1
|
Olivares-Costa M, Fabio MC, De la Fuente-Ortega E, Haeger PA, Pautassi R. New therapeutics for the prevention or amelioration of fetal alcohol spectrum disorders: a narrative review of the preclinical literature. THE AMERICAN JOURNAL OF DRUG AND ALCOHOL ABUSE 2024; 50:749-770. [PMID: 39023419 DOI: 10.1080/00952990.2024.2361442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 05/25/2024] [Accepted: 05/26/2024] [Indexed: 07/20/2024]
Abstract
Background: Ethanol consumption during pregnancy induces enduring detrimental effects in the offspring, manifesting as a spectrum of symptoms collectively termed as Fetal Alcohol Spectrum Disorders (FASD). Presently, there is a scarcity of treatments for FASD.Objectives: To analyze current literature, emphasizing evidence derived from preclinical models, that could potentially inform therapeutic interventions for FASD.Methods: A narrative review was conducted focusing on four prospective treatments: nutritional supplements, antioxidants, anti-inflammatory compounds and environmental enrichment. The review also highlights innovative therapeutic strategies applied during early (e.g. folate administration, postnatal days 4-9) or late (e.g. NOX2 inhibitors given after weaning) postnatal stages that resulted in significant improvements in behavioral responses during adolescence (a critical period marked by the emergence of mental health issues in humans).Results: Our findings underscore the value of treatments centered around nutritional supplementation or environmental enrichment, aimed at mitigating oxidative stress and inflammation, implying shared mechanisms in FASD pathogenesis. Moreover, the review spotlights emerging evidence pertaining to the involvement of novel molecular components with potential pharmacological targets (such as NOX2, MCP1/CCR2, PPARJ, and PDE1).Conclusions: Preclinical studies have identified oxidative imbalance and neuroinflammation as relevant pathological mechanisms induced by prenatal ethanol exposure. The relevance of these mechanisms, which exhibit positive feedback loop mechanisms, appear to peak during early development and decreases in adulthood. These findings provide a framework for the future development of therapeutic avenues in the development of specific clinical treatments for FASD.
Collapse
Affiliation(s)
- Montserrat Olivares-Costa
- Departamento de Ciencias Biomédicas, Facultad de Medicina, Universidad Católica del Norte, Coquimbo, Chile
| | - María Carolina Fabio
- Instituto de Investigación Médica M. y M. Ferreyra, INIMEC-CONICET, Universidad Nacional de Córdoba, Córdoba, Argentina
- Facultad de Psicología, Universidad Nacional de Córdoba, Coquimbo, Chile
| | - Erwin De la Fuente-Ortega
- Departamento de Ciencias Biomédicas, Facultad de Medicina, Universidad Católica del Norte, Coquimbo, Chile
| | - Paola A Haeger
- Departamento de Ciencias Biomédicas, Facultad de Medicina, Universidad Católica del Norte, Coquimbo, Chile
- Millennium Nucleus of Neuroepigenetics and Plasticity (EpiNeuro), Santiago, Chile
| | - Ricardo Pautassi
- Instituto de Investigación Médica M. y M. Ferreyra, INIMEC-CONICET, Universidad Nacional de Córdoba, Córdoba, Argentina
- Facultad de Psicología, Universidad Nacional de Córdoba, Coquimbo, Chile
| |
Collapse
|
2
|
Bhadhprasit W, Kinoshita C, Matsumura N, Aoyama K. Erythroid Differentiation Regulator 1 as a Regulator of Neuronal GSH Synthesis. Antioxidants (Basel) 2024; 13:771. [PMID: 39061840 PMCID: PMC11274251 DOI: 10.3390/antiox13070771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 06/14/2024] [Accepted: 06/22/2024] [Indexed: 07/28/2024] Open
Abstract
Erythroid differentiation regulator 1 (Erdr1) is a cytokine known to play important roles in cell survival under stressful conditions, maintenance of cellular growth homeostasis, and activation of the immune system. However, the impact of Erdr1 on neurons remains undefined. In this study, we present novel evidence that Erdr1 plays a role in regulating glutathione (GSH) synthesis via glutamate transporter-associated protein 3-18 (GTRAP3-18), an anchor protein in the endoplasmic reticulum that holds excitatory amino acid carrier 1 (EAAC1) in neurons. Both DNA microarray and quantitative real-time PCR analyses revealed an approximately 2-fold increase in Erdr1 levels in the hippocampus of GTRAP3-18-deficient mice compared to those of wild-type mice. Knockdown of Erdr1 in vitro resulted in a decrease in GTRAP3-18 levels, leading to an increase in EAAC1 expression and intracellular GSH levels, and subsequently, cytoprotective effects against oxidative stress. Our findings shed light on the regulatory mechanisms involving Erdr1, GTRAP3-18, EAAC1, and GSH in the context of neuronal defense against oxidative stress. Understanding the intricate interplay among these molecules may pave the way for the development of promising therapeutic strategies for neurodegenerative disorders.
Collapse
Affiliation(s)
| | | | | | - Koji Aoyama
- Department of Pharmacology, Teikyo University School of Medicine, Tokyo 173-8605, Japan; (W.B.); (C.K.); (N.M.)
| |
Collapse
|
3
|
Kim JH, Lee DY, Lee SY, Mariano E, Jeong JW, Yun SH, Lee J, Park J, Choi Y, Han D, Kim JS, Jo C, Hur SJ. Study on the Digestion-Induced Changes in the Characteristics and Bioactivity of Korean Native and Overseas Cattle-Derived Peptides. Food Sci Anim Resour 2024; 44:551-569. [PMID: 38765291 PMCID: PMC11097022 DOI: 10.5851/kosfa.2024.e64] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 09/01/2023] [Accepted: 09/27/2023] [Indexed: 05/21/2024] Open
Abstract
This study was conducted to compare and analyze the changes in the biochemical characteristics and biological activity of peptide extracts derived from Chickso, Hanwoo, and Wagyu beef during digestion. The results of the in vitro digestion analysis revealed that the digestion rate, total free amino acid content, and antioxidant and antihypertensive activities of Chickso loin and shank myofibrillar proteins were significantly higher (p<0.05) than those of Hanwoo and Wagyu loin and shank myofibrillar proteins. Particularly, the peptide extracts of Chickso loin and shank had a high angiotensin-converting enzyme inhibitory activity. In mice in vivo digestion experiment, the blood serum of mice fed with Chickso loin peptide extract (<10 kDa) showed the highest antioxidant enzyme activity. Thus, Chickso peptide extracts were deemed to be similar or more bioactive than Hanwoo and Wagyu peptide extracts, and can be used as bioactive materials.
Collapse
Affiliation(s)
- Jae Hyeon Kim
- Department of Animal Science and Technology, Chung-Ang University, Anseong 17546, Korea
| | - Da Young Lee
- Department of Animal Science and Technology, Chung-Ang University, Anseong 17546, Korea
| | - Seung Yun Lee
- Division of Animal Science, Division of Applied Life Science (BK21 Four), Institute of Agriculture & Life Science, Gyeongsang National University, Jinju 52828, Korea
| | - Ermie Mariano
- Department of Animal Science and Technology, Chung-Ang University, Anseong 17546, Korea
| | - Jae Won Jeong
- Department of Animal Science and Technology, Chung-Ang University, Anseong 17546, Korea
| | - Seung Hyeon Yun
- Department of Animal Science and Technology, Chung-Ang University, Anseong 17546, Korea
| | - Juhyun Lee
- Department of Animal Science and Technology, Chung-Ang University, Anseong 17546, Korea
| | - Jinmo Park
- Department of Animal Science and Technology, Chung-Ang University, Anseong 17546, Korea
| | - Yeongwoo Choi
- Department of Animal Science and Technology, Chung-Ang University, Anseong 17546, Korea
| | - Dahee Han
- Department of Animal Science and Technology, Chung-Ang University, Anseong 17546, Korea
| | - Jin Soo Kim
- Department of Animal Science and Technology, Chung-Ang University, Anseong 17546, Korea
| | - Cheorun Jo
- Department of Agricultural Biotechnology, Center for Food and Bioconvergence, and Research Institute of Agriculture and Life Science, Seoul National University, Seoul 08826, Korea
| | - Sun Jin Hur
- Department of Animal Science and Technology, Chung-Ang University, Anseong 17546, Korea
| |
Collapse
|
4
|
Pérez-Sala D, Pajares MA. Appraising the Role of Astrocytes as Suppliers of Neuronal Glutathione Precursors. Int J Mol Sci 2023; 24:ijms24098059. [PMID: 37175763 PMCID: PMC10179008 DOI: 10.3390/ijms24098059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 04/25/2023] [Accepted: 04/25/2023] [Indexed: 05/15/2023] Open
Abstract
The metabolism and intercellular transfer of glutathione or its precursors may play an important role in cellular defense against oxidative stress, a common hallmark of neurodegeneration. In the 1990s, several studies in the Neurobiology field led to the widely accepted notion that astrocytes produce large amounts of glutathione that serve to feed neurons with precursors for glutathione synthesis. This assumption has important implications for health and disease since a reduction in this supply from astrocytes could compromise the capacity of neurons to cope with oxidative stress. However, at first glance, this shuttling would imply a large energy expenditure to get to the same point in a nearby cell. Thus, are there additional underlying reasons for this expensive mechanism? Are neurons unable to import and/or synthesize the three non-essential amino acids that are the glutathione building blocks? The rather oxidizing extracellular environment favors the presence of cysteine (Cys) as cystine (Cis), less favorable for neuronal import. Therefore, it has also been proposed that astrocytic GSH efflux could induce a change in the redox status of the extracellular space nearby the neurons, locally lowering the Cis/Cys ratio. This astrocytic glutathione release would also increase their demand for precursors, stimulating Cis uptake, which these cells can import, further impacting the local decline of the Cis/Cys ratio, in turn, contributing to a more reduced extracellular environment and subsequently favoring neuronal Cys import. Here, we revisit the experimental evidence that led to the accepted hypothesis of astrocytes acting as suppliers of neuronal glutathione precursors, considering recent data from the Human Protein Atlas. In addition, we highlight some potential drawbacks of this hypothesis, mainly supported by heterogeneous cellular models. Finally, we outline additional and more cost-efficient possibilities by which astrocytes could support neuronal glutathione levels, including its shuttling in extracellular vesicles.
