1
|
Inhibition of Class I Histone Deacetylase Activity Blocks the Induction of TNFAIP3 Both Directly and Indirectly via the Suppression of Endogenous TNF-α. Int J Mol Sci 2022; 23:ijms23179752. [PMID: 36077149 PMCID: PMC9456523 DOI: 10.3390/ijms23179752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 08/23/2022] [Accepted: 08/25/2022] [Indexed: 11/16/2022] Open
Abstract
Histone deacetylase inhibitors (HDIs) are promising drugs for the treatment of inflammatory diseases. However, their therapeutical exploitation is slowed down by severe adverse manifestations that can hardly be foreseen, mainly due to incomplete knowledge of how HDIs impact the delicate balance of inflammatory mediators. In this work, we characterized the effects of the HDI trichostatin A (TSA) on the expression of TNFAIP3, which is a crucial inhibitor of the classical NF-kB pathway and an LPS-induced negative feedback regulator. The accumulation of TNFAIP3 mRNA after LPS stimulation showed biphasic behavior, with one wave within the first hour of stimulation and a second wave several hours later, which were both reduced by TSA. By using inhibition and knockdown approaches, we identified two temporally and mechanistically distinct modes of action. The first wave of TNAIP3 accumulation was directly blunted by the histone deacetylase (HDAC) blockade. By contrast, the second wave was decreased mainly because of the lack of endogenous TNF-α induction, which, in turn, depended on the intact HDAC activity. In both cases, class I HDACs appeared to play a nonredundant role, with HDAC3 required, but not sufficient, for TNF-α and TNFAIP3 induction. In addition to TNFAIP3, TNF-α is known to induce many response genes that orchestrate the inflammatory cascade. Thus, suppression of TNF-α may represent a general mechanism through which HDIs regulate a selected set of target genes.
Collapse
|
2
|
Inoue T, Hariya N, Imamochi Y, Dey A, Ozato K, Goda T, Kubota T, Mochizuki K. Epigenetic regulation of lipoprotein lipase gene via BRD4, which is potentially associated with adipocyte differentiation and insulin resistance. Eur J Pharmacol 2019; 858:172492. [PMID: 31233750 DOI: 10.1016/j.ejphar.2019.172492] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 06/20/2019] [Accepted: 06/20/2019] [Indexed: 10/26/2022]
Abstract
Lipoprotein lipase (LPL) is the rate-controlling enzyme for the accumulation of triacylglycerol into adipocytes, which acts by digesting it into glycerol and fatty acids. In this study, we found that treatment with (+)-JQ1, an inhibitor of the bromodomain and extra-terminal (BET) family proteins, for 4 days from the end of stimulation to induce adipocyte differentiation reduced binding of BRD4, a BET family member, within the gene body of Lpl. This eventually downregulated the expression of Lpl in 3T3-L1 adipocytes. Longer treatment for 8 days reduced the acetylation of histones H3 and H4 within the gene body of Lpl and subsequent Lpl expression. Lpl expression in mesenteric adipose tissues was lower in Brd4+/- heterozygous mice at 14 days after birth than in wild-type mice at the same age. Furthermore, treatment with an inducer of insulin resistance, tumor necrosis factor-α, reduced BRD4 binding and histone acetylation in the gene body of Lpl and its expression. These results indicate that transcriptional elongation of Lpl controlled by BRD4 may be associated with adipocyte differentiation, and that its suppression is potentially associated with insulin resistance of adipocytes.
Collapse
Affiliation(s)
- Takuya Inoue
- Division of Engineering, Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, Chuo, Yamanashi, Japan
| | - Natsuyo Hariya
- Department of Nutrition, Faculty of Health and Nutrition, Yamanashi Gakuin University, Kofu, Yamanashi, Japan
| | - Yuko Imamochi
- Graduate School of Nutritional and Environmental Sciences, University of Shizuoka, Shizuoka, Japan
| | - Anup Dey
- Laboratory of Molecular Growth Regulation, NICHD, NIH, Bethesda, MD, USA
| | - Keiko Ozato
- Laboratory of Molecular Growth Regulation, NICHD, NIH, Bethesda, MD, USA
| | - Toshinao Goda
- Graduate School of Nutritional and Environmental Sciences, University of Shizuoka, Shizuoka, Japan
| | - Takeo Kubota
- Department of Child Studies, Faculty of Child Studies, Seitoku University, Chiba, Japan
| | - Kazuki Mochizuki
- Laboratory of Food and Nutritional Sciences, Department of Local Produce and Food Sciences, Faculty of Life and Environmental Sciences, University of Yamanashi, Kofu, Yamanashi, Japan.
| |
Collapse
|
3
|
Nijhuis L, Peeters JGC, Vastert SJ, van Loosdregt J. Restoring T Cell Tolerance, Exploring the Potential of Histone Deacetylase Inhibitors for the Treatment of Juvenile Idiopathic Arthritis. Front Immunol 2019; 10:151. [PMID: 30792714 PMCID: PMC6374297 DOI: 10.3389/fimmu.2019.00151] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Accepted: 01/17/2019] [Indexed: 12/24/2022] Open
Abstract
Juvenile Idiopathic Arthritis (JIA) is characterized by a loss of immune tolerance. Here, the balance between the activity of effector T (Teff) cells and regulatory T (Treg) cells is disturbed resulting in chronic inflammation in the joints. Presently, therapeutic strategies are predominantly aimed at suppressing immune activation and pro-inflammatory effector mechanisms, ignoring the opportunity to also promote tolerance by boosting the regulatory side of the immune balance. Histone deacetylases (HDACs) can deacetylate both histone and non-histone proteins and have been demonstrated to modulate epigenetic regulation as well as cellular signaling in various cell types. Importantly, HDACs are potent regulators of both Teff cell and Treg cell function and can thus be regarded as attractive therapeutic targets in chronic inflammatory arthritis. HDAC inhibitors (HDACi) have proven therapeutic potential in the cancer field, and are presently being explored for their potential in the treatment of autoimmune diseases. Specific HDACi have already been demonstrated to reduce the secretion of pro-inflammatory cytokines by Teff cells, and promote Treg numbers and suppressive capacity in vitro and in vivo. In this review, we outline the role of the different classes of HDACs in both Teff cell and Treg cell function. Furthermore, we will review the effect of different HDACi on T cell tolerance and explore their potential as a therapeutic strategy for the treatment of oligoarticular and polyarticular JIA.
Collapse
Affiliation(s)
- Lotte Nijhuis
- Laboratory of Translational Immunology, Department of Pediatric Immunology & Rheumatology, University Medical Center Utrecht, University of Utrecht, Utrecht, Netherlands
| | - Janneke G C Peeters
- Laboratory of Translational Immunology, Department of Pediatric Immunology & Rheumatology, University Medical Center Utrecht, University of Utrecht, Utrecht, Netherlands
| | - Sebastiaan J Vastert
- Laboratory of Translational Immunology, Department of Pediatric Immunology & Rheumatology, University Medical Center Utrecht, University of Utrecht, Utrecht, Netherlands
| | - Jorg van Loosdregt
- Laboratory of Translational Immunology, Department of Pediatric Immunology & Rheumatology, University Medical Center Utrecht, University of Utrecht, Utrecht, Netherlands
| |
Collapse
|
4
|
Bowers ME, Xia B, Carreiro S, Ressler KJ. The Class I HDAC inhibitor RGFP963 enhances consolidation of cued fear extinction. ACTA ACUST UNITED AC 2015; 22:225-31. [PMID: 25776040 PMCID: PMC4371170 DOI: 10.1101/lm.036699.114] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Evidence indicates that broad, nonspecific histone deacetylase (HDAC) inhibition enhances learning and memory, however, the contribution of the various HDACs to specific forms of learning is incompletely understood. Here, we show that the Class I HDAC inhibitor, RGFP963, enhances consolidation of cued fear extinction. However, RGFP966, a strong inhibitor of HDAC3, does not significantly enhance consolidation of cued fear extinction. These data extend previous evidence that demonstrate the Class I HDACs play a role in the consolidation of long-term memory, suggesting that HDAC1 and/or HDAC2, but less likely HDAC3, may function as negative regulators of extinction retention. The development of specific HDAC inhibitors, such as RGFP963, will further illuminate the role of specific HDACs in various types of learning and memory. Moreover, HDAC inhibitors that enhance cued fear extinction may show translational promise for the treatment of fear-related disorders, including post-traumatic stress disorder (PTSD).
