1
|
Brookshier A, Lyden P. Differential vulnerability among cell types in the neurovascular unit: Description and mechanisms. J Cereb Blood Flow Metab 2025; 45:3-12. [PMID: 39520113 PMCID: PMC11563522 DOI: 10.1177/0271678x241299960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 10/16/2024] [Accepted: 10/25/2024] [Indexed: 11/16/2024]
Abstract
Currently, successful preclinical cerebroprotective agents fail to translate effectively into clinical practice suggesting the need for a comprehensive evaluation of all aspects of brain function. Selective vulnerability refers to the specific regional response of the brain following global ischemia, with observed patterns of vulnerability attributed to the distribution of neuronal subtypes and the functions of respective brain regions. Conversely, the concept of differential vulnerability pertains to the cell-type-specific reactions to cerebral ischemia, dictated by the biological characteristics of individual cells. This review aims to explore these vulnerability hypotheses and elucidate potential underlying cellular mechanisms.
Collapse
Affiliation(s)
- Allison Brookshier
- Department of Physiology and Neuroscience, Zilkha Neurogenetic Institute of the Keck School of Medicine of USC, Los Angeles, USA
| | - Patrick Lyden
- Department of Physiology and Neuroscience, Zilkha Neurogenetic Institute of the Keck School of Medicine of USC, Los Angeles, USA
- Department of Neurology, Keck School of Medicine of USC, Los Angeles, USA
| |
Collapse
|
2
|
Forghani N, Hosseinian S, Akhoond-Ali Z, Gholami AA, Assaran-Darban R, Vafaee F. Effect of acute and chronic stress on memory impairment and hippocampal oxidative stress following global cerebral ischemia in adult male rats. Res Pharm Sci 2024; 19:436-446. [PMID: 39399732 PMCID: PMC11468166 DOI: 10.4103/rps.rps_24_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 11/25/2023] [Accepted: 08/04/2024] [Indexed: 10/15/2024] Open
Abstract
Background and purpose Stress, especially immobility stress, is quite common and one of the most important and influential risk factors in neurological disorders. This study aimed to investigate the effect of acute and chronic immobility stress on the level of cortical and hippocampal oxidative stress indicators and memory impairment following global cerebral ischemia. Experimental approach In this study, 48 male Wistar rats were randomly divided into 6 groups: 1, sham (S); 2, sham-acute stress (SSA); 3, sham-chronic stress (SSC); 4, ischemia (IS); 5, ischemia-acute stress (ISA); 6, ischemia-chronic stress (ISC). The Morris water maze (MWM) test was performed 14 days after surgery, and cortisol levels and oxidative stress factors such as malondialdehyde MDA and total thiol were measured. Findings/Results In the MWM test, the time to find the platform (latency time) in the ISC and IS groups significantly increased compared to the S group. The time spent in the target quarter in these two groups was significantly reduced compared to the S group on the day of the probe. The results showed a significant increase in cortisol levels and malondialdehyde concentration in the ISA, ISC, and IS groups compared to the S group, but there was no significant difference in total thiol concentration. No significant difference was observed in the level of oxidative stress factors in the cortex. Conclusion and implication Chronic immobility stress could reduce antioxidant factors in the hippocampus and exacerbate memory impairment caused by global ischemia.
Collapse
Affiliation(s)
- Nafiseh Forghani
- Department of Biology, Faculty of Sciences, Mashhad Branch, Islamic Azad University, Mashhad, Iran
| | - Sara Hosseinian
- Department of Physiology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Zahra Akhoond-Ali
- Neuroscience Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Neuroscience, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Arman Abroumand Gholami
- Department of Neuroscience, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Cellular Biology and Anatomical Sciences, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Reza Assaran-Darban
- Department of Biology, Faculty of Sciences, Mashhad Branch, Islamic Azad University, Mashhad, Iran
| | - Farzaneh Vafaee
- Neuroscience Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Neuroscience, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
3
|
Khaibullina A, Almeida LEF, Kamimura S, Zerfas PM, Smith ML, Vogel S, Wakim P, Vasconcelos OM, Quezado MM, Horkayne-Szakaly I, Quezado ZMN. Sickle cell disease mice have cerebral oxidative stress and vascular and white matter abnormalities. Blood Cells Mol Dis 2021; 86:102493. [PMID: 32927249 PMCID: PMC7686096 DOI: 10.1016/j.bcmd.2020.102493] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 09/01/2020] [Accepted: 09/02/2020] [Indexed: 02/06/2023]
Abstract
Strokes are feared complications of sickle cell disease (SCD) and yield significant neurologic and neurocognitive deficits. However, even without detectable strokes, SCD patients have significant neurocognitive deficits in domains of learning and memory, processing speed and executive function. In these cases, mechanisms unrelated to major cerebrovascular abnormalities likely underlie these deficits. While oxidative stress and stress-related signaling pathways play a role in SCD pathophysiology, their role in cerebral injury remains unknown. We have shown that Townes and BERK SCD mice, while not having strokes, recapitulate neurocognitive deficits reported in humans. We hypothesized that cognitive deficits in SCD mice are associated with cerebral oxidative stress. We showed that SCD mice have increased levels of reactive oxygen species, protein carbonylation, and lipid peroxidation in hippocampus and cortex, thus suggesting increased cerebral oxidative stress. Further, cerebral oxidative stress was associated with caspase-3 activity alterations and vascular endothelial abnormalities, white matter changes, and disruption of the blood brain barrier, similar to those reported after ischemic/oxidative injury. Additionally, after repeated hypoxia/reoxygenation exposure, homozygous Townes had enhanced microglia activation. Our findings indicate that oxidative stress and stress-induced tissue damage is increased in susceptible brain regions, which may, in turn, contribute to neurocognitive deficits in SCD mice.
Collapse
Affiliation(s)
- Alfia Khaibullina
- Department of Perioperative Medicine, National Institutes of Health Clinical Center, National Institutes of Health, Bethesda, MD 20892, United States of America
| | - Luis E F Almeida
- Department of Perioperative Medicine, National Institutes of Health Clinical Center, National Institutes of Health, Bethesda, MD 20892, United States of America
| | - Sayuri Kamimura
- Department of Perioperative Medicine, National Institutes of Health Clinical Center, National Institutes of Health, Bethesda, MD 20892, United States of America
| | - Patricia M Zerfas
- Office of Research Services, Office of the Director, National Institutes of Health, Bethesda, MD 20892, United States of America
| | - Meghann L Smith
- Department of Perioperative Medicine, National Institutes of Health Clinical Center, National Institutes of Health, Bethesda, MD 20892, United States of America
| | - Sebastian Vogel
- Department of Perioperative Medicine, National Institutes of Health Clinical Center, National Institutes of Health, Bethesda, MD 20892, United States of America
| | - Paul Wakim
- Biostatistics and Clinical Epidemiology Service, National Institutes of Health Clinical Center, National Institutes of Health, Bethesda, MD 20892, United States of America
| | - Olavo M Vasconcelos
- Neuromuscular Clinic, Electromyography Laboratory, Intraoperative Neurophysiology Monitoring Sections, Veterans Health Administration Medical Center, Virginia Commonwealth University, Richmond, VA 23249, United States of America
| | - Martha M Quezado
- Laboratory of Pathology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, United States of America
| | - Iren Horkayne-Szakaly
- Neuropathology and Ophthalmic Pathology, Joint Pathology Center, Defense Health Agency, Silver Spring, MD 20910, United States of America
| | - Zenaide M N Quezado
- Department of Perioperative Medicine, National Institutes of Health Clinical Center, National Institutes of Health, Bethesda, MD 20892, United States of America.
| |
Collapse
|
4
|
Malboosi N, Nasehi M, Hashemi M, Vaseghi S, Zarrindast MR. The neuroprotective effect of NeuroAid on morphine-induced amnesia with respect to the expression of TFAM, PGC-1α, ΔfosB and CART genes in the hippocampus of male Wistar rats. Gene 2020; 742:144601. [PMID: 32198124 DOI: 10.1016/j.gene.2020.144601] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2020] [Revised: 02/16/2020] [Accepted: 03/16/2020] [Indexed: 02/07/2023]
Abstract
Morphine is a natural alkaloid which derived from the opium poppy Papaver somniferum. Many studies have reported the effect of morphine on learning, memory and gene expression. CART (cocaine-amphetamine regulated transcript)is an important neuropeptide which has a critical role in physiological processes including drug dependence and antioxidant activity. ΔfosB is a transcription factor which modulates synaptic plasticity and affects learning and memory. TFAM (the mitochondrial transcription factor A) and PGC-1α (Peroxisome proliferator-activated receptor γ coactivator-1α) are critically involved in mitochondrial biogenesis and antioxidant pathways. NeuroAid is a Chinese medicine that induces neuroprotective and anti-apoptotic effects. In this research, we aimed to investigate the effect of NeuroAid on morphine-induced amnesia with respect to the expression of TFAM, PGC-1α, ΔfosB and CART in the rat's hippocampus. In this study, Morphine sulfate (at increasing doses), Naloxone hydrochloride (2.5 mg/kg) and NeuroAid (2.5 mg/kg) were administered intraperitoneal and real-time PCR reactions were done to assess gene expression. The results showed, morphine impaired memory of step-through passive avoidance, while NeuroAid had no effect. NeuroAid attenuated (but not reversed) morphine-induced memory impairment in morphine-addicted rats. Morphine increased the expression of PGC-1α and decreased the expression of CART. However, NeuroAid increased the expression of TFAM, PGC-1α, ΔfosB and CART. NeuroAid restored the effect of morphine on the expression of CART and PGC-1α. In conclusion, morphine impaired memory of step-through passive avoidance and NeuroAid attenuated this effect. The effect of NeuroAid on morphine-induced memory impairment/gene expression may be related to its anti-apoptotic and neuroprotective effects.
Collapse
Affiliation(s)
- Nasrin Malboosi
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Mohammad Nasehi
- Cognitive and Neuroscience Research Center (CNRC), Amir-Almomenin Hospital, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Mehrdad Hashemi
- Department of Genetics, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Salar Vaseghi
- Cognitive and Neuroscience Research Center (CNRC), Amir-Almomenin Hospital, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Institute for Cognitive Science Studies (ICSS), Tehran, Iran
| | - Mohammad-Reza Zarrindast
- Institute for Cognitive Science Studies (ICSS), Tehran, Iran; Department of Pharmacology School of Medicine, Tehran University of Medical Sciences, Tehran, Iran; Department of Neuroendocrinology, Endocrinology and Metabolism Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
5
|
Nasehi M, Torabinejad S, Hashemi M, Vaseghi S, Zarrindast MR. Effect of cholestasis and NeuroAid treatment on the expression of Bax, Bcl-2, Pgc-1α and Tfam genes involved in apoptosis and mitochondrial biogenesis in the striatum of male rats. Metab Brain Dis 2020; 35:183-192. [PMID: 31773435 DOI: 10.1007/s11011-019-00508-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Accepted: 10/16/2019] [Indexed: 12/13/2022]
Abstract
Cholestasis means impaired bile synthesis or secretion. In fact, it is a bile flow reduction following Bile Duct Ligation (BDL). Cholestasis has a main role in necrosis and apoptosis. Apoptosis is a form of programmed cell death that has intrinsic and extrinsic pathways. The intrinsic pathway is mediated by Bcl-2 (B cell lymphoma-2) proteins which integrate death and survival signals. Bcl-2 has anti-apoptotic and Bax has pro-apoptotic effects. Also, striatum is one of the brain regions that has high expressions of Bcl-2 proteins. Moreover, Tfam and Pgc-1α are involved in mitochondrial biogenesis. On the other hand, NeuroAid, is a drug that has neuroprotective and anti-apoptosis effects. In this study, using quantitative PCR, we measured the expression of all these genes in the striatum of male rats following BDL and NeuroAid administration. Results showed, BDL increased the expression of Bax and Tfam and decreased the expression of Bcl-2. NeuroAid restored the effect of BDL on the expression of Bax, while did not alter the effect of BDL on Bcl-2. In addition, it increased the expression of Tfam that was previously elevated by BDL and raised the expression of Tfam in normal rats. Both BDL and NeuroAid, had no effect on Pgc-1α. In conclusion, cholestasis increased the expression of Bax and decreased the expression of Bcl-2, and this effect may have related to enhanced susceptibility of mitochondrial pathways following oxidative stress. Tfam expression was increased following cholestasis and this effect may have related to cellular compensatory mechanisms against high accumulation of free radicals or mitochondrial biogenesis failure. Furthermore, NeuroAid may play a role against apoptosis and can be used to increase mitochondrial biogenesis.