Collapse
Affiliation(s)
- Dolores Pérez-Sala
- Department of Structural and Chemical Biology, Centro de Investigaciones Biológicas Margarita Salas (CSIC), Ramiro de Maeztu 9, 28040 Madrid, Spain
| | - María A Pajares
- Department of Structural and Chemical Biology, Centro de Investigaciones Biológicas Margarita Salas (CSIC), Ramiro de Maeztu 9, 28040 Madrid, Spain
| |
Collapse
|
5
|
Yoo JY, Lee YJ, Kim YJ, Baik TK, Lee JH, Lee MJ, Woo RS. Multiple low-dose radiation-induced neuronal cysteine transporter expression and oxidative stress are rescued by N-acetylcysteine in neuronal SH-SY5Y cells. Neurotoxicology 2023; 95:205-217. [PMID: 36796651 DOI: 10.1016/j.neuro.2023.02.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 01/13/2023] [Accepted: 02/13/2023] [Indexed: 02/16/2023]
Abstract
Recently, several studies have demonstrated that low-dose radiation (LDR) therapy has positively impacts on the treatment of Alzheimer's disease (AD). LDR suppresses the production of pro-neuroinflammation molecules and improves cognitive function in AD. However, it is unclear whether direct exposure to LDR causes beneficial effects and what mechanism is involved in neuronal cells. In this study, we first determined the effect of high-dose radiation (HDR) alone on C6 cells and SH-SY5Y cells. We found that SH-SY5Y cells were more vulnerable than C6 cells to HDR. Moreover, in neuronal SH-SY5Y cells exposed to single or multiple LDR, N-type cells showed decreased cell viability with increasing radiation exposure time and frequency, but S-type cells were unaffected. Multiple LDR increased proapoptotic molecules such as p53, Bax and cleaved caspase-3, and decreased anti-apoptotic molecule (Bcl2). Multiple LDR also generated free radicals in neuronal SH-SY5Y cells. We detected a change in the expression of the neuronal cysteine transporter EAAC1. Pretreatment with N-acetylcysteine (NAC) rescued the increased in EAAC1 expression and the generation of ROS in neuronal SH-SY5Y cells after multiple LDR. Furthermore, we verified whether the increased in EAAC1 expression induces cell defense or cell death promotion signaling. We showed that transient overexpression of EAAC1 reduced the multiple LDR-induced p53 overexpression in neuronal SH-SY5Y cells. Our results indicate that neuronal cells can be injured by increased production of ROS not only by HDR but also by multiple LDR, which suggests that combination treatment with anti-free radical agents such as NAC may be useful in multiple LDR therapy.
Collapse
Affiliation(s)
- Ji-Young Yoo
- Department of Anatomy and Neuroscience, College of Medicine, Eulji University, Daejeon 301-746, Republic of Korea
| | - Ye-Ji Lee
- Department of Anatomy and Neuroscience, College of Medicine, Eulji University, Daejeon 301-746, Republic of Korea
| | - Yu-Jin Kim
- Department of Anatomy and Neuroscience, College of Medicine, Eulji University, Daejeon 301-746, Republic of Korea
| | - Tai-Kyoung Baik
- Department of Anatomy and Neuroscience, College of Medicine, Eulji University, Daejeon 301-746, Republic of Korea
| | - Jun-Ho Lee
- Department of Emergency Medical Technology, Daejeon University, Daejeon 34520, Republic of Korea
| | - Mi-Jo Lee
- Department of Radiation Oncology, Eulji University Hospital, Daejeon 35233, Republic of Korea.
| | - Ran-Sook Woo
- Department of Anatomy and Neuroscience, College of Medicine, Eulji University, Daejeon 301-746, Republic of Korea.
| |
Collapse
|
6
|
Liang T, Chen W, Yang X, Wang Q, Wan Z, Li R, Liu W. The Elevated Endogenous Reactive Oxygen Species Contribute to the Sensitivity of the Amphotericin B-Resistant Isolate of Aspergillus flavus to Triazoles and Echinocandins. Front Microbiol 2021; 12:680749. [PMID: 34413836 PMCID: PMC8369828 DOI: 10.3389/fmicb.2021.680749] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 07/13/2021] [Indexed: 12/22/2022] Open
Abstract
Aspergillus flavus has been frequently reported as the second cause of invasive aspergillosis (IA), as well as the leading cause in certain tropical countries. Amphotericin B (AMB) is a clinically important therapy option for a range of invasive fungal infections including invasive aspergillosis, and in vitro resistance to AMB was associated with poor outcomes in IA patients treated with AMB. Compared with the AMB-susceptible isolates of A. terreus, the AMB-resistant isolates of A. terreus showed a lower level of AMB-induced endogenous reactive oxygen species (ROS), which was an important cause of AMB resistance. In this study, we obtained one AMB-resistant isolate of A. flavus, with an AMB MIC of 32 μg/mL, which was sensitive to triazoles and echinocandins. This isolate presented elevated endogenous ROS levels, which strongly suggested that no contribution of decreased AMB-induced endogenous ROS for AMB-resistance, opposite to those observed in A. terreus. Further, we confirmed that the elevated endogenous ROS contributed to the sensitivity of the AMB-resistant A. flavus isolate to triazoles and echinocandins. Further investigation is needed to elucidate the causes of elevated endogenous ROS and the resistance mechanism to AMB in A. flavus.
Collapse
Affiliation(s)
- Tianyu Liang
- Department of Dermatology and Venerology, Peking University First Hospital, National Clinical Research Center for Skin and Immune Diseases, Research Center for Medical Mycology, Peking University, Beijing Key Laboratory of Molecular Diagnosis on Dermatoses, Beijing, China
| | - Wei Chen
- Department of Dermatology and Venerology, Peking University First Hospital, National Clinical Research Center for Skin and Immune Diseases, Research Center for Medical Mycology, Peking University, Beijing Key Laboratory of Molecular Diagnosis on Dermatoses, Beijing, China
| | - Xinyu Yang
- Department of Dermatology and Venerology, Peking University First Hospital, National Clinical Research Center for Skin and Immune Diseases, Research Center for Medical Mycology, Peking University, Beijing Key Laboratory of Molecular Diagnosis on Dermatoses, Beijing, China
| | - Qiqi Wang
- Department of Dermatology and Venerology, Peking University First Hospital, National Clinical Research Center for Skin and Immune Diseases, Research Center for Medical Mycology, Peking University, Beijing Key Laboratory of Molecular Diagnosis on Dermatoses, Beijing, China
| | - Zhe Wan
- Department of Dermatology and Venerology, Peking University First Hospital, National Clinical Research Center for Skin and Immune Diseases, Research Center for Medical Mycology, Peking University, Beijing Key Laboratory of Molecular Diagnosis on Dermatoses, Beijing, China
| | - Ruoyu Li
- Department of Dermatology and Venerology, Peking University First Hospital, National Clinical Research Center for Skin and Immune Diseases, Research Center for Medical Mycology, Peking University, Beijing Key Laboratory of Molecular Diagnosis on Dermatoses, Beijing, China
| | - Wei Liu
- Department of Dermatology and Venerology, Peking University First Hospital, National Clinical Research Center for Skin and Immune Diseases, Research Center for Medical Mycology, Peking University, Beijing Key Laboratory of Molecular Diagnosis on Dermatoses, Beijing, China
| |
Collapse
|
7
|
Abstract
Glutathione (GSH) is the most abundant non-protein thiol, and plays crucial roles in the antioxidant defense system and the maintenance of redox homeostasis in neurons. GSH depletion in the brain is a common finding in patients with neurodegenerative diseases, such as Alzheimer’s disease and Parkinson’s disease, and can cause neurodegeneration prior to disease onset. Excitatory amino acid carrier 1 (EAAC1), a sodium-dependent glutamate/cysteine transporter that is selectively present in neurons, plays a central role in the regulation of neuronal GSH production. The expression of EAAC1 is posttranslationally controlled by the glutamate transporter-associated protein 3–18 (GTRAP3-18) or miR-96-5p in neurons. The regulatory mechanism of neuronal GSH production mediated by EAAC1 may be a new target in therapeutic strategies for these neurodegenerative diseases. This review describes the regulatory mechanism of neuronal GSH production and its potential therapeutic application in the treatment of neurodegenerative diseases.
Collapse
|
8
|
Human Immunodeficiency Virus Type 1 and Methamphetamine-Mediated Mitochondrial Damage and Neuronal Degeneration in Human Neurons. J Virol 2020; 94:JVI.00924-20. [PMID: 32796068 DOI: 10.1128/jvi.00924-20] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 07/30/2020] [Indexed: 12/12/2022] Open
Abstract
Methamphetamine, a potent psychostimulant, is a highly addictive drug commonly used by persons living with HIV (PLWH), and its use can result in cognitive impairment and memory deficits long after its use is discontinued. Although the mechanism(s) involved with persistent neurological deficits is not fully known, mitochondrial dysfunction is a key component in methamphetamine neuropathology. Specific mitochondrial autophagy (mitophagy) and mitochondrial fusion and fission are protective quality control mechanisms that can be dysregulated in HIV infection, and the use of methamphetamine can further negatively affect these protective cellular mechanisms. Here, we observed that treatment of human primary neurons (HPNs) with methamphetamine and HIV gp120 and Tat increase dynamin-related protein 1 (DRP1)-dependent mitochondrial fragmentation and neuronal degeneration. Methamphetamine and HIV proteins increased microtubule-associated protein 1 light chain 3 beta-II (LC3B-II) lipidation and induced sequestosome 1 (SQSTM1, p62) translocation to damaged mitochondria. Additionally, the combination inhibited autophagic flux, increased reactive oxygen species (ROS) production and mitochondrial damage, and reduced microtubule-associated protein 2 (MAP2) dendrites in human neurons. N-Acetylcysteine (NAC), a strong antioxidant and ROS scavenger, abrogated DRP1-dependent mitochondrial fragmentation and neurite degeneration. Thus, we show that methamphetamine combined with HIV proteins inhibits mitophagy and induces neuronal damage, and NAC reverses these deleterious effects on mitochondrial function.IMPORTANCE Human and animal studies show that HIV infection, combined with the long-term use of psychostimulants, increases neuronal stress and the occurrence of HIV-associated neurocognitive disorders (HAND). On the cellular level, mitochondrial function is critical for neuronal health. In this study, we show that in human primary neurons, the combination of HIV proteins and methamphetamine increases oxidative stress, DRP1-mediated mitochondrial fragmentation, and neuronal injury manifested by a reduction in neuronal network and connectivity. The use of NAC, a potent antioxidant, reversed the neurotoxic effects of HIV and methamphetamine, suggesting a novel approach to ameliorate the effects of HIV- and methamphetamine-associated cognitive deficits.
