1
|
Granados-Fuentes D, Lambert P, Simon T, Mennerick S, Herzog ED. GABA A receptor subunit composition regulates circadian rhythms in rest-wake and synchrony among cells in the suprachiasmatic nucleus. Proc Natl Acad Sci U S A 2024; 121:e2400339121. [PMID: 39047036 PMCID: PMC11295074 DOI: 10.1073/pnas.2400339121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 06/24/2024] [Indexed: 07/27/2024] Open
Abstract
The mammalian circadian clock located in the suprachiasmatic nucleus (SCN) produces robust daily rhythms including rest-wake. SCN neurons synthesize and respond to γ-aminobutyric acid (GABA), but its role remains unresolved. We tested the hypothesis that γ2- and δ-subunits of the GABAA receptor in the SCN differ in their regulation of synchrony among circadian cells. We used two approaches: 1) shRNA to knock-down (KD) the expression of either γ2 or δ subunits in the SCN or 2) knock-in mice harboring a point mutation in the M2 domains of the endogenous GABAA γ2 or δ subunits. KD of either γ2 or δ subunits in the SCN increased daytime running and reduced nocturnal running by reducing their circadian amplitude by a third. Similarly, δ subunit knock-in mice showed decreased circadian amplitude, increased duration of daily activity, and decreased total daily activity. Reduction, or mutation of either γ2 or δ subunits halved the synchrony among, and amplitude of, circadian SCN cells as measured by firing rate or expression of the PERIOD2 protein, in vitro. Surprisingly, overexpression of the γ2 subunit rescued these phenotypes following KD or mutation of the δ subunit, and overexpression of the δ subunit rescued deficiencies due to γ2 subunit KD or mutation. We conclude that γ2 and δ GABAA receptor subunits play similar roles in maintaining circadian synchrony in the SCN and amplitude of daily rest-wake rhythms, but that modulation of their relative densities can change the duration and amplitude of daily activities.
Collapse
Affiliation(s)
| | - Peter Lambert
- Department of Psychiatry, Washington University in St. Louis, MO63130-4899
| | - Tatiana Simon
- Department of Biology, Washington University in St. Louis, MO63130-4899
| | - Steven Mennerick
- Department of Psychiatry, Washington University in St. Louis, MO63130-4899
| | - Erik D. Herzog
- Department of Biology, Washington University in St. Louis, MO63130-4899
| |
Collapse
|
2
|
Osuna-Lopez F, Reyes-Mendez ME, Herrera-Zamora JM, Gongora-Alfaro JL, Moreno-Galindo EG, Alamilla J. GABA Neurotransmission of the Suprachiasmatic Nucleus Is Modified During Rat Postnatal Development. J Biol Rhythms 2021; 36:567-574. [PMID: 34643150 DOI: 10.1177/07487304211048052] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The suprachiasmatic nucleus (SCN) of the hypothalamus is the brain structure that controls circadian rhythms in mammals. The SCN is formed by two neuroanatomical regions: the ventral and dorsal. Gamma-aminobutyric acid (GABA) neurotransmission is important for the regulation of circadian rhythms. Excitatory GABA effects have been described in both SCN regions displaying a circadian variation. Moreover, the GABAergic system transfers photic information from the ventral to the dorsal SCN. However, there is almost no knowledge about GABA neurotransmission during the prenatal or postnatal development of the SCN. Here, we used whole-cell patch-clamp recordings to study spontaneous inhibitory postsynaptic currents (IPSCs) in the two SCN regions, at two zeitgeber times (day or night), and at four postnatal (P) ages: P3-5, P7-9, P12-15, and P20-25. The results herein show that the three analyzed parameters of the IPSCs, frequency, amplitude, and decay time, were significantly affected by the postnatal age: mostly, the IPSC frequency increased with age, principally in the ventral SCN in both day and night recordings; similarly, the amplitude of IPSCs augmented with age, especially at night, whereas the IPSC decay time was reduced (it was faster) with postnatal age, mainly during the day. Our findings first reveal that parameters of GABA neurotransmission are modified by postnatal development, implying that synaptic adjustments are required for an appropriate maturation of the GABAergic system in the SCN.
Collapse
Affiliation(s)
- Fernando Osuna-Lopez
- Centro Universitario de Investigaciones Biomédicas, Universidad de Colima, Colima, Mexico
| | - Miriam E Reyes-Mendez
- Centro Universitario de Investigaciones Biomédicas, Universidad de Colima, Colima, Mexico
| | | | - Jose Luis Gongora-Alfaro
- Departamento de Neurociencias, Centro de Investigaciones Regionales "Dr. Hideyo Noguchi," Universidad Autónoma de Yucatán, Mérida, Mexico
| | - Eloy G Moreno-Galindo
- Centro Universitario de Investigaciones Biomédicas, Universidad de Colima, Colima, Mexico
| | - Javier Alamilla
- Centro Universitario de Investigaciones Biomédicas, Universidad de Colima, Colima, Mexico.,Consejo Nacional de Ciencia y Tecnología, Universidad de Colima, Colima, Mexico
| |
Collapse
|
3
|
Sueviriyapan N, Granados-Fuentes D, Simon T, Herzog ED, Henson MA. Modelling the functional roles of synaptic and extra-synaptic γ-aminobutyric acid receptor dynamics in circadian timekeeping. J R Soc Interface 2021; 18:20210454. [PMID: 34520693 PMCID: PMC8440032 DOI: 10.1098/rsif.2021.0454] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 08/23/2021] [Indexed: 11/12/2022] Open
Abstract
In the suprachiasmatic nucleus (SCN), γ-aminobutyric acid (GABA) is a primary neurotransmitter. GABA can signal through two types of GABAA receptor subunits, often referred to as synaptic GABAA (gamma subunit) and extra-synaptic GABAA (delta subunit). To test the functional roles of these distinct GABAA in regulating circadian rhythms, we developed a multicellular SCN model where we could separately compare the effects of manipulating GABA neurotransmitter or receptor dynamics. Our model predicted that blocking GABA signalling modestly increased synchrony among circadian cells, consistent with published SCN pharmacology. Conversely, the model predicted that lowering GABAA receptor density reduced firing rate, circadian cell fraction, amplitude and synchrony among individual neurons. When we tested these predictions, we found that the knockdown of delta GABAA reduced the amplitude and synchrony of clock gene expression among cells in SCN explants. The model further predicted that increasing gamma GABAA densities could enhance synchrony, as opposed to increasing delta GABAA densities. Overall, our model reveals how blocking GABAA receptors can modestly increase synchrony, while increasing the relative density of gamma over delta subunits can dramatically increase synchrony. We hypothesize that increased gamma GABAA density in the winter could underlie the tighter phase relationships among SCN cells.