Collapse
Affiliation(s)
- Mohammad Nasehi
- Cognitive and Neuroscience Research Center (CNRC), Tehran Medical Sciences, Islamic Azad University, P.O. Box 13145-784, Tehran, Iran.
| | - Sepehr Torabinejad
- Department of Genetics, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Mehrdad Hashemi
- Department of Genetics, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Salar Vaseghi
- Cognitive and Neuroscience Research Center (CNRC), Tehran Medical Sciences, Islamic Azad University, P.O. Box 13145-784, Tehran, Iran
| | - Mohammad-Reza Zarrindast
- Department of Pharmacology School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Institute for Cognitive Science Studies (ICSS), Tehran, Iran
- Department of Neuroendocrinology, Endocrinology and Metabolism Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
6
|
Distinct Impacts of Fullerene on Cognitive Functions of Dementia vs. Non-dementia Mice. Neurotox Res 2019; 36:736-745. [PMID: 31222673 DOI: 10.1007/s12640-019-00075-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Revised: 06/01/2019] [Accepted: 06/11/2019] [Indexed: 10/26/2022]
Abstract
Fullerene is a family of carbon materials widely applied in modern medicine and ecosystem de-contamination. Its wide application makes human bodies more and more constantly exposed to fullerene particles. Since fullerene particles are able to cross the blood-brain barrier (BBB) (Yamago et al. 1995), if and how fullerene would affect brain functions need to be investigated for human health consideration. For this purpose, we administered fullerene on subcortical ischemic vascular dementia (SIVD) model mice and sham mice, two types of mice with distinct penetration properties of BBB and hence possibly distinct vulnerabilities to fullerene. We studied the spatial learning and memory abilities of mice with Morris water maze (MWM) and the neuroplasticity properties of the hippocampus. Results showed that fullerene administration suppressed outcomes of MWM in sham mice, along with suppressed long-term potentiation (LTP) and dendritic spine densities. Oppositely, recoveries of MWM outcomes and neuroplasticity properties were observed in fullerene-treated SIVD mice. To further clarify the mechanism of the impact of fullerene on neuroplasticity, we measured the levels of postsynaptic density protein 95 (PSD-95), synaptophysin (SYP), brain-derived neurotrophic factor (BDNF), and tropomyosin receptor kinase B (TrkB) by western blot assay. Results suggest that the distinct impacts of fullerene on behavior test and neuroplasticity may be conducted through postsynaptic regulations that were mediated by BDNF.
Collapse
|
7
|
Ravindran S, Kurian GA. Eventual analysis of global cerebral ischemia-reperfusion injury in rat brain: a paradigm of a shift in stress and its influence on cognitive functions. Cell Stress Chaperones 2019; 24:581-594. [PMID: 31025239 PMCID: PMC6527675 DOI: 10.1007/s12192-019-00990-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 03/18/2019] [Accepted: 03/24/2019] [Indexed: 12/31/2022] Open
Abstract
Cognitive issues in stroke arise as a result of reperfusion of a clogged artery, which is reported to exacerbate the injury in the brain leading to oxidative stress. Through the present work, we try to understand the regional variations across brain regions mainly cortex and striatum associated with the progression of ischemia-reperfusion injury (IRI). In a rat model of IRI, the influence of varying ischemia and reperfusion times on the biochemical phases across the brain regions were monitored. IRI resulted in the blood-brain barrier disruption and developed mild areas of risk. The brain's tolerance towards IRI indicated a progressive trend in the injury and apoptosis from ischemia to reperfusion that was supported by the activities of plasma lactate dehydrogenase and tissue caspase-3. Cognitive impairment in these rats was an implication of cellular oxidative stress (higher lipid peroxidation and lower antioxidant enzyme activity) that persisted by 24-h reperfusion. The oxidative stress was prominent in the cortex than the striatum and was supported by the lower ATP level. Upregulated Mn-SOD expression leading to a preserved mitochondria in the striatum could be attributed to the regional protection. Overall, a progression of IRI was observed from striatum to cortex leading to 5-day cognitive decline.
Collapse
Affiliation(s)
- Sriram Ravindran
- Vascular Biology Laboratory, SASTRA Deemed University, Thanjavur, Tamil Nadu 613401 India
| | - Gino A. Kurian
- Vascular Biology Laboratory, SASTRA Deemed University, Thanjavur, Tamil Nadu 613401 India
| |
Collapse
|
8
|
Wang R, Dong Y, Lu Y, Zhang W, Brann DW, Zhang Q. Photobiomodulation for Global Cerebral Ischemia: Targeting Mitochondrial Dynamics and Functions. Mol Neurobiol 2019; 56:1852-1869. [PMID: 29951942 PMCID: PMC6310117 DOI: 10.1007/s12035-018-1191-9] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2018] [Accepted: 06/08/2018] [Indexed: 12/13/2022]
Abstract
Hypothermia is currently the only approved therapy for global cerebral ischemia (GCI) after cardiac arrest; however, it unfortunately has multiple adverse effects. As a noninvasive procedure, photobiomodulation (PBM) therapy has emerged as a potential novel treatment for brain injury. PBM involves the use of low-level laser light therapy to influence cell behavior. In this study, we evaluated the therapeutic effects of PBM treatment with an 808-nm diode laser initiated 6 h after GCI. It was noted that PBM dose-dependently protected against GCI-induced neuronal death in the vulnerable hippocampal CA1 subregion. Functional assessments demonstrated that PBM markedly preserved both short-term (a week) and long-term (6 months) spatial learning and memory function following GCI. Further mechanistic studies revealed that PBM post-treatment (a) preserved healthy mitochondrial dynamics and suppressed substantial mitochondrial fragmentation of CA1 neurons, by reducing the detrimental Drp1 GTPase activity and its interactions with adaptor proteins Mff and Fis1 and by balancing mitochondrial targeting fission and fusion protein levels; (b) reduced mitochondrial oxidative damage and excessive mitophagy and restored mitochondrial overall health status and preserved mitochondrial function; and (c) suppressed mitochondria-dependent apoptosome formation/caspase-3/9 apoptosis-processing activities. Additionally, we validated, in an in vitro ischemia model, that cytochrome c oxidase served as a key PBM target for mitochondrial function preservation and neuroprotection. Our findings suggest that PBM serves as a promising therapeutic strategy for the functional recovery after GCI, with mechanisms involving PBM's preservation on mitochondrial dynamics and functions and the inhibition of delayed apoptotic neuronal death in GCI.
Collapse
Affiliation(s)
- Ruimin Wang
- Neurobiology Institute of Medical Research Center, North China University of Science and Technology, Tangshan, 063000, China.
| | - Yan Dong
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, 1120 15th Street, Augusta, GA, 30912, USA
| | - Yujiao Lu
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, 1120 15th Street, Augusta, GA, 30912, USA
| | - Wenli Zhang
- Neurobiology Institute of Medical Research Center, North China University of Science and Technology, Tangshan, 063000, China
| | - Darrell W Brann
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, 1120 15th Street, Augusta, GA, 30912, USA.
| | - Quanguang Zhang
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, 1120 15th Street, Augusta, GA, 30912, USA.
| |
Collapse
|
9
|
Pérez MJ, Jara C, Quintanilla RA. Contribution of Tau Pathology to Mitochondrial Impairment in Neurodegeneration. Front Neurosci 2018; 12:441. [PMID: 30026680 PMCID: PMC6041396 DOI: 10.3389/fnins.2018.00441] [Citation(s) in RCA: 108] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 06/12/2018] [Indexed: 12/21/2022] Open
Abstract
Tau is an essential protein that physiologically promotes the assembly and stabilization of microtubules, and participates in neuronal development, axonal transport, and neuronal polarity. However, in a number of neurodegenerative diseases, including Alzheimer’s disease (AD), tau undergoes pathological modifications in which soluble tau assembles into insoluble filaments, leading to synaptic failure and neurodegeneration. Mitochondria are responsible for energy supply, detoxification, and communication in brain cells, and important evidence suggests that mitochondrial failure could have a pivotal role in the pathogenesis of AD. In this context, our group and others investigated the negative effects of tau pathology on specific neuronal functions. In particular, we observed that the presence of these tau forms could affect mitochondrial function at three different levels: (i) mitochondrial transport, (ii) morphology, and (iii) bioenergetics. Therefore, mitochondrial dysfunction mediated by anomalous tau modifications represents a novel mechanism by which these forms contribute to the pathogenesis of AD. In this review, we will discuss the main results reported on pathological tau modifications and their effects on mitochondrial function and their importance for the synaptic communication and neurodegeneration.
Collapse
Affiliation(s)
- María J Pérez
- Laboratory of Neurodegenerative Diseases, Universidad Autónoma de Chile, Santiago, Chile.,Centro de Investigación y Estudio del Consumo de Alcohol en Adolescentes (CIAA), Santiago, Chile
| | - Claudia Jara
- Laboratory of Neurodegenerative Diseases, Universidad Autónoma de Chile, Santiago, Chile.,Centro de Investigación y Estudio del Consumo de Alcohol en Adolescentes (CIAA), Santiago, Chile
| | - Rodrigo A Quintanilla
- Laboratory of Neurodegenerative Diseases, Universidad Autónoma de Chile, Santiago, Chile.,Centro de Investigación y Estudio del Consumo de Alcohol en Adolescentes (CIAA), Santiago, Chile
| |
Collapse
|
10
|
Ding H, Xiong Y, Sun J, Chen C, Gao J, Xu H. Asiatic Acid Prevents Oxidative Stress and Apoptosis by Inhibiting the Translocation of α-Synuclein Into Mitochondria. Front Neurosci 2018; 12:431. [PMID: 30002614 PMCID: PMC6031891 DOI: 10.3389/fnins.2018.00431] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Accepted: 06/07/2018] [Indexed: 01/08/2023] Open
Abstract
The association of α-synuclein (α-syn) with mitochondria occurs through interaction with mitochondrial complex I. Defects in this protein have been linked to the pathogenesis of Parkinson disease (PD). Overexpression of α-synuclein in cells has been suggested to cause elevations in mitochondrial oxidant radicals and structural and functional abnormalities in mitochondria. Asiatic acid (AA), a triterpenoid, is an antioxidant that is used for depression, and we have shown that pretreatment with AA can prevent PD-like damage, but its therapeutic effects in PD and mechanism remain unknown. In this study, we found that 0.5–2 mg AA/100 g diet significantly improves climbing ability in drosophila and extends their life-span—effects that we attributed to its antioxidant properties. AA also protected mitochondria against oxidative stress and apoptosis in a rotenone-induced cellular model. In an isolated mitochondria model, AA attenuated the decline in mitochondrial membrane potential that was induced by α-syn. Consequently, AA maintained membrane integrity and ATP production. Finally, we demonstrated that AA protects by blocking the translocation of α-syn into mitochondria. Our results suggest that mitochondria are crucial in PD and that AA is an excellent candidate for the prevention and therapy of this disease.