Collapse
|
9
|
Fernandez A, Meechan DW, Karpinski BA, Paronett EM, Bryan CA, Rutz HL, Radin EA, Lubin N, Bonner ER, Popratiloff A, Rothblat LA, Maynard TM, LaMantia AS. Mitochondrial Dysfunction Leads to Cortical Under-Connectivity and Cognitive Impairment. Neuron 2019; 102:1127-1142.e3. [PMID: 31079872 PMCID: PMC6668992 DOI: 10.1016/j.neuron.2019.04.013] [Citation(s) in RCA: 101] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 02/21/2019] [Accepted: 04/03/2019] [Indexed: 12/17/2022]
Abstract
Under-connectivity between cerebral cortical association areas may underlie cognitive deficits in neurodevelopmental disorders, including the 22q11.2 deletion syndrome (22q11DS). Using the LgDel 22q11DS mouse model, we assessed cellular, molecular, and developmental origins of under-connectivity and its consequences for cognitive function. Diminished 22q11 gene dosage reduces long-distance projections, limits axon and dendrite growth, and disrupts mitochondrial and synaptic integrity in layer 2/3 but not 5/6 projection neurons (PNs). Diminished dosage of Txnrd2, a 22q11 gene essential for reactive oxygen species catabolism in brain mitochondria, recapitulates these deficits in WT layer 2/3 PNs; Txnrd2 re-expression in LgDel layer 2/3 PNs rescues them. Anti-oxidants reverse LgDel- or Txnrd2-related layer 2/3 mitochondrial, circuit, and cognitive deficits. Accordingly, Txnrd2-mediated oxidative stress reduces layer 2/3 connectivity and impairs cognition in the context of 22q11 deletion. Anti-oxidant restoration of mitochondrial integrity, cortical connectivity, and cognitive behavior defines oxidative stress as a therapeutic target in neurodevelopmental disorders.
Collapse
Affiliation(s)
- Alejandra Fernandez
- GW Institute for Neuroscience, The George Washington University, Washington, DC 20037, USA; Department of Anatomy and Regenerative Biology, The George Washington University, Washington, DC 20037, USA; GW Institute for Biomedical Sciences, School of Medicine and Health Sciences, The George Washington University, Washington, DC 20037, USA
| | - Daniel W Meechan
- GW Institute for Neuroscience, The George Washington University, Washington, DC 20037, USA; Department of Anatomy and Regenerative Biology, The George Washington University, Washington, DC 20037, USA
| | - Beverly A Karpinski
- GW Institute for Neuroscience, The George Washington University, Washington, DC 20037, USA; Department of Anatomy and Regenerative Biology, The George Washington University, Washington, DC 20037, USA
| | - Elizabeth M Paronett
- GW Institute for Neuroscience, The George Washington University, Washington, DC 20037, USA; Department of Anatomy and Regenerative Biology, The George Washington University, Washington, DC 20037, USA
| | - Corey A Bryan
- GW Institute for Neuroscience, The George Washington University, Washington, DC 20037, USA; Department of Anatomy and Regenerative Biology, The George Washington University, Washington, DC 20037, USA
| | - Hanna L Rutz
- Department of Psychology, The George Washington University, Washington, DC 20037, USA
| | - Eric A Radin
- GW Institute for Neuroscience, The George Washington University, Washington, DC 20037, USA; Department of Anatomy and Regenerative Biology, The George Washington University, Washington, DC 20037, USA
| | - Noah Lubin
- GW Institute for Neuroscience, The George Washington University, Washington, DC 20037, USA; Department of Anatomy and Regenerative Biology, The George Washington University, Washington, DC 20037, USA
| | - Erin R Bonner
- GW Institute for Neuroscience, The George Washington University, Washington, DC 20037, USA; Department of Anatomy and Regenerative Biology, The George Washington University, Washington, DC 20037, USA
| | - Anastas Popratiloff
- GW Institute for Neuroscience, The George Washington University, Washington, DC 20037, USA
| | - Lawrence A Rothblat
- GW Institute for Neuroscience, The George Washington University, Washington, DC 20037, USA; Department of Psychology, The George Washington University, Washington, DC 20037, USA
| | - Thomas M Maynard
- GW Institute for Neuroscience, The George Washington University, Washington, DC 20037, USA; Department of Anatomy and Regenerative Biology, The George Washington University, Washington, DC 20037, USA
| | - Anthony-Samuel LaMantia
- GW Institute for Neuroscience, The George Washington University, Washington, DC 20037, USA; Department of Anatomy and Regenerative Biology, The George Washington University, Washington, DC 20037, USA.
| |
Collapse
|
10
|
Rehman MU, Wali AF, Ahmad A, Shakeel S, Rasool S, Ali R, Rashid SM, Madkhali H, Ganaie MA, Khan R. Neuroprotective Strategies for Neurological Disorders by Natural Products: An update. Curr Neuropharmacol 2019; 17:247-267. [PMID: 30207234 PMCID: PMC6425075 DOI: 10.2174/1570159x16666180911124605] [Citation(s) in RCA: 135] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2018] [Revised: 08/02/2018] [Accepted: 09/05/2018] [Indexed: 01/30/2023] Open
Abstract
Nature has bestowed mankind with surplus resources (natural products) on land and water. Natural products have a significant role in the prevention of disease and boosting of health in humans and animals. These natural products have been experimentally documented to possess various biological properties such as antioxidant, anti-inflammatory and anti-apoptotic activities. In vitro and in vivo studies have further established the usefulness of natural products in various preclinical models of neurodegenerative disorders. Natural products include phytoconstituents, like polyphenolic antioxidants, found in herbs, fruits, nuts, vegetables and also in marine and freshwater flora. These phytoconstituents may potentially suppress neurodegeneration and improve memory as well as cognitive functions of the brain. Also, they are known to play a pivotal role in the prevention and cure of different neurodegenerative diseases, such as Alzheimer's disease, epilepsy, Parkinson's disease and other neuronal disorders. The large-scale neuro-pharmacological activities of natural products have been documented due to the result of either the inhibition of inflammatory processes, or the up-regulation of various cell survival proteins or a combination of both. Due to the scarcity of human studies on neuroprotective effects of natural products, this review focuses on the various established activities of natural products in in vitro and in vivo preclinical models, and their potential neuro-therapeutic applications using the available knowledge in the literature.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Rehan Khan
- Address correspondence to this author at the Department of Nano-Therapeutics, Institute of Nano Science & Technology, Habitat Centre, Phase X, Mohali-160062, Punjab, India; E-mail:
| |
Collapse
|
11
|
Leon M, Sawmiller D, Shytle RD, Tan J. Therapeutic Cocktail Approach for Treatment of Hyperhomocysteinemia in Alzheimer's Disease. CELL MEDICINE 2018; 10:2155179017722280. [PMID: 32634177 PMCID: PMC6172991 DOI: 10.1177/2155179017722280] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
In the United States, Alzheimer's disease (AD) is the most common cause of dementia, accompanied by substantial economic and emotional costs. During 2015, more than 15 million family members who provided care to AD patients had an estimated total cost of 221 billion dollars. Recent studies have shown that elevated total plasma levels of homocysteine (tHcy), a condition known as hyperhomocysteinemia (HHcy), is a risk factor for AD. HHcy is associated with cognitive decline, brain atrophy, and dementia; enhances the vulnerability of neurons to oxidative injury; and damages the blood-brain barrier. Many therapeutic supplements containing vitamin B12 and folate have been studied to help decrease tHcy to a certain degree. However, a therapeutic cocktail approach with 5-methyltetrahydrofolate, methyl B12, betaine, and N-acetylcysteine (NAC) have not been studied. This novel approach may help target multiple pathways simultaneously to decrease tHcy and its toxicity substantially.
Collapse
Affiliation(s)
- Michael Leon
- Department of Psychiatry and Behavioral Neurosciences, Rashid Laboratory for Developmental Neurobiology, Silver Child Development Center, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | - Darrell Sawmiller
- Department of Psychiatry and Behavioral Neurosciences, Rashid Laboratory for Developmental Neurobiology, Silver Child Development Center, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | - R Douglas Shytle
- Department of Neurosurgery and Brain Repair, Center for Excellence in Aging and Brain Repair, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | - Jun Tan
- Department of Psychiatry and Behavioral Neurosciences, Rashid Laboratory for Developmental Neurobiology, Silver Child Development Center, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| |
Collapse
|
12
|
Simmons AD. Parkinson’s Disease. Integr Med (Encinitas) 2018. [DOI: 10.1016/b978-0-323-35868-2.00015-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
13
|
Induction of Mitochondrial Reactive Oxygen Species Production by Itraconazole, Terbinafine, and Amphotericin B as a Mode of Action against Aspergillus fumigatus. Antimicrob Agents Chemother 2017; 61:AAC.00978-17. [PMID: 28848005 DOI: 10.1128/aac.00978-17] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Accepted: 08/20/2017] [Indexed: 12/16/2022] Open
Abstract
Drug resistance in fungal pathogens is of incredible importance to global health, yet the mechanisms of drug action remain only loosely defined. Antifungal compounds have been shown to trigger the intracellular accumulation of reactive oxygen species (ROS) in human-pathogenic yeasts, but the source of those ROS remained unknown. In the present study, we examined the role of endogenous ROS for the antifungal activity of the three different antifungal substances itraconazole, terbinafine, and amphotericin B, which all target the fungal cell membrane. All three antifungals had an impact on fungal redox homeostasis by causing increased intracellular ROS production. Interestingly, the elevated ROS levels induced by antifungals were abolished by inhibition of the mitochondrial respiratory complex I with rotenone. Further, evaluation of lipid peroxidation using the thiobarbituric acid assay revealed that rotenone pretreatment decreased ROS-induced lipid peroxidation during incubation of Aspergillus fumigatus with itraconazole and terbinafine. By applying the mitochondrion-specific lipid peroxidation probe MitoPerOx, we also confirmed that ROS are induced in mitochondria and subsequently cause significant oxidation of mitochondrial membrane in the presence of terbinafine and amphotericin B. To summarize, our study suggests that the induction of ROS production contributes to the ability of antifungal compounds to inhibit fungal growth. Moreover, mitochondrial complex I is the main source of deleterious ROS production in A. fumigatus challenged with antifungal compounds.