Collapse
Affiliation(s)
- Natthapong Sueviriyapan
- Department of Chemical Engineering and the Institute for Applied Life Sciences, University of Massachusetts, Amherst, MA, USA
| | | | - Tatiana Simon
- Department of Biology, Washington University in St Louis, Saint Louis, MO, USA
| | - Erik D. Herzog
- Department of Biology, Washington University in St Louis, Saint Louis, MO, USA
| | - Michael A. Henson
- Department of Chemical Engineering and the Institute for Applied Life Sciences, University of Massachusetts, Amherst, MA, USA
| |
Collapse
|
4
|
Effects of time-of-day on the concentration of defined excitatory and inhibitory amino acids in the cerebrospinal fluid of rats: a microdialysis study. Amino Acids 2021; 53:1597-1607. [PMID: 34459991 DOI: 10.1007/s00726-021-03070-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 08/18/2021] [Indexed: 10/20/2022]
Abstract
Amino acid neurotransmitters are responsible for many physiological and pathological processes, and their cerebral concentrations respond to external influences such as the light-dark cycle and to the synthesis, release, and recapture rhythms and form part of the biochemical relationships derived from excitatory-inhibitory (E/I), glutamine-glutamate sum (GLX), glutamatergic processing (glutamine-glutamate ratio) and excitotoxic indexes. The changes in these variables during a 24-h period (1 day) are important because they allow organisms to adapt to external stimuli and form part of physiological processes. Under pathological conditions, the damage produced by acute events may depend on diurnal variations. Therefore, it is important to analyze the extracellular levels of amino acids as well as the above-mentioned indexes over a 24-h period. We focused on determining the cerebrospinal fluid levels of different amino acid neurotransmitters, and the E/I, GLX, glutamatergic processing and excitotoxic indexes, determined by microdialysis over a 24-h cycle. Our results showed significant changes during the 24-h light/dark cycle. Specifically, we found increments in the levels of glutamate (325%), GABA (550%), glutamine (300%), glycine (194%), alanine (304%) and the GLX index (263%) throughout the day, and the maximum levels of glutamate, glutamine, glycine, and alanine were obtained during the last period of the light period. In conclusion, the concentration of some amino acid neurotransmitters and the GLX index show variations depending on the light-dark cycle.
Collapse
|
5
|
Moldavan M, Cravetchi O, Allen CN. Diurnal properties of tonic and synaptic GABA A receptor-mediated currents in suprachiasmatic nucleus neurons. J Neurophysiol 2021; 126:637-652. [PMID: 34259044 DOI: 10.1152/jn.00556.2020] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Synaptic and extrasynaptic GABAA receptor (GABAAR)-mediated neurotransmission is a critical component of the suprachiasmatic nucleus (SCN) neuronal network. However, the properties of the GABAA tonic current (Itonic) and its origin remain unexplored. Spontaneous GABAA postsynaptic currents (sGPSCs) and Itonic were recorded from SCN neurons with the whole cell voltage-clamp technique at different times of the day. GABAAR antagonists (bicuculline, gabazine, and picrotoxin) inhibited sGPSC and induced an outward shift of the holding current, which defined the Itonic amplitude. The sGPSC frequency, synaptic charge transfer, and Itonic amplitude all demonstrated significant diurnal rhythms, with peaks in the middle of the day [zeitgeber time (ZT)7-8] and nadirs at night (ZT19-20). The Itonic amplitude increased proportionally with the sGPSC frequency and synaptic charge transfer during the day and required action potential-mediated GABA release, which was confirmed by TTX application. The activation of presynaptic GABAB receptors by baclofen did not significantly alter the Itonic of neurons with low-frequency sGPSC. The equilibrium potential (Eq) for Itonic was similar to the Eq for chloride and GABAA receptor-activated currents. Itonic showed outward rectification at membrane potentials over the range of -70 to -10 mV and then was linear at voltages greater than -10 mV. GABAAR containing α4-, α5-, and δ-subunits were expressed in SCN, and their contribution to Itonic was confirmed by application of the GABAAR agonist 4,5,6,7-tetrahydroisoxazolo[5,4-c]pyridin-3-ol (THIP) and the GABAAR inverse agonist 11,12,13,13a-tetrahydro-7-methoxy-9-oxo-9H-imidazo[1,5-a]pyrrolo[2,1-c][1,4]benzodiazepine-1-carboxylic acid ethyl ester (L655,708). Thus, the Itonic was mediated by extrasynaptic GABAARs activated predominantly by GABA diffusing out of GABAergic synapses.NEW & NOTEWORTHY A tonic current (Itonic) mediated by GABAA receptors (GABAARs) containing α4-, α5- and δ-subunits was observed in the suprachiasmatic nucleus. The Itonic amplitude strongly depended on the action potential-mediated synaptic release of GABA. The equilibrium potential for Itonic corresponds to that for GABAA currents. The frequency of GABAA postsynaptic currents and Itonic amplitude increased during the day, with peak in the middle of the day, and then gradually declined with a nadir at night, thus showing a diurnal rhythm.
