1
|
Jiang W, Deng X, Zhu T, Fang J, Li J. ABVS-Based Radiomics for Early Predicting the Efficacy of Neoadjuvant Chemotherapy in Patients with Breast Cancers. BREAST CANCER (DOVE MEDICAL PRESS) 2023; 15:625-636. [PMID: 37600669 PMCID: PMC10439736 DOI: 10.2147/bctt.s418376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 08/11/2023] [Indexed: 08/22/2023]
Abstract
Background Neoadjuvant chemotherapy (NAC) plays a significant role in breast cancer (BC) management; however, its efficacy varies among patients. Current evaluation methods may lead to delayed treatment alterations, and traditional imaging modalities often yield inaccurate results. Radiomics, an emerging field in medical imaging, offers potential for improved tumor characterization and personalized medicine. Nevertheless, its application in early and accurately predicting NAC response remains underinvestigated. Objective This study aims to develop an automated breast volume scanner (ABVS)-based radiomics model to facilitate early detection of suboptimal NAC response, ultimately promoting personalized therapeutic approaches for BC patients. Methods This retrospective study involved 248 BC patients receiving NAC. Standard guidelines were followed, and patients were classified as responders or non-responders based on treatment outcomes. ABVS images were obtained before and during NAC, and radiomics features were extracted using the PyRadiomics toolkit. Inter-observer consistency and hierarchical feature selection were assessed. Three machine learning classifiers, logistic regression, support vector machine, and random forest, were trained and validated using a five-fold cross-validation with three repetitions. Model performance was comprehensively evaluated based on discrimination, calibration, and clinical utility. Results Of the 248 BC patients, 157 (63.3%) were responders, and 91 (36.7%) were non-responders. Radiomics feature selection revealed 7 pre-NAC and 6 post-NAC ABVS features, with higher weights for post-NAC features (min >0.05) than pre-NAC (max <0.03). The three post-NAC classifiers demonstrated AUCs of approximately 0.9, indicating excellent discrimination. DCA curves revealed a substantial net benefit when the threshold probability exceeded 40%. Conversely, the three pre-NAC classifiers had AUCs between 0.7 and 0.8, suggesting moderate discrimination and limited clinical utility based on their DCA curves. Conclusion The ABVS-based radiomics model effectively predicted suboptimal NAC responses in BC patients, with early post-NAC classifiers outperforming pre-NAC classifiers in discrimination and clinical utility. It could enhance personalized treatment and improve patient outcomes in BC management.
Collapse
Affiliation(s)
- Wei Jiang
- Department of Ultrasound, Huazhong University of Science and Technology Union Shenzhen Hospital (Nanshan Hospital), Shenzhen, Guangdong province, People’s Republic of China
| | - Xiaofei Deng
- Department of Ultrasound, Huazhong University of Science and Technology Union Shenzhen Hospital (Nanshan Hospital), Shenzhen, Guangdong province, People’s Republic of China
| | - Ting Zhu
- Department of Ultrasound, Huazhong University of Science and Technology Union Shenzhen Hospital (Nanshan Hospital), Shenzhen, Guangdong province, People’s Republic of China
| | - Jing Fang
- Department of Ultrasound, Huazhong University of Science and Technology Union Shenzhen Hospital (Nanshan Hospital), Shenzhen, Guangdong province, People’s Republic of China
| | - Jinyao Li
- Department of Ultrasound, Huazhong University of Science and Technology Union Shenzhen Hospital (Nanshan Hospital), Shenzhen, Guangdong province, People’s Republic of China
| |
Collapse
|
2
|
Michalczyk M, Humeniuk E, Adamczuk G, Korga-Plewko A. Hyaluronic Acid as a Modern Approach in Anticancer Therapy-Review. Int J Mol Sci 2022; 24:ijms24010103. [PMID: 36613567 PMCID: PMC9820514 DOI: 10.3390/ijms24010103] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/11/2022] [Accepted: 12/15/2022] [Indexed: 12/24/2022] Open
Abstract
Hyaluronic acid (HA) is a linear polysaccharide and crucial component of the extracellular matrix (ECM), maintaining tissue hydration and tension. Moreover, HA contributes to embryonic development, healing, inflammation, and cancerogenesis. This review summarizes new research on the metabolism and interactions of HA with its binding proteins, known as hyaladherins (CD44, RHAMM), revealing the molecular basis for its distinct biological function in the development of cancer. The presence of HA on the surface of tumor cells is a sign of an adverse prognosis. The involvement of HA in malignancy has been extensively investigated using cancer-free naked mole rats as a model. The HA metabolic components are examined for their potential impact on promoting or inhibiting tumor formation, proliferation, invasion, and metastatic spread. High molecular weight HA is associated with homeostasis and protective action due to its ability to preserve tissue integrity. In contrast, low molecular weight HA indicates a pathological condition in the tissue and plays a role in pro-oncogenic activity. A systematic approach might uncover processes related to cancer growth, establish novel prognostic indicators, and identify potential targets for treatment action.
Collapse
|
3
|
He Y, Sun MM, Zhang GG, Yang J, Chen KS, Xu WW, Li B. Targeting PI3K/Akt signal transduction for cancer therapy. Signal Transduct Target Ther 2021; 6:425. [PMID: 34916492 PMCID: PMC8677728 DOI: 10.1038/s41392-021-00828-5] [Citation(s) in RCA: 729] [Impact Index Per Article: 182.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 11/02/2021] [Accepted: 11/10/2021] [Indexed: 02/06/2023] Open
Abstract
The phosphatidylinositol 3-kinase (PI3K)/Akt pathway plays a crucial role in various cellular processes and is aberrantly activated in cancers, contributing to the occurrence and progression of tumors. Examining the upstream and downstream nodes of this pathway could allow full elucidation of its function. Based on accumulating evidence, strategies targeting major components of the pathway might provide new insights for cancer drug discovery. Researchers have explored the use of some inhibitors targeting this pathway to block survival pathways. However, because oncogenic PI3K pathway activation occurs through various mechanisms, the clinical efficacies of these inhibitors are limited. Moreover, pathway activation is accompanied by the development of therapeutic resistance. Therefore, strategies involving pathway inhibitors and other cancer treatments in combination might solve the therapeutic dilemma. In this review, we discuss the roles of the PI3K/Akt pathway in various cancer phenotypes, review the current statuses of different PI3K/Akt inhibitors, and introduce combination therapies consisting of signaling inhibitors and conventional cancer therapies. The information presented herein suggests that cascading inhibitors of the PI3K/Akt signaling pathway, either alone or in combination with other therapies, are the most effective treatment strategy for cancer.
Collapse
Affiliation(s)
- Yan He
- MOE Key Laboratory of Tumor Molecular Biology and Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Miao Miao Sun
- Department of Pathology, The First Affiliated Hospital of Zhengzhou University, Henan Key Laboratory of Tumor Pathology, Zhengzhou, China
| | - Guo Geng Zhang
- MOE Key Laboratory of Tumor Molecular Biology and Guangdong Provincial Key Laboratory of Bioengineering Medicine, National Engineering Research Center of Genetic Medicine, Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Jing Yang
- MOE Key Laboratory of Tumor Molecular Biology and Guangdong Provincial Key Laboratory of Bioengineering Medicine, National Engineering Research Center of Genetic Medicine, Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Kui Sheng Chen
- Department of Pathology, The First Affiliated Hospital of Zhengzhou University, Henan Key Laboratory of Tumor Pathology, Zhengzhou, China.
| | - Wen Wen Xu
- MOE Key Laboratory of Tumor Molecular Biology and Guangdong Provincial Key Laboratory of Bioengineering Medicine, National Engineering Research Center of Genetic Medicine, Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou, China.
| | - Bin Li
- MOE Key Laboratory of Tumor Molecular Biology and Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou, China.
| |
Collapse
|
4
|
Chaudhry GES, Akim A, Naveed Zafar M, Safdar N, Sung YY, Muhammad TST. Understanding Hyaluronan Receptor (CD44) Interaction, HA-CD44 Activated Potential Targets in Cancer Therapeutics. Adv Pharm Bull 2021; 11:426-438. [PMID: 34513617 PMCID: PMC8421618 DOI: 10.34172/apb.2021.050] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Revised: 07/14/2020] [Accepted: 07/15/2020] [Indexed: 12/11/2022] Open
Abstract
Cancer is a complex mechanism involving a series of cellular events. The glycoproteins such as hyaluronan (HA) are a significant element of extracellular matrix (ECM), involve in the onset of cancer developmental process. The pivotal roles of HA in cancer progression depend on dysregulated expression in various cancer. HA, also gain attention due to consideration as a primary ligand of CD44 receptor. The CD44, complex transmembrane receptor protein, due to alternative splicing in the transcription process, various CD44 isoforms predominantly exist. The overexpression of distinct CD44 isoforms (CD44v) standard (CD44s) depends on the tumour type and stage. The receptor proteins, CD44 engage in a variety of biological processes, including cell growth, apoptosis, migration, and angiogenesis. HA-CD44 interaction trigger survival pathways that result in cell proliferation, invasion ultimately complex metastasis. The interaction and binding of ligand-receptor HA-CD44 regulate the downstream cytoskeleton pathways involve in cell survival or cell death. Thus, targeting HA, CD44 (variant and standard) isoform, and HA-CD44 binding consider as an attractive and useful approach towards cancer therapeutics. The use of various inhibitors of HA, hyaluronidases (HYALs), and utilizing targeted Nano-delivery of anticancer agents and antibodies against CD44, peptides gives promising results in vitro and in vivo. However, they are in clinical trials with favourable and unfavourable outcomes, which reflects the need for various modifications in targeting agents and a better understanding of potential targets in tumour progression pathways.
