00593394] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
In children, several neurological disorders are characterised by spongiform leukoencephalopathy. MRI of the brain typically shows white matter swelling, but does not enable differentiation of the various underlying disorders. The aim of this article is optimisation of the diagnostic value of MRI in leukoencephalopathy accompanied by swelling. MRI-based inclusion criteria were met by 20 patients in our database. The images were analysed using a detailed scoring list. In 13 of the 20 patients the clinical diagnosis was known (11 definite and 2 probable diagnoses). Characteristic MRI abnormalities could be defined in these patients. Of the 7 patients without a diagnosis, 5 had identical MRI abnormalities: diffuse hemisphere swelling and typical cysts in frontoparietal subcortical white matter and the tips of the temporal lobes. The clinical picture was also similar in these patients, suggesting a similar disease.
Collapse
Affiliation(s)
- M S van der Knaap
- Department of Child Neurology, Free University Hospital, HV Amsterdam, The Netherlands
| | | | | | | | | | | |
Collapse
|
49
|
Samson JF, Barth PG, de Vries JI, Menko FH, Ruitenbeek W, van Oost BA, Jakobs C. Familial mitochondrial encephalopathy with fetal ultrasonographic ventriculomegaly and intracerebral calcifications. Eur J Pediatr 1994; 153:510-6. [PMID: 7957369 DOI: 10.1007/bf01957007] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
In two sibs antenatal ultrasonography revealed identical intracranial calcification, ventricular widening and microcephaly. The first pregnancy was artificially terminated at 19 weeks. Post-mortem examination of the brain revealed destructive calcification and extracerebral neuronal heterotopia. The second sib went to term but died 48 h after birth from irreversible lactic acidosis. Autopsy showed extensive encephalopathy with cavitation and calcification in the cerebral hemispheres, polymicrogyria, multiple neuronal heterotopia, partial callosal dysgenesis, and severe Leigh syndrome, together forming a continuum of early and late brain disruption. Mitochondrial respiratory chain abnormalities, mainly affecting complexes I and IV, and deficiency of pyruvate dehydrogenase complex were detected in skeletal muscle and in liver. A normal functioning of the respiratory chain was found in the fibroblasts. Analysis of mtDNA from muscle, liver and blood revealed normal amounts of intact mtDNA without any of the known point mutations associated with MELAS, MERRF or Leigh syndromes. The early fetal disruption and necrotic changes in the brains of sibs indicate a specific genetically determined disorder which affects neuronal migration, a finding not previously associated with respiratory chain disorders. The present disorder may mimic antenatal congenital infectious encephalopathy because of the combined finding of microcephaly and destructive intracerebral calcification.
Collapse
Affiliation(s)
- J F Samson
- Department of Paediatrics, Free University Hospital, Amsterdam, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
50
|
Natowicz MR, Bejjani B. Genetic disorders that masquerade as multiple sclerosis. AMERICAN JOURNAL OF MEDICAL GENETICS 1994; 49:149-69. [PMID: 8116663 DOI: 10.1002/ajmg.1320490202] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
There are many genetic disorders that have signs and symptoms suggestive of multiple sclerosis and that may easily be overlooked in the evaluation of both adult and pediatric multiple sclerosis patients. The recognition of a genetic disorder as the cause of a patient's "multiple sclerosis" phenotype has important implications not only for the patient, but often also for others in the patient's family who may be at risk for the same disease. We present here a review of single gene disorders that can masquerade as multiple sclerosis. For each disorder, the major clinical and biochemical characteristics are discussed, together with the appropriate testing to screen for and confirm the diagnosis. In addition, guidelines are presented for when to suspect an underlying genetic condition in a patient with a diagnosis of definite or probable multiple sclerosis. The great variety of genetic disorders that can masquerade as multiple sclerosis and the many implications of a genetic diagnosis underscore the importance of recognizing genocopies of multiple sclerosis.
Collapse
Affiliation(s)
- M R Natowicz
- Division of Medical Genetics, Shriver Center for Mental Retardation, Waltham, MA 02254
| | | |
Collapse
|