Collapse
Affiliation(s)
- Michael Moldavan
- Oregon Institute of Occupational Health Sciences, Oregon Health & Science University, Portland, Oregon
| | - Olga Cravetchi
- Oregon Institute of Occupational Health Sciences, Oregon Health & Science University, Portland, Oregon
| | - Charles N Allen
- Oregon Institute of Occupational Health Sciences, Oregon Health & Science University, Portland, Oregon.,Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, Oregon
| |
Collapse
|
6
|
Kim ER, Xu Y, Cassidy RM, Lu Y, Yang Y, Tian J, Li DP, Van Drunen R, Ribas-Latre A, Cai ZL, Xue M, Arenkiel BR, Eckel-Mahan K, Xu Y, Tong Q. Paraventricular hypothalamus mediates diurnal rhythm of metabolism. Nat Commun 2020; 11:3794. [PMID: 32732906 PMCID: PMC7393104 DOI: 10.1038/s41467-020-17578-7] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Accepted: 07/09/2020] [Indexed: 12/18/2022] Open
Abstract
Defective rhythmic metabolism is associated with high-fat high-caloric diet (HFD) feeding, ageing and obesity; however, the neural basis underlying HFD effects on diurnal metabolism remains elusive. Here we show that deletion of BMAL1, a core clock gene, in paraventricular hypothalamic (PVH) neurons reduces diurnal rhythmicity in metabolism, causes obesity and diminishes PVH neuron activation in response to fast-refeeding. Animal models mimicking deficiency in PVH neuron responsiveness, achieved through clamping PVH neuron activity at high or low levels, both show obesity and reduced diurnal rhythmicity in metabolism. Interestingly, the PVH exhibits BMAL1-controlled rhythmic expression of GABA-A receptor γ2 subunit, and dampening rhythmicity of GABAergic input to the PVH reduces diurnal rhythmicity in metabolism and causes obesity. Finally, BMAL1 deletion blunts PVH neuron responses to external stressors, an effect mimicked by HFD feeding. Thus, BMAL1-driven PVH neuron responsiveness in dynamic activity changes involving rhythmic GABAergic neurotransmission mediates diurnal rhythmicity in metabolism and is implicated in diet-induced obesity.
Collapse
Affiliation(s)
- Eun Ran Kim
- Brown Foundation Institute of Molecular Medicine, University of Texas McGovern Medical School, Houston, TX, 77030, USA
| | - Yuanzhong Xu
- Brown Foundation Institute of Molecular Medicine, University of Texas McGovern Medical School, Houston, TX, 77030, USA
| | - Ryan M Cassidy
- Brown Foundation Institute of Molecular Medicine, University of Texas McGovern Medical School, Houston, TX, 77030, USA
- Graduate Program in Neuroscience of MD Anderson and UTHealth Graduate School, Houston, TX, 77030, USA
| | - Yungang Lu
- Brown Foundation Institute of Molecular Medicine, University of Texas McGovern Medical School, Houston, TX, 77030, USA
| | - Yongjie Yang
- Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Jinbin Tian
- Brown Foundation Institute of Molecular Medicine, University of Texas McGovern Medical School, Houston, TX, 77030, USA
- Department of Integrative Physiology and Pharmacology, University of Texas McGovern Medical School, Houston, TX, 77030, USA
| | - De-Pei Li
- Department of Critical Care and Respiratory Care, Division of Anesthesiology, Critical Care and Pain Medicine, University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Rachel Van Drunen
- Brown Foundation Institute of Molecular Medicine, University of Texas McGovern Medical School, Houston, TX, 77030, USA
- Graduate Program in Neuroscience of MD Anderson and UTHealth Graduate School, Houston, TX, 77030, USA
| | - Aleix Ribas-Latre
- Brown Foundation Institute of Molecular Medicine, University of Texas McGovern Medical School, Houston, TX, 77030, USA
| | - Zhao-Lin Cai
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, 77030, USA
- Cain Foundation Laboratories, Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, TX, 77030, USA
| | - Mingshan Xue
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, 77030, USA
- Cain Foundation Laboratories, Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, TX, 77030, USA
| | - Benjamin R Arenkiel
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, 77030, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, 77030, USA
| | - Kristin Eckel-Mahan
- Brown Foundation Institute of Molecular Medicine, University of Texas McGovern Medical School, Houston, TX, 77030, USA
| | - Yong Xu
- Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Qingchun Tong
- Brown Foundation Institute of Molecular Medicine, University of Texas McGovern Medical School, Houston, TX, 77030, USA.
- Graduate Program in Neuroscience of MD Anderson and UTHealth Graduate School, Houston, TX, 77030, USA.
- Department of Neurobiology and Anatomy of McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, 77030, USA.
| |
Collapse
|
7
|
Ono D, Honma KI, Honma S. GABAergic mechanisms in the suprachiasmatic nucleus that influence circadian rhythm. J Neurochem 2020; 157:31-41. [PMID: 32198942 DOI: 10.1111/jnc.15012] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 03/06/2020] [Accepted: 03/09/2020] [Indexed: 01/23/2023]
Abstract
The mammalian central circadian clock is located in the suprachiasmatic nucleus (SCN) of the hypothalamus. The SCN contains multiple circadian oscillators which synchronize with each other via several neurotransmitters. Importantly, an inhibitory neurotransmitter, γ-amino butyric acid (GABA), is expressed in almost all SCN neurons. In this review, we discuss how GABA influences circadian rhythms in the SCN. Excitatory and inhibitory effects of GABA may depend on intracellular Cl- concentration, in which several factors such as day-length, time of day, development, and region in the SCN may be involved. GABA also mediates oscillatory coupling of the circadian rhythms in the SCN. Recent genetic approaches reveal that GABA refines circadian output rhythms, but not circadian oscillations in the SCN. Since several efferent projections of the SCN have been suggested, GABA might work downstream of neuronal pathways from the SCN which regulate the temporal order of physiology and behavior.