Collapse
Affiliation(s)
- Gul-E-Saba Chaudhry
- Institute of Marine Biotechnology, Universiti Malaysia Terengganu, 21030 Kuala Terengganu, Malaysia
| | - Abdah Akim
- Department of Biomedical Sciences, Universiti Putra Malaysia, Seri Kembangan, Selangor, Malaysia
| | | | - Naila Safdar
- Department of Environmental Sciences, Fatima Jinnah University, Rawalpindi, Pakistan
| | - Yeong Yik Sung
- Institute of Marine Biotechnology, Universiti Malaysia Terengganu, 21030 Kuala Terengganu, Malaysia
| | | |
Collapse
|
5
|
Rashid M, Zadeh LR, Baradaran B, Molavi O, Ghesmati Z, Sabzichi M, Ramezani F. Up-down regulation of HIF-1α in cancer progression. Gene 2021; 798:145796. [PMID: 34175393 DOI: 10.1016/j.gene.2021.145796] [Citation(s) in RCA: 159] [Impact Index Per Article: 39.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 04/25/2021] [Accepted: 06/22/2021] [Indexed: 12/19/2022]
Abstract
Hypoxia induicible factor-1 alpha (HIF-1α) is a key transcription factor in cancer progression and target therapy in cancer. HIF-1α acts differently depending on presence or absence of Oxygen. In an oxygen-immersed environment, HIF-1α completely deactivated and destroyed by the ubiquitin proteasome pathway (UPP). In contrast, in the oxygen-free environment, it escapes destruction and enters to the nucleus of cells then upregulates many genes involved in cancer progression. Overexpressed HIF-1α and downstream genes support cancer progression through various mechanisms including angiogenesis, proliferation and survival of cells, metabolism reprogramming, invasion and metastasis, cancer stem cell maintenance, induction of genetic instability, and treatment resistance. HIF-1α can be provoked by signaling pathways unrelated to hypoxia during cancer progression. Therefore, cancer development and progression can be modulated by targeting HIF-1α and its downstream signaling molecules. In this regard, HIF-1α inhibitors which are categorized into the agents that regulate HIF-1α in gene, mRNA and protein levels used as an efficient way in cancer treatment. Also, HIF-1α expression can be negatively affected by the agents suppressing the activation of mTOR, PI3k/Akt and MAPK pathways.
Collapse
Affiliation(s)
- Mohsen Rashid
- Department of Molecular Medicine, School of Advanced Medical Science, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Leila Rostami Zadeh
- Department of Molecular Medicine, School of Advanced Medical Science, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Behzad Baradaran
- Department of Molecular Medicine, School of Advanced Medical Science, Tabriz University of Medical Sciences, Tabriz, Iran; Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ommoleila Molavi
- Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Zeinab Ghesmati
- Department of Medical Biotechnology, School of Advanced Medical Science, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mehdi Sabzichi
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Fatemeh Ramezani
- Department of Molecular Medicine, School of Advanced Medical Science, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
6
|
Zargar A, Chang S, Kothari A, Snijders AM, Mao JH, Wang J, Hernández AC, Keasling JD, Bivona TG. Overcoming the challenges of cancer drug resistance through bacterial-mediated therapy. Chronic Dis Transl Med 2019; 5:258-266. [PMID: 32055785 PMCID: PMC7004931 DOI: 10.1016/j.cdtm.2019.11.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Indexed: 12/23/2022] Open
Abstract
Despite tremendous efforts to fight cancer, it remains a major public health problem and a leading cause of death worldwide. With increased knowledge of cancer pathways and improved technological platforms, precision therapeutics that specifically target aberrant cancer pathways have improved patient outcomes. Nevertheless, a primary cause of unsuccessful cancer therapy remains cancer drug resistance. In this review, we summarize the broad classes of resistance to cancer therapy, particularly pharmacokinetics, the tumor microenvironment, and drug resistance mechanisms. Furthermore, we describe how bacterial-mediated cancer therapy, a bygone mode of treatment, has been revitalized by synthetic biology and is uniquely suited to address the primary resistance mechanisms that confound traditional therapies. Through genetic engineering, we discuss how bacteria can be potent anticancer agents given their tumor targeting potential, anti-tumor activity, safety, and coordinated delivery of anti-cancer drugs.
Collapse
Affiliation(s)
- Amin Zargar
- Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Emeryville, CA 94608, USA
- QB3 Institute, University of California-Berkeley, 174 Stanley Hall, Berkeley, CA 94720, USA
| | - Samantha Chang
- Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Emeryville, CA 94608, USA
| | - Ankita Kothari
- Biological Systems and Engineering, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Antoine M. Snijders
- Biological Systems and Engineering, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Jian-Hua Mao
- Biological Systems and Engineering, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Jessica Wang
- Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Emeryville, CA 94608, USA
| | - Amanda C. Hernández
- Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Emeryville, CA 94608, USA
- Department of Chemical & Biomolecular Engineering, Department of Bioengineering, University of California, Berkeley, CA 94720, USA
| | - Jay D. Keasling
- Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Emeryville, CA 94608, USA
- QB3 Institute, University of California-Berkeley, 174 Stanley Hall, Berkeley, CA 94720, USA
| | - Trever G. Bivona
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA 94143, USA
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, CA 94143, USA
| |
Collapse
|
7
|
Fiedler EC, Hemann MT. Aiding and Abetting: How the Tumor Microenvironment Protects Cancer from Chemotherapy. ANNUAL REVIEW OF CANCER BIOLOGY-SERIES 2019. [DOI: 10.1146/annurev-cancerbio-030518-055524] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Disease recurrence following cancer therapy remains an intractable clinical problem and represents a major impediment to reducing the mortality attributable to malignant tumors. While research has traditionally focused on the cell-intrinsic mechanisms and mutations that render tumors refractory to both classical chemotherapeutics and targeted therapies, recent studies have begun to uncover myriad roles for the tumor microenvironment (TME) in modulating therapeutic efficacy. This work suggests that drug resistance is as much ecological as it is evolutionary. Specifically, cancers resident in organs throughout the body do not develop in isolation. Instead, tumor cells arise in the context of nonmalignant cellular components of a tissue. While the roles of these cell-extrinsic factors in cancer initiation and progression are well established, our understanding of the TME's influence on therapeutic outcome is in its infancy. Here, we focus on mechanisms by which neoplastic cells co-opt preexisting or treatment-induced signaling networks to survive chemotherapy.
Collapse
Affiliation(s)
- Eleanor C. Fiedler
- Koch Institute for Integrative Cancer Research and the Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02142, USA
| | - Michael T. Hemann
- Koch Institute for Integrative Cancer Research and the Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02142, USA
| |
Collapse
|
8
|
Minassian LM, Cotechini T, Huitema E, Graham CH. Hypoxia-Induced Resistance to Chemotherapy in Cancer. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1136:123-139. [PMID: 31201721 DOI: 10.1007/978-3-030-12734-3_9] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
A major barrier to the successful management of cancer is the development of resistance to therapy. Chemotherapy resistance can either be an intrinsic property of malignant cells developed prior to therapy, or acquired following exposure to anti-cancer drugs. Given the impact of drug resistance to the overall poor survival of cancer patients, there is an urgent need to better understand the molecular pathways regulating this malignant phenotype. In this chapter we describe some of the molecular pathways that contribute to drug resistance in cancer, the role of a microenvironment deficient in oxygen (hypoxia) in malignant progression, and how hypoxia can be a significant factor in the development of drug resistance. We conclude by proposing potential therapeutic approaches that take advantage of a hypoxic microenvironment to chemosensitize therapy-resistant tumours.
Collapse
Affiliation(s)
- Lori M Minassian
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON, Canada
| | - Tiziana Cotechini
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON, Canada
| | - Erin Huitema
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON, Canada
| | - Charles H Graham
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON, Canada.
| |
Collapse
|
9
|
El-Sawy HS, Al-Abd AM, Ahmed TA, El-Say KM, Torchilin VP. Stimuli-Responsive Nano-Architecture Drug-Delivery Systems to Solid Tumor Micromilieu: Past, Present, and Future Perspectives. ACS NANO 2018; 12:10636-10664. [PMID: 30335963 DOI: 10.1021/acsnano.8b06104] [Citation(s) in RCA: 294] [Impact Index Per Article: 42.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
The microenvironment characteristics of solid tumors, renowned as barriers that harshly impeded many drug-delivery approaches, were precisely studied, investigated, categorized, divided, and subdivided into a complex diverse of barriers. These categories were further studied with a particular perspective, which makes all barriers found in solid-tumor micromilieu turn into different types of stimuli, and were considered triggers that can increase and hasten drug-release targeting efficacy. This review gathers data concerning the nature of solid-tumor micromilieu. Past research focused on the treatment of such tumors, the recent efforts employed for engineering smart nanoarchitectures with the utilization of the specified stimuli categories, the possibility of combining more than one stimuli for much-greater targeting enhancement, examples of the approved nanoarchitectures that already translated clinically as well as the obstacles faced by the use of these nanostructures, and, finally, an overview of the possible future implementations of smart-chemical engineering for the design of more-efficient drug delivery and theranostic systems and for making nanosystems with a much-higher level of specificity and penetrability features.