Collapse
|
14
|
Glutathione in the human brain: Review of its roles and measurement by magnetic resonance spectroscopy. Anal Biochem 2016; 529:127-143. [PMID: 28034792 DOI: 10.1016/j.ab.2016.12.022] [Citation(s) in RCA: 107] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Revised: 12/21/2016] [Accepted: 12/23/2016] [Indexed: 12/12/2022]
Abstract
We review the transport, synthesis and catabolism of glutathione in the brain as well as its compartmentation and biochemistry in different brain cells. The major reactions involving glutathione are reviewed and the factors limiting its availability in brain cells are discussed. We also describe and critique current methods for measuring glutathione in the human brain using magnetic resonance spectroscopy, and review the literature on glutathione measurements in healthy brains and in neurological, psychiatric, neurodegenerative and neurodevelopmental conditions In summary: Healthy human brain glutathione concentration is ∼1-2 mM, but it varies by brain region, with evidence of gender differences and age effects; in neurological disease glutathione appears reduced in multiple sclerosis, motor neurone disease and epilepsy, while being increased in meningiomas; in psychiatric disease the picture is complex and confounded by methodological differences, regional effects, length of disease and drug-treatment. Both increases and decreases in glutathione have been reported in depression and schizophrenia. In Alzheimer's disease and mild cognitive impairment there is evidence for a decrease in glutathione compared to age-matched healthy controls. Improved methods to measure glutathione in vivo will provide better precision in glutathione determination and help resolve the complex biochemistry of this molecule in health and disease.
Collapse
|
15
|
Ebina-Shibuya R, Watanabe-Matsui M, Matsumoto M, Itoh-Nakadai A, Funayama R, Nakayama K, Muto A, Igarashi K. The double knockout of Bach1 and Bach2 in mice reveals shared compensatory mechanisms in regulating alveolar macrophage function and lung surfactant homeostasis. J Biochem 2016; 160:333-344. [DOI: 10.1093/jb/mvw041] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2016] [Accepted: 06/05/2016] [Indexed: 11/14/2022] Open
|
16
|
Bauer AK, Fitzgerald M, Ladzinski AT, Lenhart Sherman S, Maddock BH, Norr ZM, Miller RR. Dual behavior ofN-acetylcysteine during ethanol-induced oxidative stress in embryonic chick brains. Nutr Neurosci 2016; 20:478-488. [DOI: 10.1080/1028415x.2016.1185261] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Alison K. Bauer
- Lake Erie College of Osteopathic Medicine, Erie, PA 16509, USA
| | - Mary Fitzgerald
- Michigan State University College of Human Medicine, East Lansing, USA
| | - Adam T. Ladzinski
- Midwestern University College of Osteopathic Medicine, Downers Grove, IL 60515, USA
| | | | | | - Zoe M. Norr
- Biology Department, Hillsdale College, MI 49242, USA
| | | |
Collapse
|
17
|
Martínez MA, Úbeda A, Moreno J, Trillo MÁ. Power Frequency Magnetic Fields Affect the p38 MAPK-Mediated Regulation of NB69 Cell Proliferation Implication of Free Radicals. Int J Mol Sci 2016; 17:510. [PMID: 27058530 PMCID: PMC4848966 DOI: 10.3390/ijms17040510] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Revised: 03/21/2016] [Accepted: 03/31/2016] [Indexed: 12/13/2022] Open
Abstract
The proliferative response of the neuroblastoma line NB69 to a 100 µT, 50 Hz magnetic field (MF) has been shown mediated by activation of the MAPK-ERK1/2 pathway. This work investigates the MF effect on the cell cycle of NB69, the participation of p38 and c-Jun N-terminal (JNK) kinases in the field-induced proliferative response and the potential involvement of reactive oxygen species (ROS) in the activation of the MAPK-ERK1/2 and -p38 signaling pathways. NB69 cultures were exposed to the 100 µT MF, either intermittently for 24, 42 or 63 h, or continuously for periods of 15 to 120 min, in the presence or absence of p38 or JNK inhibitors: SB203580 and SP600125, respectively. Antioxidant N-acetylcysteine (NAC) was used as ROS scavenger. Field exposure induced transient activation of p38, JNK and ERK1/2. The MF proliferative effect, which was mediated by changes in the cell cycle, was blocked by the p38 inhibitor, but not by the JNK inhibitor. NAC blocked the field effects on cell proliferation and p38 activation, but not those on ERK1/2 activation. The MF-induced proliferative effects are exerted through sequential upregulation of MAPK-p38 and -ERK1/2 activation, and they are likely mediated by a ROS-dependent activation of p38.
Collapse
Affiliation(s)
- María Antonia Martínez
- Servicio de Investigación-BEM, University Hospital Ramón y Cajal-IRYCIS, 28034 Madrid, Spain.
| | - Alejandro Úbeda
- Servicio de Investigación-BEM, University Hospital Ramón y Cajal-IRYCIS, 28034 Madrid, Spain.
| | - Jorge Moreno
- Departamento de Ingeniería Eléctrica, Electrónica y de Automatización y Física Aplicada, Technical School of Engineering and Industrial Design (ETSID), UPM, 28012 Madrid, Spain.
| | - María Ángeles Trillo
- Servicio de Investigación-BEM, University Hospital Ramón y Cajal-IRYCIS, 28034 Madrid, Spain.
| |
Collapse
|
18
|
Effects of pre-natal alcohol exposure on hippocampal synaptic plasticity: Sex, age and methodological considerations. Neurosci Biobehav Rev 2016; 64:12-34. [PMID: 26906760 DOI: 10.1016/j.neubiorev.2016.02.014] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Revised: 01/14/2016] [Accepted: 02/18/2016] [Indexed: 12/28/2022]
Abstract
The consumption of alcohol during gestation is detrimental to the developing central nervous system (CNS). The severity of structural and functional brain alterations associated with alcohol intake depends on many factors including the timing and duration of alcohol consumption. The hippocampal formation, a brain region implicated in learning and memory, is highly susceptible to the effects of developmental alcohol exposure. Some of the observed effects of alcohol on learning and memory may be due to changes at the synaptic level, as this teratogen has been repeatedly shown to interfere with hippocampal synaptic plasticity. At the molecular level alcohol interferes with receptor proteins and can disrupt hormones that are important for neuronal signaling and synaptic plasticity. In this review we examine the consequences of prenatal and early postnatal alcohol exposure on hippocampal synaptic plasticity and highlight the numerous factors that can modulate the effects of alcohol. We also discuss some potential mechanisms responsible for these changes as well as emerging therapeutic avenues that are beginning to be explored.
Collapse
|
19
|
Campbell A, Bushman J, Munger J, Noble M, Pröoschel C, Mayer-Pröoschel M. Mutation of ataxia-telangiectasia mutated is associated with dysfunctional glutathione homeostasis in cerebellar astroglia. Glia 2016; 64:227-39. [PMID: 26469940 PMCID: PMC5580048 DOI: 10.1002/glia.22925] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2014] [Revised: 09/10/2015] [Accepted: 09/14/2015] [Indexed: 11/11/2022]
Abstract
Astroglial dysfunction plays an important role in neurodegenerative diseases otherwise attributed to neuronal loss of function. Here we focus on the role of astroglia in ataxia-telangiectasia (A-T), a disease caused by mutations in the ataxia-telangiectasia mutated (ATM) gene. A hallmark of A-T pathology is progressive loss of cerebellar neurons, but the mechanisms that impact neuronal survival are unclear. We now provide a possible mechanism by which A-T astroglia affect the survival of cerebellar neurons. As astroglial functions are difficult to study in an in vivo setting, particularly in the cerebellum where these cells are intertwined with the far more numerous neurons, we conducted in vitro coculture experiments that allow for the generation and pharmacological manipulation of purified cell populations. Our analyses revealed that cerebellar astroglia isolated from Atm mutant mice show decreased expression of the cystine/glutamate exchanger subunit xCT, glutathione (GSH) reductase, and glutathione-S-transferase. We also found decreased levels of intercellular and secreted GSH in A-T astroglia. Metabolic labeling of l-cystine, the major precursor for GSH, revealed that a key component of the defect in A-T astroglia is an impaired ability to import this rate-limiting precursor for the production of GSH. This impairment resulted in suboptimal extracellular GSH supply, which in turn impaired survival of cerebellar neurons. We show that by circumventing the xCT-dependent import of L-cystine through addition of N-acetyl-L-cysteine (NAC) as an alternative cysteine source, we were able to restore GSH levels in A-T mutant astroglia providing a possible future avenue for targeted therapeutic intervention.
Collapse
Affiliation(s)
- Andrew Campbell
- Department of Biomedical Genetics, University of Rochester, Rochester, New York, 14642
- Department of Pathology and Laboratory Medicine, University of Rochester, Rochester, New York, 14642
| | - Jared Bushman
- School of Pharmacy Health Sciences Center, University of Wyoming, Laramie, Wyoming, 82071
| | - Joshua Munger
- Department of Biochemistry and Biophysics, University of Rochester, Rochester, New York, 14642
| | - Mark Noble
- Department of Biomedical Genetics, University of Rochester, Rochester, New York, 14642
| | - Christoph Pröoschel
- Department of Biomedical Genetics, University of Rochester, Rochester, New York, 14642
| | | |
Collapse
|
20
|
Yamada K, Naiki M, Hoshino S, Kitaura Y, Kondo Y, Nomura N, Kimura R, Fukushi D, Yamada Y, Shimozawa N, Yamaguchi S, Shimomura Y, Miura K, Wakamatsu N. Clinical and biochemical characterization of 3-hydroxyisobutyryl-CoA hydrolase (HIBCH) deficiency that causes Leigh-like disease and ketoacidosis. Mol Genet Metab Rep 2014; 1:455-460. [PMID: 27896122 PMCID: PMC5121361 DOI: 10.1016/j.ymgmr.2014.10.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2014] [Accepted: 10/03/2014] [Indexed: 01/04/2023] Open
Abstract
3-Hydroxyisobutyryl-CoA hydrolase (HIBCH) deficiency is an autosomal recessive disorder characterized by episodes of ketoacidosis and a Leigh-like basal ganglia disease, without high concentrations of pyruvate and lactate in the cerebrospinal fluid. Only 4 cases of HIBCH deficiency have been reported. However, clinical-biochemical correlation in HIBCH deficiency by determining the detailed residual enzyme activities has not yet been elucidated. Here, we report a case of two Japanese siblings with HIBCH deficiency carrying a new homozygous missense mutation (c.287C > A, [p.A96D]) at the substrate-binding site. A transfection study using HIBCH expression vectors harboring wild type or 4 reported mutations, including the newly identified mutation (p.A96D, p.Y122C, p.G317E, and p.K74Lfs*13), revealed a correlation between residual HIBCH activities and the severity of the disease. All HIBCH mutants, except p.K74Lfs*13, showed residual enzyme activity and only the patient with p.K74Lfs*13 had congenital anomalies. p.G317E showed only low enzyme activity (~ 3%) of that of wild-type HIBCH. Although p.A96D had approximately 7 times higher enzyme activity than p.G317E, patients with p.A96D died during childhood. These findings are essential for clinical management, genetic counseling, and specific meal and concomitant drug considerations as part of the treatment for patients with HIBCH deficiency.