Collapse
Affiliation(s)
- Daisuke Ono
- Department of Neuroscience II, Research Institute of Environmental Medicine, Nagoya University, Nagoya, Japan.,Department of Neural Regulation, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Ken-Ichi Honma
- Research and Education Center for Brain Science, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Sato Honma
- Research and Education Center for Brain Science, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| |
Collapse
|
8
|
Harvey JRM, Plante AE, Meredith AL. Ion Channels Controlling Circadian Rhythms in Suprachiasmatic Nucleus Excitability. Physiol Rev 2020; 100:1415-1454. [PMID: 32163720 DOI: 10.1152/physrev.00027.2019] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Animals synchronize to the environmental day-night cycle by means of an internal circadian clock in the brain. In mammals, this timekeeping mechanism is housed in the suprachiasmatic nucleus (SCN) of the hypothalamus and is entrained by light input from the retina. One output of the SCN is a neural code for circadian time, which arises from the collective activity of neurons within the SCN circuit and comprises two fundamental components: 1) periodic alterations in the spontaneous excitability of individual neurons that result in higher firing rates during the day and lower firing rates at night, and 2) synchronization of these cellular oscillations throughout the SCN. In this review, we summarize current evidence for the identity of ion channels in SCN neurons and the mechanisms by which they set the rhythmic parameters of the time code. During the day, voltage-dependent and independent Na+ and Ca2+ currents, as well as several K+ currents, contribute to increased membrane excitability and therefore higher firing frequency. At night, an increase in different K+ currents, including Ca2+-activated BK currents, contribute to membrane hyperpolarization and decreased firing. Layered on top of these intrinsically regulated changes in membrane excitability, more than a dozen neuromodulators influence action potential activity and rhythmicity in SCN neurons, facilitating both synchronization and plasticity of the neural code.
Collapse
Affiliation(s)
- Jenna R M Harvey
- Department of Physiology, University of Maryland School of Medicine, Baltimore, Maryland
| | - Amber E Plante
- Department of Physiology, University of Maryland School of Medicine, Baltimore, Maryland
| | - Andrea L Meredith
- Department of Physiology, University of Maryland School of Medicine, Baltimore, Maryland
| |
Collapse
|
9
|
Temporal Regulation of GABA A Receptor Subunit Expression: Role in Synaptic and Extrasynaptic Communication in the Suprachiasmatic Nucleus. eNeuro 2017; 4:eN-NWR-0352-16. [PMID: 28466071 PMCID: PMC5411165 DOI: 10.1523/eneuro.0352-16.2017] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Revised: 04/11/2017] [Accepted: 04/12/2017] [Indexed: 11/21/2022] Open
Abstract
Recent molecular studies suggest that the expression levels of δ and γ2 GABAA receptor (GABAAR) subunits regulate the balance between synaptic and extrasynaptic GABA neurotransmission in multiple brain regions. We investigated the expression of GABAAδ and GABAAγ2 and the functional significance of a change in balance between these subunits in a robust local GABA network contained within the suprachiasmatic nucleus of the hypothalamus (SCN). Muscimol, which can activate both synaptic and extrasynaptic GABAARs, injected into the SCN during the day phase advanced the circadian pacemaker, whereas injection of the extrasynaptic GABAA superagonist 4,5,6,7-tetrahydroisoxazolo(5,4-c)pyridin-3-ol (THIP) had no effect on circadian phase. In contrast, injection of either THIP or muscimol during the night was sufficient to block the phase shifting effects of light. Gene expression analysis of the whole SCN revealed different temporal patterns in GABAAδ and GABAAγ2 mRNA expression. When examined across all subregions of the SCN, quantitative immunohistochemical analysis found no significant variations in GABAAδ protein immunoreactivity (IR) but did find significant variations in GABAAγ2 protein-IR in hamsters housed in either LD cycles or in constant darkness. Remarkably, significant interactions in the ratio of GABAAδ:GABAAγ2 subunits between lighting condition and circadian phase occurred only within one highly discrete anatomical area of the SCN; a region that functions as the input for lighting information from the retina. Taken together, these data support the hypothesis that the balance between synaptic and extrasynaptic GABAARs determines the functional response to GABA, and that this balance is differentially regulated in a region-specific manner.
Collapse
|
10
|
Albers HE, Walton JC, Gamble KL, McNeill JK, Hummer DL. The dynamics of GABA signaling: Revelations from the circadian pacemaker in the suprachiasmatic nucleus. Front Neuroendocrinol 2017; 44:35-82. [PMID: 27894927 PMCID: PMC5225159 DOI: 10.1016/j.yfrne.2016.11.003] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2016] [Revised: 10/16/2016] [Accepted: 11/22/2016] [Indexed: 12/31/2022]
Abstract
Virtually every neuron within the suprachiasmatic nucleus (SCN) communicates via GABAergic signaling. The extracellular levels of GABA within the SCN are determined by a complex interaction of synthesis and transport, as well as synaptic and non-synaptic release. The response to GABA is mediated by GABAA receptors that respond to both phasic and tonic GABA release and that can produce excitatory as well as inhibitory cellular responses. GABA also influences circadian control through the exclusively inhibitory effects of GABAB receptors. Both GABA and neuropeptide signaling occur within the SCN, although the functional consequences of the interactions of these signals are not well understood. This review considers the role of GABA in the circadian pacemaker, in the mechanisms responsible for the generation of circadian rhythms, in the ability of non-photic stimuli to reset the phase of the pacemaker, and in the ability of the day-night cycle to entrain the pacemaker.
Collapse
Affiliation(s)
- H Elliott Albers
- Center for Behavioral Neuroscience, Atlanta, GA 30302, United States; Neuroscience Institute, Georgia State University, Atlanta, GA 30302, United States.