Collapse
Affiliation(s)
- Hossam S El-Sawy
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy , Egyptian Russian University , Badr City , Cairo 63514 , Egypt
| | - Ahmed M Al-Abd
- Department of Pharmaceutical Sciences, College of Pharmacy , Gulf Medical University , Ajman , United Arab Emirates
- Pharmacology Department, Medical Division , National Research Centre , Giza 12622 , Egypt
| | - Tarek A Ahmed
- Department of Pharmaceutics, Faculty of Pharmacy , King Abdulaziz University , Jeddah 21589 , Saudi Arabia
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy , Al-Azhar University , Cairo 11651 , Egypt
| | - Khalid M El-Say
- Department of Pharmaceutics, Faculty of Pharmacy , King Abdulaziz University , Jeddah 21589 , Saudi Arabia
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy , Al-Azhar University , Cairo 11651 , Egypt
| | - Vladimir P Torchilin
- Department of Pharmaceutical Sciences Center for Pharmaceutical Biotechnology and Nanomedicine , Northeastern University , 140 The Fenway, Room 211/214, 360 Huntington Aveue , Boston , Massachusetts 02115 , United States
| |
Collapse
|
10
|
A Continuum Mechanics Model of Enzyme-Based Tissue Degradation in Cancer Therapies. Bull Math Biol 2018; 80:3184-3226. [DOI: 10.1007/s11538-018-0515-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2017] [Accepted: 09/24/2018] [Indexed: 12/29/2022]
|
11
|
Abstract
Cancer stem cells (CSC) are a prominent component of the tumor bulk and extensive research has now identified them as the subpopulation responsible for tumor relapse and resistance to anti-cancer treatments. Surrounding the bulk formed of tumor cells, an extracellular matrix contributes to cancer growth; the main component of the tumor micro-environment is hyaluronan, a large disaccharide forming a molecular network surrounding the cells. The hyaluronan-dependent coat can regulate cell division and motility in cancer progression and metastasis. One of the receptors of hyaluronan is CD44, a surface protein frequently used as a CSC marker. Indeed, tumor cells with high levels of CD44 appear to exhibit CSC properties and are characterized by elevated relapse rate. The CD44-hyaluronan-dependent interactions are Janus-faced: on one side, they have been shown to be crucial in both malignancy and resistance to therapy; on the other, they represent a potential value for future therapies, as disturbing the CD44-hyaluronan axis would not only impair the pericellular matrix but also the subpopulation of self-renewing oncogenic cells. Here, we will review the key roles of HA and CD44 in CSC maintenance and propagation and will show that CSC-like spheroids from a rabdhomyosarcoma cell line, namely RD, have a prominent pericellular coat necessary for sphere formation and for elevated migration. Thus, a better understanding of the hyaluronan-CD44 interactions holds the potential for ameliorating current cancer therapies and eradicating CSC.
Collapse
|
12
|
Dickreuter E, Cordes N. The cancer cell adhesion resistome: mechanisms, targeting and translational approaches. Biol Chem 2017; 398:721-735. [PMID: 28002024 DOI: 10.1515/hsz-2016-0326] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Accepted: 12/12/2016] [Indexed: 02/06/2023]
Abstract
Cell adhesion-mediated resistance limits the success of cancer therapies and is a great obstacle to overcome in the clinic. Since the 1990s, where it became clear that adhesion of tumor cells to the extracellular matrix is an important mediator of therapy resistance, a lot of work has been conducted to understand the fundamental underlying mechanisms and two paradigms were deduced: cell adhesion-mediated radioresistance (CAM-RR) and cell adhesion-mediated drug resistance (CAM-DR). Preclinical work has evidently demonstrated that targeting of integrins, adapter proteins and associated kinases comprising the cell adhesion resistome is a promising strategy to sensitize cancer cells to both radiotherapy and chemotherapy. Moreover, the cell adhesion resistome fundamentally contributes to adaptation mechanisms induced by radiochemotherapy as well as molecular drugs to secure a balanced homeostasis of cancer cells for survival and growth. Intriguingly, this phenomenon provides a basis for synthetic lethal targeted therapies simultaneously administered to standard radiochemotherapy. In this review, we summarize current knowledge about the cell adhesion resistome and highlight targeting strategies to override CAM-RR and CAM-DR.
Collapse
Affiliation(s)
| | - Nils Cordes
- , Faculty of Medicine and University Hospital Carl Gustav Carus
| |
Collapse
|
13
|
The Importance of CD44 as a Stem Cell Biomarker and Therapeutic Target in Cancer. Stem Cells Int 2016; 2016:2087204. [PMID: 27200096 PMCID: PMC4856920 DOI: 10.1155/2016/2087204] [Citation(s) in RCA: 178] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2015] [Accepted: 03/27/2016] [Indexed: 02/07/2023] Open
Abstract
CD44 is a cell surface HA-binding glycoprotein that is overexpressed to some extent by almost all tumors of epithelial origin and plays an important role in tumor initiation and metastasis. CD44 is a compelling marker for cancer stem cells of many solid malignancies. In addition, interaction of HA and CD44 promotes EGFR-mediated pathways, consequently leading to tumor cell growth, tumor cell migration, and chemotherapy resistance in solid cancers. Accumulating evidence indicates that major HA-CD44 signaling pathways involve a specific variant of CD44 isoforms; however, the particular variant almost certainly depends on the type of tumor cell and the stage of the cancer progression. Research to date suggests use of monoclonal antibodies against different CD44 variant isoforms and targeted inhibition of HA/CD44-mediated signaling combined with conventional radio/chemotherapy may be the most favorable therapeutic strategy for future treatments of advanced stage malignancies. Thus, this paper briefly focuses on the association of the major CD44 variant isoforms in cancer progression, the role of HA-CD44 interaction in oncogenic pathways, and strategies to target CD44-overexpressed tumor cells.
Collapse
|
14
|
Zhou Y, Wang YN, Farr N, Zia J, Chen H, Ko BM, Khokhlova T, Li T, Hwang JH. Enhancement of Small Molecule Delivery by Pulsed High-Intensity Focused Ultrasound: A Parameter Exploration. ULTRASOUND IN MEDICINE & BIOLOGY 2016; 42:956-63. [PMID: 26803389 PMCID: PMC4775378 DOI: 10.1016/j.ultrasmedbio.2015.12.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2015] [Revised: 12/09/2015] [Accepted: 12/11/2015] [Indexed: 05/05/2023]
Abstract
Chemotherapeutic drug delivery is often ineffective within solid tumors, but increasing the drug dose would result in systemic toxicity. The use of high-intensity focused ultrasound (HIFU) has the potential to enhance penetration of small molecules. However, operation parameters need to be optimized before the use of chemotherapeutic drugs in vivo and translation to clinical trials. In this study, the effects of pulsed HIFU (pHIFU) parameters (spatial-average pulse-average intensity, duty factor and pulse repetition frequency) on the penetration as well as content of small molecules were evaluated in ex vivo porcine kidneys. Specific HIFU parameters resulted in more than 40 times greater Evans blue content and 3.5 times the penetration depth compared with untreated samples. When selected parameters were applied to porcine kidneys in vivo, a 2.3-fold increase in concentration was obtained after a 2-min exposure to pHIFU. Pulsed HIFU has been found to be an effective modality to enhance both the concentration and penetration depth of small molecules in tissue using the optimized HIFU parameters. Although, performed in normal tissue, this study has the promise of translation into tumor tissue.
Collapse
Affiliation(s)
- Yufeng Zhou
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore
| | - Yak-Nam Wang
- Center for Industrial and Medical Ultrasound, Applied Physics Laboratory, University of Washington, Seattle, Washington, USA.
| | - Navid Farr
- Department of Bioengineering, University of Washington, Seattle, Washington, USA
| | - Jasmine Zia
- Division of Gastroenterology, School of Medicine, University of Washington, Seattle, Washington, USA
| | - Hong Chen
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Bong Min Ko
- Digestive Disease Center and Research Institute, Department of Internal Medicine, Soonchunhyang University College of Medicine, Asan, Korea
| | - Tatiana Khokhlova
- Division of Gastroenterology, School of Medicine, University of Washington, Seattle, Washington, USA
| | - Tong Li
- Department of Bioengineering, University of Washington, Seattle, Washington, USA
| | - Joo Ha Hwang
- Center for Industrial and Medical Ultrasound, Applied Physics Laboratory, University of Washington, Seattle, Washington, USA; Division of Gastroenterology, School of Medicine, University of Washington, Seattle, Washington, USA
| |
Collapse
|
15
|
Scodeller P. Extracellular Matrix Degrading Enzymes for Nanocarrier-Based Anticancer Therapy. INTRACELLULAR DELIVERY III 2016. [DOI: 10.1007/978-3-319-43525-1_3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
16
|
Utilization of Glycosaminoglycans/Proteoglycans as Carriers for Targeted Therapy Delivery. Int J Cell Biol 2015; 2015:537560. [PMID: 26448753 PMCID: PMC4581573 DOI: 10.1155/2015/537560] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2014] [Revised: 01/19/2015] [Accepted: 02/15/2015] [Indexed: 02/07/2023] Open
Abstract
The outcome of patients with cancer has improved significantly in the past decade with the incorporation of drugs targeting cell surface adhesive receptors, receptor tyrosine kinases, and modulation of several molecules of extracellular matrices (ECMs), the complex composite of collagens, glycoproteins, proteoglycans, and glycosaminoglycans that dictates tissue architecture. Cancer tissue invasive processes progress by various oncogenic strategies, including interfering with ECM molecules and their interactions with invasive cells. In this review, we describe how the ECM components, proteoglycans and glycosaminoglycans, influence tumor cell signaling. In particular this review describes how the glycosaminoglycan hyaluronan (HA) and its major receptor CD44 impact invasive behavior of tumor cells, and provides useful insight when designing new therapeutic strategies in the treatment of cancer.
Collapse
|
17
|
Misra S, Hascall VC, Markwald RR, Ghatak S. Interactions between Hyaluronan and Its Receptors (CD44, RHAMM) Regulate the Activities of Inflammation and Cancer. Front Immunol 2015; 6:201. [PMID: 25999946 PMCID: PMC4422082 DOI: 10.3389/fimmu.2015.00201] [Citation(s) in RCA: 571] [Impact Index Per Article: 57.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2015] [Accepted: 04/13/2015] [Indexed: 01/04/2023] Open
Abstract
The glycosaminoglycan hyaluronan (HA), a major component of extracellular matrices, and cell surface receptors of HA have been proposed to have pivotal roles in cell proliferation, migration, and invasion, which are necessary for inflammation and cancer progression. CD44 and receptor for HA-mediated motility (RHAMM) are the two main HA-receptors whose biological functions in human and murine inflammations and tumor cells have been investigated comprehensively. HA was initially considered to be only an inert component of connective tissues, but is now known as a “dynamic” molecule with a constant turnover in many tissues through rapid metabolism that involves HA molecules of various sizes: high molecular weight HA (HMW HA), low molecular weight HA, and oligosaccharides. The intracellular signaling pathways initiated by HA interactions with CD44 and RHAMM that lead to inflammatory and tumorigenic responses are complex. Interestingly, these molecules have dual functions in inflammations and tumorigenesis. For example, the presence of CD44 is involved in initiation of arthritis, while the absence of CD44 by genetic deletion in an arthritis mouse model increases rather than decreases disease severity. Similar dual functions of CD44 exist in initiation and progression of cancer. RHAMM overexpression is most commonly linked to cancer progression, whereas loss of RHAMM is associated with malignant peripheral nerve sheath tumor growth. HA may similarly perform dual functions. An abundance of HMW HA can promote malignant cell proliferation and development of cancer, whereas antagonists to HA-CD44 signaling inhibit tumor cell growth in vitro and in vivo by interfering with HMW HA-CD44 interaction. This review describes the roles of HA interactions with CD44 and RHAMM in inflammatory responses and tumor development/progression, and how therapeutic strategies that block these key inflammatory/tumorigenic processes may be developed in rodent and human diseases.