Collapse
Affiliation(s)
- Hongqun Ding
- Department of Clinical Laboratory Diagnostics, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Yuyun Xiong
- Department of Clinical Laboratory, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Jing Sun
- Department of Medicinal Pharmacy, School of Pharmacy, Jiangsu University, Zhenjiang, China
| | - Chen Chen
- Department of Medicinal Pharmacy, School of Pharmacy, Jiangsu University, Zhenjiang, China
| | - Jing Gao
- Department of Medicinal Pharmacy, School of Pharmacy, Jiangsu University, Zhenjiang, China
| | - Huaxi Xu
- Department of Clinical Laboratory Diagnostics, School of Medicine, Jiangsu University, Zhenjiang, China
| |
Collapse
|
11
|
Long FY, Shi MQ, Zhou HJ, Liu DL, Sang N, Du JR. Klotho upregulation contributes to the neuroprotection of ligustilide against cerebral ischemic injury in mice. Eur J Pharmacol 2017; 820:198-205. [PMID: 29233659 DOI: 10.1016/j.ejphar.2017.12.019] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2017] [Revised: 12/02/2017] [Accepted: 12/08/2017] [Indexed: 12/30/2022]
Abstract
Klotho, an aging-suppressor gene, encodes a protein that potentially acts as a neuroprotective factor. Our previous studies showed that ligustilide minimizes the cognitive dysfunction and brain damage induced by cerebral ischemia; however, the underlying mechanisms remain unclear. This study aims to investigate whether klotho is involved in the protective effects of ligustilide against cerebral ischemic injury in mice. Cerebral ischemia was induced by bilateral common carotid arterial occlusion. Neurobehavioral tests as well as Nissl and Fluoro-Jade B staining were used to evaluate the protective effects of ligustilide in cerebral ischemia, and Western blotting and ELISA approaches were used to investigate the underlying mechanisms. Administration of ligustilide prevented the development of neurological deficits and reduced neuronal loss in the hippocampal CA1 region and the caudate putamen after cerebral ischemia. The protective effects were associated with inhibition of the RIG-I/NF-κB p65 and Akt/FoxO1 pathways and with prevention of inflammation and oxidative stress in the brain. Further, downregulation of klotho could attenuate the neuroprotection of ligustilide against cerebral ischemic injury. Ligustilide exerted neuroprotective effects in mice after cerebral ischemia by regulating anti-inflammatory and anti-oxidant signaling pathways. Furthermore, klotho upregulation contributes to the neuroprotection of LIG against cerebral ischemic injury. These results indicated that ligustilide may be a promising therapeutic agent for the treatment of cerebral ischemia.
Collapse
Affiliation(s)
- Fang-Yi Long
- Department of Pharmacology, Key Laboratory of Drug Targeting and Drug Delivery Systems, West China School of Pharmacy, Sichuan University, Chengdu 610041, China; Department of Pharmacy, Sichuan Provincial Hospital for Women and Children, Women and Children's Hospital of Chengdu Medical College, Chengdu Medical College, Chengdu 610041, China
| | - Meng-Qi Shi
- Department of Pharmacology, Key Laboratory of Drug Targeting and Drug Delivery Systems, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Hong-Jing Zhou
- Department of Pharmacology, Key Laboratory of Drug Targeting and Drug Delivery Systems, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Dong-Ling Liu
- Department of Pharmacology, Key Laboratory of Drug Targeting and Drug Delivery Systems, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Na Sang
- Department of Pharmacology, Key Laboratory of Drug Targeting and Drug Delivery Systems, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Jun-Rong Du
- Department of Pharmacology, Key Laboratory of Drug Targeting and Drug Delivery Systems, West China School of Pharmacy, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
12
|
Kole K, Scheenen W, Tiesinga P, Celikel T. Cellular diversity of the somatosensory cortical map plasticity. Neurosci Biobehav Rev 2017; 84:100-115. [PMID: 29183683 DOI: 10.1016/j.neubiorev.2017.11.015] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Revised: 11/21/2017] [Accepted: 11/21/2017] [Indexed: 01/23/2023]
Abstract
Sensory maps are representations of the sensory epithelia in the brain. Despite the intuitive explanatory power behind sensory maps as being neuronal precursors to sensory perception, and sensory cortical plasticity as a neural correlate of perceptual learning, molecular mechanisms that regulate map plasticity are not well understood. Here we perform a meta-analysis of transcriptional and translational changes during altered whisker use to nominate the major molecular correlates of experience-dependent map plasticity in the barrel cortex. We argue that brain plasticity is a systems level response, involving all cell classes, from neuron and glia to non-neuronal cells including endothelia. Using molecular pathway analysis, we further propose a gene regulatory network that could couple activity dependent changes in neurons to adaptive changes in neurovasculature, and finally we show that transcriptional regulations observed in major brain disorders target genes that are modulated by altered sensory experience. Thus, understanding the molecular mechanisms of experience-dependent plasticity of sensory maps might help to unravel the cellular events that shape brain plasticity in health and disease.
Collapse
Affiliation(s)
- Koen Kole
- Department of Neurophysiology, Donders Institute for Brain, Cognition, and Behaviour, Radboud University, Nijmegen, The Netherlands; Department of Neuroinformatics, Donders Institute for Brain, Cognition, and Behaviour, Radboud University, Nijmegen, The Netherlands.
| | - Wim Scheenen
- Department of Neurophysiology, Donders Institute for Brain, Cognition, and Behaviour, Radboud University, Nijmegen, The Netherlands
| | - Paul Tiesinga
- Department of Neuroinformatics, Donders Institute for Brain, Cognition, and Behaviour, Radboud University, Nijmegen, The Netherlands
| | - Tansu Celikel
- Department of Neurophysiology, Donders Institute for Brain, Cognition, and Behaviour, Radboud University, Nijmegen, The Netherlands
| |
Collapse
|
13
|
Hosseini MJ, Jafarian I, Farahani S, Khodadadi R, Tagavi SH, Naserzadeh P, Mohammadi-Bardbori A, Arghavanifard N. New mechanistic approach of inorganic palladium toxicity: impairment in mitochondrial electron transfer. Metallomics 2016; 8:252-9. [PMID: 26739318 DOI: 10.1039/c5mt00249d] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Human activities have increased the levels of palladium (Pd) that are progressively accumulating in the environment. The growing evidence of Pd toxicity has become the focus of serious concern for the environment, organisms and humans, with little data on the mechanism of Pd toxicity. Recent studies have suggested that mitochondria have a key role in Pd toxicity via mitochondrial membrane potential collapse and depletion of the cellular glutathione (GSH) level. Therefore, it was decided to determine the mechanistic toxicity of Pd towards isolated mitochondria via new and reliable methods. Isolated liver and kidney mitochondria were obtained by differential ultracentrifugation and incubated with different concentrations of Pd (100-400 μM). Our results showed that Pd induced mitochondrial dysfunction via an increase in mitochondrial ROS production and membrane potential collapse, which correlated to cytochrome c release. Also, increased disturbance in oxidative phosphorylation was also shown by the increase in ADP/ATP ratio in Pd-treated mitochondria, which indicates mitochondrial dysfunction in isolated liver and kidney mitochondria. Our results suggest that Pd-induced toxicity is the result of a disruptive effect on the mitochondrial respiratory chain, increasing the chance of cell death signaling. In addition, it is supposed that kidney tissue is more susceptible to Pd exposure than liver tissue.
Collapse
Affiliation(s)
- M-J Hosseini
- Zanjan Applied Pharmacology Research Center, Zanjan University of Medical Sciences, Zanjan, Iran and Department of Pharmacology and Toxicology, School of Pharmacy, Zanjan University of Medical Sciences, P. O. Box: 45139-56184, Zanjan, Iran.
| | - I Jafarian
- Department of Pharmacology and Toxicology, School of Pharmacy, Zanjan University of Medical Sciences, P. O. Box: 45139-56184, Zanjan, Iran.
| | - S Farahani
- Department of Pharmacology and Toxicology, School of Pharmacy, Zanjan University of Medical Sciences, P. O. Box: 45139-56184, Zanjan, Iran.
| | - R Khodadadi
- Department of Pharmacology and Toxicology, School of Pharmacy, Zanjan University of Medical Sciences, P. O. Box: 45139-56184, Zanjan, Iran.
| | - S H Tagavi
- Department of Pharmacology and Toxicology, School of Pharmacy, Zanjan University of Medical Sciences, P. O. Box: 45139-56184, Zanjan, Iran.
| | - P Naserzadeh
- Zanjan Applied Pharmacology Research Center, Zanjan University of Medical Sciences, Zanjan, Iran
| | - A Mohammadi-Bardbori
- Department of Pharmacology and Toxicology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - N Arghavanifard
- Department of Pharmacology and Toxicology, School of Pharmacy, Zanjan University of Medical Sciences, P. O. Box: 45139-56184, Zanjan, Iran.
| |
Collapse
|
14
|
Dezfulian C, Kenny E, Lamade A, Misse A, Krehel N, St Croix C, Kelley EE, Jackson TC, Uray T, Rackley J, Kochanek PM, Clark RSB, Bayir H. Mechanistic characterization of nitrite-mediated neuroprotection after experimental cardiac arrest. J Neurochem 2016; 139:419-431. [PMID: 27507435 DOI: 10.1111/jnc.13764] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Revised: 08/04/2016] [Accepted: 08/05/2016] [Indexed: 12/27/2022]
Abstract
Nitrite acts as an ischemic reservoir of nitric oxide (NO) and a potent S-nitrosating agent which reduced histologic brain injury after rat asphyxial cardiac arrest (ACA). The mechanism(s) of nitrite-mediated neuroprotection remain to be defined. We hypothesized that nitrite-mediated brain mitochondrial S-nitrosation accounts for neuroprotection by reducing reperfusion reactive oxygen species (ROS) generation. Nitrite (4 μmol) or placebo was infused IV after normothermic (37°C) ACA in randomized, blinded fashion with evaluation of neurologic function, survival, brain mitochondrial function, and ROS. Blood and CSF nitrite were quantified using reductive chemiluminescence and S-nitrosation by biotin switch. Direct neuroprotection was verified in vitro after 1 and 4 h neuronal oxygen glucose deprivation measuring neuronal death with inhibition studies to examine mechanism. Mitochondrial ROS generation was quantified by live neuronal imaging using mitoSOX. Nitrite significantly reduced neurologic disability after ACA. ROS generation was reduced in brain mitochondria from nitrite- versus placebo-treated rats after ACA with congruent preservation of brain ascorbate and reduction of ROS in brain sections using immuno-spin trapping. ATP generation was maintained with nitrite up to 24 h after ACA. Nitrite rapidly entered CSF and increased brain mitochondrial S-nitrosation. Nitrite reduced in vitro mitochondrial superoxide generation and improved survival of neurons after oxygen glucose deprivation. Protection was maintained with inhibition of soluble guanylate cyclase but lost with NO scavenging and ultraviolet irradiation. Nitrite therapy results in direct neuroprotection from ACA mediated by reductions in brain mitochondrial ROS in association with protein S-nitrosation. Neuroprotection is dependent on NO and S-nitrosothiol generation, not soluble guanylate cyclase.
Collapse
Affiliation(s)
- Cameron Dezfulian
- Safar Center for Resuscitation Research, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA. .,Department of Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA. .,Vascular Medicine Institute, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA.
| | - Elizabeth Kenny
- Safar Center for Resuscitation Research, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Andrew Lamade
- Safar Center for Resuscitation Research, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Amalea Misse
- Safar Center for Resuscitation Research, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA.,Department of Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Nicholas Krehel
- Safar Center for Resuscitation Research, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Claudette St Croix
- Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Eric E Kelley
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Travis C Jackson
- Safar Center for Resuscitation Research, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA.,Department of Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Thomas Uray
- Safar Center for Resuscitation Research, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Justin Rackley
- Safar Center for Resuscitation Research, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Patrick M Kochanek
- Safar Center for Resuscitation Research, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA.,Department of Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Robert S B Clark
- Safar Center for Resuscitation Research, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA.,Department of Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Hulya Bayir
- Safar Center for Resuscitation Research, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA.,Department of Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA.,Department of Environmental and Occupational Health, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
15
|
Xu LH, Xie H, Shi ZH, Du LD, Wing YK, Li AM, Ke Y, Yung WH. Critical Role of Endoplasmic Reticulum Stress in Chronic Intermittent Hypoxia-Induced Deficits in Synaptic Plasticity and Long-Term Memory. Antioxid Redox Signal 2015; 23:695-710. [PMID: 25843188 PMCID: PMC4580307 DOI: 10.1089/ars.2014.6122] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
AIMS This study examined the role of endoplasmic reticulum (ER) stress in mediating chronic intermittent hypoxia (IH)-induced neurocognitive deficits. We designed experiments to demonstrate that ER stress is initiated in the hippocampus under chronic IH and determined its role in apoptotic cell death, impaired synaptic structure and plasticity, and memory deficits. RESULTS Two weeks of IH disrupted ER fine structure and upregulated ER stress markers, glucose-regulated protein 78, caspase-12, and C/EBP homologous protein, in the hippocampus, which could be suppressed by ER stress inhibitors, tauroursodeoxycholic acid (TUDCA) and 4-phenylbutyric acid. Meanwhile, ER stress induced apoptosis via decreased Bcl-2, promoted reactive oxygen species production, and increased malondialdehyde formation and protein carbonyl, as well as suppressed mitochondrial function. These effects were largely prevented by ER stress inhibitors. On the other hand, suppression of oxidative stress could reduce ER stress. In addition, the length of the synaptic active zone and number of mature spines were reduced by IH. Long-term recognition memory and spatial memory were also impaired, which was accompanied by reduced long-term potentiation in the Schaffer collateral pathway. These effects were prevented by coadministration of the TUDCA. INNOVATION AND CONCLUSION These results show that ER stress plays a critical role in underlying memory deficits in obstructive sleep apnea (OSA)-associated IH. Attenuators of ER stress may serve as novel adjunct therapeutic agents for ameliorating OSA-induced neurocognitive impairment.