Collapse
Affiliation(s)
- Mallory E Bowers
- Behavioral Neuroscience and Psychiatric Disorders, Emory University, Atlanta, Georgia 30329, USA
| | - Bing Xia
- RepliGen Waltham, Massachusetts 02453, USA
| | | | - Kerry J Ressler
- Behavioral Neuroscience and Psychiatric Disorders, Emory University, Atlanta, Georgia 30329, USA Howard Hughes Medical Institute, Chevy Chase, Maryland 20815, USA
| |
Collapse
|
5
|
Tan S, Liu ZP. Natural Products as Zinc-Dependent Histone Deacetylase Inhibitors. ChemMedChem 2015; 10:441-50. [DOI: 10.1002/cmdc.201402460] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2014] [Indexed: 12/21/2022]
|
6
|
Kim S, Bong N, Kim OS, Jin J, Kim DE, Lee DK. Lithium chloride suppresses LPS-mediated matrix metalloproteinase-9 expression in macrophages through phosphorylation of GSK-3β. Cell Biol Int 2014; 39:177-84. [PMID: 25053111 DOI: 10.1002/cbin.10352] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2013] [Accepted: 06/25/2014] [Indexed: 12/31/2022]
Abstract
Abnormal degradation of matrix components due to dysregulated expression of matrix metalloproteinase (MMP)-9 in macrophages has been linked to progression of acute cerebral ischemia and atherosclerosis. We report that lithium chloride (LiCl) or CHIR99021, inhibitors of Wnt signaling pathway, enhance phosphorylation of glycogen synthase kinase-3beta and suppress lipopolysaccharide-mediated upregulation of MMP-9 expression in murine macrophage RAW264.7 cells in a dose-dependent manner. Suppression of MMP-9 expression by LiCl or CHIR99021 did not result after inhibition of kinases involved in NFκB or AP-1 family proteins, but from changes in the activity of histone deacetylases. Beneficial effects on atherosclerosis or cerebral ischemia in animal studies caused by LiCl may be in part explained by the suppression of MMP-9 gene expression.
Collapse
Affiliation(s)
- Sooho Kim
- Laboratory of Genome to Drug Medicine, Joint Center for Biosciences, 7-45 Songdo-dong, Yeonsu-ku, Incheon, Korea
| | | | | | | | | | | |
Collapse
|
7
|
Du M, Fu X, Zhou Y, Zhu S. Effects of Trichostatin A on Cumulus Expansion during Mouse Oocyte Maturation. ASIAN-AUSTRALASIAN JOURNAL OF ANIMAL SCIENCES 2014; 26:1545-52. [PMID: 25049740 PMCID: PMC4093811 DOI: 10.5713/ajas.2013.13128] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2013] [Revised: 06/03/2013] [Accepted: 04/08/2013] [Indexed: 01/12/2023]
Abstract
This study was conducted to investigate the effects of Trichostatin A (TSA) on cumulus expansion during mouse oocyte maturation. TSA treatment inhibited cumulus expansion and significantly reduced the cumulus expansion index (CEI) (p<0.05). To determine the underlying mechanism, the expression levels of several key factors that play crucial roles in cumulus expansion including components of extracellular matrix (ECM) (Has2, Ptgs2, Ptx3, and Tnfaip6) and Growth differentiation factor 9 (GDF9) were measured in control and TSA treated samples by real-time PCR. The effect of TSA on ERK phosphorylation (p-ERK1/2) in cumulus cells and GDF9 protein level in fully grown oocytes (FGOs) were detected by Western blotting. The expression levels of the ECM genes were significantly decreased (p<0.05) by TSA treatment while GDF9 expression did not response to TSA (p>0.05). TSA treatment blocked the activation of ERK1/2 (p<0.05) and had no significant effect on GDF9 protein expression (p>0.05). Collectively, these results suggested that TSA treatment altered ECM gene expression and blocked ERK1/2 activation to inhibit cumulus expansion in the mouse.
Collapse
Affiliation(s)
- Ming Du
- Key Laboratory of Animal Genetics, Breeding and Reproduction,Ministry of Agriculture and National Engineering Laboratoryfor Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Xiangwei Fu
- Key Laboratory of Animal Genetics, Breeding and Reproduction,Ministry of Agriculture and National Engineering Laboratoryfor Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Yanhua Zhou
- Key Laboratory of Animal Genetics, Breeding and Reproduction,Ministry of Agriculture and National Engineering Laboratoryfor Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Shien Zhu
- Key Laboratory of Animal Genetics, Breeding and Reproduction,Ministry of Agriculture and National Engineering Laboratoryfor Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| |
Collapse
|
8
|
Wilson CB, McLaughlin LD, Ebenezer PJ, Nair AR, Francis J. Valproic acid effects in the hippocampus and prefrontal cortex in an animal model of post-traumatic stress disorder. Behav Brain Res 2014; 268:72-80. [DOI: 10.1016/j.bbr.2014.03.029] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2014] [Revised: 03/08/2014] [Accepted: 03/10/2014] [Indexed: 12/31/2022]
|
9
|
McEachern LA, Murphy PR. Chromatin-remodeling factors mediate the balance of sense-antisense transcription at the FGF2 locus. Mol Endocrinol 2014; 28:477-89. [PMID: 24552587 DOI: 10.1210/me.2013-1220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Antisense transcription is prevalent in mammalian genomes, yet the function of many antisense transcripts remains elusive. We have previously shown that the fibroblast growth factor 2 (FGF2) gene is regulated endogenously by an overlapping antisense gene called Nudix-type motif 6 (NUDT6). However, the molecular mechanisms that determine the balance of FGF2 and NUDT6 transcripts are not yet well understood. Here we demonstrate that there is a strong negative correlation between FGF2 and NUDT6 across 7 different cell lines. Small interfering RNA-mediated knockdown of NUDT6 causes an increase in nascent FGF2 transcripts, including a short FGF2 variant that lacks sequence complementarity with NUDT6, indicating the involvement of transcriptional mechanisms. In support of this, we show that changes in histone acetylation by trichostatin A treatment, histone deacetylase inhibition, or small interfering RNA knockdown of the histone acetyltransferase CSRP2BP, oppositely affect NUDT6 and FGF2 mRNA levels. A significant increase in histone acetylation with trichostatin A treatment was only detected at the genomic region where the 2 genes overlap, suggesting that this may be an important regulatory region for determining the balance of NUDT6 and FGF2. Knockdown of the histone demethylase KDM4A similarly causes a shift in the balance of NUDT6 and FGF2 transcripts. Expression of CSRP2BP and KDM4A correlates positively with NUDT6 expression and negatively with FGF2 expression. The results presented here indicate that histone acetylation and additional chromatin modifiers are important in determining the relative levels of FGF2 and NUDT6 and support a model in which epigenetic remodeling contributes to their relative expression levels.