Collapse
Affiliation(s)
- Suniti Misra
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina , Charleston, SC , USA
| | - Vincent C Hascall
- Department of Biomedical Engineering, Cleveland Clinic, Cleveland , Ohio, OH , USA
| | - Roger R Markwald
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina , Charleston, SC , USA
| | - Shibnath Ghatak
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina , Charleston, SC , USA
| |
Collapse
|
18
|
Skandalis SS, Gialeli C, Theocharis AD, Karamanos NK. Advances and advantages of nanomedicine in the pharmacological targeting of hyaluronan-CD44 interactions and signaling in cancer. Adv Cancer Res 2015; 123:277-317. [PMID: 25081534 DOI: 10.1016/b978-0-12-800092-2.00011-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Extensive experimental evidence in cell and animal tumor models show that hyaluronan-CD44 interactions are crucial in both malignancy and resistance to cancer therapy. Because of the intimate relationship between the hyaluronan-CD44 system and tumor cell survival and growth, it is an increasingly investigated area for applications to anticancer chemotherapeutics. Interference with the hyaluronan-CD44 interaction by targeting drugs to CD44, targeting drugs to the hyaluronan matrix, or interfering with hyaluronan matrix/tumor cell-associated CD44 interactions is a viable strategy for cancer treatment. Many of these methods can decrease tumor burden in animal models but have yet to show significant clinical utility. Recent advances in nanomedicine have offered new valuable tools for cancer detection, prevention, and treatment. The enhanced permeability and retention effect has served as key rationale for using nanoparticles to treat solid tumors. However, the targeted and uniform delivery of these particles to all regions of tumors in sufficient quantities requires optimization. An ideal nanocarrier should be equipped with selective ligands that are highly or exclusively expressed on target cells and thus endow the carriers with specific targeting capabilities. In this review, we describe how the hyaluronan-CD44 system may provide such an alternative in tumors expressing specific CD44 variants.
Collapse
Affiliation(s)
- Spyros S Skandalis
- Biochemistry, Biochemical Analysis and Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, Patras, Greece
| | - Chrisostomi Gialeli
- Biochemistry, Biochemical Analysis and Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, Patras, Greece; Foundation for Research and Technology, Institute of Chemical Engineering Sciences (FORTH/ICE-HT), Patras, Greece
| | - Achilleas D Theocharis
- Biochemistry, Biochemical Analysis and Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, Patras, Greece
| | - Nikos K Karamanos
- Biochemistry, Biochemical Analysis and Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, Patras, Greece; Foundation for Research and Technology, Institute of Chemical Engineering Sciences (FORTH/ICE-HT), Patras, Greece.
| |
Collapse
|
19
|
Singha NC, Nekoroski T, Zhao C, Symons R, Jiang P, Frost GI, Huang Z, Shepard HM. Tumor-associated hyaluronan limits efficacy of monoclonal antibody therapy. Mol Cancer Ther 2014; 14:523-32. [PMID: 25512619 DOI: 10.1158/1535-7163.mct-14-0580] [Citation(s) in RCA: 104] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Despite tremendous progress in cancer immunotherapy for solid tumors, clinical success of monoclonal antibody (mAb) therapy is often limited by poorly understood mechanisms associated with the tumor microenvironment (TME). Accumulation of hyaluronan (HA), a major component of the TME, occurs in many solid tumor types, and is associated with poor prognosis and treatment resistance in multiple malignancies. In this study, we describe that a physical barrier associated with high levels of HA (HA(high)) in the TME restricts antibody and immune cell access to tumors, suggesting a novel mechanism of in vivo resistance to mAb therapy. We determined that approximately 60% of HER2(3+) primary breast tumors and approximately 40% of EGFR(+) head and neck squamous cell carcinomas are HA(high), and hypothesized that HA(high) tumors may be refractory to mAb therapy. We found that the pericellular matrix produced by HA(high) tumor cells inhibited both natural killer (NK) immune cell access to tumor cells and antibody-dependent cell-mediated cytotoxicity (ADCC) in vitro. Depletion of HA by PEGPH20, a pegylated recombinant human PH20 hyaluronidase, resulted in increased NK cell access to HA(high) tumor cells, and greatly enhanced trastuzumab- or cetuximab-dependent ADCC in vitro. Furthermore, PEGPH20 treatment enhanced trastuzumab and NK cell access to HA(high) tumors, resulting in enhanced trastuzumab- and NK cell-mediated tumor growth inhibition in vivo. These results suggest that HA(high) matrix in vivo may form a barrier inhibiting access of both mAb and NK cells, and that PEGPH20 treatment in combination with anticancer mAbs may be an effective adjunctive therapy for HA(high) tumors.
Collapse
Affiliation(s)
| | | | - Chunmei Zhao
- Halozyme Therapeutics, Inc., San Diego, California
| | | | - Ping Jiang
- Halozyme Therapeutics, Inc., San Diego, California
| | | | | | | |
Collapse
|
20
|
A Fractional Factorial Design to Study the Effect of Process Variables on the Preparation of Hyaluronidase Loaded PLGA Nanoparticles. Enzyme Res 2014; 2014:162962. [PMID: 25574384 PMCID: PMC4276349 DOI: 10.1155/2014/162962] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2014] [Revised: 11/11/2014] [Accepted: 11/13/2014] [Indexed: 11/29/2022] Open
Abstract
The present study was initiated to understand the effect of PLGA concentration, PVA concentration, internal-external phase ratio, homogenization speed, and homogenization time on mean particle size, zeta potential, and percentage drug encapsulation using fractional factorial design. Using PLGA (50-50) as the carrier, hyaluronidase loaded PLGA nanoparticles were prepared using double emulsion solvent evaporation technique. The particle size was analyzed by dynamic light scattering technique and protein content by Lowry method. The study showed that homogenization speed as an independent variable had maximum effect on particle size and zeta potential. Internal-external phase volume ratio had maximum effect on drug encapsulation. Mean particle size also had high dependency on the combined effect of PVA concentration and phase volume ratio. Using fractional factorial design particle size of <400 nm, zeta potential of <−30 mV, and percentage encapsulation of 15–18% were achieved.
Collapse
|
21
|
Oommen OP, Garousi J, Sloff M, Varghese OP. Tailored doxorubicin-hyaluronan conjugate as a potent anticancer glyco-drug: an alternative to prodrug approach. Macromol Biosci 2013; 14:327-33. [PMID: 24130147 DOI: 10.1002/mabi.201300383] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2013] [Revised: 09/10/2013] [Indexed: 11/11/2022]
Abstract
Releasibility of doxorubicin from drug-conjugates is believed to be a prerequisite for its anti-cancer activity. Here, a new glyco-drug approach that circumvents the releasibility restriction is reported, opening a new possibility to design efficient, target specific drug delivery system. It is discovered that stable amide coupling of doxorubicin (DOX) tohyaluronan (HA) shows dose dependent cytotoxicity to CD44 positive human coloncancer cells (HCT116) as compared to human breast cancer cells(MCF-7) and mouse fibroblast cells (NIH-3T3), which express less CD44 receptor. This direct conjugation approach is an easy scalable strategy that could be adopted to design innocuous anti-tumor nanoparticle formulations.
Collapse
Affiliation(s)
- Oommen P Oommen
- Department of Chemistry, Ångström Laboratory, Uppsala University, S-75121 Uppsala, Sweden.
| | | | | | | |
Collapse
|
22
|
Lompardía SL, Papademetrio DL, Mascaró M, Álvarez EMDC, Hajos SE. Human leukemic cell lines synthesize hyaluronan to avoid senescence and resist chemotherapy. Glycobiology 2013; 23:1463-76. [PMID: 24013961 DOI: 10.1093/glycob/cwt074] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Hyaluronan (HA) is one of the major components of the extracellular matrix. Several solid tumors produce high levels of HA, which promotes survival and multidrug resistance (MDR). HA oligomers (oHAs) can block HA effects. However, little is known about the role of HA in hematological malignancies. The aim of this work was to determine whether HA or its oligomers can modulate the proliferation of leukemia cells as well as their effect on MDR. Receptors and signaling pathways involved were also analyzed. For this purpose, the human leukemic cell lines K562 and Kv562, which are sensitive and resistant to Vincristine (VCR), respectively, were used. We demonstrated that HA induced cell proliferation in both cell lines. On K562 cells, this effect was mediated by cluster differentiation 44 (CD44) and activation of both phosphoinositide 3-kinase (PI3K)/protein kinase B (Akt) and mitogen-activated protein kinase kinase (MEK)/extracellular signal-regulated kinase (ERK) pathways, whereas on Kv562 cells, the effect was mediated by receptor for hyaluronan-mediated motility (RHAMM) and PI3K/Akt activation. The inhibition of HA synthesis by 4-methylumbelliferone (4MU) decreased cell line proliferation and sensitized Kv562 to the effect of VCR through P-glycoprotein (Pgp) inhibition, in both cases with senescence induction. Moreover, oHAs inhibited K562 proliferation mediated by CD44 as well as Akt and ERK down-regulation. Furthermore, oHAs sensitized Kv562 cells to VCR by Pgp inhibition inducing senescence. We postulate that the synthesis of HA would promote leukemia progression mediated by the triggering of the above-mentioned proliferative signals. These findings highlight the potential use of oHAs and 4MU as coadjuvant for drug-resistant leukemia.