Collapse
Affiliation(s)
- Lin-Hao Xu
- 1 Faculty of Medicine, School of Biomedical Sciences, The Chinese University of Hong Kong , Shatin, Hong Kong, China
| | - Hui Xie
- 1 Faculty of Medicine, School of Biomedical Sciences, The Chinese University of Hong Kong , Shatin, Hong Kong, China
| | - Zhi-Hui Shi
- 1 Faculty of Medicine, School of Biomedical Sciences, The Chinese University of Hong Kong , Shatin, Hong Kong, China
| | - Li-Da Du
- 1 Faculty of Medicine, School of Biomedical Sciences, The Chinese University of Hong Kong , Shatin, Hong Kong, China
| | - Yun-Kwok Wing
- 2 Department of Psychiatry, Prince of Wales Hospital , Shatin, Hong Kong, China
| | - Albert M Li
- 3 Department of Pediatrics, Prince of Wales Hospital , Shatin, Hong Kong, China
| | - Ya Ke
- 1 Faculty of Medicine, School of Biomedical Sciences, The Chinese University of Hong Kong , Shatin, Hong Kong, China
| | - Wing-Ho Yung
- 1 Faculty of Medicine, School of Biomedical Sciences, The Chinese University of Hong Kong , Shatin, Hong Kong, China
| |
Collapse
|
16
|
Truiti MT, Soares L, Longhini R, Milani H, Nakamura CV, Mello JCP, de Oliveira RMW. Trichilia catigua ethyl-acetate fraction protects against cognitive impairments and hippocampal cell death induced by bilateral common carotid occlusion in mice. JOURNAL OF ETHNOPHARMACOLOGY 2015; 172:232-237. [PMID: 26099636 DOI: 10.1016/j.jep.2015.05.060] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2014] [Revised: 05/26/2015] [Accepted: 05/31/2015] [Indexed: 06/04/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Trichilia catigua preparations have antinociceptive, antiinflammatory, and neuroprotective activity. Recently, a neuroprotective role for T. catigua was proposed using an in vitro model of ischemia-reperfusion in rat hippocampal slices. The aim of the present study was to evaluate the effects of an ethyl-acetate fraction (EAF) of T. catigua, which has potent antioxidant activity, in mice subjected to an in vivo model of cerebral ischemia. MATERIAL AND METHODS Male Swiss mice were subject to the bilateral common carotid occlusion (BCCAO) model of cerebral ischemia. The animals were orally administered the T. catigua EAF (200, 400, or 800 mg/kg) 30 min before and once per day for 7 days after BCCAO. Histological and behavioral outcomes were assessed using Nissl staining and the Morris water maze test of cognition, respectively. RESULTS Mice that were subjected to BCCAO exhibited cognitive impairments in the Morris water maze. The spatial cognitive deficits were counteracted by T. catigua EAF administration (200-800 mg/kg). The T. catigua EAF significantly increased the number of intact-appearing Nissl-stained cells in the hippocampus in BCCAO mice. CONCLUSIONS These results show that the T. catigua EAF promoted functional recovery, decreased the delayed hippocampal cell loss, and mitigated the ongoing neurodegenerative processes induced by BCCAO in mice.
Collapse
Affiliation(s)
- Manuela Torrado Truiti
- Laboratory of Neuropsychopharmacology, Department of Pharmacology and Therapeutics, Maringá 87020-900, Paraná, Brazil
| | - LígiaMendes Soares
- Laboratory of Neuropsychopharmacology, Department of Pharmacology and Therapeutics, Maringá 87020-900, Paraná, Brazil
| | - Renata Longhini
- Laboratory of Pharmaceutical Biology, Palafito, Maringá, Brazil
| | - Humberto Milani
- Laboratory of Neuropsychopharmacology, Department of Pharmacology and Therapeutics, Maringá 87020-900, Paraná, Brazil
| | - Celso Vataru Nakamura
- Laboratory of Microbiology, Universidade Estadual de Maringá, Av. Colombo, 5790, Maringá 87020-900, Paraná, Brazil
| | | | | |
Collapse
|
17
|
Ameliorative effect of saffron aqueous extract on hyperglycemia, hyperlipidemia, and oxidative stress on diabetic encephalopathy in streptozotocin induced experimental diabetes mellitus. BIOMED RESEARCH INTERNATIONAL 2014; 2014:920857. [PMID: 25114929 PMCID: PMC4119909 DOI: 10.1155/2014/920857] [Citation(s) in RCA: 82] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Accepted: 06/08/2014] [Indexed: 01/23/2023]
Abstract
Diabetic encephalopathy is one of the severe complications in patients with diabetes mellitus. Findings indicate that saffron extract has antioxidant properties but its underlying beneficial effects on diabetic encephalopathy were unclear. In the present study, the protective activities of saffron were evaluated in diabetic encephalopathy. Saffron at 40 and 80 mg/kg significantly increased body weight and serum TNF-α and decreased blood glucose levels, glycosylated serum proteins, and serum advanced glycation endproducts (AGEs) levels. Furthermore, significant increase in HDL and decrease (P<0.05) in cholesterol, triglyceride, and LDL were observed after 28 days of treatment. At the end of experiments, the hippocampus tissue was used for determination of glutathione content (GSH), superoxide dismutase (SOD), and catalase (CAT) activities. Furthermore, saffron significantly increased GSH, SOD, and CAT but remarkably decreased cognitive deficit, serum TNF-α, and induced nitric oxide synthase (iNOS) activity in hippocampus tissue. Our findings indicated that saffron extract may reduce hyperglycemia and hyperlipidemia risk and also reduce the oxidative stress in diabetic encephalopathy rats. This study suggested that saffron extract might be a promising candidate for the improvement of chemically induced diabetes and its complications.
Collapse
|
18
|
Kalogeris T, Bao Y, Korthuis RJ. Mitochondrial reactive oxygen species: a double edged sword in ischemia/reperfusion vs preconditioning. Redox Biol 2014; 2:702-14. [PMID: 24944913 PMCID: PMC4060303 DOI: 10.1016/j.redox.2014.05.006] [Citation(s) in RCA: 532] [Impact Index Per Article: 48.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2014] [Revised: 05/23/2014] [Accepted: 05/27/2014] [Indexed: 02/06/2023] Open
Abstract
Reductions in the blood supply produce considerable injury if the duration of ischemia is prolonged. Paradoxically, restoration of perfusion to ischemic organs can exacerbate tissue damage and extend the size of an evolving infarct. Being highly metabolic organs, the heart and brain are particularly vulnerable to the deleterious effects of ischemia/reperfusion (I/R). While the pathogenetic mechanisms contributing to I/R-induced tissue injury and infarction are multifactorial, the relative importance of each contributing factor remains unclear. However, an emerging body of evidence indicates that the generation of reactive oxygen species (ROS) by mitochondria plays a critical role in damaging cellular components and initiating cell death. In this review, we summarize our current understanding of the mechanisms whereby mitochondrial ROS generation occurs in I/R and contributes to myocardial infarction and stroke. In addition, mitochondrial ROS have been shown to participate in preconditioning by several pharmacologic agents that target potassium channels (e.g., ATP-sensitive potassium (mKATP) channels or large conductance, calcium-activated potassium (mBKCa) channels) to activate cell survival programs that render tissues and organs more resistant to the deleterious effects of I/R. Finally, we review novel therapeutic approaches that selectively target mROS production to reduce postischemic tissue injury, which may prove efficacious in limiting myocardial dysfunction and infarction and abrogating neurocognitive deficits and neuronal cell death in stroke.
Collapse
Affiliation(s)
- Theodore Kalogeris
- Department of Medical Pharmacology and Physiology, School of Medicine, Dalton Cardiovascular Research Center, University of Missouri, 1 Hospital Drive, Columbia, MO 65212-0001, United States of America
| | - Yimin Bao
- Department of Medical Pharmacology and Physiology, School of Medicine, Dalton Cardiovascular Research Center, University of Missouri, 1 Hospital Drive, Columbia, MO 65212-0001, United States of America
| | - Ronald J Korthuis
- Department of Medical Pharmacology and Physiology, School of Medicine, Dalton Cardiovascular Research Center, University of Missouri, 1 Hospital Drive, Columbia, MO 65212-0001, United States of America
| |
Collapse
|
19
|
Figueira TR, Barros MH, Camargo AA, Castilho RF, Ferreira JCB, Kowaltowski AJ, Sluse FE, Souza-Pinto NC, Vercesi AE. Mitochondria as a source of reactive oxygen and nitrogen species: from molecular mechanisms to human health. Antioxid Redox Signal 2013; 18:2029-74. [PMID: 23244576 DOI: 10.1089/ars.2012.4729] [Citation(s) in RCA: 325] [Impact Index Per Article: 27.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Mitochondrially generated reactive oxygen species are involved in a myriad of signaling and damaging pathways in different tissues. In addition, mitochondria are an important target of reactive oxygen and nitrogen species. Here, we discuss basic mechanisms of mitochondrial oxidant generation and removal and the main factors affecting mitochondrial redox balance. We also discuss the interaction between mitochondrial reactive oxygen and nitrogen species, and the involvement of these oxidants in mitochondrial diseases, cancer, neurological, and cardiovascular disorders.
Collapse
Affiliation(s)
- Tiago R Figueira
- Department of Clinical Pathology, Faculty of Medical Sciences, State University of Campinas, Campinas, Brazil
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Heurteaux C, Widmann C, Moha ou Maati H, Quintard H, Gandin C, Borsotto M, Veyssiere J, Onteniente B, Lazdunski M. NeuroAiD: properties for neuroprotection and neurorepair. Cerebrovasc Dis 2013; 35 Suppl 1:1-7. [PMID: 23548913 DOI: 10.1159/000346228] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Treatments for stroke and other brain injuries are limited. NeuroAiD has been shown to be beneficial in clinical studies. We reviewed the pharmacological effects of NeuroAiD on the normal and ischemic brain and neurons. METHODS In vivo and in vitro experiments using mouse model of stroke (focal ischemia), rat model of cardiac arrest (global ischemia) and cortical neurons in culture were reviewed and summarized. RESULTS NeuroAiD improved survival, attenuated infarct size, improved functional recovery in the model of focal ischemia, and protected neurons against glutamate-induced injury. Furthermore, it enhanced cognitive recovery by reducing hippocampal CA1 cell degeneration, DNA fragmentation, Bax expression and ma-londialdehyde release in the model of global ischemia. Activation of the Akt survival pathway and opening of KATP channels may contribute to the neuroprotective properties of NeuroAiD. NeuroAiD increased BDNF expression and induced proliferation of cells which differentiate and mature into neurons. It enhanced rosette formation of human embryonic stem cells. NeuroAiD-treated embryonic cortical neurons developed into neurons with longer neurites, denser outgrowths and networks, and more synaptic release sites. CONCLUSIONS NeuroAiD demonstrated both neuroprotective and neuroregenerative properties in rodent models of focal and global ischemia and in cortical cell cultures. These properties would be important for developing a treatment strategy in reducing the long-term disability of stroke, cardiac arrest and other brain injuries.