| | - James C Walton
- Center for Behavioral Neuroscience, Atlanta, GA 30302, United States; Neuroscience Institute, Georgia State University, Atlanta, GA 30302, United States
| | - Karen L Gamble
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, AL 35294, United States
| | - John K McNeill
- Center for Behavioral Neuroscience, Atlanta, GA 30302, United States; Neuroscience Institute, Georgia State University, Atlanta, GA 30302, United States
| | - Daniel L Hummer
- Center for Behavioral Neuroscience, Atlanta, GA 30302, United States; Department of Psychology, Morehouse College, Atlanta, GA 30314, United States
| |
Collapse
|
11
|
Evans JA. Collective timekeeping among cells of the master circadian clock. J Endocrinol 2016; 230:R27-49. [PMID: 27154335 PMCID: PMC4938744 DOI: 10.1530/joe-16-0054] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Accepted: 05/06/2016] [Indexed: 01/09/2023]
Abstract
The suprachiasmatic nucleus (SCN) of the anterior hypothalamus is the master circadian clock that coordinates daily rhythms in behavior and physiology in mammals. Like other hypothalamic nuclei, the SCN displays an impressive array of distinct cell types characterized by differences in neurotransmitter and neuropeptide expression. Individual SCN neurons and glia are able to display self-sustained circadian rhythms in cellular function that are regulated at the molecular level by a 24h transcriptional-translational feedback loop. Remarkably, SCN cells are able to harmonize with one another to sustain coherent rhythms at the tissue level. Mechanisms of cellular communication in the SCN network are not completely understood, but recent progress has provided insight into the functional roles of several SCN signaling factors. This review discusses SCN organization, how intercellular communication is critical for maintaining network function, and the signaling mechanisms that play a role in this process. Despite recent progress, our understanding of SCN circuitry and coupling is far from complete. Further work is needed to map SCN circuitry fully and define the signaling mechanisms that allow for collective timekeeping in the SCN network.
Collapse
Affiliation(s)
- Jennifer A Evans
- Department of Biomedical SciencesMarquette University, Milwaukee, WI, USA
| |
Collapse
|
12
|
Hummer DL, Ehlen JC, Larkin TE, McNeill JK, Pamplin JR, Walker CA, Walker PV, Dhanraj DR, Albers HE. Sustained activation of GABAA receptors in the suprachiasmatic nucleus mediates light-induced phase delays of the circadian clock: a novel function of ionotropic receptors. Eur J Neurosci 2015; 42:1830-8. [PMID: 25865743 DOI: 10.1111/ejn.12918] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Revised: 03/16/2015] [Accepted: 04/07/2015] [Indexed: 01/16/2023]
Abstract
The suprachiasmatic nucleus (SCN) contains a circadian clock that generates endogenous rhythmicity and entrains that rhythmicity with the day-night cycle. The neurochemical events that transduce photic input within the SCN and mediate entrainment by resetting the molecular clock have yet to be defined. Because GABA is contained in nearly all SCN neurons we tested the hypothesis that GABA serves as this signal in studies employing Syrian hamsters (Mesocricetus auratus). Activation of GABAA receptors was found to be necessary and sufficient for light to induce phase delays of the clock. Remarkably, the sustained activation of GABAA receptors for more than three consecutive hours was necessary to phase-delay the clock. The duration of GABAA receptor activation required to induce phase delays would not have been predicted by either the prevalent theory of circadian entrainment or by expectations regarding the duration of ionotropic receptor activation necessary to produce functional responses. Taken together, these data identify a novel neurochemical mechanism essential for phase-delaying the 'master' circadian clock within the SCN as well as identifying an unprecedented action of an amino acid neurotransmitter involving the sustained activation of ionotropic receptors.
Collapse
Affiliation(s)
- Daniel L Hummer
- Center for Behavioral Neuroscience, Georgia State University, Atlanta, GA, USA.,Department of Psychology, Morehouse College, Atlanta, GA, USA
| | - J Christopher Ehlen
- Center for Behavioral Neuroscience, Georgia State University, Atlanta, GA, USA.,Neuroscience Institute, Georgia State University, Atlanta, GA, USA.,Neuroscience Institute, Department of Neurobiology, Morehouse School of Medicine, Atlanta, GA, USA
| | - Tony E Larkin
- Center for Behavioral Neuroscience, Georgia State University, Atlanta, GA, USA.,Department of Psychology, Morehouse College, Atlanta, GA, USA.,Neuroscience Institute, Georgia State University, Atlanta, GA, USA
| | - John K McNeill
- Center for Behavioral Neuroscience, Georgia State University, Atlanta, GA, USA.,Neuroscience Institute, Georgia State University, Atlanta, GA, USA
| | - John R Pamplin
- Department of Psychology, Morehouse College, Atlanta, GA, USA
| | - Colton A Walker
- Department of Psychology, Morehouse College, Atlanta, GA, USA
| | | | - Daryl R Dhanraj
- Department of Psychology, Morehouse College, Atlanta, GA, USA
| | - H Elliott Albers
- Center for Behavioral Neuroscience, Georgia State University, Atlanta, GA, USA.,Neuroscience Institute, Georgia State University, Atlanta, GA, USA
| |
Collapse
|
13
|
Giusi G, Crudo M, Di Vito A, Facciolo RM, Garofalo F, Chew SF, Ip YK, Canonaco M. Lungfish aestivating activities are locked in distinct encephalic γ-aminobutyric acid type A receptor α subunits. J Neurosci Res 2011; 89:418-28. [PMID: 21259328 DOI: 10.1002/jnr.22553] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2010] [Revised: 09/06/2010] [Accepted: 10/20/2010] [Indexed: 01/12/2023]
Abstract
Ammonia in dipnoans plays a crucial role on neuronal homeostasis, especially for those brain areas that maintain torpor and awakening states in equilibrium. In the present study, specific α subunits of the major neuroreceptor inhibitory complex (GABA(A) R), which predominated during some phases of aestivation of the lungfish Protopterus annectens, turned out to be key adaptive factors of this species. From the isolation, for the first time, of the encoding sequence for GABA(A) R α₁, α₄ , and α₅ subunits in Protopterus annectens, qPCR and in situ hybridization levels of α₄ transcript in thalamic (P < 0.001) and mesencephalic (P < 0.01) areas proved to be significantly higher during long aestivating maintenance states. Very evident α₅ mRNA levels were detected in diencephalon during short inductive aestivating states, whereas an α₄ /α₁ turnover characterized the arousal state. Contextually, the recovery of physiological activities appeared to be tightly related to an evident up-regulation of α₁ transcripts in telencephalic and cerebellar sites. Surprisingly, TUNEL and amino cupric silver methods corroborated apoptotic and neurodegenerative cellular events, respectively, above all in telencephalon and cerebellum of lungfish exposed to long maintenance aestivating conditions. Overall, these results tend to underlie a novel GABAergic-related ON/OFF molecular switch operating during aestivation of the lungfish, which might have a bearing on sleeping disorders.