Collapse
Affiliation(s)
- Silvina Laura Lompardía
- Department of Immunology, School of Pharmacy and Biochemistry, University of Buenos Aires (UBA), IDEHU-CONICET, Buenos Aires 1113, Argentina
| | | | | | | | | |
Collapse
|
23
|
Zhou Y, Kopeček J. Biological rationale for the design of polymeric anti-cancer nanomedicines. J Drug Target 2012; 21:1-26. [PMID: 23009337 DOI: 10.3109/1061186x.2012.723213] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Understanding the biological features of cancer is the basis for designing efficient anti-cancer nanomedicines. On one hand, important therapeutic targets for anti-cancer nanomedicines need to be identified based on cancer biology, to address the unmet medical needs. On the other hand, the unique pathophysiological properties of cancer affect the delivery and interactions of anti-cancer nanomedicines with their therapeutic targets. This review discusses several critical cancer biological properties that challenge the currently available anti-cancer treatments, including cancer heterogeneity and cancer stem cells, the complexcity of tumor microenvironment, and the inevitable cancer metastases. In addition, the biological bases of the enhanced permeability and retention (EPR) effect and tumor-specific active targeting, as well as the physiological barriers for passive and active targeting of anti-cancer nanomedicines are covered in this review. Correspondingly, possible nanomedicine strategies to target cancer heterogeneity, cancer stem cells and metastases, to overcome the challenges related to tumor passive targeting and tumor penetration, and to improve the interactions of therapeutic payloads with the therapeutic targets are discussed. The focus is mainly on the designs of polymeric anti-cancer nanomedicines.
Collapse
Affiliation(s)
- Yan Zhou
- Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, Salt Lake City, UT 84112, USA
| | | |
Collapse
|
24
|
Grantab RH, Tannock IF. Penetration of anticancer drugs through tumour tissue as a function of cellular packing density and interstitial fluid pressure and its modification by bortezomib. BMC Cancer 2012; 12:214. [PMID: 22672469 PMCID: PMC3407510 DOI: 10.1186/1471-2407-12-214] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2011] [Accepted: 06/06/2012] [Indexed: 02/02/2023] Open
Abstract
Background Limited penetration of anticancer drugs in solid tumours is a probable cause of drug resistance. Our previous results indicate that drug penetration depends on cellular packing density and adhesion between cancer cells. Methods We used epithelioid and round cell variants of the HCT-8 human colon carcinoma cell lines to generate tightly and loosely packed xenografts in nude mice. We measured packing density and interstitial fluid pressure (IFP) and studied the penetration of anti-cancer drugs through multilayered cell cultures (MCC) derived from epithelioid HCT-8 variants, and the distribution of doxorubicin in xenografts with and without pre-treatment with bortezomib. Results We show lower packing density in xenografts established from round cell than epithelioid cell lines, with lower IFP in xenografts. There was better distribution of doxorubicin in xenografts grown from round cell variants, consistent with previous data in MCC. Bortezomib pre-treatment reduced cellular packing density, improved penetration, and enhanced cytotoxcity of several anticancer drugs in MCC derived from epithelioid cell lines. Pre-treatment of xenografts with bortezomib enhanced the distribution of doxorubicin within them. Conclusions Our results provide a rationale for further investigation of agents that enhance the distribution of chemotherapeutic drugs in combination with conventional chemotherapy in solid tumours.
Collapse
Affiliation(s)
- Rama H Grantab
- Division of Research, Princess Margaret Hospital and University of Toronto, Toronto, Canada
| | | |
Collapse
|
25
|
Intratumoral drug delivery with nanoparticulate carriers. Pharm Res 2011; 28:1819-30. [PMID: 21213021 DOI: 10.1007/s11095-010-0360-y] [Citation(s) in RCA: 130] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2010] [Accepted: 12/20/2010] [Indexed: 12/25/2022]
Abstract
Stiff extracellular matrix, elevated interstitial fluid pressure, and the affinity for the tumor cells in the peripheral region of a solid tumor mass have long been recognized as significant barriers to diffusion of small-molecular-weight drugs and antibodies. However, their impacts on nanoparticle-based drug delivery have begun to receive due attention only recently. This article reviews biological features of many solid tumors that influence transport of drugs and nanoparticles and properties of nanoparticles relevant to their intratumoral transport, studied in various tumor models. We also discuss several experimental approaches employed to date for enhancement of intratumoral nanoparticle penetration. The impact of nanoparticle distribution on the effectiveness of chemotherapy remains to be investigated and should be considered in the design of new nanoparticulate drug carriers.
Collapse
|
26
|
Tumour-microenvironmental interactions: paths to progression and targets for treatment. Semin Cancer Biol 2010; 20:128-38. [DOI: 10.1016/j.semcancer.2010.06.004] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2010] [Accepted: 06/24/2010] [Indexed: 01/01/2023]
|
27
|
Belem-Gonçalves S, Matar G, Tsan P, Lafont D, Boullanger P, Salim VM, Alves TL, Lancelin JM, Besson F. Hyaluronidase binds differently DPPC, DPPS or GlcNAc-bearing glycolipid biomimetic monolayers. Colloids Surf B Biointerfaces 2010; 75:466-71. [DOI: 10.1016/j.colsurfb.2009.09.020] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2009] [Revised: 09/14/2009] [Accepted: 09/16/2009] [Indexed: 11/26/2022]
|
28
|
Abstract
Hyaluronan is a prominent component of the micro-environment in most malignant tumors and can be prognostic for tumor progression. Extensive experimental evidence in animal models implicates hyaluronan interactions in tumor growth and metastasis, but it is also evident that a balance of synthesis and turnover by hyaluronidases is critical. CD44, a major hyaluronan receptor, is commonly but not uniformly associated with malignancy, and is frequently used as a marker for cancer stem cells in human carcinomas. Multivalent interactions of hyaluronan with CD44 collaborate in driving numerous tumor-promoting signaling pathways and transporter activities. It is widely accepted that hyaluronan-CD44 interactions are crucial in both malignancy and resistance to therapy, but major challenges for future research in the field are the mechanism of activation of hyaluronan-CD44 signaling in cancer cells, the relative importance of variant forms of CD44 and other hyaluronan receptors, e.g., Rhamm, in different tumor contexts, and the role of stromal versus tumor cell production and turnover of hyaluronan. Despite these caveats, it is clear that hyaluronan-CD44 interactions are an important target for translation into the clinic. Among the approaches that show promise are antibodies and vaccines to specific variants of CD44 that are uniquely expressed at critical stages of progression of a particular cancer, hyaluronidase-mediated reduction of barriers to drug access, and small hyaluronan oligosaccharides that attenuate constitutive hyaluronan-receptor signaling and enhance chemosensitivity. In addition, hyaluronan is being used to tag drugs and delivery vehicles for targeting of anticancer agents to CD44-expressing tumor cells. (Clin Cancer Res 2009;15(24):7462-8).
Collapse
Affiliation(s)
- Bryan P Toole
- Author's Affiliation: Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, South Carolina
| |
Collapse
|
29
|
Toole BP, Slomiany MG. Hyaluronan, CD44 and Emmprin: partners in cancer cell chemoresistance. Drug Resist Updat 2008; 11:110-21. [PMID: 18490190 DOI: 10.1016/j.drup.2008.04.002] [Citation(s) in RCA: 145] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2008] [Revised: 04/07/2008] [Accepted: 04/08/2008] [Indexed: 01/06/2023]
Abstract
Hyaluronan not only is an important structural component of extracellular matrices but also interacts with cells during dynamic cell processes such as those occurring in cancer. Consequently, interactions of hyaluronan with tumor cells play important cooperative roles in various aspects of malignancy. Hyaluronan binds to several cell surface receptors, including CD44, thus leading to co-regulation of signaling pathways that are important in regulation of multidrug resistance to anticancer drugs, in particular anti-apoptotic pathways induced by activation of receptor tyrosine kinases. Emmprin, a cell surface glycoprotein of the Ig superfamily, stimulates hyaluronan production and downstream signaling consequences. Emmprin and CD44 also interact with various multidrug transporters of the ABC family and monocarboxylate transporters associated with resistance to cancer therapies. Moreover, hyaluronan-CD44 interactions are critical to these properties in the highly malignant, chemotherapy-resistant cancer stem-like cells. Perturbations of the hyaluronan-CD44 interaction at the plasma membrane by various antagonists result in attenuation of receptor tyrosine kinase and transporter activities and inhibition of tumor progression in vivo. These antagonists, especially small hyaluronan oligomers, may be useful in therapeutic strategies aimed at preventing tumor refractoriness or recurrence due to drug-resistant sub-populations within malignant cancers.
Collapse
Affiliation(s)
- Bryan P Toole
- Department of Cell Biology and Anatomy, Medical University of South Carolina, USA.
| | | |
Collapse
|
30
|
Simpson MA, Lokeshwar VB. Hyaluronan and hyaluronidase in genitourinary tumors. FRONT BIOSCI-LANDMRK 2008; 13:5664-80. [PMID: 18508614 DOI: 10.2741/3108] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Genitourinary cancers are the most frequently diagnosed cancers in men and the fifth most common in women. Management of disease through accurate and cost effective early diagnostic markers, as well as identification of valid prognostic indicators, has contributed significantly to improved treatment outcomes. In this review, we will discuss the function, regulation and clinical utility of hyaluronan (HA), genes encoding its metabolic enzymes and receptors that mediate its cellular effects. Specific HA synthase (HAS) and hyaluronidase (HAase) genes encode the enzymes that produce HA polymers and oligosaccharides, respectively. Differential effects of these enzymes in progression of genitourinary tumors are determined by the relative balance between HAS and HAase levels, as well as the distribution of receptors. The genes are regulated in a complex fashion at the transcriptional and post-translational levels, but also by epigenetic events, alternative mRNA splicing, and subcellular localization. Importantly, the major tumor-derived HAase enzyme, HYAL-1, either alone or together with HA, is an accurate diagnostic and prognostic marker for genitourinary tumors.