Collapse
Affiliation(s)
- C Heurteaux
- Institut de Pharmacologie Moléculaire et Cellulaire, Centre National de la Recherche Scientifique (CNRS), Université Nice Sophia Antipolis, Valbonne, France
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Hu J, Luo CX, Chu WH, Shan YA, Qian ZM, Zhu G, Yu YB, Feng H. 20-Hydroxyecdysone protects against oxidative stress-induced neuronal injury by scavenging free radicals and modulating NF-κB and JNK pathways. PLoS One 2012; 7:e50764. [PMID: 23239983 PMCID: PMC3519785 DOI: 10.1371/journal.pone.0050764] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2012] [Accepted: 10/24/2012] [Indexed: 01/22/2023] Open
Abstract
Oxidative stress plays an important role in the pathological processes of ischemic brain damage. Many antioxidants have been shown to protect against cerebral ischemia injury by inhibiting oxidative stress both in vitro and in vivo. 20-Hydroxyecdysone (20E), an ecdysteroid hormone, exhibits antioxidative effects. For the work described in this paper, we used an in vitro oxidative damage model and an in vivo ischemic model of middle cerebral artery occlusion (MCAO) to investigate the neuroprotective effects of 20E and the mechanisms related to these effects. Treatment of cells with H2O2 led to neuronal injury, intracellular ROS/RNS generation, mitochondrial membrane potential dissipation, cellular antioxidant potential descent, an increase in malondialdehyde (MDA) and an elevation of intracellular [Ca2+], all of which were markedly attenuated by 20E. Inhibition of the activation of the ASK1-MKK4/7-JNK stress signaling pathway and cleaved caspase-3 induced by oxidative stress were involved in the neuroprotection afforded by 20E. In addition, 20E reduced the expression of iNOS protein by inhibition of NF-κB activation. The neuroprotective effect of 20E was also confirmed in vivo. 20E significantly decreased infarct volume and the neurological deficit score, restored antioxidant potential and inhibited the increase in MDA and TUNEL-positive and cleaved caspase-3-positive cells in the cerebral cortex in MCAO rats. Together, these results support that 20E protects against cerebral ischemia injury by inhibiting ROS/RNS production and modulating oxidative stress-induced signal transduction pathways.
Collapse
Affiliation(s)
- Jun Hu
- Department of Neurosurgery, Southwest Hospital, Third Military Medical University, Chongqing, People's Republic of China
| | - Chun Xia Luo
- Department of Neurosurgery, Southwest Hospital, Third Military Medical University, Chongqing, People's Republic of China
| | - Wei Hua Chu
- Department of Neurosurgery, Southwest Hospital, Third Military Medical University, Chongqing, People's Republic of China
| | - You An Shan
- Department of Neurosurgery, Southwest Hospital, Third Military Medical University, Chongqing, People's Republic of China
| | - Zhong-Ming Qian
- Department of Neurosurgery, Southwest Hospital, Third Military Medical University, Chongqing, People's Republic of China
| | - Gang Zhu
- Department of Neurosurgery, Southwest Hospital, Third Military Medical University, Chongqing, People's Republic of China
| | - Yan Bing Yu
- Department of Neurosurgery, China-Japan Friendship Hospital, 2, Beijing, People's Republic of China
- * E-mail: (YBY); (HF)
| | - Hua Feng
- Department of Neurosurgery, Southwest Hospital, Third Military Medical University, Chongqing, People's Republic of China
- * E-mail: (YBY); (HF)
| |
Collapse
|
22
|
Sanderson TH, Reynolds CA, Kumar R, Przyklenk K, Hüttemann M. Molecular mechanisms of ischemia-reperfusion injury in brain: pivotal role of the mitochondrial membrane potential in reactive oxygen species generation. Mol Neurobiol 2012; 47:9-23. [PMID: 23011809 DOI: 10.1007/s12035-012-8344-z] [Citation(s) in RCA: 499] [Impact Index Per Article: 38.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2012] [Accepted: 08/27/2012] [Indexed: 12/20/2022]
Abstract
Stroke and circulatory arrest cause interferences in blood flow to the brain that result in considerable tissue damage. The primary method to reduce or prevent neurologic damage to patients suffering from brain ischemia is prompt restoration of blood flow to the ischemic tissue. However, paradoxically, restoration of blood flow causes additional damage and exacerbates neurocognitive deficits among patients who suffer a brain ischemic event. Mitochondria play a critical role in reperfusion injury by producing excessive reactive oxygen species (ROS) thereby damaging cellular components, and initiating cell death. In this review, we summarize our current understanding of the mechanisms of mitochondrial ROS generation during reperfusion, and specifically, the role the mitochondrial membrane potential plays in the pathology of cerebral ischemia/reperfusion. Additionally, we propose a temporal model of ROS generation in which posttranslational modifications of key oxidative phosphorylation (OxPhos) proteins caused by ischemia induce a hyperactive state upon reintroduction of oxygen. Hyperactive OxPhos generates high mitochondrial membrane potentials, a condition known to generate excessive ROS. Such a state would lead to a "burst" of ROS upon reperfusion, thereby causing structural and functional damage to the mitochondria and inducing cell death signaling that eventually culminate in tissue damage. Finally, we propose that strategies aimed at modulating this maladaptive hyperpolarization of the mitochondrial membrane potential may be a novel therapeutic intervention and present specific studies demonstrating the cytoprotective effect of this treatment modality.
Collapse
Affiliation(s)
- Thomas H Sanderson
- Cardiovascular Research Institute, Wayne State University School of Medicine, Detroit, MI 48201, USA.
| | | | | | | | | |
Collapse
|
23
|
Arce C, Diaz-Castroverde S, Canales MJ, Marco-Contelles J, Samadi A, Oset-Gasque MJ, González MP. Drugs for stroke: action of nitrone (Z)-N-(2-bromo-5-hydroxy-4-methoxybenzylidene)-2-methylpropan-2-amine oxide on rat cortical neurons in culture subjected to oxygen-glucose-deprivation. Eur J Med Chem 2012; 55:475-9. [PMID: 22858224 DOI: 10.1016/j.ejmech.2012.07.032] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2012] [Accepted: 07/17/2012] [Indexed: 11/19/2022]
Abstract
The action of (Z)-N-(2-bromo-5-hydroxy-4-methoxybenzylidene)-2-methylpropan-2-amine oxide (RP6) on rat cortical neurons in culture, under oxygen-glucose-deprivation conditions, is reported. Cortical neurons in culture were treated during 1 h with OGD. After, they were placed under normal conditions during 24 h (reperfusion) in absence and presence of RP6. Different parameters were measured under each condition (control, 1 h OGD and 1 h OGD + reperfusion in absence and presence of RP6). RP6 protects neurons against ROS generation, lipid peroxidation levels, LDH release and mitochondrial membrane potential alteration, when administered during reperfusion after the OGD damage. Consequently, these results show that nitrone RP6 protects cells against ischemia injury produced during the reoxygenation, and could be a potential drug for the ictus therapy.
Collapse
Affiliation(s)
- Carmen Arce
- Departamento de Bioquímica y Biología Molecular II, Facultad de Farmacia, Universidad Complutense, 28040 Madrid, Spain
| | | | | | | | | | | | | |
Collapse
|
24
|
Gouriou Y, Demaurex N, Bijlenga P, De Marchi U. Mitochondrial calcium handling during ischemia-induced cell death in neurons. Biochimie 2011; 93:2060-7. [PMID: 21846486 DOI: 10.1016/j.biochi.2011.08.001] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2011] [Accepted: 08/03/2011] [Indexed: 12/18/2022]
Abstract
Mitochondria sense and shape cytosolic Ca(2+) signals by taking up and subsequently releasing Ca(2+) ions during physiological and pathological Ca(2+) elevations. Sustained elevations in the mitochondrial matrix Ca(2+) concentration are increasingly recognized as a defining feature of the intracellular cascade of lethal events that occur in neurons during cerebral ischemia. Here, we review the recently identified transport proteins that mediate the fluxes of Ca(2+) across mitochondria and discuss the implication of the permeability transition pore in decoding the abnormally sustained mitochondrial Ca(2+) elevations that occur during cerebral ischemia.
Collapse
Affiliation(s)
- Yves Gouriou
- Department of Cell Physiology and Metabolism, University of Geneva, rue Michel-Servet 1, Genève, Switzerland
| | | | | | | |
Collapse
|
25
|
Quintard H, Borsotto M, Veyssiere J, Gandin C, Labbal F, Widmann C, Lazdunski M, Heurteaux C. MLC901, a traditional Chinese medicine protects the brain against global ischemia. Neuropharmacology 2011; 61:622-31. [PMID: 21605573 DOI: 10.1016/j.neuropharm.2011.05.003] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2011] [Revised: 04/26/2011] [Accepted: 05/05/2011] [Indexed: 11/17/2022]
Abstract
Global ischemia leads to damage in the hippocampal CA1 region and is associated with behavioral deficits. NeuroAid (MLC601 and MLC901), a Traditional Chinese Medicine is used in China for patients after stroke. We have investigated here the effects of MLC901 on brain injury and deficits after global ischemia in the rat. Global ischemia induced by four-vessel occlusion resulted in degeneration of CA1 neurons. MLC901 (0.074 mg/ml) prevented both necrosis and apoptosis of neurons up to 3 h after ischemia. These positive MLC901 effects were associated with a decrease in Bax expression and in levels of the lipid peroxidation product malondialdehyde. Using the PI3-kinase inhibitor LY294002 we also demonstrated the critical role of the Akt pathway in MLC901-mediated neuroprotection. MLC901 enhanced neurogenesis. Furthermore, MLC901 improved functional recovery of rats after global ischemia as assessed by the Morris water maze. In this test MLC901 reduced the increase in escape latency and in swim distance induced by ischemia. MLC901 also improved post-ischemic grip strength. If observations made with rats can be extended to humans, then MLC901 will represent a novel therapeutic strategy after cardiac arrest with a clinically interesting time window of protection.
Collapse
Affiliation(s)
- H Quintard
- Institut de Pharmacologie Moléculaire et Cellulaire, Centre National de la Recherche Scientifique (CNRS), Université Nice Sophia Antipolis, Valbonne, France
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Zheng H, Lapointe J, Hekimi S. Lifelong protection from global cerebral ischemia and reperfusion in long-lived Mclk1(+/)(-) mutants. Exp Neurol 2010; 223:557-65. [PMID: 20170652 PMCID: PMC4053415 DOI: 10.1016/j.expneurol.2010.02.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2009] [Revised: 02/01/2010] [Accepted: 02/09/2010] [Indexed: 01/07/2023]
Abstract
To achieve a long life span, animals must be resistant to various injuries as well as avoid or delay lethality from age-dependent diseases. Reduced expression of the mitochondrial enzyme CLK-1/MCLK1 (a.k.a. Coq7), a mitochondrial hydroxylase that is necessary for the biosynthesis of ubiquinone (UQ), extends lifespan in Caenorhabditiselegans and in mice. Here, we show that long-lived Mclk1(+/)(-) mutants have enhanced resistance to neurological damage following global cerebral ischemia-reperfusion (I/R) injury induced by transient bilateral common carotid artery occlusion (BCCAO). Both young ( approximately 100days old) and relatively aged ( approximately 450days old) mutants display increased resistance as indicated by a significant decrease in the amount of degenerating cells observed in forebrain cortex and in hippocampal areas after ischemia and reperfusion. Furthermore, less oxidative damage resulting from the procedure was measured in the brain of young Mclk1(+/)(-) animals. The finding that both young and old mutants are protected indicates that this is a basic phenotype of these mutants and not a secondary consequence of their slow rate of aging. Thus, the partial resistance to I/R injury suggests that Mclk1(+/)(-) mutants have an enhanced recovery potential following age-dependant vascular accidents, which correlates well with their longer survival. By relating this neuroprotective effect to previously reported characteristics of the Mclk1(+/)(-) phenotype, including altered mitochondrial metabolism and increased HIF-1alpha expression, this study establishes these mutants as useful models to analyze the mechanisms underlying tolerance to ischemia, particularly those associated with ischemic preconditioning, as well as to clarify the relation between aging and age-dependent diseases.