Collapse
Affiliation(s)
- Kenichiro Yamada
- Department of Genetics, Institute for Developmental Research, Aichi Human Service Center, Kasugai, Aichi, Japan
| | - Misako Naiki
- Department of Pediatrics, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Shin Hoshino
- Department of Pediatrics, Kasugai Municipal Hospital, Kasugai, Aichi, Japan
| | - Yasuyuki Kitaura
- Department of Applied Molecular Biosciences, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Aichi, Japan
| | - Yusuke Kondo
- Department of Applied Molecular Biosciences, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Aichi, Japan
| | - Noriko Nomura
- Department of Genetics, Institute for Developmental Research, Aichi Human Service Center, Kasugai, Aichi, Japan
| | - Reiko Kimura
- Department of Genetics, Institute for Developmental Research, Aichi Human Service Center, Kasugai, Aichi, Japan
| | - Daisuke Fukushi
- Department of Genetics, Institute for Developmental Research, Aichi Human Service Center, Kasugai, Aichi, Japan
| | - Yasukazu Yamada
- Department of Genetics, Institute for Developmental Research, Aichi Human Service Center, Kasugai, Aichi, Japan
| | - Nobuyuki Shimozawa
- Division of Genomics Research, Life Science Research Center, Gifu University, Gifu, Japan
| | - Seiji Yamaguchi
- Department of Pediatrics, Shimane University, Faculty of Medicine, Izumo, Shimane, Japan
| | - Yoshiharu Shimomura
- Department of Applied Molecular Biosciences, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Aichi, Japan
| | - Kiyokuni Miura
- Division of Developmental Disabilities Medicine, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Nobuaki Wakamatsu
- Department of Genetics, Institute for Developmental Research, Aichi Human Service Center, Kasugai, Aichi, Japan
| |
Collapse
|
21
|
Gouix E, Buisson A, Nieoullon A, Kerkerian-Le Goff L, Tauskela JS, Blondeau N, Had-Aissouni L. Oxygen glucose deprivation-induced astrocyte dysfunction provokes neuronal death through oxidative stress. Pharmacol Res 2014; 87:8-17. [DOI: 10.1016/j.phrs.2014.06.002] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2014] [Revised: 06/03/2014] [Accepted: 06/04/2014] [Indexed: 11/28/2022]
|
22
|
Efficacy of N-acetylcysteine on neuroclinical, biochemical, and histopathological parameters in experimental spinal cord trauma: comparison with methylprednisolone. Eur J Trauma Emerg Surg 2014; 40:363-71. [PMID: 26816073 DOI: 10.1007/s00068-013-0349-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2013] [Accepted: 11/04/2013] [Indexed: 10/26/2022]
Abstract
BACKGROUND N-acetylcysteine (NAC) is an antioxidant agent that has been shown to have beneficial effects when treating various diseases. The aim of this study was to investigate the effects of NAC on spinal cord injury in an experimental rat model. METHODS A total of 48 adult male wistar albino rats were divided into six groups. Group C included the control rats, group L included the rats that underwent laminectomy, and group T included the rats in which spinal cord trauma was induced by the weight-drop method after laminectomy. Groups M (the methylprednisolone group), N (the NAC group), and MN (the methylprednisolone + NAC group) were the treatment groups. In the fourth group (group M), 30 mg/kg methylprednisolone (MP) was administered as a bolus intraperitoneally (IP), and a standard MP treatmentat a dose of 5.4 mg/kg was applied for 24 h. In the fifth group (group N), only 300 mg/kg NAC was administered as a bolus IP. In the sixth group (group MN), the standard MP treatment and a single 300 mg/kg dose of NAC were administered as a bolus IP. The motor functions of the rats were evaluated on the 1st, 7th, and 14th days using the inclined plane test defined by Rivlin and Tator and the motor scale defined by Gale et al. Spinal cord samples were obtained on the 14th day. The samples were evaluated using pathological and biochemical analysis. RESULTS In the neuroclinical assessment, no differences were observed between groups T and M in terms of motor improvement. However, statistically significant differences were observed between group T and groups N and MN (p < 0.001, p = 0.01, respectively). Statistically significant differences were also seen between group M and groups N and MN on the 1st and 7th days (p < 0.017, p < 0.01, respectively). Additionally, when groups N and MN were compared with groups T and M,the pathological and biochemical analyses were found to be statistically different (p < 0.05, p < 0.001, respectively). CONCLUSION It was concluded that NAC treatment and the combined NAC + MP treatment may be more useful for healing in rats with experimental spinal cord injury in terms of neuroclinical, pathological, and biochemical results than MP-only therapy.
Collapse
|
23
|
Robert SM, Ogunrinu-Babarinde T, Holt KT, Sontheimer H. Role of glutamate transporters in redox homeostasis of the brain. Neurochem Int 2014; 73:181-91. [PMID: 24418113 DOI: 10.1016/j.neuint.2014.01.001] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2013] [Revised: 12/30/2013] [Accepted: 01/02/2014] [Indexed: 12/24/2022]
Abstract
Redox homeostasis is especially important in the brain where high oxygen consumption produces an abundance of harmful oxidative by-products. Glutathione (GSH) is a tripeptide non-protein thiol. It is the central nervous system's most abundant antioxidant and the master controller of brain redox homeostasis. The glutamate transporters, System xc(-) (SXC) and the Excitatory Amino Acid Transporters (EAAT), play important, synergistic roles in the synthesis of GSH. In glial cells, SXC mediates the uptake of cystine, which after intracellular reduction to cysteine, reacts with glutamate during the rate-limiting step of GSH synthesis. EAAT3 mediates direct cysteine uptake for neuronal GSH synthesis. SXC and EAAT work in concert in glial cells to provide two intracellular substrates for GSH synthesis, cystine and glutamate. Their cyclical basal function also prevents a buildup of extracellular glutamate, which SXC releases extracellularly in exchange for cystine uptake. Maintaining extracellular glutamate homeostasis is critical to prevent neuronal toxicity, as well as glutamate-mediated SXC inhibition, which could lead to a depletion of intracellular GSH and loss of cellular redox control. Many neurological diseases show evidence of GSH dysfunction, and increased GSH has been widely associated with chemotherapy and radiotherapy resistance of gliomas. We present evidence suggesting that gliomas expressing elevated levels of SXC are more reliant on GSH for growth and survival. They have an increased inherent radiation resistance, however, inhibition of SXC can increase tumor sensitivity at low radiation doses. GSH depletion through SXC inhibition may be a viable mechanism to enhance current glioma treatment strategies and make tumors more sensitive to radiation and chemotherapy protocols.
Collapse
Affiliation(s)
- Stephanie M Robert
- Department of Neurobiology, Center for Glial Biology in Medicine, University of Alabama at Birmingham, CIRC 425, 1719 6th Ave S, Birmingham, AL 35294, USA.
| | - Toyin Ogunrinu-Babarinde
- Department of Neurobiology, Center for Glial Biology in Medicine, University of Alabama at Birmingham, CIRC 425, 1719 6th Ave S, Birmingham, AL 35294, USA
| | - Kenneth T Holt
- Department of Neurobiology, Center for Glial Biology in Medicine, University of Alabama at Birmingham, CIRC 425, 1719 6th Ave S, Birmingham, AL 35294, USA
| | - Harald Sontheimer
- Department of Neurobiology, Center for Glial Biology in Medicine, University of Alabama at Birmingham, CIRC 425, 1719 6th Ave S, Birmingham, AL 35294, USA.
| |
Collapse
|
24
|
Patten AR, Brocardo PS, Sakiyama C, Wortman RC, Noonan A, Gil-Mohapel J, Christie BR. Impairments in hippocampal synaptic plasticity following prenatal ethanol exposure are dependent on glutathione levels. Hippocampus 2013; 23:1463-75. [PMID: 23996467 DOI: 10.1002/hipo.22199] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/22/2013] [Indexed: 11/09/2022]
Abstract
Previous studies from our laboratory have shown that prenatal ethanol exposure (PNEE) causes a significant deficit in synaptic plasticity, namely long-term potentiation (LTP), in the dentate gyrus (DG) region of the hippocampus of male rats. PNEE has also been shown to induce an increase in oxidative stress and a reduction in antioxidant capacity in the brains of both male and female animals. In this study the interaction between LTP and the major antioxidant in the brain, glutathione (GSH), is examined. We show that depletion of the intracellular reserves of GSH with diethyl maleate (DEM) reduces LTP in control male, but not female animals, mirroring the effects of PNEE. Furthermore, treatment of PNEE animals with N-acetyl cysteine (NAC), a cysteine donor for the synthesis of GSH, increases GSH levels in the hippocampus and completely restores the deficits in LTP in PNEE males. These results indicate that in males GSH plays a major role in regulating LTP, and that PNEE may cause reductions in LTP by reducing the intracellular pool of this endogenous antioxidant.