Collapse
Affiliation(s)
- Melanie A Simpson
- Department of Biochemistry, University of Nebraska, Lincoln, Nebraska, USA
| | | |
Collapse
|
31
|
Abstract
Hyaluronan is a megadalton glycosaminoglycan polymer critical for maintaining the integrity of the extracellular matrix. It can exist in a protein-bound state with aggregating proteoglycans, where it expands the extracellular matrix and modulates cell-cell interactions. It also exists in lower molecular weight forms that participate in a myriad of biological functions. It is unique in that much of it is degraded within hours of its synthesis. High molecular weight hyaluronan, a reflection of intact healthy tissues, is normally produced by hyaluronan synthases at the plasma membrane. It is catabolized by the action of an extracellular plasma membrane-tethered hyaluronidase that is coordinated with intracellular lysosomal hyaluronidases and exoglycosidases. This occurs in local tissues and lymph, with the remainder being cleared by the sinusoidal liver endothelium upon entering the vascular compartment. Elevated extracellular levels of hyaluronan and its partially catabolized oligomers are found in certain malignancies, potentially due to decoupled synthesis and degradation. Furthermore, partially depolymerized hyaluronan in the extracellular environment may have properties not found in the multivalent high molecular weight polymer in malignancies. Functional perturbations of hyaluronan synthesis and degradation have revealed active roles of the synthases and hyaluronidases in epithelial mesenchymal conversion, stroma and vascular formation, interstitial fluid pressure and chemosensitivity. While at least three confirmed hyaluronidases exist in the human genome (HYAL1, HYALl2 and PH20), functional perturbation of these genes in mice have failed to identify a simple linear catabolic circuit. The family of enzymes responsible for the synthesis and degradation of hyaluronan are being characterized. The fragmented forms of hyaluronan, largely a sign of cellular distress, occur in abundance in many malignancies. These small hyaluronan oligomers are assumed to be largely a result of hyaluronidase activity. Precisely how particular-sized fragments are generated and maintained is not known. Presumably, hyaluronan-binding proteins, in addition to the proteoglycans, participate in this process. Hyaluronidase inhibitors are now recognized, as well as growth factors that enhance the synthetic enzymes. A complete understanding of the anabolic and catabolic systems for hyaluronan may provide new dimensions into our understanding of cancer progression, as well as new opportunities for therapeutic intervention.
Collapse
Affiliation(s)
- Robert Stern
- Department of Pathology, Faculty of Medicine, Al Quds University, P.O. Box 20002, Abu-Dies, Jerusalem.
| |
Collapse
|
32
|
Lokeshwar VB, Selzer MG. Hyalurondiase: both a tumor promoter and suppressor. Semin Cancer Biol 2008; 18:281-7. [PMID: 18448355 DOI: 10.1016/j.semcancer.2008.03.008] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2007] [Accepted: 03/19/2008] [Indexed: 11/26/2022]
Abstract
Originally termed as the "spreading factor", hyaluronidases (HAases) are present in a variety of toxins and venoms. For example, HAase is the virulent factor of beta-hemolytic Streptococci and it is also present in the venoms of snake, bee, wasp, scorpion, etc, where it aids in the spread of these venoms in the body. In mammals, testicular HAase present in the sperm acrosome is necessary for the fertilization of the ovum. Despite a lot of work on bacterial, invertebrate and testicular HAases, a connection between HAase and cancer was unequivocally established just over a decade ago and the functional significance of HAases in cancer was demonstrated just about a year ago. In this part of the review, we will focus on the recent advances in our understanding of the role of HAases in cancer.
Collapse
Affiliation(s)
- Vinata B Lokeshwar
- Department of Urology, University of Miami, Miller School of Medicine, Miami, FL 33101, USA.
| | | |
Collapse
|
33
|
Toole BP, Slomiany MG. Hyaluronan: a constitutive regulator of chemoresistance and malignancy in cancer cells. Semin Cancer Biol 2008; 18:244-50. [PMID: 18534864 DOI: 10.1016/j.semcancer.2008.03.009] [Citation(s) in RCA: 164] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2008] [Accepted: 03/19/2008] [Indexed: 01/01/2023]
Abstract
Hyaluronan not only is an important structural component of extracellular matrices but also interacts instructively with cells during embryonic development, healing processes, inflammation, and cancer. It binds to several different types of cell surface receptors, including CD44, thus leading to co-regulation of important signaling pathways, notably those induced by activation of receptor tyrosine kinases. Consequently, interactions of both stromal and tumor cell-derived hyaluronan with tumor cells play important cooperative roles in several aspects of malignancy. This review focuses on cell autonomous hyaluronan-tumor cell interactions that lead to activation of receptor tyrosine kinases and enhanced drug resistance. Particular emphasis is placed on the role of hyaluronan-CD44 interactions in drug transporter expression and activity, especially in cancer stem-like cells that are highly malignant and resistant to chemotherapy. Antagonists of hyaluronan-CD44 interaction, especially small hyaluronan oligomers, may be useful in therapeutic strategies aimed at preventing tumor recurrence from these therapy-resistant sub-populations within malignant cancers.
Collapse
Affiliation(s)
- Bryan P Toole
- Department of Cell Biology and Anatomy, Medical University of South Carolina, 173 Ashley Avenue, Charleston, SC 29425, USA.
| | | |
Collapse
|
34
|
David L, Dulong V, Le Cerf D, Cazin L, Lamacz M, Vannier JP. Hyaluronan hydrogel: an appropriate three-dimensional model for evaluation of anticancer drug sensitivity. Acta Biomater 2008; 4:256-63. [PMID: 17936097 DOI: 10.1016/j.actbio.2007.08.012] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2007] [Revised: 08/18/2007] [Accepted: 08/20/2007] [Indexed: 11/17/2022]
Abstract
The extracellular polysaccharide hyaluronan (HA) controls cell migration, differentiation and proliferation, and contributes to the invasiveness of human cancers. In order to investigate the sensitivity of cancer cells to antimitotic agents, we developed a cross-linked HA hydrogel, a three-dimensional matrix in which cells can invade and grow. We have studied three cell lines (SA87, NCI-H460 and H460M), from primary tumors and metastases, that migrated into the HA hydrogel and proliferated giving rise to clusters and colonies. Concurrently, we studied the growth of these cell lines in a usual monolayer culture system. In these two models, increasing concentrations of doxorubicin and 5-fluorouracil were evaluated for their ability to inhibit tumor cell growth and colony formation. Taken together, our data suggest that the cancer cells were more resistant in the three-dimensional model than in monolayer cell systems. The antimitotic drugs were efficient after 24h of treatment in the monolayer cultures, whereas they were significantly efficient only after one week of incubation in the HA hydrogels. Herein, we show that this cross-linked matrix provides a three-dimensional model particularly appropriate for investigating mechanisms involved in cancer cell line sensitivity to antimitotic drugs.
Collapse
Affiliation(s)
- Laurent David
- Groupe de Recherche sur le Micro-Environnement et le Renouvellement Cellulaire Intégré (MERCI, UPRES EA 3829), Faculté de Médecine Pharmacie, Université de Rouen, 22 boulevard Gambetta, 76183 Rouen, France.
| | | | | | | | | | | |
Collapse
|
35
|
Cordo Russo RI, García MG, Alaniz L, Blanco G, Alvarez E, Hajos SE. Hyaluronan oligosaccharides sensitize lymphoma resistant cell lines to vincristine by modulating P-glycoprotein activity and PI3K/Akt pathway. Int J Cancer 2008; 122:1012-8. [PMID: 17985348 DOI: 10.1002/ijc.23122] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Multidrug resistance (MDR) is one of the main reasons for failure of cancer therapy. It may be mediated by overexpression of ATP-dependent efflux pumps or by alterations in survival or apoptotic pathways. Fragments generated by enzymatic degradation of hyaluronan (oHA) were able to modulate growth and cell survival and sensitize MDR breast cancer cells to cytotoxic drugs. In this work the relationship between oHA and MDR in lymphoid malignancies was analyzed using murine lymphoma cell lines resistant to doxorubicin (LBR-D160) or vincristine (LBR-V160) and a sensitive line (LBR-). After oHA treatment, higher apoptosis levels were observed in the resistant cell lines than in the sensitive one. Besides, oHA sensitized LBR-D160 and LBR-V160 to vincristine showing increased apoptosis induction when used in combination with vincristine. Native hyaluronan failed to increase apoptosis levels. As different survival factors could be modulated by hyaluronan, we investigated the PI3K/Akt pathway through PIP3 production and phosphorylated Akt (p-Akt) and survivin expression was also evaluated. Our results showed that oHA decreased p-Akt in the 3 cell lines while anti-CD44 treatment abolished this effect. Besides, survivin was downregulated only in LBR-V160 by oHA. When Pgp function was evaluated, we observed that oHA were able to inhibit Pgp efflux in murine and human resistant cell lines in a CD44-dependent way. In summary, we report for the first time that oHA per se modulate MDR in lymphoma cells by decreasing p-Akt as well as Pgp activity, thus suggesting that oHA could be useful in combination with classical chemotherapy in MDR hematological malignancies.
Collapse
Affiliation(s)
- Rosalía I Cordo Russo
- Department of Immunology, School of Pharmacy and Biochemistry, University of Buenos Aires (UBA), IDEHU-CONICET, Buenos Aires, 1113, Argentina
| | | | | | | | | | | |
Collapse
|
36
|
Chang NS, Hsu LJ, Lin YS, Lai FJ, Sheu HM. WW domain-containing oxidoreductase: a candidate tumor suppressor. Trends Mol Med 2006; 13:12-22. [PMID: 17142102 DOI: 10.1016/j.molmed.2006.11.006] [Citation(s) in RCA: 99] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2006] [Revised: 11/03/2006] [Accepted: 11/22/2006] [Indexed: 10/23/2022]
Abstract
Common fragile site gene WWOX encodes a candidate tumor suppressor WW domain-containing oxidoreductase. Alteration of this gene, along with dramatic downregulation of WWOX protein, is shown in the majority of invasive cancer cells. Ectopic WWOX exhibits proapoptotic and tumor inhibitory functions in vitro and in vivo, probably interacting with growth regulatory proteins p53, p73 and others. Hyaluronidases regulate WWOX expression, increase cancer invasiveness and seem to be involved in the development of hormone-independent growth of invasive cancer cells. Estrogen and androgen stimulate phosphorylation and nuclear translocation of WWOX, although binding of WWOX to these sex hormones is unknown. We propose that suppression of WWOX expression by overexpressed hyaluronidases might contribute in part to the development of hormone independence in invasive cancer.