Collapse
Affiliation(s)
- Huaien Zheng
- Department of Biology, McGill University, 1205 Avenue Docteur Penfield, Montréal, H3A 1B1, Canada
| | - Jérôme Lapointe
- Department of Biology, McGill University, 1205 Avenue Docteur Penfield, Montréal, H3A 1B1, Canada
| | - Siegfried Hekimi
- Department of Biology, McGill University, 1205 Avenue Docteur Penfield, Montréal, H3A 1B1, Canada
| |
Collapse
|
27
|
Wang X, Michaelis EK. Selective neuronal vulnerability to oxidative stress in the brain. Front Aging Neurosci 2010; 2:12. [PMID: 20552050 PMCID: PMC2874397 DOI: 10.3389/fnagi.2010.00012] [Citation(s) in RCA: 443] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2009] [Accepted: 03/11/2010] [Indexed: 12/21/2022] Open
Abstract
Oxidative stress (OS), caused by the imbalance between the generation and detoxification of reactive oxygen and nitrogen species (ROS/RNS), plays an important role in brain aging, neurodegenerative diseases, and other related adverse conditions, such as ischemia. While ROS/RNS serve as signaling molecules at physiological levels, an excessive amount of these molecules leads to oxidative modification and, therefore, dysfunction of proteins, nucleic acids, and lipids. The response of neurons to this pervasive stress, however, is not uniform in the brain. While many brain neurons can cope with a rise in OS, there are select populations of neurons in the brain that are vulnerable. Because of their selective vulnerability, these neurons are usually the first to exhibit functional decline and cell death during normal aging, or in age-associated neurodegenerative diseases, such as Alzheimer's disease. Understanding the molecular and cellular mechanisms of selective neuronal vulnerability (SNV) to OS is important in the development of future intervention approaches to protect such vulnerable neurons from the stresses of the aging process and the pathological states that lead to neurodegeneration. In this review, the currently known molecular and cellular factors that contribute to SNV to OS are summarized. Included among the major underlying factors are high intrinsic OS, high demand for ROS/RNS-based signaling, low ATP production, mitochondrial dysfunction, and high inflammatory response in vulnerable neurons. The contribution to the selective vulnerability of neurons to OS by other intrinsic or extrinsic factors, such as deficient DNA damage repair, low calcium-buffering capacity, and glutamate excitotoxicity, are also discussed.
Collapse
Affiliation(s)
- Xinkun Wang
- Higuchi Biosciences Center, The University of Kansas Lawrence, KS, USA
| | | |
Collapse
|
28
|
Carmen A, José Luis A, Eduardo SM, Ma Jesús OG, Ma Pilar G. Added after Anoxia-Reoxigenation Stress, Genistein Rescues from Death the Rat Embryo Cortical Neurons. ACTA ACUST UNITED AC 2010. [DOI: 10.4236/nm.2010.12008] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
29
|
Gao X, Zheng CY, Yang L, Tang XC, Zhang HY. Huperzine A protects isolated rat brain mitochondria against beta-amyloid peptide. Free Radic Biol Med 2009; 46:1454-62. [PMID: 19272446 DOI: 10.1016/j.freeradbiomed.2009.02.028] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2008] [Revised: 01/19/2009] [Accepted: 02/13/2009] [Indexed: 01/09/2023]
Abstract
Our previous work in cells and animals showed that mitochondria are involved in the neuroprotective effect of huperzine A (HupA). In this study, the effects of HupA on isolated rat brain mitochondria were investigated. In addition to inhibiting the Abeta(25-35) (40 microM)-induced decrease in mitochondrial respiration, adenosine 5'-triphosphate (ATP) synthesis, enzyme activity, and transmembrane potential, HupA (0.01 or 0.1 microM) effectively prevented Abeta-induced mitochondrial swelling, reactive oxygen species increase, and cytochrome c release. More interestingly, administration of HupA to isolated mitochondria promoted the rate of ATP production and blocked mitochondrial swelling caused by normal osmosis. These results indicate that HupA protects mitochondria against Abeta at least in part by preserving membrane integrity and improving energy metabolism. These direct effects on mitochondria further extend the noncholinergic functions of HupA.
Collapse
Affiliation(s)
- Xin Gao
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Zhangjiang Hi-Tech Park, Shanghai 201203, People's Republic of China
| | | | | | | | | |
Collapse
|
30
|
Zhang S, Ding JH, Zhou F, Wang ZY, Zhou XQ, Hu G. Iptakalim ameliorates MPP+-induced astrocyte mitochondrial dysfunction by increasing mitochondrial complex activity besides opening mitoK(ATP) channels. J Neurosci Res 2009; 87:1230-9. [PMID: 19006086 DOI: 10.1002/jnr.21931] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
In addition to the established role of the mitochondrion in energy metabolism, regulation of cell death has been regarded as a major function of this organelle. Our previous studies have demonstrated that iptakalim (IPT), a novel ATP-sensitive potassium channel (K(ATP) channel) opener, protects against 1-methyl-4-phenyl-pyridinium ion (MPP+)-induced astrocyte apoptosis via mitochondria and mitogen-activated protein kinase signal pathways. The present study aimed to investigate whether IPT can protect astrocyte mitochondria against MPP+-induced mitochondrial dysfunction. We showed that treatment with IPT could ameliorate the inhibitory effect of MPP+ on mitochondrial respiration and ATP production by using mitochondrial complex I-supported substrates. IPT could also inhibit the increased production of mitochondrial reactive oxygen species (ROS) and the release of cytochrome c from mitochondria induced by MPP+. However, mitochondrial ATP-sensitive potassium (mitoK(ATP)) channel blocker 5-hydroxydecanoate (5-HD) could partly abolish all of the above effects of IPT. Because mitochondrial complex dysfunction impairs mitochondrial respiration and ATP production, a further experiment was undertaken to study the effects of IPT on the activity of mitochondrial complex (COX) I and COX IV. It was found that IPT inhibited the decrease in mitochondrial COX I and COX IV activity induced by MPP+, but 5-HD failed to abolish these effects. Taken together, these findings suggest that IPT may protect astrocyte mitochondrial function by regulating complex activity in addition to opening mitoK(ATP) channels.
Collapse
Affiliation(s)
- Shu Zhang
- Jiangsu Key Laboratory of Neurodegeneration, Department of Pharmacology, Nanjing Medical University, Nanjing, Jiangsu, Peoples Republic of China
| | | | | | | | | | | |
Collapse
|
31
|
Estrada FS, Hernandez VS, Medina MP, Corona-Morales AA, Gonzalez-Perez O, Vega-Gonzalez A, Zhang L. Astrogliosis is temporally correlated with enhanced neurogenesis in adult rat hippocampus following a glucoprivic insult. Neurosci Lett 2009; 459:109-14. [PMID: 19446003 DOI: 10.1016/j.neulet.2009.05.016] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2009] [Revised: 04/23/2009] [Accepted: 05/06/2009] [Indexed: 11/28/2022]
Abstract
2-Deoxy-d-glucose (2-DG) administration causes transient depletion of glucose derivates and ATP. Hence, it can be used in a model system to study the effects of a mild glycoprivic brain insult mimicking transient hypoglycemia, which often occurs when insulin or oral hypoglycemic agents are administered for diabetes control. In the present study, the effect of a single 2-DG application (500mg/kg, a clinically applicable dose) on glial reactivity and neurogenesis in adult rat hippocampus was examined, as well as a possible temporal correlation between these two phenomena. Post-insult (PI) glial reactivity time course was assessed by immunoreaction against glial-fibrillary acidic protein (GFAP) during the following 5 consecutive days. A clear increase of GFAP immunoreactivity in hilus was observed from 48 to 96h PI. Moreover, enhanced labeling of long radial processes in the granule cell layer adjacent to hilus was evidenced. On the other hand, a transient increase of progenitor cell proliferation was detected in the subgranular zone, prominently at 48h PI, coinciding with the temporal peak of glial activation. This increase resulted in an augment of neuroblasts double labeled with 5-bromo-deoxyuridine (BrdU) and with double cortin (DCX) at day 7 PI. Around half of these cells survived 28 days showing matured neuronal phenotype double labeled by BrdU and a neuronal specific nuclear protein marker (NeuN). These findings suggest that a transient neuroglycoprivic state exerts a short-term effect on glial activation that possibly triggers a long-term effect on neurogenesis in hippocampus.
Collapse
Affiliation(s)
- Felipe S Estrada
- Departamento de Fisiología, Facultad de Medicina, Universidad Nacional Autónoma de México, Av. Universidad 3000, México D. F., 04510, Mexico
| | | | | | | | | | | | | |
Collapse
|
32
|
Racay P, Tatarkova Z, Chomova M, Hatok J, Kaplan P, Dobrota D. Mitochondrial calcium transport and mitochondrial dysfunction after global brain ischemia in rat hippocampus. Neurochem Res 2009; 34:1469-78. [PMID: 19252983 DOI: 10.1007/s11064-009-9934-7] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/12/2009] [Indexed: 01/24/2023]
Abstract
Here we report effect of ischemia-reperfusion on mitochondrial Ca2+ uptake and activity of complexes I and IV in rat hippocampus. By performing 4-vessel occlusion model of global brain ischemia, we observed that 15 min ischemia led to significant decrease of mitochondrial capacity to accumulate Ca2+ to 80.8% of control whereas rate of Ca2+ uptake was not significantly changed. Reperfusion did not significantly change mitochondrial Ca2+ transport. Ischemia induced progressive inhibition of complex I, affecting final electron transfer to decylubiquinone. Minimal activity of complex I was observed 24 h after ischemia (63% of control). Inhibition of complex IV activity to 80.6% of control was observed 1 h after ischemia. To explain the discrepancy between impact of ischemia on rate of Ca2+ uptake and activities of both complexes, we performed titration experiments to study relationship between inhibition of particular complex and generation of mitochondrial transmembrane potential (DeltaPsi(m)). Generation of a threshold curves showed that complex I and IV activities must be decreased by approximately 40, and 60%, respectively, before significant decline in DeltaPsi(m) was documented. Thus, mitochondrial Ca2+ uptake was not significantly affected by ischemia-reperfusion, apparently due to excess capacity of the complexes I and IV. Inhibition of complex I is favourable of reactive oxygen species (ROS) generation. Maximal oxidative modification of membrane proteins was documented 1 h after ischemia. Although enhanced formation of ROS might contribute to neuronal injury, depressed activities of complex I and IV together with unaltered rate of Ca2+ uptake are conditions favourable of initiation of other cell degenerative pathways like opening of mitochondrial permeability transition pore or apoptosis initiation, and might represent important mechanism of ischemic damage to neurones.
Collapse
Affiliation(s)
- Peter Racay
- Institute of Biochemistry, Jessenius Faculty of Medicine, Comenius University, Mala Hora 4, 03601 Martin, Slovak Republic.
| | | | | | | | | | | |
Collapse
|
33
|
Zheng CY, Zhang HY, Tang XC. Huperzine A attenuates mitochondrial dysfunction after middle cerebral artery occlusion in rats. J Neurosci Res 2008; 86:2432-40. [DOI: 10.1002/jnr.21681] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
34
|
Kuhad A, Sethi R, Chopra K. Lycopene attenuates diabetes-associated cognitive decline in rats. Life Sci 2008; 83:128-34. [DOI: 10.1016/j.lfs.2008.05.013] [Citation(s) in RCA: 116] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2008] [Revised: 04/16/2008] [Accepted: 05/25/2008] [Indexed: 12/31/2022]
|
35
|
Genistein attenuates oxidative stress and neuronal damage following transient global cerebral ischemia in rat hippocampus. Neurosci Lett 2008; 438:116-20. [DOI: 10.1016/j.neulet.2008.04.058] [Citation(s) in RCA: 97] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2008] [Revised: 04/03/2008] [Accepted: 04/07/2008] [Indexed: 11/24/2022]
|
36
|
Li JM, Mogi M, Iwanami J, Min LJ, Tsukuda K, Sakata A, Fujita T, Iwai M, Horiuchi M. Temporary pretreatment with the angiotensin II type 1 receptor blocker, valsartan, prevents ischemic brain damage through an increase in capillary density. Stroke 2008; 39:2029-36. [PMID: 18436887 DOI: 10.1161/strokeaha.107.503458] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND AND PURPOSE We investigated the effect of temporary treatment with a nonhypotensive dose of valsartan on ischemic brain damage in C57BL/6 mice. METHODS We separated the mice into 3 groups of valsartan treatment before middle cerebral artery (MCA) occlusion: (1) for 4 weeks: Val (2W, 2W); (2) for 2 weeks followed by its cessation for 2 weeks: Val (2W, -); and (3) no treatment for 4 weeks: Val (-, -). RESULTS Ischemic volume, DNA damage, superoxide production, and mRNA levels of monocyte chemoattractant protein-1 and tumor necrosis factor-alpha on the ipsilateral side after 24 hours of MCA occlusion were significantly reduced in both Val (2W, 2W) and Val (2W, -) mice compared with those in Val (-, -) mice, whereas these parameters were larger in Val (2W, -) mice than in Val (2W, 2W) mice. Moreover, mice in both the Val (2W, 2W) and Val (2W, -) groups exhibited an increase in cerebral blood flow in the peripheral territory of the MCA 1 hour after MCA occlusion, with increases in endothelial nitric oxide synthase activation and nitric oxide production. Before MCA occlusion, treatment with valsartan did not influence superoxide production or mRNA levels of monocyte chemoattractant protein-1 and tumor necrosis factor-alpha in the brain. However, the capillary density in the brain in both Val (2W, 2W) and Val (2W, -) mice was increased before MCA occlusion. CONCLUSIONS Our results suggest that temporary valsartan treatment could protect against ischemic brain damage even after its cessation, at least in part due to an increase in capillary density.