Collapse
Affiliation(s)
- Giuseppina Giusi
- Comparative Neuroanatomy Laboratory, University of Calabria, Arcavacata di Rende (CS), Italy
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Abstract
Mammalian circadian rhythms are controlled by endogenous biological oscillators, including a master clock located in the hypothalamic suprachiasmatic nuclei (SCN). Since the period of this oscillation is of approximately 24 h, to keep synchrony with the environment, circadian rhythms need to be entrained daily by means of Zeitgeber ("time giver") signals, such as the light-dark cycle. Recent advances in the neurophysiology and molecular biology of circadian rhythmicity allow a better understanding of synchronization. In this review we cover several aspects of the mechanisms for photic entrainment of mammalian circadian rhythms, including retinal sensitivity to light by means of novel photopigments as well as circadian variations in the retina that contribute to the regulation of retinal physiology. Downstream from the retina, we examine retinohypothalamic communication through neurotransmitter (glutamate, aspartate, pituitary adenylate cyclase-activating polypeptide) interaction with SCN receptors and the resulting signal transduction pathways in suprachiasmatic neurons, as well as putative neuron-glia interactions. Finally, we describe and analyze clock gene expression and its importance in entrainment mechanisms, as well as circadian disorders or retinal diseases related to entrainment deficits, including experimental and clinical treatments.
Collapse
Affiliation(s)
- Diego A Golombek
- Laboratory of Chronobiology, Department of Science and Technology, University of Quilmes/Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Quilmes, Argentina.
| | | |
Collapse
|
15
|
Oxymatrine–carbenoxolone sodium inclusion compound induces antinociception and increases the expression of GABAAα1 receptors in mice. Eur J Pharmacol 2010; 626:244-9. [DOI: 10.1016/j.ejphar.2009.09.065] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2009] [Revised: 09/17/2009] [Accepted: 09/28/2009] [Indexed: 11/22/2022]
|
16
|
McElroy B, Zakaria A, Glass JD, Prosser RA. Ethanol modulates mammalian circadian clock phase resetting through extrasynaptic GABA receptor activation. Neuroscience 2009; 164:842-8. [PMID: 19695310 DOI: 10.1016/j.neuroscience.2009.08.020] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2009] [Revised: 08/06/2009] [Accepted: 08/07/2009] [Indexed: 10/20/2022]
Abstract
Ethanol modulates the actions of multiple neurotransmitter systems, including GABA. However, its enhancing effects on GABA signaling typically are seen only at high concentrations. In contrast, although GABA is a prominent neurotransmitter in the circadian clock of the suprachiasmatic nucleus (SCN), we see ethanol modulation of clock phase resetting at low concentrations (<50 mM). A possible explanation is that ethanol enhances GABAergic signaling in the SCN through activating GABA(A) receptors that contain the delta subunit (GABA(Adelta) receptors), which are sensitive to low ethanol concentrations. Therefore, we investigated whether ethanol acts on GABA(Adelta) receptors in the SCN. Here we show that acute application of the GABA(Adelta) receptor antagonist, RO15-4513, to mouse hypothalamic slices containing the SCN prevents ethanol inhibition of nighttime glutamate-induced (photic-like) phase delays of the circadian clock. Diazepam, which enhances activity of GABA(A) receptors containing the gamma subunit (GABA(Agamma) receptors), does not modulate these phase shifts. Moreover, we find that RO15-4513 prevents ethanol enhancement of daytime serotonergic (non-photic) phase advances of the circadian clock. Furthermore, diazepam phase-advances the SCN circadian clock when applied alone in the daytime, while ethanol has no effect by itself at that time. These data support the hypothesis that ethanol acts on GABA(Adelta) receptors in the SCN to modulate photic and non-photic circadian clock phase resetting. They also reveal distinct modulatory roles of different GABA(A) receptor subtypes in circadian clock phase regulation.
Collapse
Affiliation(s)
- B McElroy
- Department Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 37996, USA
| | | | | | | |
Collapse
|
17
|
Nygård M, Palomba M. The GABAergic network in the suprachiasmatic nucleus as a key regulator of the biological clock: does it change during senescence? Chronobiol Int 2009; 23:427-35. [PMID: 16687316 DOI: 10.1080/07420520500545938] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
GABA is the main neurotransmitter of the hypothalamic suprachiasmatic nucleus (SCN) and plays a key role in the function of this master circadian pacemaker. Despite the evidence that disturbances of biological rhythms are common during aging, little is known about the GABAergic network in the SCN of the aging brain. We here provide a brief overview of the GABAergic structures and the role of GABA in the SCN. We also review some age-related changes of the GABAergic system occurring in the brain outside the SCN. Finally, we present preliminary data on the GABAergic system within the SCN comparing young and aging mice. In particular, our study on age-related changes in the SCN focused on the daily expression of the alpha3 subunit of the GABA(A) receptor and on the density of GABAergic axon terminals. Interestingly, our preliminary findings point to alterations of the GABAergic network in the biological clock during senescence.
Collapse
Affiliation(s)
- Mikael Nygård
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | | |
Collapse
|
18
|
Ehlen JC, Paul KN. Regulation of light's action in the mammalian circadian clock: role of the extrasynaptic GABAA receptor. Am J Physiol Regul Integr Comp Physiol 2009; 296:R1606-12. [PMID: 19244580 DOI: 10.1152/ajpregu.90878.2008] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
GABA(A) receptor agonists act in the suprachiasmatic nucleus (SCN) to reset circadian rhythms during the day but inhibit the ability of light to reset rhythms during the night. In the present study, we examined whether these paradoxical differences in the effect of GABA(A) receptor stimulation on the circadian system are mediated by separate GABA(A) receptor subtypes. 4,5,6,7-Tetrahydroisoxazolo[5,4-c]pyridin-3-ol (THIP), a GABA(A) receptor agonist, preferentially activates GABA(A) receptors in extrasynaptic locations. THIP, muscimol (a GABA(A) agonist), or vehicle were microinjected into the SCN region of Syrian hamsters free-running in constant darkness during the mid-subjective day, early subjective night, or late subjective night. The subjective night injections were followed by a light pulse or sham control. Behavioral phase shifts of wheel running rhythms and both Period1 (Per1) and Per2 mRNA levels in the SCN were assessed. Animals that received THIP during the subjective day did not exhibit significant phase alterations. During the early and late subjective night, however, THIP abolished the phase-shifting effects of light and the ability of light to increase Per1 and Per2 mRNA levels. The ability of N-methyl-d-aspartic acid to phase-shift wheel running rhythms was also attenuated by THIP. Together these data demonstrate that THIP does not produce phase shifts during the subjective day, but does inhibit the ability of light to produce phase shifts. Thus, extrasynaptic GABA(A) receptors appear to play a role in regulating light input to the SCN, while a different population of GABA(A) receptors appears to be responsible for daytime effects of GABA.