Collapse
Affiliation(s)
- Nan-Shan Chang
- Institute of Molecular Medicine, National Cheng Kung University Medical College, Tainan, Taiwan 70101, Republic of China.
| | | | | | | | | |
Collapse
|
37
|
Abstract
To be most effective anticancer drugs must penetrate tissue efficiently, reaching all the cancer cells that comprise the target population in a concentration sufficient to exert a therapeutic effect. Most research into the resistance of cancers to chemotherapy has concentrated on molecular mechanisms of resistance, whereas the role of limited drug distribution within tumours has been neglected. We summarize the evidence that indicates that the distribution of many anticancer drugs in tumour tissue is incomplete, and we suggest strategies that might be used either to improve drug penetration through tumour tissue or to select compounds based on their abilities to penetrate tissue, thereby increasing the therapeutic index.
Collapse
Affiliation(s)
- Andrew I Minchinton
- Department of Medical Biophysics, British Columbia Cancer Research Centre, Vancouver, Canada.
| | | |
Collapse
|
38
|
Primeau AJ, Rendon A, Hedley D, Lilge L, Tannock IF. The Distribution of the Anticancer Drug Doxorubicin in Relation to Blood Vessels in Solid Tumors. Clin Cancer Res 2005; 11:8782-8. [PMID: 16361566 DOI: 10.1158/1078-0432.ccr-05-1664] [Citation(s) in RCA: 370] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE Anticancer drugs gain access to solid tumors via the circulatory system and must penetrate the tissue to kill cancer cells. Here, we study the distribution of doxorubicin in relation to blood vessels and regions of hypoxia in solid tumors of mice. EXPERIMENTAL DESIGN The distribution of doxorubicin was quantified by immunofluorescence in relation to blood vessels (recognized by CD31) of murine 16C and EMT6 tumors and human prostate cancer PC-3 xenografts. Hypoxic regions were identified by injection of EF5. RESULTS The concentration of doxorubicin decreases exponentially with distance from tumor blood vessels, decreasing to half its perivascular concentration at a distance of about 40 to 50 mum, The mean distance from blood vessels to regions of hypoxia is 90 to 140 microm in these tumors. Many viable tumor cells are not exposed to detectable concentrations of drug following a single injection. CONCLUSIONS Limited distribution of doxorubicin in solid tumors is an important and neglected cause of clinical resistance that is amenable to modification. The technique described here can be adapted to studying the distribution of other drugs within solid tumors and the effect of strategies to modify their distribution.
Collapse
Affiliation(s)
- Andrew J Primeau
- Division of Applied Molecular Oncology, Princess Margaret Hospital and University of Toronto, Toronto, Ontario, Canada
| | | | | | | | | |
Collapse
|
39
|
Khawli LA, Hu P, Epstein AL. NHS76/PEP2, a fully human vasopermeability-enhancing agent to increase the uptake and efficacy of cancer chemotherapy. Clin Cancer Res 2005; 11:3084-93. [PMID: 15837764 DOI: 10.1158/1078-0432.ccr-04-2310] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE Previously, we have shown that the attachment of interleukin 2 (IL-2) to a tumor-targeting antibody can produce a 4-fold enhancement in the uptake of antibodies and drugs in tumors. More recently, we discovered that a 37-amino-acid linear sequence of IL-2 designated vasopermeability-enhancing peptide (PEP), contained the vasopermeability activity of IL-2, and could be used after linkage to tumor-targeting antibodies to produce the same enhancement of drugs and antibodies in tumors. We now describe the generation of a fully human antibody fusion protein, designated NHS76/PEP(2), which can be used in patients to enhance the therapeutic potential of chemotherapy. METHODS NHS76/PEP(2) was expressed in NS0 cells using the glutamine synthetase gene amplification system. To show its clinical potential as a pretreatment to chemotherapy, NHS76/PEP(2) was given i.v. 2 hours before the injection of suboptimal doses of etoposide, doxorubicin, Taxol, Taxotere, 5-fluorouracil, or vinblastine in mice bearing established solid tumors. Results were recorded by measuring tumor volumes thrice per week. RESULTS Compared with drug treatment alone, NHS76/PEP(2) pretreatment substantially improved the effectiveness of chemotherapeutic agents in solid tumor models. Tumor suppression was most pronounced in those groups of mice bearing tumors known to be sensitive to the specific drug under study. However, in certain instances, tumors previously known to be resistant to specific single chemotherapeutic agents were shown to respond by the addition of NHS76/PEP(2) pretreatment. CONCLUSIONS NHS76/PEP(2) seems an excellent candidate to improve the value of standard chemotherapy drug treatment by virtue of its ability to increase the uptake of drugs in solid tumors selectively.
Collapse
Affiliation(s)
- Leslie A Khawli
- Department of Pathology, Keck School of Medicine of the University of Southern California, Los Angeles, California 90033, USA
| | | | | |
Collapse
|
40
|
Shen X, Kramer RH. Adhesion-mediated squamous cell carcinoma survival through ligand-independent activation of epidermal growth factor receptor. THE AMERICAN JOURNAL OF PATHOLOGY 2004; 165:1315-29. [PMID: 15466396 PMCID: PMC1618631 DOI: 10.1016/s0002-9440(10)63390-1] [Citation(s) in RCA: 97] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The survival and growth of squamous epithelial cells require signals generated by integrin-matrix interactions. After conversion to squamous cell carcinoma, the cells remain sensitive to detachment-induced anoikis, yet in tumor cell aggregates, which are matrix-deficient, these cells are capable of suprabasal survival and proliferation. Their survival is enhanced through a process we call synoikis, whereby junctional adhesions between neighboring cells generate specific downstream survival signals. Here we show that in squamous cell carcinoma cells, E-cadherin-mediated cell-cell contacts specifically induce activation of epidermal growth factor receptor (EGFR). EGFR activation in turn triggers the ERK/MAPK signaling module, leading to elevation of anti-apoptotic Bcl-2. After intercellular adhesion, formation of adherens junctions triggers the formation of E-cadherin-EGFR complexes, correlating with EGFR transactivation. Analysis of the process with a dominant-negative EGFR mutant indicated that activation of EGFR is ligand-independent. Our data implicate cell-cell adhesion-induced activation of EGFR as a cooperative mechanism that generates compensatory survival signaling, protecting malignant cells from detachment-induced death.
Collapse
Affiliation(s)
- Xiaodong Shen
- Department of Stomatology, School of Medicine, University of California at San Francisco, Box 0512, Room HSW-604, San Francisco, CA 94143-0512, USA
| | | |
Collapse
|
41
|
Affiliation(s)
- Bryan P Toole
- Department of Cell Biology and Anatomy, Medical University of South Carolina, 173 Ashley Avenue, Charleston, South Carolina 29425, USA.
| |
Collapse
|
42
|
Matousek J, Poucková P, Hlousková D, Zadinová M, Soucek J, Skvor J. Effect of hyaluronidase and PEG chain conjugation on the biologic and antitumor activity of RNase A. J Control Release 2004; 94:401-10. [PMID: 14744490 DOI: 10.1016/j.jconrel.2003.10.025] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Subcutaneous application of bovine RNase A conjugated to HYase (bovine hyaluronidase), polyethylene glycol (PEG) and HYase+PEG resulted in a marked reduction of the width of the spermatogenic layers of the mouse testes. The number of sperms in caput epididymidis was significantly decreased in mice injected with conjugated RNase A. There was not any significant embryotoxic effect of free RNase A even conjugated with HYse, PEG and HYse+PEG. The immunogenicity, expressed in production of antibodies against free RNase A or conjugates with PEG, was very low. However, the immunogenic action of this enzyme conjugated only to HYase was much higher and produced the same immunogenicity as HYase itself. The immunogenic effect of RNase A+HYase conjugate decreased when PEG was joined to this conjugate. The inhibitory effect of RNase A conjugated to HYase, PEG and HYase+PEG on human ML-2 cells studied in vitro, was practically ineffective. On the other side, when RNase A conjugated to HYase or PEG was administered intraperitoneally into the mice bearing human melanoma, the antitumor effect was pronounced.
Collapse
Affiliation(s)
- Josef Matousek
- Institute of Animal Physiology and Genetics, Academy of Sciences of the Czech Republic, Libechov 277 21, Czech Republic.
| | | | | | | | | | | |
Collapse
|
43
|
Hazlehurst LA, Landowski TH, Dalton WS. Role of the tumor microenvironment in mediating de novo resistance to drugs and physiological mediators of cell death. Oncogene 2003; 22:7396-402. [PMID: 14576847 DOI: 10.1038/sj.onc.1206943] [Citation(s) in RCA: 151] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The emergence of clinical drug resistance continues to be an obstacle for the successful treatment of cancer. Our current understanding of mechanisms associated with drug resistance has been ascertained by investigating drug-resistant models created by exposing a parental population to increasing concentrations of a cytotoxic. These unicellular drug-resistant models have been critical in elucidating drug-resistant mechanism and in some cases have aided in the identification of drug targets. However, these models do not address resistance mechanisms that contribute to de novo drug resistance. We propose that specific niches within the tumor microenvironment may provide a sanctuary for subpopulations of tumors cells that affords a survival advantage following initial drug exposure and may facilitate the acquisition of acquired drug resistance. More specifically, we propose that the bone marrow microenvironment is a sanctuary for hema-topoietic cancers. This review will focus on the bone marrow microenvironment and its role in conferring resistance to cytotoxics and physiological mediators of cell death.