Collapse
Affiliation(s)
- Lori A McEachern
- Department of Physiology and Biophysics, Dalhousie University, Halifax, Nova Scotia, B3H 4R2, Canada
| | | |
Collapse
|
10
|
Kubota T, Koiwai O, Hori K, Watanabe N, Koiwai K. TdIF1 recognizes a specific DNA sequence through its Helix-Turn-Helix and AT-hook motifs to regulate gene transcription. PLoS One 2013; 8:e66710. [PMID: 23874396 PMCID: PMC3707907 DOI: 10.1371/journal.pone.0066710] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2013] [Accepted: 05/09/2013] [Indexed: 12/27/2022] Open
Abstract
TdIF1 was originally identified as a protein that directly binds to DNA polymerase TdT. TdIF1 is also thought to function in transcription regulation, because it binds directly to the transcriptional factor TReP-132, and to histone deacetylases HDAC1 and HDAC2. Here we show that TdIF1 recognizes a specific DNA sequence and regulates gene transcription. By constructing TdIF1 mutants, we identify amino acid residues essential for its interaction with DNA. An in vitro DNA selection assay, SELEX, reveals that TdIF1 preferentially binds to the sequence 5′-GNTGCATG-3′ following an AT-tract, through its Helix-Turn-Helix and AT-hook motifs. We show that four repeats of this recognition sequence allow TdIF1 to regulate gene transcription in a plasmid-based luciferase reporter assay. We demonstrate that TdIF1 associates with the RAB20 promoter, and RAB20 gene transcription is reduced in TdIF1-knocked-down cells, suggesting that TdIF1 stimulates RAB20 gene transcription.
Collapse
Affiliation(s)
- Takashi Kubota
- Department of Applied Biological Science, Faculty of Science and Technology, Tokyo University of Science, Noda, Chiba, Japan
| | - Osamu Koiwai
- Department of Applied Biological Science, Faculty of Science and Technology, Tokyo University of Science, Noda, Chiba, Japan
| | - Katsutoshi Hori
- Department of Biotechnology, Graduate School of Engineering, Nagoya University, Nagoya, Aichi, Japan
| | | | - Kotaro Koiwai
- Department of Applied Biological Science, Faculty of Science and Technology, Tokyo University of Science, Noda, Chiba, Japan
- Department of Biotechnology, Graduate School of Engineering, Nagoya University, Nagoya, Aichi, Japan
- * E-mail:
| |
Collapse
|
11
|
Burns SS, Akhmametyeva EM, Oblinger JL, Bush ML, Huang J, Senner V, Chen CS, Jacob A, Welling DB, Chang LS. Histone deacetylase inhibitor AR-42 differentially affects cell-cycle transit in meningeal and meningioma cells, potently inhibiting NF2-deficient meningioma growth. Cancer Res 2013; 73:792-803. [PMID: 23151902 PMCID: PMC3549000 DOI: 10.1158/0008-5472.can-12-1888] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Meningiomas constitute about 34% of primary intracranial tumors and are associated with increased mortality in patients with neurofibromatosis type 2 (NF2). To evaluate potential medical therapies for these tumors, we have established a quantifiable orthotopic model for NF2-deficient meningiomas. We showed that telomerase-immortalized Ben-Men-1 benign meningioma cells harbored a single nucleotide deletion in NF2 exon 7 and did not express the NF2 protein, merlin. We also showed that AR-42, a pan-histone deacetylase inhibitor, inhibited proliferation of both Ben-Men-1 and normal meningeal cells by increasing expression of p16(INK4A), p21(CIP1/WAF1), and p27(KIP1). In addition, AR-42 increased proapoptotic Bim expression and decreased anti-apoptotic Bcl(XL) levels. However, AR-42 predominantly arrested Ben-Men-1 cells at G(2)-M whereas it induced cell-cycle arrest at G(1) in meningeal cells. Consistently, AR-42 substantially decreased the levels of cyclin D1, E, and A, and proliferating cell nuclear antigen in meningeal cells while significantly reducing the expression of cyclin B, important for progression through G(2), in Ben-Men-1 cells. In addition, AR-42 decreased Aurora A and B expression. To compare the in vivo efficacies of AR-42 and AR-12, a PDK1 inhibitor, we generated and used luciferase-expressing Ben-Men-1-LucB cells to establish intracranial xenografts that grew over time. While AR-12 treatment moderately slowed tumor growth, AR-42 caused regression of Ben-Men-1-LucB tumors. Importantly, AR-42-treated tumors showed minimal regrowth when xenograft-bearing mice were switched to normal diet. Together, these results suggest that AR-42 is a potential therapy for meningiomas. The differential effect of AR-42 on cell-cycle progression of normal meningeal and meningioma cells may have implications for why AR-42 is well-tolerated while it potently inhibits tumor growth.
Collapse
Affiliation(s)
- Sarah S. Burns
- Center for Childhood Cancer, The Research Institute at Nationwide Children’s Hospital, Columbus, Ohio, USA
- Department of Otolaryngology, The Ohio State University College of Medicine, Columbus, Ohio, USA
| | - Elena M. Akhmametyeva
- Center for Childhood Cancer, The Research Institute at Nationwide Children’s Hospital, Columbus, Ohio, USA
- Department of Pediatrics, The Ohio State University College of Medicine, Columbus, Ohio, USA
| | - Janet L. Oblinger
- Center for Childhood Cancer, The Research Institute at Nationwide Children’s Hospital, Columbus, Ohio, USA
- Department of Otolaryngology, The Ohio State University College of Medicine, Columbus, Ohio, USA
| | - Matthew L. Bush
- Department of Otolaryngology, The Ohio State University College of Medicine, Columbus, Ohio, USA
| | - Jie Huang
- Center for Childhood Cancer, The Research Institute at Nationwide Children’s Hospital, Columbus, Ohio, USA
- Department of Pediatrics, The Ohio State University College of Medicine, Columbus, Ohio, USA
| | - Volker Senner
- Institut für Neuropathologie, Universitätsklinikum Münster, Germany
| | - Ching-Shih Chen
- The Ohio State University College of Pharmacy, Columbus, Ohio, USA
| | - Abraham Jacob
- Department of Otolaryngology, The Ohio State University College of Medicine, Columbus, Ohio, USA
| | - D. Bradley Welling
- Department of Otolaryngology, The Ohio State University College of Medicine, Columbus, Ohio, USA
| | - Long-Sheng Chang
- Center for Childhood Cancer, The Research Institute at Nationwide Children’s Hospital, Columbus, Ohio, USA
- Department of Otolaryngology, The Ohio State University College of Medicine, Columbus, Ohio, USA
- Department of Pediatrics, The Ohio State University College of Medicine, Columbus, Ohio, USA
| |
Collapse
|
12
|
Gill RK, Kumar A, Malhotra P, Maher D, Singh V, Dudeja PK, Alrefai W, Saksena S. Regulation of intestinal serotonin transporter expression via epigenetic mechanisms: role of HDAC2. Am J Physiol Cell Physiol 2012. [PMID: 23195070 DOI: 10.1152/ajpcell.00361.2012] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The serotonin (5-HT) transporter (SERT) facilitates clearance of extracellular 5-HT by its uptake and internalization. Decreased expression of SERT and consequent high 5-HT levels have been implicated in various diarrheal disorders. Thus, appropriate regulation of SERT is critical for maintenance of 5-HT homeostasis in health and disease. Previous studies demonstrated that SERT is regulated via posttranslational and transcriptional mechanisms. However, the role of epigenetic mechanisms in SERT regulation is not known. Current studies investigated the effects of histone deacetylase (HDAC) inhibition on SERT expression and delineated the mechanisms. Treatment of Caco-2 cells with the pan-HDAC inhibitors butyrate (5 mM) and trichostatin (TSA, 1 μM) decreased SERT mRNA and protein levels. Butyrate- or TSA-induced decrease in SERT was associated with decreased activity of human SERT (hSERT) promoter 1 (upstream of exon 1a), but not hSERT promoter 2 (upstream of exon 2). Butyrate + TSA did not show an additive effect on SERT expression, indicating that mechanisms involving histone hyperacetylation may be involved. Chromatin immunoprecipitation assays demonstrated enrichment of the hSERT promoter 1 (flanking nt -250/+2) with tetra-acetylated histone H3 or H4, which was increased (~3-fold) by butyrate. Interestingly, specific inhibition of HDAC2 (but not HDAC1) utilizing small interfering RNA decreased SERT mRNA and protein levels. The decrease in SERT expression by HDAC inhibition was recapitulated in an in vivo model. SERT mRNA levels were decreased in the ileum and colon of mice fed pectin (increased availability of butyrate) compared with controls fed a fiber-free diet (~50-60%). Our results identify a novel role of HDAC2 as a regulator of SERT gene expression in intestinal epithelial cells.