Collapse
Affiliation(s)
- Anna R Patten
- Division of Medical Sciences, Island Medical Program, University of Victoria, Victoria, British Columbia, Canada; Department of Biology, University of Victoria, Victoria, British Columbia, Canada
| | | | | | | | | | | | | |
Collapse
|
25
|
Steele ML, Fuller S, Patel M, Kersaitis C, Ooi L, Münch G. Effect of Nrf2 activators on release of glutathione, cysteinylglycine and homocysteine by human U373 astroglial cells. Redox Biol 2013; 1:441-5. [PMID: 24191238 PMCID: PMC3814960 DOI: 10.1016/j.redox.2013.08.006] [Citation(s) in RCA: 106] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2013] [Revised: 08/29/2013] [Accepted: 08/31/2013] [Indexed: 12/29/2022] Open
Abstract
Neurons rely on the release and subsequent cleavage of GSH to cysteinylglycine (CysGly) by astrocytes in order to maintain optimal intracellular GSH levels. In neurodegenerative diseases characterised by oxidative stress, neurons need an optimal GSH supply to defend themselves against free radicals released from activated microglia and astroglia. The rate of GSH synthesis is controlled largely by the activity of γ-glutamyl cysteine ligase. Expression of γ-glutamyl cysteine ligase and of the Xc- system, which facilitates cystine uptake, is regulated by the redox-sensitive transcription factor, nuclear factor erythroid-2-related factor 2 (Nrf2). Compounds that can activate the Nrf2-ARE pathway, referred to as ‘Nrf2 activators’ are receiving growing attention due to their potential as GSH-boosting drugs. This study compares four known Nrf2 activators, R-α-Lipoic acid (LA), tert-butylhydroquinone (TBHQ), sulforaphane (SFN) and Polygonum cuspidatum extract containing 50% resveratrol (PC-Res) for their effects on astroglial release of GSH and CysGly. GSH levels increased dose-dependently in response to all four drugs. Sulforaphane produced the most potent effect, increasing GSH by up to 2.4-fold. PC-Res increased GSH up to 1.6-fold, followed by TBHQ (1.5-fold) and LA (1.4-fold). GSH is processed by the ectoenzyme, γ-glutamyl transpeptidase, to form CysGly. Once again, SFN produced the most potent effect, increasing CysGly by up to 1.7-fold, compared to control cells. TBHQ and PC-Res both induced fold increases of 1.3, followed by LA with a fold increase of 1.2. The results from the present study showed that sulforaphane, followed by lipoic acid, resveratrol and Polygonum multiflorum were all identified as potent “GSH and Cys-Gly boosters”. R-α-Lipoic acid (LA), tert-butylhydroquinone (TBHQ), sulforaphane (SFN) and Polygonum cuspidatum extract containing 50% resveratrol (PC-Res) increase astroglial release of GSH. Sulforaphane produced the most potent effect, increasing GSH by up to 2.4-fold. PC-Res increased GSH up to 1.6-fold, followed by TBHQ (1.5-fold) and LA (1.4-fold). GSH is processed by the ectoenzyme, γ-glutamyl transpeptidase, to form CysGly. Once again, SFN produced the most potent effect, increasing CysGly by up to 1.7-fold, compared to control cells. TBHQ and PC-Res both induced fold increases of 1.3, followed by LA with a fold increase of 1.2.
Collapse
Key Words
- ARE, antioxidant response elements
- Astroglia
- CysGly, cysteinylglycine
- Cysteinylglycine
- DMEM, Dulbeccos's Modified Eagle Medium
- GSH, glutathione
- Glutathione
- HCys, homocysteine
- LA, α-lipoic acid
- Nrf2 activators
- Nrf2, nuclear factor erythroid-2-related factor 2
- PC, Polygonum cuspidatum
- ROS, reactive oxygen species
- SFN, sulforaphane
- TBHQ, Tert-butylhydroquinone
Collapse
Affiliation(s)
- Megan L. Steele
- Department of Pharmacology, School of Medicine, University of Western Sydney, Locked Bag 1797, Campbelltown, Penrith, NSW 2751, Australia
| | - Stacey Fuller
- Department of Pharmacology, School of Medicine, University of Western Sydney, Locked Bag 1797, Campbelltown, Penrith, NSW 2751, Australia
| | - Mili Patel
- Department of Pharmacology, School of Medicine, University of Western Sydney, Locked Bag 1797, Campbelltown, Penrith, NSW 2751, Australia
| | - Cindy Kersaitis
- School of Science and Health, University of Western Sydney, Campbelltown, Australia
| | - Lezanne Ooi
- School of Biological Sciences, Illawarra Health and Medical Research Institute, University of Wollongong, Australia
| | - Gerald Münch
- Department of Pharmacology, School of Medicine, University of Western Sydney, Locked Bag 1797, Campbelltown, Penrith, NSW 2751, Australia
- Molecular Medicine Research Group, University of Western Sydney, Australia
- Centre for Complementary Medicine Research (CompleMED), University of Western Sydney, Australia
- Corresponding author at: Department of Pharmacology, School of Medicine, University of Western Sydney, Locked Bag 1797, Penrith, Campbelltown, NSW 2751, Australia. Tel.: +61 2 4620 3814; fax: +61 2 4620 3890.
| |
Collapse
|
26
|
Hart AM, Terenghi G, Wiberg M. Neuronal death after peripheral nerve injury and experimental strategies for neuroprotection. Neurol Res 2013; 30:999-1011. [DOI: 10.1179/174313208x362479] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
27
|
Trippier PC, Labby KJ, Hawker DD, Mataka JJ, Silverman RB. Target- and mechanism-based therapeutics for neurodegenerative diseases: strength in numbers. J Med Chem 2013; 56:3121-47. [PMID: 23458846 PMCID: PMC3637880 DOI: 10.1021/jm3015926] [Citation(s) in RCA: 112] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The development of new therapeutics for the treatment of neurodegenerative pathophysiologies currently stands at a crossroads. This presents an opportunity to transition future drug discovery efforts to target disease modification, an area in which much still remains unknown. In this Perspective we examine recent progress in the areas of neurodegenerative drug discovery, focusing on some of the most common targets and mechanisms: N-methyl-d-aspartic acid (NMDA) receptors, voltage gated calcium channels (VGCCs), neuronal nitric oxide synthase (nNOS), oxidative stress from reactive oxygen species, and protein aggregation. These represent the key players identified in neurodegeneration and are part of a complex, intertwined signaling cascade. The synergistic delivery of two or more compounds directed against these targets, along with the design of small molecules with multiple modes of action, should be explored in pursuit of more effective clinical treatments for neurodegenerative diseases.
Collapse
Affiliation(s)
- Paul C. Trippier
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208-3113, USA
| | - Kristin Jansen Labby
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208-3113, USA
| | - Dustin D. Hawker
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208-3113, USA
| | - Jan J. Mataka
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208-3113, USA
| | - Richard B. Silverman
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208-3113, USA
- Department of Molecular Biosciences, Chemistry of Life Processes Institute, Center for Molecular Innovation and Drug Discovery, Northwestern University, Evanston, IL, USA
| |
Collapse
|
28
|
Affiliation(s)
- Ji-Hoon Park
- Department of Biochemistry, School of Medicine, Chungnam National University, Daejeon, Korea
| | - Gi Ryang Kweon
- Department of Biochemistry, School of Medicine, Chungnam National University, Daejeon, Korea
| |
Collapse
|
29
|
Steele ML, Fuller S, Maczurek AE, Kersaitis C, Ooi L, Münch G. Chronic inflammation alters production and release of glutathione and related thiols in human U373 astroglial cells. Cell Mol Neurobiol 2013; 33:19-30. [PMID: 22847551 PMCID: PMC11498033 DOI: 10.1007/s10571-012-9867-6] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2012] [Accepted: 07/18/2012] [Indexed: 01/17/2023]
Abstract
Neurons rely on glutathione (GSH) and its degradation product cysteinylglycine released by astrocytes to maintain their antioxidant defences. This is particularly important under conditions of inflammation and oxidative stress, as observed in many neurodegenerative diseases including Alzheimer's disease (AD). The effects of inflammatory activation on intracellular GSH content and the extracellular thiol profile (including cysteinylglycine and homocysteine) of astrocytes were investigated. U373 astroglial cells exposed to IL-1β and TNF-α for up to 96 h showed a dose-dependent increase in IL-6 release, indicative of increasing pro-inflammatory cellular activation. With increasing concentrations of IL-1β and TNF-α (0.01-1 ng/ml), an increase in both intracellular and extracellular GSH levels was observed, followed by a return to control levels in response to higher concentrations of IL-1β and TNF-α. Extracellular levels of cysteinylglycine decreased in response to all concentrations of IL-1β and TNF-α. In contrast, levels of the neurotoxic thiol homocysteine increased in a dose-dependent manner to IL-1β and TNF-α-induced activation. Our results suggest that chronically activated astrocytes in the brain might fail to adequately maintain GSH substrate delivery to neurons, thus promoting neuronal vulnerability. They might also explain the elevated levels of homocysteine found in the brains and serum of patients with AD.
Collapse
Affiliation(s)
- Megan L. Steele
- Department of Pharmacology, School of Medicine, University of Western Sydney, Locked Bag 1797, Penrith South, Campbelltown, NSW 1797 Australia
- School of Biochemistry and Molecular Biology, James Cook University, Townsville, QLD Australia
| | - Stacey Fuller
- Department of Pharmacology, School of Medicine, University of Western Sydney, Locked Bag 1797, Penrith South, Campbelltown, NSW 1797 Australia
| | - Annette E. Maczurek
- Department of Pharmacology, School of Medicine, University of Western Sydney, Locked Bag 1797, Penrith South, Campbelltown, NSW 1797 Australia
| | - Cindy Kersaitis
- School of Science & Health, University of Western Sydney, Campbelltown, NSW Australia
| | - Lezanne Ooi
- Department of Pharmacology, School of Medicine, University of Western Sydney, Locked Bag 1797, Penrith South, Campbelltown, NSW 1797 Australia
| | - Gerald Münch
- Department of Pharmacology, School of Medicine, University of Western Sydney, Locked Bag 1797, Penrith South, Campbelltown, NSW 1797 Australia
- Molecular Medicine Research Group, University of Western Sydney, Campbelltown, NSW Australia
| |
Collapse
|
30
|
N-Acetylcysteine ethyl ester (NACET): A novel lipophilic cell-permeable cysteine derivative with an unusual pharmacokinetic feature and remarkable antioxidant potential. Biochem Pharmacol 2012; 84:1522-33. [DOI: 10.1016/j.bcp.2012.09.010] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2012] [Revised: 09/11/2012] [Accepted: 09/13/2012] [Indexed: 12/21/2022]
|
31
|
Yang L, Tan P, Zhou W, Zhu X, Cui Y, Zhu L, Feng X, Qi H, Zheng J, Gu P, Fan X, Chen H. N-acetylcysteine protects against hypoxia mimetic-induced autophagy by targeting the HIF-1α pathway in retinal ganglion cells. Cell Mol Neurobiol 2012; 32:1275-85. [PMID: 22618532 PMCID: PMC11498633 DOI: 10.1007/s10571-012-9852-0] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2012] [Accepted: 04/23/2012] [Indexed: 12/26/2022]
Abstract
Hypoxia-induced retinal ganglion cell (RGC) death has been proposed to be the critical event in the pathophysiology of glaucoma. Therefore, delaying or halting RGC degeneration, known as neuroprotection, is a novel and promising approach with potential clinical applications for treating glaucoma. In this study, we investigate hypoxia-induced cell death of RGCs and the underlying mechanisms of N-acetylcysteine (NAC) as a neuroprotectant. To establish a model for chemical hypoxia-induced cell death, RGC-5 cells were treated with the hypoxia mimetic cobalt chloride (CoCl2). Following CoCl2 exposure, significant levels of apoptotic and autophagic cell death were observed in RGC-5 cells, evidenced by lysosome dysfunction and autophagosome formation. Pretreating RGC-5 cells with NAC significantly counteracted the autophagic cell death. NAC-mediated neuroprotection was attributed to the direct scavenging of reactive oxygen species and was mediated by targeting the hypoxia-inducible factor-1α pathway via the BNIP3 and PI3K/Akt/mTOR pathways. These results provide insights into the degeneration of RGCs and present a potential clinical application for NAC as a neuroprotectant.