Collapse
Affiliation(s)
- Jian-Mei Li
- Department of Molecular Cardiovascular Biology and Pharmacology, Ehime University Graduate School of Medicine, Shitsukawa, Tohon, Ehime 791-0295, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Kuhad A, Chopra K. Effect of sesamol on diabetes-associated cognitive decline in rats. Exp Brain Res 2007; 185:411-20. [PMID: 17955223 DOI: 10.1007/s00221-007-1166-y] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2007] [Accepted: 09/30/2007] [Indexed: 11/25/2022]
Abstract
Emerging epidemiologic data indicates that diabetes is a potential predisposing factor for neuropsychiatric deficits as stroke, cerebrovascular diseases, diabetes-associated cognitive decline, depression and anxiety. Diabetes-associated cognitive decline, characterized by impaired cognitive functions and neurochemical and structural abnormalities, involves direct neuronal damage caused by intracellular glucose. The present study was designed to investigate the effect of sesamol (3,4-methylenedioxyphenol), a phenolic antioxidant and anti-inflammatory molecule, on cognitive functions, oxidative stress and inflammation in diabetic rats. Learning and memory behaviors were investigated using a spatial version of the Morris water maze test. Acetylcholinesterase activity, a marker of cholinergic dysfunction, was increased by 80% in the cerebral cortex of diabetic rats. There was 107 and 121% rise in thiobarbituric acid reactive substance levels in cerebral cortex and hippocampus of diabetic rats, respectively. Reduced glutathione levels and enzymatic activities of superoxide dismutase and catalase were decreased in both cerebral cortex and hippocampal regions of diabetic rat brain. Nitrite levels in cerebral cortex and hippocampus was increased by 138 and 109%, respectively. Serum tumor necrosis factor-alpha, a marker for inflammation, was found to increase by 1,100% in diabetic rats. Chronic treatment with sesamol (2, 4 and 8 mg/kg; p.o.) significantly and dose-dependently attenuated cognitive deficit, reduced acetylcholinesterase, oxidative stress and inflammation in diabetic rats. The results emphasize the involvement of oxidative stress and inflammation in the development of cognitive impairment in diabetic animals and point towards the therapeutic potential of sesamol in diabetes-associated cognitive decline.
Collapse
Affiliation(s)
- Anurag Kuhad
- Pharmacology Research Laboratory, University Institute of Pharmaceutical Sciences, UGC Centre for Advanced Studies, Panjab University, Chandigarh, 160014, India
| | | |
Collapse
|
38
|
Kuhad A, Chopra K. Curcumin attenuates diabetic encephalopathy in rats: behavioral and biochemical evidences. Eur J Pharmacol 2007; 576:34-42. [PMID: 17822693 DOI: 10.1016/j.ejphar.2007.08.001] [Citation(s) in RCA: 160] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2007] [Revised: 07/31/2007] [Accepted: 08/06/2007] [Indexed: 01/23/2023]
Abstract
Emerging epidemiological data indicates that diabetes is a potential predisposing factor for neuropsychiatric deficits as stroke, cerebrovascular diseases, diabetic encephalopathy, depression and anxiety. Diabetic encephalopathy, characterized by impaired cognitive functions and neurochemical and structural abnormalities, involves direct neuronal damage caused by intracellular glucose. Curcumin, a well-established phenolic antioxidant and anti-inflammatory molecule, is capable of playing an important role against amyloid and dendritic pathology and thus has neuroprotective properties. The aim of the present study was to explore the effect of curcumin (60 mg/kg; p.o.) on cognitive functions, oxidative stress and inflammation in diabetic rats. Learning and memory behaviors were investigated using a spatial version of the Morris water maze test. Acetylcholinesterase activity, a marker of cholinergic dysfunction, was increased by 80% in the cerebral cortex of diabetic rats. There was 107% and 121% rise in thiobarbituric acid reactive substance levels in cerebral cortex and hippocampus of diabetic rats, respectively. Reduced glutathione level and enzymatic activities of superoxide dismutase and catalase were decreased in both cerebral cortex and hippocampal regions of diabetic rat brain. Nitrite levels in cerebral cortex and hippocampus were increased by 112% and 94% respectively. Serum TNF-alpha, a marker for inflammation, was found to increase by 1100% in diabetic rats. Chronic treatment with curcumin (60 mg/kg; p.o.) significantly attenuated cognitive deficit, cholinergic dysfunction, oxidative stress and inflammation in diabetic rats. The results emphasize the involvement of cholinergic dysfunction, oxidative stress and inflammation in the development of cognitive impairment in diabetic animals and point towards the potential of curcumin as an adjuvant therapy to conventional anti-hyperglycemic regimens for the prevention and treatment of diabetic encephalopathy.
Collapse
Affiliation(s)
- Anurag Kuhad
- Pharmacology Research Laboratory, University Institute of Pharmaceutical Sciences, UGC Center for Advanced Studies, Panjab University, Chandigarh-160 014, India
| | | |
Collapse
|
39
|
Yamashiro K, Liu R, Maeda M, Hattori N, Urabe T. Induction and selective accumulation of mutant ubiquitin in CA1 pyramidal neurons after transient global ischemia. Neuroscience 2007; 147:71-9. [PMID: 17512670 DOI: 10.1016/j.neuroscience.2007.03.048] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2006] [Revised: 03/12/2007] [Accepted: 03/13/2007] [Indexed: 11/18/2022]
Abstract
Accumulation of mutant ubiquitin-B (UBB(+1)) in neurons is considered the hallmark of proteasomal dysfunction in neurodegenerative disorders, however no such evidence in ischemic brain has been reported. We investigated the contribution of UBB(+1) in delayed neuronal death after transient global ischemia. Transient global ischemia was achieved by occlusion of bilateral common carotid arteries for 5 min and reperfusion in male Mongolian gerbils (n=6 per each time point). In the CA1 region, UBB(+1) immunoreactivity appeared in the cytoplasm of pyramidal cells at 30 min post-ischemia, and the density of these neurons increased at day 2 (P<0.001) and further increased at day 4 post-ischemia. Terminal deoxynucleotidyl transferase (TdT)-mediated dUTP-biotin nick end labeling (TUNEL)-positive (apoptotic) cells appeared selectively in the CA1 region at day 3 and their density increased further at day 4 post-ischemia (P<0.001). In contrast, UBB(+1) immunoreactivity was only transiently detected from 30 min to 1 day post-ischemia in CA3, dentate gyrus, and frontal cortex, but disappeared at day 2 post-ischemia. No TUNEL-positive cells were observed in these three regions. UBB(+1) mRNA was detected by reverse transcription-polymerase chain reaction in every region of the hippocampus and frontal cortex of ischemic gerbils and even in the non-ischemic control animals, and its expression level was independent of brain region and time after ischemia. Our results indicate induction and selective accumulation of UBB(+1) protein in dying neurons of the CA1 region and suggest that UBB(+1) expression may be induced by proteasomal dysfunction after transient global ischemia.
Collapse
Affiliation(s)
- K Yamashiro
- Department of Neurology, Juntendo University School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | | | | | | | | |
Collapse
|
40
|
Moreira T, Cebers G, Pickering C, Ostenson CG, Efendic S, Liljequist S. Diabetic Goto-Kakizaki rats display pronounced hyperglycemia and longer-lasting cognitive impairments following ischemia induced by cortical compression. Neuroscience 2006; 144:1169-85. [PMID: 17175109 DOI: 10.1016/j.neuroscience.2006.10.054] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2006] [Revised: 09/07/2006] [Accepted: 10/27/2006] [Indexed: 01/04/2023]
Abstract
Hyperglycemia has been shown to worsen the outcome of brain ischemia in several animal models but few experimental studies have investigated impairments in cognition induced by ischemic brain lesions in hyperglycemic animals. The Goto-Kakizaki (GK) rat naturally develops type 2 diabetes characterized by mild hyperglycemia and insulin resistance. We hypothesized that GK rats would display more severe cerebral damage due to hyperglycemia-aggravated brain injury and, accordingly, more severe cognitive impairments. In this study, recovery of motor and cognitive functions of GK and healthy Wistar rats was examined following extradural compression (EC) of the sensorimotor cortex. For this purpose, tests of vestibulomotor function (beam-walking) and combined tests of motor function and learning (locomotor activity from day (D) 1 to D5, operant lever-pressing from D14 to D25) were used. EC consistently reduced cerebral blood flow in both strains. Anesthesia-challenge and EC resulted in pronounced hyperglycemia in GK but not in Wistar rats. Lower beam-walking scores, increased locomotor activity, impairments in long-term habituation and learning of operant lever-pressing were more pronounced and observed at later time-points in GK rats. Fluoro-Jade, a marker of irreversible neuronal degeneration, revealed consistent degeneration in the ipsilateral cortex, hippocampus and thalamus at 2, 7 and 14 days post-compression. The amount of degeneration in these structures was considerably higher in GK rats. Thus, GK rats exhibited marked hyperglycemia during EC, as well as longer-lasting behavioral deficits and increased neurodegeneration during recovery. The GK rat is thus an attractive model for neuropathologic and cognitive studies after ischemic brain injury in hyperglycemic rats.
Collapse
Affiliation(s)
- T Moreira
- Department of Clinical Neuroscience, Division of Drug Dependence Research Building L4a:00, Karolinska Institutet, SE-17177 Stockholm, Sweden.
| | | | | | | | | | | |
Collapse
|
41
|
Hunt NH, Golenser J, Chan-Ling T, Parekh S, Rae C, Potter S, Medana IM, Miu J, Ball HJ. Immunopathogenesis of cerebral malaria. Int J Parasitol 2006; 36:569-82. [PMID: 16678181 DOI: 10.1016/j.ijpara.2006.02.016] [Citation(s) in RCA: 181] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2005] [Revised: 02/09/2006] [Accepted: 02/17/2006] [Indexed: 01/20/2023]
Abstract
Malaria is one of the most important global health problems, potentially affecting more than one third of the world's population. Cerebral malaria (CM) is a deadly complication of Plasmodium falciparum infection, yet its pathogenesis remains incompletely understood. In this review, we discuss some of the principal pathogenic events that have been described in murine models of the disease and relate them to the human condition. One of the earliest events in CM pathogenesis appears to be a mild increase in the permeability to protein of the blood-brain barrier. Recent studies have shown a role for CD8+T cells in mediating damage to the microvascular endothelium and this damage can result in the leakage of cytokines, malaria antigens and other potentially harmful molecules across the blood-brain barrier into the cerebral parenchyma. We suggest that this, in turn, leads to the activation of microglia and the activation and apoptosis of astrocytes. The role of hypoxia in the pathogenesis of cerebral malaria is also discussed, with particular reference to the local reduction of oxygen consumption in the brain as a consequence of vascular obstruction, to cytokine-driven changes in glucose metabolism, and to cytopathic hypoxia. Interferon-gamma, a cytokine known to be produced in malaria infection, induces increased expression, by microvascular endothelial cells, of the haem enzyme indoleamine 2,3-dioxygenase, the first enzyme in the kynurenine pathway of tryptophan metabolism. Enhanced indoleamine 2,3-dioxygenase expression leads to increased production of a range of biologically active metabolites that may be part of a tissue protective response. Damage to astrocytes may result in reduced production of the neuroprotectant molecule kynurenic acid, leading to a decrease in its ratio relative to the neuroexcitotoxic molecule quinolinic acid, which might contribute to some of the neurological symptoms of cerebral malaria. Lastly, we discuss the role of other haem enzymes, cyclooxygenase-2, inducible nitric oxide synthase and haem oxygenase-1, as potentially being components of mechanisms that protect host tissue against the effects of cytokine- and leukocyte-mediated stress induced by malaria infection.