Collapse
Affiliation(s)
- Ravinder K Gill
- Section of Digestive Diseases and Nutrition, Department of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA.
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Correlation between MMP-13 and HDAC7 expression in human knee osteoarthritis. Mod Rheumatol 2009; 20:11-7. [PMID: 19784544 DOI: 10.1007/s10165-009-0224-7] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2009] [Accepted: 08/05/2009] [Indexed: 12/12/2022]
Abstract
Recent studies suggest that histone deacetylase (HDAC) inhibitors may therapeutically prevent cartilage degradation in osteoarthritis (OA). Matrix metalloproteinase-13 (MMP-13) plays an important role in the pathogenesis of this disease and in the present study we investigated the correlation between HDACs and MMP-13. Comparing the expression of different HDACs in cartilage from OA patients and healthy donors, HDAC7 showed a significant elevation in cartilage from OA patients. High level of HDAC7 expression in OA cartilage was also confirmed by immunohistochemistry. Knockdown of HDAC7 by small interference RNA (siRNA) in SW1353 human chondrosarcoma cells strongly suppressed interleukin (IL)-1-dependent and independent induction of MMP-13 gene expression. In conclusion, elevated HDAC7 expression in human OA may contribute to cartilage degradation via promoting MMP-13 gene expression, suggesting the critical role of MMP-13 in OA pathogenesis.
Collapse
|
14
|
Mottet D, Castronovo V. Histone deacetylases: target enzymes for cancer therapy. Clin Exp Metastasis 2007; 25:183-9. [PMID: 18058245 DOI: 10.1007/s10585-007-9131-5] [Citation(s) in RCA: 115] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2007] [Accepted: 11/05/2007] [Indexed: 10/22/2022]
Abstract
Epigenic regulation of gene transcription has recently been the subject of a fast growing interest particularly in the field of cancer. Enzymatic acetylation and deacetylation of the epsilon-amino groups of lysine residues from nucleosomal histones, represents major molecular epigenic mechanisms controlling gene expression. Histone deacetylases (HDACs) and histone acetyl transferases (HAT) represent the two families of enzymes in charge of the control of the level of acetylation of the histone tails. By removing the acetyl groups that abrogate the positive charge of the lysine residues that maintain the histone tails attached to DNA, HDACs repress transcription. In mammals, these latter enzymes form three groups of related enzymes based on their sequence homology and are classified as HDACs I, II and III. Global inhibition of the HDACs I and II groups results in cell growth arrest and apoptosis of cancer cells and alters tumor growth in in vivo experimental models. Their surprisingly low general toxicity and their impressive efficiency in preclinical cancer models has led to consider HDAC inhibitors as very promising new anticancer pharmacological agents. In this review, we attempt to give a comprehensive overview of the role and the involvement of HDAC in carcinogenesis as well as the current progress on the development of HDAC general and specific inhibitors as new cancer therapies.
Collapse
Affiliation(s)
- Denis Mottet
- Metastasis Research Laboratory, Centre for Experimental Cancer Research, University of Liège, Pathology Building, B23, -1, 4000 Liege, Belgium.
| | | |
Collapse
|
15
|
Abstract
Diverse cellular functions including the regulation of inflammatory gene expression, DNA repair and cell proliferation are regulated by changes in the acetylation status of histones and non-histone proteins. Many human diseases, particularly cancer, have been associated with altered patterns of histone acetylation. Furthermore, abnormal expression and activation of histone acetyltransferases, which act as transcriptional co-activators, has been reported in inflammatory diseases. Histone deacetylase (HDAC) inhibitors have been developed clinically for malignancies due to their effects on apoptosis. More recently, in vitro and in vivo data indicates that HDAC inhibitors may be anti-inflammatory due to their effects on cell death acting through acetylation of non-histone proteins. Although there are concerns over the long-term safety of these agents, they may prove useful particularly in situations where current anti-inflammatory therapies are suboptimal.
Collapse
Affiliation(s)
- I M Adcock
- Airways Disease Section, National Heart and Lung Institute, Imperial College London, London, UK.
| |
Collapse
|
16
|
Kim EH, Kim HS, Kim SU, Noh EJ, Lee JS, Choi KS. Sodium butyrate sensitizes human glioma cells to TRAIL-mediated apoptosis through inhibition of Cdc2 and the subsequent downregulation of survivin and XIAP. Oncogene 2006; 24:6877-89. [PMID: 16007142 DOI: 10.1038/sj.onc.1208851] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
In TNF-related apoptosis-inducing ligand (TRAIL)-resistant glioma cells, co-treatment with nontoxic doses of sodium butyrate and TRAIL resulted in a marked increase of TRAIL-induced apoptosis. This combined treatment was also cytotoxic to glioma cells overexpressing Bcl-2 or Bcl-xL, but not to normal human astrocytes, thus offering an attractive strategy for safely treating resistant gliomas. Cotreatment with sodium butyrate facilitated completion of proteolytic processing of procaspase-3 that was partially blocked by treatment with TRAIL alone. We also found that treatment with sodium butyrate significantly decreased the protein levels of survivin and X-linked inhibitor of apoptosis protein (XIAP), two major caspase inhibitors. Overexpression of survivin and XIAP attenuated sodium butyrate-stimulated TRAIL-induced apoptosis, suggesting its involvement in conferring TRAIL resistance to glioma cells. Furthermore, the kinase activities of Cdc2 and Cdk2 were significantly decreased following sodium butyrate treatment, accompanying downregulation of cyclin A and cyclin B, as well as upregulation of p21. Forced expression of Cdc2 plus cyclin B, but not Cdk2 plus cyclin A, attenuated sodium butyrate/TRAIL-induced apoptosis, overriding sodium butyrate-mediated downregulation of survivin and XIAP. Therefore, Cdc2-mediated downregulation of survivin and XIAP by sodium butyrate may contribute to the recovery of TRAIL sensitivity in glioma cells.
Collapse
Affiliation(s)
- Eun Hee Kim
- Institute for Medical Sciences, Ajou University School of Medicine, Wonchon-dong, Youngtong-gu, Suwon, South Korea
| | | | | | | | | | | |
Collapse
|
17
|
Nome RV, Bratland A, Harman G, Fodstad O, Andersson Y, Ree AH. Cell cycle checkpoint signaling involved in histone deacetylase inhibition and radiation-induced cell death. Mol Cancer Ther 2005; 4:1231-8. [PMID: 16093439 DOI: 10.1158/1535-7163.mct-04-0304] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
In breast cancer, radiation has a central role in the treatment of brain metastasis, although tumor sensitivity might be limited. The tumor cell defense response to ionizing radiation involves activation of cell cycle checkpoint signaling. Histone deacetylase (HDAC) inhibitors, agents that cause hyperacetylation of histone proteins and thereby aberrations in the chromatin structure, may also override the DNA damage defense response and facilitate the radiation-induced mitotic cell death. In experimental metastasis models, the human breast carcinoma cell line MA-11 invariably disseminates to the central nervous system. We compared profiles of in vitro MA-11 cell cycle response to ionizing radiation and HDAC inhibition. After radiation exposure, the G2-M phase accumulation and the preceding repression of the G2 phase regulatory factors Polo-like kinase-1 and cyclin B1 required intact G2 checkpoint signaling through the checkpoint kinase CHK1, whereas the similar phenotypic changes observed with HDAC inhibition did not. MA-11 cells did not show radiation-induced expression of the G1 cell cycle inhibitor p21, indicative of a defective G1 checkpoint and consistent with a point mutation detected in the tumor suppressor TP53 gene. Increase in the p21 level, however, was observed with HDAC inhibition. Following pretreatment with the HDAC inhibitor, the efficiency of clonogenic regrowth after irradiation was reduced, which is in accordance with the concept of increased probability of mitotic cell death when the chromatin structure is disrupted. Among molecular cell cycle-targeted drugs currently in the pipeline for testing in early-phase clinical trials, HDAC inhibitors may have therapeutic potential as radiosensitizers.