Collapse
Affiliation(s)
- Lan Yang
- Department of Pharmacology, Institute of Medical Sciences, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Shanghai, 200025 China
| | - Panpan Tan
- Department of Pharmacology, Institute of Medical Sciences, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Shanghai, 200025 China
| | - Wei Zhou
- Department of Pharmacology, Institute of Medical Sciences, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Shanghai, 200025 China
| | - Xu Zhu
- Department of Pharmacology, Institute of Medical Sciences, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Shanghai, 200025 China
| | - Yongyao Cui
- Department of Pharmacology, Institute of Medical Sciences, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Shanghai, 200025 China
| | - Liang Zhu
- Department of Pharmacology, Institute of Medical Sciences, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Shanghai, 200025 China
| | - Xuemei Feng
- Department of Pharmacology, Institute of Medical Sciences, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Shanghai, 200025 China
| | - Hong Qi
- Department of Pharmacology, Institute of Medical Sciences, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Shanghai, 200025 China
| | - Jun Zheng
- Department of Pharmacology, Institute of Medical Sciences, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Shanghai, 200025 China
| | - Ping Gu
- Department of Ophthalmology, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhi Zao Ju Road, Shanghai, 200011 China
| | - Xianqun Fan
- Department of Ophthalmology, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhi Zao Ju Road, Shanghai, 200011 China
| | - Hongzhuan Chen
- Department of Pharmacology, Institute of Medical Sciences, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Shanghai, 200025 China
| |
Collapse
|
32
|
Neuroprotective effects of N-acetyl-cysteine and acetyl-L-carnitine after spinal cord injury in adult rats. PLoS One 2012; 7:e41086. [PMID: 22815926 PMCID: PMC3398872 DOI: 10.1371/journal.pone.0041086] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2012] [Accepted: 06/18/2012] [Indexed: 11/19/2022] Open
Abstract
Following the initial acute stage of spinal cord injury, a cascade of cellular and inflammatory responses will lead to progressive secondary damage of the nerve tissue surrounding the primary injury site. The degeneration is manifested by loss of neurons and glial cells, demyelination and cyst formation. Injury to the mammalian spinal cord results in nearly complete failure of the severed axons to regenerate. We have previously demonstrated that the antioxidants N-acetyl-cysteine (NAC) and acetyl-L-carnitine (ALC) can attenuate retrograde neuronal degeneration after peripheral nerve and ventral root injury. The present study evaluates the effects of NAC and ALC on neuronal survival, axonal sprouting and glial cell reactions after spinal cord injury in adult rats. Tibial motoneurons in the spinal cord were pre-labeled with fluorescent tracer Fast Blue one week before lumbar L5 hemisection. Continuous intrathecal infusion of NAC (2.4 mg/day) or ALC (0.9 mg/day) was initiated immediately after spinal injury using Alzet 2002 osmotic minipumps. Neuroprotective effects of treatment were assessed by counting surviving motoneurons and by using quantitative immunohistochemistry and Western blotting for neuronal and glial cell markers 4 weeks after hemisection. Spinal cord injury induced significant loss of tibial motoneurons in L4–L6 segments. Neuronal degeneration was associated with decreased immunostaining for microtubular-associated protein-2 (MAP2) in dendritic branches, synaptophysin in presynaptic boutons and neurofilaments in nerve fibers. Immunostaining for the astroglial marker GFAP and microglial marker OX42 was increased. Treatment with NAC and ALC rescued approximately half of the motoneurons destined to die. In addition, antioxidants restored MAP2 and synaptophysin immunoreactivity. However, the perineuronal synaptophysin labeling was not recovered. Although both treatments promoted axonal sprouting, there was no effect on reactive astrocytes. In contrast, the microglial reaction was significantly attenuated. The results indicate a therapeutic potential for NAC and ALC in the early treatment of traumatic spinal cord injury.
Collapse
|
33
|
Falluel-Morel A, Lin L, Sokolowski K, McCandlish E, Buckley B, DiCicco-Bloom E. N-acetyl cysteine treatment reduces mercury-induced neurotoxicity in the developing rat hippocampus. J Neurosci Res 2012; 90:743-50. [PMID: 22420031 DOI: 10.1002/jnr.22819] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Mercury is an environmental toxicant that can disrupt brain development. However, although progress has been made in defining its neurotoxic effects, we know far less about available therapies that can effectively protect the brain in exposed individuals. We previously developed an animal model in which we defined the sequence of events underlying neurotoxicity: Methylmercury (MeHg) injection in postnatal rat acutely induced inhibition of mitosis and stimulated apoptosis in the hippocampus, which later resulted in intermediate-term deficits in structure size and cell number. N-acetyl cysteine (NAC) is the N-acetyl derivative of L-cysteine used clinically for treatment of drug intoxication. Here, based on its known efficacy in promoting MeHg urinary excretion, we evaluated NAC for protective effects in the developing brain. In immature neurons and precursors, MeHg (3 μM) induced a >50% decrease in DNA synthesis at 24 hr, an effect that was completely blocked by NAC coincubation. In vivo, injection of MeHg (5 μg/g bw) into 7-day-old rats induced a 22% decrease in DNA synthesis in whole hippocampus and a fourfold increase in activated caspase-3-immunoreactive cells at 24 hr and reduced total cell numbers by 13% at 3 weeks. Treatment of MeHg-exposed rats with repeated injections of NAC abolished MeHg toxicity. NAC prevented the reduction in DNA synthesis and the marked increase in caspase-3 immunoreactivity. Moreover, the intermediate-term decrease in hippocampal cell number provoked by MeHg was fully blocked by NAC. Altogether these results suggest that MeHg toxicity in the perinatal brain can be ameliorated by using NAC, opening potential avenues for therapeutic intervention.
Collapse
Affiliation(s)
- Anthony Falluel-Morel
- Department of Neuroscience and Cell Biology, UMDNJ-Robert Wood Johnson Medical School, Piscataway, NJ 08854, USA
| | | | | | | | | | | |
Collapse
|
34
|
Unnithan AS, Choi HJH, Titler AM, Posimo JM, Leak RK. Rescue from a two hit, high-throughput model of neurodegeneration with N-acetyl cysteine. Neurochem Int 2012; 61:356-68. [PMID: 22691629 DOI: 10.1016/j.neuint.2012.06.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2012] [Revised: 05/17/2012] [Accepted: 06/01/2012] [Indexed: 12/21/2022]
Abstract
Postmortem tissue from patients with neurodegeneration exhibits protein-misfolding stress and reduced proteasome activity. This hallmark burden of proteotoxic stress has led to the term "proteinopathies" for neurodegenerative diseases. Proteinopathies may also be exacerbated by previous insults, according to the two hit hypothesis of accelerated neurodegeneration. In order to model the response to two successive insults in a high-throughput fashion, we exposed the neuronal cell line N2a to two hits of the proteasome inhibitor MG132 and performed three unbiased viability assays. MG132 toxicity was synergistically exacerbated following sequential hits provided the first hit was high enough to be toxic. This accelerated viability loss was apparent by (1) a nuclear and cytoplasmic stain (DRAQ5+Sapphire), (2) immunocytochemistry for a cytoskeletal marker (α-tubulin), and (3) ATP levels (Cell Titer Glo). Ubiquitin-conjugated proteins were raised by toxic, but not subtoxic MG132, and were thus correlated with toxicity exacerbation at higher doses. We hypothesized that levels of autophagic and antioxidant defenses would be reduced with toxic, but not subtoxic MG132, explaining their differential impact on a second hit. However, proteins involved in chaperone-mediated autophagy were raised by toxic MG132, not reduced. Furthermore, inhibiting autophagy enhanced the toxicity of both subtoxic and toxic MG132 as well as of dual hits, suggesting that autophagic removal of cellular debris protected against proteasome inhibition. Two toxic hits of MG132 synergistically decreased the antioxidant glutathione. The glutathione precursor N-acetyl cysteine reversed this glutathione loss and prevented the toxic response to dual hits by all three assays. Dietary supplementation with N-acetyl cysteine benefits Alzheimer's patients and is currently undergoing clinical trials in Parkinson's disease. The present report is the first demonstration that this versatile compound is protective against synergistic loss of viability as well as of glutathione following unrelenting, sequential hits of proteotoxic stress as may occur in the diseased brain.
Collapse
Affiliation(s)
- Ajay S Unnithan
- Division of Pharmaceutical Sciences, Mylan School of Pharmacy, Duquesne University, Pittsburgh, PA 15282, USA
| | | | | | | | | |
Collapse
|
35
|
TRPM2 channel protective properties of N-acetylcysteine on cytosolic glutathione depletion dependent oxidative stress and Ca2+ influx in rat dorsal root ganglion. Physiol Behav 2012; 106:122-8. [DOI: 10.1016/j.physbeh.2012.01.014] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2011] [Revised: 01/11/2012] [Accepted: 01/17/2012] [Indexed: 01/05/2023]
|
36
|
Simmons AD. Parkinson Disease. Integr Med (Encinitas) 2012. [DOI: 10.1016/b978-1-4377-1793-8.00013-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
37
|
Huang Q, Aluise CD, Joshi G, Sultana R, St Clair DK, Markesbery WR, Butterfield DA. Potential in vivo amelioration by N-acetyl-L-cysteine of oxidative stress in brain in human double mutant APP/PS-1 knock-in mice: toward therapeutic modulation of mild cognitive impairment. J Neurosci Res 2011; 88:2618-29. [PMID: 20648652 DOI: 10.1002/jnr.22422] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Alzheimer's disease (AD) is the most prevalent form of dementia among the elderly. Although the underlying cause has yet to be established, numerous data have shown that oxidative stress is implicated in AD as well as in preclinical stages of AD, such as mild cognitive impairment (MCI). The oxidative stress observed in brains of subjects with AD and MCI may be due, either fully or in part, to increased free radicals mediated by amyloid-beta peptide (Abeta). By using double human mutant APP/PS-1 knock-in mice as the AD model, the present work demonstrates that the APP/PS-1 double mutation results in elevated protein oxidation (as indexed by protein carbonyls), protein nitration (as indexed by 3-nitrotyrosine), as well as lipid peroxidation (as indexed by protein-bound 4-hydroxy-2-nonenal) in brains of mice aged 9 months and 12 months. APP/PS-1 mice also exhibited lower levels of brain glutathione peroxidase (GPx) in both age groups studied, whereas glutathione reductase (GR) levels in brain were unaffected by the mutation. The activities of both of these antioxidant enzymes were significantly decreased in APP/PS-1 mouse brains, whereas the activity of glucose-6-phosphate dehydrogenase (G6PDH) was increased relative to controls in both age groups. Levels of peptidyl prolyl isomerase 1 (Pin1) were significantly decreased in APP/PS-1 mouse brain aged 9 and 12 months. Administration of N-acetyl-L-cysteine (NAC), a glutathione precursor, to APP/PS-1 mice via drinking water suppressed increased protein oxidation and nitration and also significantly augmented levels and activity of GPx in brain from both age groups. Oral administration of NAC also increased the diminished activity of GR and protected against lipid peroxidation in brains of 9-month-old APP/PS-1 mice only. Pin1 levels, GR levels, and G6PDH activity in brain were unaffected by oral administration of NAC in both age groups. These results are discussed with reference to the therapeutic potential of this brain-accessible glutathione precursor in the treatment of MCI and AD.