Collapse
Affiliation(s)
- Nicholas H Hunt
- Molecular Immunopathology Unit, Institute for Biomedical Research, University of Sydney, Sydney, NSW, Australia.
| | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Beresewicz M, Kowalczyk JE, Zabłocka B. Cytochrome c binds to inositol (1,4,5) trisphosphate and ryanodine receptors in vivo after transient brain ischemia in gerbils. Neurochem Int 2006; 48:568-71. [PMID: 16513219 DOI: 10.1016/j.neuint.2005.11.020] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2005] [Revised: 11/23/2005] [Accepted: 11/29/2005] [Indexed: 11/30/2022]
Abstract
Previously we have shown that the biphasic efflux of mitochondrial protein cytochrome c to cytoplasm is one of the important events of the delayed postichemic neuronal death. We concluded that early and transient appearance of cytochrome c in cytoplasm of cells recovering after ischemia was decisive for initiation of the pathological signaling cascade leading to neuronal death, but the precise mechanism remained unknown. In vitro cytochrome c was identified as a messenger that coordinates mitochondrial-endoplasmatic reticulum interactions that drive apoptosis. Here we show that in vivo cytochrome c interacts with inositol (1,4,5) trisphosphate receptor type 1 in gerbil hippocampus subjected to transient brain ischemia and short reperfusion. Moreover, cytochrome c binds also to ryanodine receptor type 2, the role of which in postischemic neuronal death is suggested. The complexes could be coimmunoprecipitated by antibodies against any of the two proteins. Our data verified that the mechanism observed in vitro applies to the pathological in vivo situation.
Collapse
Affiliation(s)
- Małgorzata Beresewicz
- Molecular Biology Unit, Mossakowski Medical Research Centre, PAS, 5 Pawińskiego, 02-106 Warsaw, Poland
| | | | | |
Collapse
|
43
|
Wang X, Pal R, Chen XW, Limpeanchob N, Kumar KN, Michaelis EK. High intrinsic oxidative stress may underlie selective vulnerability of the hippocampal CA1 region. ACTA ACUST UNITED AC 2005; 140:120-6. [PMID: 16137784 DOI: 10.1016/j.molbrainres.2005.07.018] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2005] [Revised: 06/08/2005] [Accepted: 07/09/2005] [Indexed: 10/25/2022]
Abstract
Oxidative stress (OS) causes extensive cell death in the CA1 but not the CA3 region of the hippocampus. We found that the CA1 region of hippocampus explants, cultured under normal conditions, had significantly higher superoxide levels and expressed both anti-oxidant genes and genes related to the generation of reactive oxygen species at significantly higher levels than the CA3. These observations were indicative of high intrinsic OS in CA1.
Collapse
Affiliation(s)
- Xinkun Wang
- Center for Neurobiology and Immunology Research, Higuchi Biosciences Center, 2099 Constant Avenue, The University of Kansas, Lawrence, KS 66047, USA
| | | | | | | | | | | |
Collapse
|
44
|
Abstract
BACKGROUND Reactive oxygen species (ROS) are mainly produced in mitochondria and are important contributors to many forms of cell death. ROS also function as second messengers within the cell and may constitute a signaling pathway from mitochondria to the cytoplasm and nucleus. The aim of the present study was to develop a protocol to detect changes in intra- and extramitochondrial releases of ROS, which could be used to analyze the role of mitochondria in cell signaling and cell death. METHODS Fluorescence-based assays were used to measure (a) total production of ROS, (b) intramitochondrial ROS, (c) extramitochondrial hydrogen peroxide, and (d) superoxide outside inverted (inside-out) submitochondrial particles. ROS generation in the samples was increased or decreased by the addition of different substrates, enzymes, and inhibitors of the electron transport chain. RESULTS The individual assays used were sensitive to increased (e.g., after addition of antimycin A; increased signal) and decreased (ROS scavenging; decreased signal) levels of ROS. In combination, the assays provided information about mitochondrial ROS generation and release dynamics from small samples of isolated mitochondria. CONCLUSIONS The combination of fluorescent techniques described is a useful tool to study the role of ROS in cell death and in cellular redox signaling.
Collapse
Affiliation(s)
- Gustav Mattiasson
- Laboratory for Experimental Brain Research, Wallenberg Neuroscience Center, Lund University, Lund, Sweden.
| |
Collapse
|
45
|
Ouyang YB, Giffard RG. Cellular neuroprotective mechanisms in cerebral ischemia: Bcl-2 family proteins and protection of mitochondrial function. Cell Calcium 2005; 36:303-11. [PMID: 15261486 DOI: 10.1016/j.ceca.2004.02.015] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2004] [Accepted: 02/18/2004] [Indexed: 10/26/2022]
Abstract
Mitochondria are central to brain cell response to ischemia, with critical roles in generation of ATP, production of free radicals, and regulation of apoptotic cell death. Changes in the permeability of the outer mitochondrial membrane to regulators of apoptosis can control ischemic cell death and this permeability is directly controlled by the Bcl-2 family of proteins. The Bcl-2 family regulate apoptosis by several mechanisms including affecting the formation of apoptotic protein-conducting pores in the outer mitochondrial membrane. The anti-apoptotic protein Bcl-2 improves neuron survival following various insults, and is protective even when administered after stroke onset in a rat model of focal ischemia. Despite intense study, the precise molecular mechanisms underlying protection by the anti-apoptotic members of the Bcl-2 family are not completely understood. This review focuses on the mechanisms by which Bcl-2 family members control the permeability of the mitochondrial membrane and influence other aspects of mitochondrial function after brain ischemia, concluding with discussion of the potential use of Bcl-2 for the treatment of cerebral ischemia.
Collapse
Affiliation(s)
- Yi-Bing Ouyang
- Department of Anesthesia, Stanford University School of Medicine, Grant Building S272, Stanford, CA 94305, USA
| | | |
Collapse
|
46
|
Iwai M, Liu HW, Chen R, Ide A, Okamoto S, Hata R, Sakanaka M, Shiuchi T, Horiuchi M. Possible Inhibition of Focal Cerebral Ischemia by Angiotensin II Type 2 Receptor Stimulation. Circulation 2004; 110:843-8. [PMID: 15289370 DOI: 10.1161/01.cir.0000138848.58269.80] [Citation(s) in RCA: 207] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Background—
The role of angiotensin II receptor subtypes was investigated in focal brain ischemia induced by middle cerebral artery (MCA) occlusion.
Methods and Results—
In
Agtr2
+
(wild-type) mice, MCA occlusion induced focal ischemia of ≈20% to 30% of the total area in coronal section of the brain. The ischemic area was significantly larger in angiotensin II type 2 receptor–deficient (
Agtr2
−
) mice than in
Agtr2
+
mice. The neurological deficit after MCA occlusion was also greater in
Agtr2
−
mice than in
Agtr2
+
mice. The decrease in surface cerebral blood flow after MCA occlusion was significantly exaggerated in the peripheral region of the MCA territory in
Agtr2
−
mice. Superoxide production and NADPH oxidase activity were enhanced in the ischemic area of the brain in
Agtr2
−
mice. An AT
1
receptor blocker, valsartan, at a nonhypotensive dose significantly inhibited the ischemic area, neurological deficit, and reduction of cerebral blood flow as well as superoxide production and NADPH oxidase activity in
Agtr2
+
mice. These inhibitory actions of valsartan were weaker in
Agtr2
−
mice.
Conclusions—
These results suggest that AT
2
receptor stimulation has a protective effect on ischemic brain lesions, at least partly through the modulation of cerebral blood flow and superoxide production.
Collapse
Affiliation(s)
- Masaru Iwai
- Department of Medical Biochemistry, Ehime University School of Medicine, Shigenobu, Onsen-gun, Ehime 791-0295, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Mrsić-Pelcić J, Pelcić G, Vitezić D, Antoncić I, Filipović T, Simonić A, Zupan G. Hyperbaric oxygen treatment: the influence on the hippocampal superoxide dismutase and Na+,K+-ATPase activities in global cerebral ischemia-exposed rats. Neurochem Int 2004; 44:585-94. [PMID: 15016473 DOI: 10.1016/j.neuint.2003.10.004] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2003] [Revised: 08/13/2003] [Accepted: 10/10/2003] [Indexed: 10/26/2022]
Abstract
The influence of hyperbaric oxygen (HBO) treatment on the activities of superoxide dismutase (SOD) and Na(+),K(+)-ATPase was determined during different time periods of reperfusion in rats exposed to global cerebral ischemia. Ischemic animals were either sacrificed or exposed to the first HBO treatment 2, 24, 48 or 168 h after ischemic insult (for SOD activities measurement) or immediately, 0.5, 1, 2, 6, 24, 48, 72 or 168 h after ischemic procedure (for Na(+),K(+)-ATPase activities measurement). Hyperbaric oxygenation procedure was repeated for seven consecutive days. The results of presented experiments demonstrated the statistically significant increase in the hippocampal SOD activity 24 and 48 h after global cerebral ischemia followed by a decrease in the enzymatic activity 168 h after ischemic insult. In the ischemic rats treated with HBO the level of hippocampal SOD activity was significantly higher after 168 h of reperfusion in comparison to the ischemic, non HBO-treated animals. In addition, it was found that global cerebral ischemia induced a statistically significant decrease of the hippocampal Na(+),K(+)-ATPase activity starting from 1 to 168 h of reperfusion. Maximal enzymatic inhibition was obtained 24 h after the ischemic damage. Decline in Na(+),K(+)-ATPase activity was prevented in the animals exposed to HBO treatment within the first 24 h of reperfusion. Our results suggest that global cerebral ischemia induces significant alterations in the hippocampal SOD and Na(+),K(+)-ATPase activities during different periods of reperfusion. Enhanced SOD activity and preserved Na(+),K(+)-ATPase activity within particular periods of reperfusion, could be indicators of a possible beneficial role of HBO treatment in severe brain ischemia.
Collapse
Affiliation(s)
- Jasenka Mrsić-Pelcić
- Department of Pharmacology, School of Medicine, University of Rijeka, Brace Branchetta 20/I 51000 Rijeka, Croatia.
| | | | | | | | | | | | | |
Collapse
|
48
|
Mattiasson G, Friberg H, Hansson M, Elmér E, Wieloch T. Flow cytometric analysis of mitochondria from CA1 and CA3 regions of rat hippocampus reveals differences in permeability transition pore activation. J Neurochem 2003; 87:532-44. [PMID: 14511130 DOI: 10.1046/j.1471-4159.2003.02026.x] [Citation(s) in RCA: 85] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Mitochondria are important in the pathophysiology of several neurodegenerative diseases, and mitochondrial production of reactive oxygen species (ROS), membrane depolarization, permeability changes and release of apoptogenic proteins are involved in these processes. Following brain insults, cell death often occurs in discrete regions of the brain, such as the subregions of the hippocampus. To analyse mitochondrial structure and function in such subregions, only small amounts of mitochondria are available. We developed a protocol for flow cytometric analysis of very small samples of isolated brain mitochondria, and analysed mitochondrial swelling and formation of ROS in mitochondria from the CA1 and CA3 regions of the hippocampus. Calcium-induced mitochondrial swelling was measured, and fluorescent probes were used to selectively stain mitochondria (nonyl acridine orange), to measure membrane potential (tetramethylrhodamine-methyl-ester, 1,1',3,3,3',3'-hexamethylindodicarbocyanine-iodide) and to measure production of ROS (2',7'-dichlorodihydrofluorescein-diacetate). We found that formation of ROS and mitochondrial permeability transition pore activation were higher in mitochondria from the CA1 than from the CA3 region, and propose that differences in mitochondrial properties partly underlie the selective vulnerability of the CA1 region to brain insults. We also conclude that flow cytometry is a useful tool to analyse the role of mitochondria in cell death processes.
Collapse
Affiliation(s)
- Gustav Mattiasson
- Laboratory for Experimental Brain Research, Wallenberg Neuroscience Center, Lund University, Lund, Sweden.
| | | | | | | | | |
Collapse
|