Collapse
Affiliation(s)
- Ragnhild V Nome
- Department of Tumor Biology, The Norwegian Radium Hospital, 0310 Oslo, Norway
| | | | | | | | | | | |
Collapse
|
18
|
Bevins RL, Zimmer SG. It's About Time: Scheduling Alters Effect of Histone Deacetylase Inhibitors on Camptothecin-Treated Cells. Cancer Res 2005; 65:6957-66. [PMID: 16061681 DOI: 10.1158/0008-5472.can-05-0836] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Chemotherapeutic treatment with combinations of drugs is front-line therapy for many types of cancer. Combining drugs which target different signaling pathways often lessens adverse side effects while increasing the efficacy of treatment and reducing patient morbidity. A defined scheduling protocol is described by which histone deacetylase inhibitors (HDIs) facilitate the cytotoxic effectiveness of the topoisomerase I inhibitor camptothecin in the killing of tumor cells. Breast and lung cancer cell lines were treated with camptothecin and sodium butyrate (NaB) or suberoylanilide hydroxamic acid on the day of, the day before, or the day after camptothecin addition. Depending on the time of addition, NaB-treated cells displayed a spectrum of responses from protection to sensitization, indicating the critical nature of timing in the use of HDIs. The IC80 (72-hour assay) dose of 100 nmol/L camptothecin could be lowered to 15 nmol/L camptothecin while maintaining or surpassing cell killing of the single agent if combined with an HDI added 24 to 48 hours after camptothecin. Experiments determined that cells arrested in G2-M by camptothecin were most sensitive to subsequent HDI addition. Western blot analysis indicated that in camptothecin-arrested cells, NaB decreases cyclin B levels, as well as the levels of the antiapoptotic proteins XIAP and survivin. These findings suggest that reducing the levels of these critical antiapoptotic factors may increase the efficacy of topoisomerase I inhibitors in the clinical setting if given in a sequence that does not prevent or inhibit tumor cell progression through the S phase.
Collapse
Affiliation(s)
- Robert L Bevins
- Graduate Center for Toxicology and Department of Microbiology, Immunology and Molecular Genetics, University of Kentucky, Lexington, Kentucky 40536, USA
| | | |
Collapse
|
19
|
Hayashi R, Wada H, Ito K, Adcock IM. Effects of glucocorticoids on gene transcription. Eur J Pharmacol 2005; 500:51-62. [PMID: 15464020 DOI: 10.1016/j.ejphar.2004.07.011] [Citation(s) in RCA: 186] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/01/2004] [Indexed: 01/06/2023]
Abstract
Glucocorticoids bind to and activate a cytoplasmic glucocorticoid receptor. The activated glucocorticoid receptor translocates into the nucleus and binds to specific response elements in the promoter regions of anti-inflammatory genes such as lipocortin-1 and secretory leukocyte protease inhibitor (SLPI). However, the major anti-inflammatory effects of glucocorticoids appear to be due largely to interaction between the activated glucocorticoid receptor and transcription factors, notably nuclear factor-kappaB (NF-kappaB) and activator protein-1 (AP-1), that mediate the expression of inflammatory genes. NF-kappaB switches on inflammatory genes via a process involving recruitment of transcriptional co-activator proteins and changes in chromatin modifications such as histone acetylation. This process must occur in the correct temporal manner to allow for effective inflammatory gene expression to occur. The interactions between NF-kappaB and the glucocorticoid receptor result in differing effects on histone modifications and chromatin remodelling. Drugs that enhance glucocorticoid receptor nuclear translocation (long acting beta-agonists) and GR-associated histone deacetylases activity (theophylline) have been shown to be effective add-on therapies. In addition, dissociated glucocorticoids that target NF-kappaB preferentially have also been successful in the treatment of allergic disease.
Collapse
Affiliation(s)
- Ryuji Hayashi
- Department of Thoracic Medicine, National Heart and Lung Institute, Imperial College, Dovehouse St, London, SW3 6LY, UK
| | | | | | | |
Collapse
|
20
|
Ouwehand K, de Ruijter AJM, van Bree C, Caron HN, van Kuilenburg ABP. Histone deacetylase inhibitor BL1521 induces a G1-phase arrest in neuroblastoma cells through altered expression of cell cycle proteins. FEBS Lett 2005; 579:1523-8. [PMID: 15733867 DOI: 10.1016/j.febslet.2005.01.058] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2004] [Revised: 12/20/2004] [Accepted: 01/25/2005] [Indexed: 11/21/2022]
Abstract
Histone deacetylase inhibitors (HDACi) have been discovered as potential drugs for cancer treatment. The effect of BL1521, a novel HDACi, on the cell cycle distribution and the induction of apoptosis was investigated in a panel of MYCN single copy and MYCN amplified neuroblastoma cell lines. BL1521 arrested neuroblastoma cells in the G1 phase and induced up to 30% apoptosis. Downregulation of CDK4, upregulation of p21(WAF1/CIP1) and an increase of hypophosphorylated retinoblastoma protein were observed, indicating a possible mechanism for the cell-cycle arrest. BL1521 also induced downregulation of p27, which may underlie the observed induction of apoptosis.
Collapse
Affiliation(s)
- Krista Ouwehand
- Laboratory Genetic Metabolic Diseases, Academic Medical Center, University of Amsterdam, P.O. Box 22700, 1100 DE Amsterdam, The Netherlands
| | | | | | | | | |
Collapse
|
21
|
Young DA, Billingham O, Sampieri CL, Edwards DR, Clark IM. Differential effects of histone deacetylase inhibitors on phorbol ester- and TGF-β1 induced murine tissue inhibitor of metalloproteinases-1 gene expression. FEBS J 2005; 272:1912-26. [PMID: 15819885 DOI: 10.1111/j.1742-4658.2005.04622.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Expression of the tissue inhibitor of metalloproteinases-1 (Timp-1) gene can be induced by either phorbol myristate acetate (PMA) or transforming growth factor beta1 (TGF-beta1), although the signalling pathways involved are not clearly defined. Canonically, histone deacetylase inhibitors (HDACi) such as trichostatin A (TSA) or sodium butyrate (NaB) increase total cellular histone acetylation and activate expression of susceptible genes. Remarkably, PMA and TGF-beta1 stimulation of Timp-1 show a differential response to TSA or NaB. TSA or NaB potentiate PMA-induced Timp-1 expression but repress TGF-beta1-induced Timp-1 expression. The repression of TGF-beta1-induced Timp-1 by TSA was maximal at 5 ng.mL(-1), while for the superinduction of PMA-induced Timp-1 expression, the maximal dose is > 500 ng x mL(-1) TSA. A further HDACi, valproic acid, did not block TGF-beta1-induced Timp-1 expression, demonstrating that different HDACs impact on the induction of Timp-1. For either PMA or TGF-beta1 to induce Timp-1 expression, new protein synthesis is required, and the induction of AP-1 factors closely precedes that of Timp-1. The effects of the HDACi can be reiterated in transient transfection using Timp-1 promoter constructs. Mutation or deletion of the AP-1 motif (-59/-53) in the Timp-1 promoter diminishes PMA-induction of reporter constructs, however, the further addition of TSA still superinduces the reporter. In c-Jun-/- cells, PMA still stimulates Timp-1 expression, but TSA superinduction is lost. Transfection of a series of Timp-1 promoter constructs identified three regions through which TSA superinduces PMA-induced Timp-1 and we have demonstrated specific protein binding to two of these regions which contain either an avian erythroblastosis virus E26 (v-ets) oncogene homologue (Ets) or Sp1 binding motif.