Collapse
Affiliation(s)
- Lori A Hazlehurst
- Clinical Investigations Program at H Lee Moffitt Cancer Center, University of South Florida, 12902 Magnolia Drive, Tampa, FL 33612, USA
| | | | | |
Collapse
|
44
|
Misra S, Ghatak S, Zoltan-Jones A, Toole BP. Regulation of multidrug resistance in cancer cells by hyaluronan. J Biol Chem 2003; 278:25285-8. [PMID: 12738783 DOI: 10.1074/jbc.c300173200] [Citation(s) in RCA: 181] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Multidrug resistance in cancer cells is often due to ATP-dependent efflux pumps, but is also linked to alterations in cell survival and apoptotic signaling pathways. We have found previously that perturbation of hyaluronan-tumor cell interaction by treatment with hyaluronan oligosaccharides suppresses the phosphoinositide 3-kinase/Akt cell survival signaling pathway in cancer cells and reduces tumor growth in vivo. Here we find that these oligomers suppress both the MAP kinase and phosphoinositide 3-kinase pathways in multidrug resistant tumor cells and sensitize these cells to a variety of chemotherapeutic drugs. On the other hand, increased hyaluronan production induces resistance in drug-sensitive tumor cells. Likewise, increased expression of emmprin, which is a glycoprotein that is present on the surface of most malignant cancer cells and that stimulates hyaluronan production, also induces increased resistance. Thus, perturbation of hyaluronan signaling may provide a dual therapeutic role, since it has intrinsic suppressive effects on tumor growth as well as sensitizing cancer cells to chemotherapeutic agents.
Collapse
Affiliation(s)
- Suniti Misra
- Department of Anatomy and Cellular Biology, Tufts University School of Medicine, Boston, Massachusetts 02111, USA
| | | | | | | |
Collapse
|
45
|
Broxterman HJ, Lankelma J, Hoekman K. Resistance to cytotoxic and anti-angiogenic anticancer agents: similarities and differences. Drug Resist Updat 2003; 6:111-27. [PMID: 12860459 DOI: 10.1016/s1368-7646(03)00026-8] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Intrinsic resistance to anticancer drugs, or resistance developed during chemotherapy, remains a major obstacle to successful treatment. This is the case both for resistance to cytotoxic agents, directed at malignant cells, and for resistance to anti-angiogenic agents, directed at non-malignant endothelial cells. In this review, we will discuss mechanisms of resistance which have a bearing on both these conceptually different classes of drugs. The complexity of drug resistance, involving drug transporters, such as P-glycoprotein, as well as resistance related to the tissue structure of solid tumors and its consequences for drug delivery is discussed. Possible mechanisms of resistance to endothelial cell-targeted drugs, including inhibitors of the VEGF receptor and EGF receptor family, are reviewed. The resistance of cancer cells as well as endothelial cells related to anti-apoptotic signaling events initiated by cell integrin-matrix interactions is discussed. Current strategies to overcome resistance mechanisms are summarized; they include high-dose chemotherapy, tumor targeting of cytotoxics to improve tumor uptake, low-dose protracted (metronomic) chemotherapy and combinations of classical agents with anti-angiogenic agents. This review discusses primarily literature published in 2001 and 2002.
Collapse
Affiliation(s)
- Henk J Broxterman
- Department of Medical Oncology, VU University Medical Center, BR 232, De Boelelaan 1117, 1081 HV Amsterdam, The Netherlands.
| | | | | |
Collapse
|
46
|
Vincent T, Molina L, Espert L, Mechti N. Hyaluronan, a major non-protein glycosaminoglycan component of the extracellular matrix in human bone marrow, mediates dexamethasone resistance in multiple myeloma. Br J Haematol 2003; 121:259-69. [PMID: 12694247 DOI: 10.1046/j.1365-2141.2003.04282.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Originating from a post-switch memory B cell or plasma cell compartment in peripheral lymphoid tissues, malignant multiple myeloma (MM) cells accumulate in the bone marrow of patients with MM. In this favourable microenvironment, their growth and survival are dependent upon both soluble factors and physical cell-to-cell and cell-to-extracellular-matrix contacts. In this study, hyaluronan (HA), a major non-protein glycosaminoglycan component of the extracellular matrix in mammalian bone marrow, acted as a survival factor against dexamethasone (Dex)-induced apoptosis in MM cell lines. These effects were mediated through an interleukin 6 (IL-6) autocrine pathway, involving signal transducers and activators of transcription-3 phosphorylation on IL-6-dependent XG-1 and XG-6 cell lines. HA promoted accumulation of IL-6 in the culture medium without affecting IL-6 gene expression, suggesting that HA protects, stabilizes and concentrates IL-6 close to its site of secretion, thus favouring its autocrine activity. In contrast, in the IL-6-independent RPMI8226 cell line, HA survival effect was mediated through a gp80-IL-6 receptor-independent pathway, resulting in the upregulation of Bcl-2 anti-apoptotic protein expression and nuclear factor-kappaB activation. Taken together, these data suggest that HA antagonizes Dex-induced apoptosis of MM cells by favouring the autocrine activity of different cytokines or growth factors. As HA is a major component of the bone marrow extracellular matrix, these findings support the idea that HA could play a major role in the survival of MM cells in vivo, and could explain why MM cells accumulate in the bone marrow of patients with MM and escape conventional chemotherapy.
Collapse
Affiliation(s)
- Thierry Vincent
- INSERM Unité U475 and UMR-CNRS5094, Montpellier, and Laboratoire d'Hématologie, Hôpital St-Eloi, Montpellier, France
| | | | | | | |
Collapse
|
47
|
Pupa SM, Ménard S, Forti S, Tagliabue E. New insights into the role of extracellular matrix during tumor onset and progression. J Cell Physiol 2002; 192:259-67. [PMID: 12124771 DOI: 10.1002/jcp.10142] [Citation(s) in RCA: 211] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Recently, a view of the tumor as a functional tissue interconnected with the microenvironment has recently been described. For many years, the stroma has been studied in the context of the malignant lesion, and only rarely has its role been considered before carcinogenic lesions appear. Recent studies have provided evidence that stromal cells and their products can cause the transformation of adjacent cells through transient signaling that leads to the disruption of homeostatic regulation, including control of tissue architecture, adhesion, cell death, and proliferation. It is now well established that tumor progression requires a continually evolving network of interactions between neoplastic cells and extracellular matrix. A relevant step of this process is the remodeling of microenvironment which surrounds tumors leading to the release of ECM-associated growth factors which can then stimulate tumor and/or endothelial cells. Finally, tumor cells reorganizing the extracellular matrix to facilitate communications and escape the homeostatic control exerted by the microenvironment modify response to cytotoxic treatments.
Collapse
Affiliation(s)
- Serenella M Pupa
- Molecular Targeting Unit, Department of Experimental Oncology, Istituto Nazionale Tumori, Milan, Italy
| | | | | | | |
Collapse
|
48
|
Weaver VM, Lelièvre S, Lakins JN, Chrenek MA, Jones JCR, Giancotti F, Werb Z, Bissell MJ. beta4 integrin-dependent formation of polarized three-dimensional architecture confers resistance to apoptosis in normal and malignant mammary epithelium. Cancer Cell 2002; 2:205-16. [PMID: 12242153 PMCID: PMC2788997 DOI: 10.1016/s1535-6108(02)00125-3] [Citation(s) in RCA: 600] [Impact Index Per Article: 26.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Tumor cells can evade chemotherapy by acquiring resistance to apoptosis. We investigated the molecular mechanism whereby malignant and nonmalignant mammary epithelial cells become insensitive to apoptosis. We show that regardless of growth status, formation of polarized, three-dimensional structures driven by basement membrane confers protection to apoptosis in both nonmalignant and malignant mammary epithelial cells. By contrast, irrespective of their malignant status, nonpolarized structures are sensitive to induction of apoptosis. Resistance to apoptosis requires ligation of beta4 integrins, which regulates tissue polarity, hemidesmosome formation, and NFkappaB activation. Expression of beta4 integrin that lacks the hemidesmosome targeting domain interferes with tissue polarity and NFkappaB activation and permits apoptosis. These results indicate that integrin-induced polarity may drive tumor cell resistance to apoptosis-inducing agents via effects on NFkappaB.
Collapse
Affiliation(s)
- Valerie M Weaver
- Department of Pathology and Institute for Medicine and Engineering, University of Pennsylvania, Philadelphia, PA 19104, USA.
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Bjørnaes I, Rofstad EK. Transvascular and interstitial transport of a 19 kDa linear molecule in human melanoma xenografts measured by contrast-enhanced magnetic resonance imaging. J Magn Reson Imaging 2001; 14:608-16. [PMID: 11747014 DOI: 10.1002/jmri.1226] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Cancer therapy involving blood-borne macromolecular therapeutic agents often fails, owing to inadequate macromolecule uptake in malignant tissue. The transvascular and interstitial transport of a 19 kDa linear molecule (NC22181 or poly-[Gd-DTPA]-co-[1,6-diaminohexane]) was studied in the present work in an attempt to identify transport barriers limiting the delivery of macromolecules to tumors. Tumors of four human melanoma xenograft lines were included in the study. The uptake of NC22181 was measured by spoiled gradient recalled magnetic resonance imaging (MRI). The effective microvascular permeability constant and the interstitial influx constant of NC22181 were calculated from NC22181 uptake curves by using a three-compartment tissue model. The uptake of NC22181 was limited by the interstitial transport and not by the transvascular transport in all xenograft lines. If the melanoma xenografts used in this study are representative models of human cancer, our results suggest that strategies for increasing the delivery of macromolecular therapeutic agents to tumors should focus on improving the transport conditions in the interstitium, rather than enhancing the permeability of the microvascular wall.
Collapse
Affiliation(s)
- I Bjørnaes
- Group of Radiation Biology and Tumor Physiology, Department of Biophysics, Institute for Cancer Research, The Norwegian Radium Hospital, Montebello, N-0310 Oslo, Norway
| | | |
Collapse
|
50
|
|