Collapse
Affiliation(s)
- J Christopher Ehlen
- Circadian Rhythms and Sleep Disorders Program, Neuroscience Institute, Morehouse School of Medicine, Atlanta, GA 30310, USA
| | | |
Collapse
|
19
|
Palomba M, Nygård M, Florenzano F, Bertini G, Kristensson K, Bentivoglio M. Decline of the presynaptic network, including GABAergic terminals, in the aging suprachiasmatic nucleus of the mouse. J Biol Rhythms 2008; 23:220-31. [PMID: 18487414 DOI: 10.1177/0748730408316998] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Biological rhythms, and especially the sleep/wake cycle, are frequently disrupted during senescence. This draws attention to the study of aging-related changes in the hypothalamic suprachiasmatic nucleus (SCN), the master circadian pacemaker. The authors here compared the SCN of young and old mice, analyzing presynaptic terminals, including the gamma-aminobutyric acid (GABA)ergic network, and molecules related to the regulation of GABA, the main neurotransmitter of SCN neurons. Transcripts of the alpha3 subunit of the GABAA receptor and the GABA-synthesizing enzyme glutamic acid decarboxylase isoform 67 (GAD67) were analyzed with real-time RT-PCR and GAD67 protein with Western blotting. These parameters did not show significant changes between the 2 age groups. Presynaptic terminals were identified in confocal microscopy with synaptophysin immunofluorescence, and the GABAergic subset of those terminals was revealed by the colocalization of GAD67 and synaptophysin. Quantitative analysis of labeled synaptic endings performed in 2 SCN subregions, where retinal afferents are known to be, respectively, very dense or very sparse, revealed marked aging-related changes. In both subregions, the evaluated parameters (the number of and the area covered by presynaptic terminals and by their GABAergic subset) were significantly decreased in old versus young mice. No significant differences were found between SCN tissue samples from animals sacrificed at different times of day, in either age group. Altogether, the data point out marked reduction in the synaptic network of the aging biological clock, which also affects GABAergic terminals. Such alterations could underlie aging-related SCN dysfunction, including low-amplitude output during senescence.
Collapse
Affiliation(s)
- Maria Palomba
- Department of Morphological and Biomedical Sciences, University of Verona, Italy
| | | | | | | | | | | |
Collapse
|
20
|
Reghunandanan V, Reghunandanan R. Neurotransmitters of the suprachiasmatic nuclei. J Circadian Rhythms 2006; 4:2. [PMID: 16480518 PMCID: PMC1402333 DOI: 10.1186/1740-3391-4-2] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2005] [Accepted: 02/16/2006] [Indexed: 12/04/2022] Open
Abstract
There has been extensive research in the recent past looking into the molecular basis and mechanisms of the biological clock, situated in the suprachiasmatic nuclei (SCN) of the anterior hypothalamus. Neurotransmitters are a very important component of SCN function. Thorough knowledge of neurotransmitters is not only essential for the understanding of the clock but also for the successful manipulation of the clock with experimental chemicals and therapeutical drugs. This article reviews the current knowledge about neurotransmitters in the SCN, including neurotransmitters that have been identified only recently. An attempt was made to describe the neurotransmitters and hormonal/diffusible signals of the SCN efference, which are necessary for the master clock to exert its overt function. The expression of robust circadian rhythms depends on the integrity of the biological clock and on the integration of thousands of individual cellular clocks found in the clock. Neurotransmitters are required at all levels, at the input, in the clock itself, and in its efferent output for the normal function of the clock. The relationship between neurotransmitter function and gene expression is also discussed because clock gene transcription forms the molecular basis of the clock and its working.
Collapse
Affiliation(s)
- Vallath Reghunandanan
- Department of Basic Medical Science, Faculty of Medicine and Health Sciences, University of Malaysia, 93150 Kuching, Malaysia
| | - Rajalaxmy Reghunandanan
- Department of Basic Medical Science, Faculty of Medicine and Health Sciences, University of Malaysia, 93150 Kuching, Malaysia
| |
Collapse
|
21
|
Gliddon CM, Darlington CL, Smith PF. GABAA receptor subunit expression in the guinea pig vestibular nucleus complex during the development of vestibular compensation. Exp Brain Res 2005; 166:71-7. [PMID: 16021432 DOI: 10.1007/s00221-005-2344-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2005] [Accepted: 03/09/2005] [Indexed: 11/30/2022]
Abstract
The aim of this experiment was to investigate whether vestibular compensation following unilateral vestibular deafferentation (UVD) is associated with changes in the expression of GABA(A) receptor subunits in the guinea pig vestibular nuclear complex (VNC) at 2, 10, and 30 h post-surgery. Using Western blotting, the alpha1 and gamma2 subunits (but not the beta2 subunit) were detected in the VNC of labyrinthine-intact animals. However, there were no significant differences in the protein expression of the alpha1 and gamma2 subunits within the ipsilateral or contralateral VNC at any time post-UVD compared to sham and anesthetic controls. Furthermore, UVD did not induce the expression of the beta2 protein. These results suggest that vestibular compensation in guinea pig, as in the rat, is not associated with changes in the protein levels of the GABA(A) receptor subunits alpha1, beta2, and gamma2 in the VNC. However, a limitation of this study is that the Western blotting technique can detect only changes that are larger than 30% and therefore small changes cannot be excluded.