Collapse
Affiliation(s)
- David A Young
- School of Biological Sciences, University of East Anglia, Norwich, UK
| | | | | | | | | |
Collapse
|
22
|
Young DA, Lakey RL, Pennington CJ, Jones D, Kevorkian L, Edwards DR, Cawston TE, Clark IM. Histone deacetylase inhibitors modulate metalloproteinase gene expression in chondrocytes and block cartilage resorption. Arthritis Res Ther 2005; 7:R503-12. [PMID: 15899037 PMCID: PMC1174946 DOI: 10.1186/ar1702] [Citation(s) in RCA: 127] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2004] [Revised: 01/07/2005] [Accepted: 01/25/2005] [Indexed: 11/10/2022] Open
Abstract
Cartilage destruction in the arthritides is thought to be mediated by two main enzyme families: the matrix metalloproteinases (MMPs) are responsible for cartilage collagen breakdown, and enzymes from the ADAMTS (a disintegrin and metalloproteinase domain with thrombospondin motifs) family mediate cartilage aggrecan loss. Many genes subject to transcriptional control are regulated, at least in part, by modifications to chromatin, including acetylation of histones. The aim of this study was to examine the impact of histone deacetylase (HDAC) inhibitors on the expression of metalloproteinase genes in chondrocytes and to explore the potential of these inhibitors as chondroprotective agents. The effects of HDAC inhibitors on cartilage degradation were assessed using a bovine nasal cartilage explant assay. The expression and activity of metalloproteinases was measured using real-time RT-PCR, western blot, gelatin zymography, and collagenase activity assays using both SW1353 chondrosarcoma cells and primary human chondrocytes. The HDAC inhibitors trichostatin A and sodium butyrate potently inhibit cartilage degradation in an explant assay. These compounds decrease the level of collagenolytic enzymes in explant-conditioned culture medium and also the activation of these enzymes. In cell culture, these effects are explained by the ability of HDAC inhibitors to block the induction of key MMPs (e.g. MMP-1 and MMP-13) by proinflammatory cytokines at both the mRNA and protein levels. The induction of aggrecan-degrading enzymes (e.g. ADAMTS4, ADAMTS5, and ADAMTS9) is also inhibited at the mRNA level. HDAC inhibitors may therefore be novel chondroprotective therapeutic agents in arthritis by virtue of their ability to inhibit the expression of destructive metalloproteinases by chondrocytes.
Collapse
Affiliation(s)
- David A Young
- School of Biological Sciences, University of East Anglia, Norwich, UK
- Department of Rheumatology, University of Newcastle-upon-Tyne, Newcastle-upon-Tyne, UK
| | - Rachel L Lakey
- Department of Rheumatology, University of Newcastle-upon-Tyne, Newcastle-upon-Tyne, UK
| | | | - Debra Jones
- Department of Rheumatology, University of Newcastle-upon-Tyne, Newcastle-upon-Tyne, UK
| | - Lara Kevorkian
- School of Biological Sciences, University of East Anglia, Norwich, UK
| | - Dylan R Edwards
- School of Biological Sciences, University of East Anglia, Norwich, UK
| | - Timothy E Cawston
- Department of Rheumatology, University of Newcastle-upon-Tyne, Newcastle-upon-Tyne, UK
| | - Ian M Clark
- School of Biological Sciences, University of East Anglia, Norwich, UK
| |
Collapse
|
23
|
Kemp MG, Ghosh M, Liu G, Leffak M. The histone deacetylase inhibitor trichostatin A alters the pattern of DNA replication origin activity in human cells. Nucleic Acids Res 2005; 33:325-36. [PMID: 15653633 PMCID: PMC546162 DOI: 10.1093/nar/gki177] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Eukaryotic chromatin structure limits the initiation of DNA replication spatially to chromosomal origin zones and temporally to the ordered firing of origins during S phase. Here, we show that the level of histone H4 acetylation correlates with the frequency of replication initiation as measured by the abundance of short nascent DNA strands within the human c-myc and lamin B2 origins, but less well with the frequency of initiation across the β-globin locus. Treatment of HeLa cells with trichostatin A (TSA) reversibly increased the acetylation level of histone H4 globally and at these initiation sites. At all three origins, TSA treatment transiently promoted a more dispersive pattern of initiations, decreasing the abundance of nascent DNA at previously preferred initiation sites while increasing the nascent strand abundance at lower frequency genomic initiation sites. When cells arrested in late G1 were released into TSA, they completed S phase more rapidly than untreated cells, possibly due to the earlier initiation from late-firing origins, as exemplified by the β-globin origin. Thus, TSA may modulate replication origin activity through its effects on chromatin structure, by changing the selection of initiation sites, and by advancing the time at which DNA synthesis can begin at some initiation sites.
Collapse
Affiliation(s)
| | | | | | - Michael Leffak
- To whom correspondence should be addressed. Tel: +1 937 775 3125; Fax: +1 937 775 3730;
| |
Collapse
|
24
|
Eyal S, Yagen B, Sobol E, Altschuler Y, Shmuel M, Bialer M. The Activity of Antiepileptic Drugs as Histone Deacetylase Inhibitors. Epilepsia 2004; 45:737-44. [PMID: 15230695 DOI: 10.1111/j.0013-9580.2004.00104.x] [Citation(s) in RCA: 151] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
PURPOSE Valproic acid (VPA), one of the widely used antiepileptic drugs (AEDs), was recently found to inhibit histone deacetylases (HDACs). HDAC inhibitors of a wide range of structures, such as hydroxamic acids, carboxylic acids, and cyclic tetrapeptides, have various effects on transformed and nontransformed cells, including neuromodulation and neuroprotection. The aim of this study was to assess comparatively the activity of traditional and newer AEDs as HDAC inhibitors. METHODS After incubation of HeLa cells with the tested AEDs, histone hyperacetylation was assessed by immunoblotting with an antibody specific to acetylated histone H4. Direct HDAC inhibition by AEDs was estimated by using HeLa nuclear extract as an HDACs source and an acetylated lysine substrate. RESULTS We found that in addition to VPA, topiramate (TPM) inhibited HDACs with apparent Ki values of 2.22 +/- 0.67 mM. Although levetiracetam (LEV) had no direct effect on HDACs, its major carboxylic acid metabolite in humans, 2-pyrrolidinone-n-butyric acid (PBA), inhibited HDACs with Ki values of 2.25 +/- 0.78 mM. The AEDs LEV, phenobarbital, phenytoin, carbamazepine, ethosuximide, gabapentin, and vigabatrin did not inhibit HDACs. The compounds that directly inhibited HDACs also induced the accumulation of acetylated histone H4 in HeLa cells. The effects of TPM and PBA on histone acetylation were significant at 0.25 mM and 1 mM, respectively. CONCLUSIONS We found that in addition to VPA, the newer AED TPM and the major metabolite of LEV, PBA, are able to induce histone hyperacetylation in human cells, although with lower potencies than VPA.
Collapse
Affiliation(s)
- Sara Eyal
- Department of Pharmaceutics, School of Pharmacy, Faculty of Medicine, Ein Karem, Hebrew University of Jerusalem, Israel
| | | | | | | | | | | |
Collapse
|
25
|
Cappabianca L, Farina AR, Tacconelli A, Mantovani R, Gulino A, Mackay AR. Reconstitution of TIMP-2 expression in SH-SY5Y neuroblastoma cells by 5-azacytidine is mediated transcriptionally by NF-Y through an inverted CCAAT site. Exp Cell Res 2003; 286:209-18. [PMID: 12749850 DOI: 10.1016/s0014-4827(03)00072-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Advanced stage neuroblastomas (NB) exhibit a tissue inhibitor of metalloproteinase (TIMP)-2/matrix metalloproteinase (MMP) imbalance, considered a prerequisite for MMP involvement in tumor progression in vivo. Human SH-SY5Y NB cells exhibit a similar TIMP-2/MMP imbalance that promotes in vitro invasive behavior that is inhibited by exogenous TIMP-2. The DNA methyltransferase inhibitor 5-azacytidine (5-AzaC) redresses this TIMP-2/MMP imbalance, reconstituting TIMP-2 expression, without effecting that of MMP-2, by stimulating TIMP-2 transcription and inhibiting in vitro invasivity of SH-SY5Y cells. 5-AzaC stimulated transcription from a nonmethylated TIMP-2 promoter reporter gene construct consistent with regulation of a TIMP-2 transactivator. Promoter deletion and point-mutation analysis localized this effect to an inverted CCAAT element at position -73. This element bound specific complexes containing NF-YA and NF-YB proteins in SH-SY5Y nuclear extracts, the binding of which was augmented by 5-AzaC in association with enhanced levels of NF-YB protein and the function of which was confirmed by inhibition using dominant-negative NF-YA. The data highlight a novel indirect methylation-mediated mechanism for regulating the TIMP/MMP equilibrium in NB cells, involving repression of TIMP-2 relative to MMP-2 expression, dependent upon suboptimal NF-Y transcription factor function, which can be reversed by methyltransferase inhibition.
Collapse
MESH Headings
- Antimetabolites, Antineoplastic/pharmacology
- Azacitidine/pharmacology
- CCAAT-Binding Factor/drug effects
- CCAAT-Binding Factor/genetics
- CCAAT-Binding Factor/metabolism
- Child
- DNA Methylation/drug effects
- Gene Expression Regulation, Enzymologic/drug effects
- Gene Expression Regulation, Enzymologic/genetics
- Gene Expression Regulation, Neoplastic/drug effects
- Gene Expression Regulation, Neoplastic/genetics
- Genes, Regulator/drug effects
- Genes, Regulator/genetics
- Humans
- Methyltransferases/antagonists & inhibitors
- Methyltransferases/metabolism
- Mutation/drug effects
- Mutation/genetics
- Neuroblastoma/enzymology
- Neuroblastoma/genetics
- Promoter Regions, Genetic/drug effects
- Promoter Regions, Genetic/genetics
- Protein Binding/drug effects
- Protein Binding/genetics
- Repressor Proteins/drug effects
- Repressor Proteins/genetics
- Repressor Proteins/metabolism
- Tissue Inhibitor of Metalloproteinase-2/drug effects
- Tissue Inhibitor of Metalloproteinase-2/genetics
- Tissue Inhibitor of Metalloproteinase-2/metabolism
- Transcription, Genetic/drug effects
- Transcription, Genetic/genetics
- Tumor Cells, Cultured
Collapse
Affiliation(s)
- Lucia Cappabianca
- Section of Molecular Pathology, Department of Experimental Medicine, University of L'Aquila, 67100 L'Aquila, Italy
| | | | | | | | | | | |
Collapse
|
26
|
Mihaylova VT, Bindra RS, Yuan J, Campisi D, Narayanan L, Jensen R, Giordano F, Johnson RS, Rockwell S, Glazer PM. Decreased expression of the DNA mismatch repair gene Mlh1 under hypoxic stress in mammalian cells. Mol Cell Biol 2003; 23:3265-73. [PMID: 12697826 PMCID: PMC153206 DOI: 10.1128/mcb.23.9.3265-3273.2003] [Citation(s) in RCA: 198] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The hypoxic tumor microenvironment has been shown to contribute to genetic instability. As one possible mechanism for this effect, we report that expression of the DNA mismatch repair (MMR) gene Mlh1 is specifically reduced in mammalian cells under hypoxia, whereas expression of other MMR genes, including Msh2, Msh6, and Pms2, is not altered at the mRNA level. However, levels of the PMS2 protein are reduced, consistent with destabilization of PMS2 in the absence of its heterodimer partner, MLH1. The hypoxia-induced reduction in Mlh1 mRNA was prevented by the histone deacetylase inhibitor trichostatin A, suggesting that hypoxia causes decreased Mlh1 transcription via histone deacetylation. In addition, treatment of cells with the iron chelator desferrioxamine also reduced MLH1 and PMS2 levels, in keeping with low oxygen tension being the stress signal that provokes the altered MMR gene expression. Functional MMR deficiency under hypoxia was detected as induced instability of a (CA)(29) dinucleotide repeat and by increased mutagenesis in a chromosomal reporter gene. These results identify a potential new pathway of genetic instability in cancer: hypoxia-induced reduction in the expression of key MMR proteins. In addition, this stress-induced genetic instability may represent a conceptual parallel to the pathway of stationary-phase mutagenesis seen in bacteria.
Collapse
Affiliation(s)
- Valia T Mihaylova
- Departments of Therapeutic Radiology. Genetics. Internal Medicine, Yale University School of Medicine, New Haven, Connecticut 06520-8040, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
de Ruijter AJM, van Gennip AH, Caron HN, Kemp S, van Kuilenburg ABP. Histone deacetylases (HDACs): characterization of the classical HDAC family. Biochem J 2003; 370:737-49. [PMID: 12429021 PMCID: PMC1223209 DOI: 10.1042/bj20021321] [Citation(s) in RCA: 2315] [Impact Index Per Article: 105.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2002] [Revised: 10/30/2002] [Accepted: 11/12/2002] [Indexed: 02/07/2023]
Abstract
Transcriptional regulation in eukaryotes occurs within a chromatin setting, and is strongly influenced by the post-translational modification of histones, the building blocks of chromatin, such as methylation, phosphorylation and acetylation. Acetylation is probably the best understood of these modifications: hyperacetylation leads to an increase in the expression of particular genes, and hypoacetylation has the opposite effect. Many studies have identified several large, multisubunit enzyme complexes that are responsible for the targeted deacetylation of histones. The aim of this review is to give a comprehensive overview of the structure, function and tissue distribution of members of the classical histone deacetylase (HDAC) family, in order to gain insight into the regulation of gene expression through HDAC activity. SAGE (serial analysis of gene expression) data show that HDACs are generally expressed in almost all tissues investigated. Surprisingly, no major differences were observed between the expression pattern in normal and malignant tissues. However, significant variation in HDAC expression was observed within tissue types. HDAC inhibitors have been shown to induce specific changes in gene expression and to influence a variety of other processes, including growth arrest, differentiation, cytotoxicity and induction of apoptosis. This challenging field has generated many fascinating results which will ultimately lead to a better understanding of the mechanism of gene transcription as a whole.
Collapse
|
28
|
Tomita K, Barnes PJ, Adcock IM. The effect of oxidative stress on histone acetylation and IL-8 release. Biochem Biophys Res Commun 2003; 301:572-7. [PMID: 12565901 DOI: 10.1016/s0006-291x(02)03029-2] [Citation(s) in RCA: 86] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Acetylation of histone residues regulates the expression of inflammatory genes and is controlled by the activities of histone acetyltransferases (HAT) and histone deacetylases (HDAC). Analysis of histone acetylation in human cells is limited by the large numbers needed to perform activity assays or Western blotting. We have used flow cytometry to investigate changes in HAT and HDAC activities at the single cell level and to investigate the effect of hydrogen peroxide (H(2)O(2)) on histone H4 acetylation and cell-cycle progression. Using an anti-acetylated histone H4 antibody we show that H(2)O(2) induced a time-dependent increase in histone acetylation that was maintained for 12h. This was associated with increased IL-8 production. H(2)O(2) also affected cell-cycle progression. HAT activity was found to be highest in G2/M and equivalent in G0/G1 and S phases of the cell cycle. These data show that detection of acetylated histone residues at the single cell level using FACs may be a powerful new tool for the analysis of modulation of cell proliferation and gene transcription.