Collapse
Affiliation(s)
- Catherine M Gliddon
- Department of Pharmacology and Toxicology, School of Medical Sciences, University of Otago, Dunedin, New Zealand
| | | | | |
Collapse
|
22
|
Jobst EE, Robinson DW, Allen CN. Potential pathways for intercellular communication within the calbindin subnucleus of the hamster suprachiasmatic nucleus. Neuroscience 2004; 123:87-99. [PMID: 14667444 DOI: 10.1016/j.neuroscience.2003.08.059] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
In mammals, the suprachiasmatic nucleus (SCN) is the master circadian pacemaker. Within the caudal hamster SCN, a cluster of neurons containing the calcium binding protein, calbindin-D28K (CB), has been implicated in circadian locomotion. However, calbindin-immunoreactive (CB+) neurons in the calbindin subnucleus (CBsn) do not display a circadian rhythm in spontaneous firing [Eur J Neurosci 16 (2002) 2469]. Previously, we proposed that intercellular communication might be essential in integrating outputs from rhythmic (CB-) neurons and nonrhythmic (CB+) neurons to produce a circadian output in the intact animal. The primary aim of this study is to provide a neuroanatomical framework to better understand intercellular communication within the CBsn. Using reconstructions of previously recorded neurons, we demonstrate that CB+ neurons have significantly more dendrites than CB- neurons. In addition, CBsn neurons have dorsally oriented dendritic arbors. Using double-label confocal microscopy, we show that GABA colocalizes with CB+ neurons and GABA(A) receptor subunits make intimate contacts with neurons in the CBsn. Transforming growth factor alpha (TGFalpha), a substance shown to inhibit locomotion [Science 294 (2001) 2511], is present within the CBsn. In addition, neurons in this region express the epidermal growth factor receptor, the only receptor for TGFalpha. Lastly, we show that CB+ neurons are coupled to CB+ and CB- neurons by gap junctions. The current study provides a structural framework for synaptic communication, electrical coupling, and signaling via a growth factor within the CBsn of the hamster SCN. Our results reveal connections that have the potential for integrating cellular communication within a subregion of the SCN that is critically involved in circadian locomotion.
Collapse
Affiliation(s)
- E E Jobst
- Oregon National Primate Research Center, 505 Northwest 185th Avenue, Beaverton, OR 97006, USA.
| | | | | |
Collapse
|
23
|
Kretschmannova K, Svobodova I, Zemkova H. Day–night variations in zinc sensitivity of GABAA receptor-channels in rat suprachiasmatic nucleus. ACTA ACUST UNITED AC 2003; 120:46-51. [PMID: 14667576 DOI: 10.1016/j.molbrainres.2003.09.017] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
In the suprachiasmatic nucleus (SCN), electrical activity, secretion, and other cellular functions undergo profound rhythm during day-night cycle due to oscillatory expression of clock gene constituents. Although SCN is enriched with gamma-aminobutyric acid (GABA)-ergic neurons, it is unknown whether there are circadian changes in the GABAA receptor expression and/or function. Here we investigated the possible daily variations in zinc sensitivity of GABAA channels in rat SCN neurons maintained in brain slices. Extracellular zinc inhibited GABA-induced currents in all ventrolateral (VL) and dorsomedial (DM) SCN neurons studied, as well as in neurons of non-SCN regions. In SCN neurons, the currents evoked by 30 microM GABA were inhibited by Zn2+ with an IC50 of 50.3+/-3.2 microM, whereas currents evoked by 100 microM GABA were inhibited with an IC50 of 181.6+/-32.0 microM. The antagonist action of zinc saturated at 97.4+/-0.7% for 30 microM GABA and 91.6+/-2.7% for 100 microM GABA. These observations indicate that Zn2+ inhibits SCN GABAA receptor competitively and in part non-competitively. In SCN neurons, but not in other neurons, the zinc sensitivity varied with daily time. During the day, the calculated IC50 for zinc was significantly lower than during the night (43.9+/-4.7 microM vs. 58.6+/-3.8, respectively). These results indicate that native GABAA receptors in SCN neurons display pharmacological properties of receptors having and not having gamma subunit and that the proportionality of these receptors could change during the day and night.
Collapse
Affiliation(s)
- Karla Kretschmannova
- Institute of Physiology, Academy of Sciences of the Czech Republic, Vídenská 1083, 142 20 Prague 4, Czech Republic
| | | | | |
Collapse
|
24
|
Gribkoff VK, Pieschl RL, Dudek FE. GABA receptor-mediated inhibition of neuronal activity in rat SCN in vitro: pharmacology and influence of circadian phase. J Neurophysiol 2003; 90:1438-48. [PMID: 12750413 DOI: 10.1152/jn.01082.2002] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The effect of gamma-aminobutyric acid (GABA) on neuronal firing rate in rat suprachiasmatic nucleus (SCN) slices was examined using continuous recording methods. GABA inhibited neuronal discharge during both the subjective day and the subjective night in a concentration-dependent manner characterized by two apparent affinity states. The GABAA receptor agonist muscimol caused potent inhibition regardless of circadian time; repeated applications of the agonist did not reverse the direction of effect. The GABAA receptor antagonists bicuculline and picrotoxin increased excitability when applied during either subjective day or subjective night. A significant increase in GABAA receptor- mediated inhibition, as well as endogenous GABAergic tone, was observed on the second day after slice preparation. The GABAB receptor agonist baclofen inhibited cell firing during subjective day and night, but the GABAB antagonist phaclofen had no significant effect. These data provide additional strong support for a predominantly inhibitory role of GABA in the rat SCN, regardless of the time of application in relation to the circadian rhythm, and demonstrate an important level of plasticity of this system in vitro.
Collapse
Affiliation(s)
- Valentin K Gribkoff
- Neuroscience Drug Discovery, Bristol-Myers Squibb Pharmaceutical Research Institute, Wallingford, Connecticut 06492, USA.
| | | | | |
Collapse
|