Collapse
Affiliation(s)
- K Tomita
- Imperial College School of Science, Technology and Medicine, Thoracic Medicine, National Heart and Lung Institute, Dovehouse Street, London SW3 6LY, UK
| | | | | |
Collapse
|
29
|
Nambiar MP, Warke VG, Fisher CU, Tsokos GC. Effect of trichostatin A on human T cells resembles signaling abnormalities in T cells of patients with systemic lupus erythematosus: a new mechanism for TCR zeta chain deficiency and abnormal signaling. J Cell Biochem 2002; 85:459-69. [PMID: 11967985 DOI: 10.1002/jcb.10160] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Trichostatin A (TSA) is a potent reversible inhibitor of histone deacetylase, and it has been reported to have variable effects on the expression of a number of genes. In this report, we show that TSA suppresses the expression of the T cell receptor zeta chain gene, whereas, it upregulates the expression if its homologous gene Fc(epsilon) receptor I gamma chain. These effects are associated with decreased intracytoplasmic-free calcium responses and altered tyrosine phosphorylation pattern of cytosolic proteins. Along with these effects, we report that TSA suppresses the expression of the interleukin-2 gene. The effects of TSA on human T cells are predominantly immunosuppressive and reminiscent of the signaling aberrations that have been described in patients with systemic lupus erythematosus.
Collapse
MESH Headings
- Adolescent
- Adult
- CD3 Complex/drug effects
- CD3 Complex/metabolism
- Calcium Signaling
- Cells, Cultured
- Enzyme Inhibitors/pharmacology
- Ephrin-A2/drug effects
- Ephrin-A2/metabolism
- Gene Expression Regulation/drug effects
- Humans
- Hydroxamic Acids/pharmacology
- Immunosuppressive Agents/pharmacology
- Interleukin-2/genetics
- Interleukin-2/metabolism
- Lupus Erythematosus, Systemic/metabolism
- Lupus Erythematosus, Systemic/pathology
- Membrane Proteins/deficiency
- Membrane Proteins/drug effects
- Membrane Proteins/metabolism
- Receptors, Antigen, T-Cell/deficiency
- Receptors, Antigen, T-Cell/drug effects
- Receptors, Antigen, T-Cell/metabolism
- Receptors, IgE/drug effects
- Receptors, IgE/genetics
- Signal Transduction/drug effects
- T-Lymphocytes/drug effects
- T-Lymphocytes/metabolism
- T-Lymphocytes/pathology
- Time Factors
- Tyrosine/metabolism
Collapse
Affiliation(s)
- Madhusoodana P Nambiar
- Department of Cellular Injury, Walter Reed Army Institute of Research, Building 503, Robert Grant Road, Silver Spring, Maryland 20910-7500, USA
| | | | | | | |
Collapse
|
30
|
Suzuki-Mizushima Y, Gohda E, Okamura T, Kanasaki K, Yamamoto I. Enhancement of NGF- and cholera toxin-induced neurite outgrowth by butyrate in PC12 cells. Brain Res 2002; 951:209-17. [PMID: 12270499 DOI: 10.1016/s0006-8993(02)03163-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
It has been shown that sodium butyrate (NaBu) does not elicit neurite outgrowth of PC12, one of the most widely used cell lines as a model of neuronal differentiation. In this study, the effects of NaBu on nerve growth factor (NGF)- and cholera toxin-induced neurite outgrowth in PC12 cells were examined. NaBu dose-dependently enhanced neurite formation induced by both agents. The maximum responses obtained at 0.5 mM NaBu were nearly twice those of the inducers alone. Propionate and valerate were also effective, but acetate and caproate were ineffective. Among the butyrate analogs with a moiety of three to five carbon atoms tested, isobutyrate, isovalerate, vinylacetate and 3-chloropropionate enhanced neurite outgrowth promoted by both inducers. However, neither alpha-, beta-, and gamma-aminobutyrates nor alpha-, beta-, and gamma-hydroxybutyrates were effective. All of the effective short-chain fatty acids and their analogs increased the level of histone acetylation, while ineffective ones did not. Furthermore, Helminthosporium carbonum toxin (HC toxin), a structurally dissimilar inhibitor of histone deacetylase, mimicked the effect of butyrate. These results suggest that NaBu enhances neurite outgrowth induced by NGF and cholera toxin in PC12 cells through a mechanism involving an increase in the level of histone acetylation.
Collapse
Affiliation(s)
- Yuka Suzuki-Mizushima
- Department of Immunochemistry, Faculty of Pharmaceutical Sciences, Okayama University, Tsushima-naka, Okayama 700-8530, Japan
| | | | | | | | | |
Collapse
|
31
|
Iwata K, Tomita K, Sano H, Fujii Y, Yamasaki A, Shimizu E. Trichostatin A, a histone deacetylase inhibitor, down-regulates interleukin-12 transcription in SV-40-transformed lung epithelial cells. Cell Immunol 2002; 218:26-33. [PMID: 12470611 DOI: 10.1016/s0008-8749(02)00523-3] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Inhibition of histone deacetylation results in increased gene expression. Trichostatin (Ts)A, a specific histone deacetylase (HDAC) inhibitor, up-regulates transcription of some genes but represses expression of others. We quantified histone acetylation in SV-40-transformed lung epithelial cells using flow cytometry. Further, to evaluate the effect of TsA on transcription of genes associated with airway inflammation, we measured interleukin (IL)-8 production by enzyme-linked immunosorbent assay as well as IL-12 transcription by reverse transcription-polymerase chain reaction, in the transformed cells after stimulation with lipopolysaccharide (LPS) in the presence of TsA. Pretreatment of cells with TsA before LPS stimulation induced hyperacetylation of histones (especially in the S phase of the cell cycle), enhanced IL-8 production, and suppressed IL-12p35 and IL-12p40 mRNA accumulation. Thus we have demonstrated a useful way to detect hyperacetylation at the single-cell level, as well as the ability of an HDAC inhibitor to repress genes in epithelial cells.
Collapse
Affiliation(s)
- Kyoko Iwata
- Third Department of Internal Medicine, Faculty of Medicine, Tottori University, 36-1 Nishi-machi, Yonago-shi, Tottori-ken 683-8504, Japan
| | | | | | | | | | | |
Collapse
|
32
|
Katula KS, Fields A, Apple P, Rotruck T. Cell cycle specific changes in the human cyclin B1 gene regulatory region as revealed by response to trichostatin A. Arch Biochem Biophys 2002; 401:271-6. [PMID: 12054478 DOI: 10.1016/s0003-9861(02)00014-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The human cyclin Bl gene is cell cycle regulated with maximal activity during G(2)/M. We examined the role of histone deacetylation in cyclin Bl regulation using the histone deacetylase inhibitor trichostatin A (TSA). TSA treatment (100 ng/ml) of NIH3T3 cells containing the luciferase reporter construct pCycB(-287)-LUC caused an increase in promoter activity in G(0) and G(1) but no significant change in G(2). Removal of upstream sequences including an E-box and Sp1 site eliminated the TSA induced increase in G(0) and G(1), and caused a decrease in promoter activity during S and G(2). Promoter activity increased only 2-fold following TSA treatment of G(0) cells containing the construct pCycB(MUT-E-Box)-LUC with an E-box mutation, and a decrease in activity was detected during G(2). We conclude that histone deacetylation contributes to the repression of cyclin B1 expression in G(0) and G(1), and that this mechanism requires, in part, the E-box. TSA reduction of cyclin B1 promoter activity in G(2), however, involves sequences within the first 119 bp. A working model for cyclin B1 regulation is provided.
Collapse
Affiliation(s)
- Karen S Katula
- Department of Biology, University of North Carolina at Greensboro, P.O. Box 26174, Greensboro, NC 27402-6174, USA.
| | | | | | | |
Collapse
|