Collapse
Affiliation(s)
- Quanzhen Huang
- Department of Chemistry, University of Kentucky, Lexington, Kentucky 40506, USA
| | | | | | | | | | | | | |
Collapse
|
38
|
Berman AE, Chan WY, Brennan AM, Reyes RC, Adler BL, Suh SW, Kauppinen TM, Edling Y, Swanson RA. N-acetylcysteine prevents loss of dopaminergic neurons in the EAAC1-/- mouse. Ann Neurol 2010; 69:509-20. [PMID: 21446024 DOI: 10.1002/ana.22162] [Citation(s) in RCA: 109] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2009] [Revised: 07/03/2010] [Accepted: 07/13/2010] [Indexed: 12/21/2022]
Abstract
OBJECTIVE Dopaminergic neuronal death in Parkinson's disease (PD) is accompanied by oxidative stress and preceded by glutathione depletion. The development of disease-modifying therapies for PD has been hindered by a paucity of animal models that mimic these features and demonstrate an age-related progression. The EAAC1(-/-) mouse may be useful in this regard, because EAAC1(-/-) mouse neurons have impaired neuronal cysteine uptake, resulting in reduced neuronal glutathione content and chronic oxidative stress. Here we aimed to (1) characterize the age-related changes in nigral dopaminergic neurons in the EAAC1(-/-) mouse, and (2) use the EAAC1(-/-) mouse to evaluate N-acetylcysteine, a membrane-permeable cysteine pro-drug, as a potential disease-modifying intervention for PD. METHODS Wild-type mice, EAAC1(-/-) mice, and EAAC1(-/-) mice chronically treated with N-acetylcysteine were evaluated at serial time points for evidence of oxidative stress, dopaminergic cell death, and motor abnormalities. RESULTS EAAC1(-/-) mice showed age-dependent loss of dopaminergic neurons in the substantia nigra pars compacta, with more than 40% of these neurons lost by age 12 months. This neuronal loss was accompanied by increased nitrotyrosine formation, nitrosylated α-synuclein, and microglial activation. These changes were substantially reduced in mice that received N-acetylcysteine. INTERPRETATION These findings suggest that the EAAC1(-/-) mouse may be a useful model of the chronic neuronal oxidative stress that occurs in PD. The salutary effects of N-acetylcysteine in this mouse model provide an impetus for clinical evaluation of glutathione repletion in PD.
Collapse
Affiliation(s)
- Ari E Berman
- Department of Neurology, University of California, San Francisco, San Francisco Veterans Affairs Medical Center, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Sinha M, Saha A, Basu S, Pal K, Chakrabarti S. Aging and antioxidants modulate rat brain levels of homocysteine and dehydroepiandrosterone sulphate (DHEA-S): Implications in the pathogenesis of Alzheimer's disease. Neurosci Lett 2010; 483:123-6. [DOI: 10.1016/j.neulet.2010.07.075] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2010] [Revised: 07/21/2010] [Accepted: 07/27/2010] [Indexed: 11/27/2022]
|
40
|
Clark J, Clore EL, Zheng K, Adame A, Masliah E, Simon DK. Oral N-acetyl-cysteine attenuates loss of dopaminergic terminals in alpha-synuclein overexpressing mice. PLoS One 2010; 5:e12333. [PMID: 20808797 PMCID: PMC2925900 DOI: 10.1371/journal.pone.0012333] [Citation(s) in RCA: 91] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2009] [Accepted: 07/29/2010] [Indexed: 11/18/2022] Open
Abstract
Levels of glutathione are lower in the substantia nigra (SN) early in Parkinson's disease (PD) and this may contribute to mitochondrial dysfunction and oxidative stress. Oxidative stress may increase the accumulation of toxic forms of α-synuclein (SNCA). We hypothesized that supplementation with n-acetylcysteine (NAC), a source of cysteine – the limiting amino acid in glutathione synthesis, would protect against α-synuclein toxicity. Transgenic mice overexpressing wild-type human α-synuclein drank water supplemented with NAC or control water supplemented with alanine from ages 6 weeks to 1 year. NAC increased SN levels of glutathione within 5–7 weeks of treatment; however, this increase was not sustained at 1 year. Despite the transient nature of the impact of NAC on brain glutathione, the loss of dopaminergic terminals at 1 year associated with SNCA overexpression was significantly attenuated by NAC supplementation, as measured by immunoreactivity for tyrosine hydroxylase in the striatum (p = 0.007; unpaired, two-tailed t-test), with a similar but nonsignificant trend for dopamine transporter (DAT) immunoreactivity. NAC significantly decreased the levels of human SNCA in the brains of PDGFb-SNCA transgenic mice compared to alanine treated transgenics. This was associated with a decrease in nuclear NFκB localization and an increase in cytoplasmic localization of NFκB in the NAC-treated transgenics. Overall, these results indicate that oral NAC supplementation decreases SNCA levels in brain and partially protects against loss of dopaminergic terminals associated with overexpression of α-synuclein in this model.
Collapse
Affiliation(s)
- Joanne Clark
- Department of Neurology, Beth Israel Deaconess Medical Center, Boston, Massachusetts, United States of America
- Harvard Medical School, Boston, Massachusetts, United States of America
| | - Elizabeth L. Clore
- Department of Neurology, Beth Israel Deaconess Medical Center, Boston, Massachusetts, United States of America
| | - Kangni Zheng
- Department of Neurology, Beth Israel Deaconess Medical Center, Boston, Massachusetts, United States of America
| | - Anthony Adame
- Department of Neuroscience, School of Medicine, University of Southern California, San Diego, California, United States of America
| | - Eliezer Masliah
- Department of Neuroscience, School of Medicine, University of Southern California, San Diego, California, United States of America
| | - David K. Simon
- Department of Neurology, Beth Israel Deaconess Medical Center, Boston, Massachusetts, United States of America
- Harvard Medical School, Boston, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
41
|
Ruzza P, Rosato A, Nassi A, Rondina M, Zorzin M, Rossi CR, Floreani M, Quintieri L. Synthesis and Preliminary in Vitro Biological Evaluation of 4-[(4-Hydroxyphenyl)sulfanyl]but-3-en-2-one, a 4-Mercaptophenol Derivative Designed As a Novel Bifunctional Antimelanoma Agent. J Med Chem 2009; 52:4973-6. [DOI: 10.1021/jm900642j] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Paolo Ruzza
- Istituto di Chimica Biomolecolare del CNR, Sezione di Padova, via Marzolo 1, Padova, Italia
| | - Antonio Rosato
- Dipartimento di Scienze Oncologiche e Chirurgiche, Università di Padova, Padova, Italia
- Istituto Oncologico Veneto (IOV), IRCCS, via Gattamelata 64, Padova, Italia
| | - Alberto Nassi
- Dipartimento di Farmacologia e Anestesiologia, Università di Padova, L.go Meneghetti 2, Padova, Italia
| | - Maria Rondina
- Dipartimento di Scienze Oncologiche e Chirurgiche, Università di Padova, Padova, Italia
| | - Matteo Zorzin
- Istituto di Chimica Biomolecolare del CNR, Sezione di Padova, via Marzolo 1, Padova, Italia
| | - Carlo Riccardo Rossi
- Dipartimento di Scienze Oncologiche e Chirurgiche, Università di Padova, Padova, Italia
- Istituto Oncologico Veneto (IOV), IRCCS, via Gattamelata 64, Padova, Italia
| | - Maura Floreani
- Dipartimento di Farmacologia e Anestesiologia, Università di Padova, L.go Meneghetti 2, Padova, Italia
| | - Luigi Quintieri
- Dipartimento di Farmacologia e Anestesiologia, Università di Padova, L.go Meneghetti 2, Padova, Italia
| |
Collapse
|
42
|
Pinto JT, Khomenko T, Szabo S, McLaren GD, Denton TT, Krasnikov BF, Jeitner TM, Cooper AJL. Measurement of sulfur-containing compounds involved in the metabolism and transport of cysteamine and cystamine. Regional differences in cerebral metabolism. J Chromatogr B Analyt Technol Biomed Life Sci 2009; 877:3434-41. [PMID: 19523884 DOI: 10.1016/j.jchromb.2009.05.041] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2009] [Revised: 05/15/2009] [Accepted: 05/19/2009] [Indexed: 11/17/2022]
Abstract
An HPLC method with coulometric detection is presented for the quantitation of cysteamine, cystamine, thialysine, glutathione, glutathione disulfide and an oxidized metabolite of thialysine [S-(2-aminoethyl)-L-cysteine ketimine decarboxylated dimer (AECK-DD)]. The advantage of coulometric detection is that derivatization is unnecessary if the analyte is redox sensitive. The method was used to quantitate several sulfur-containing compounds in plasma and brain following gavage feeding of cysteamine to rats. Cysteamine, cystamine, thialysine and AECK-DD were detected in the brains of these animals. Interestingly, cysteamine treatment resulted in greatly elevated levels of cerebral methionine, despite the fact that cysteamine is not a precursor of methionine.
Collapse
Affiliation(s)
- John T Pinto
- Department of Biochemistry and Molecular Biology, New York Medical College, Valhalla, NY 10595, USA
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Ferreira LF, Gilliam LAA, Reid MB. L-2-Oxothiazolidine-4-carboxylate reverses glutathione oxidation and delays fatigue of skeletal muscle in vitro. J Appl Physiol (1985) 2009; 107:211-6. [PMID: 19407260 DOI: 10.1152/japplphysiol.00001.2009] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Fatiguing exercise promotes oxidation of intracellular thiols, notably glutathione. Interventions that oppose or reverse thiol oxidation can inhibit fatigue. The reduced cysteine donor l-2-oxothiazolidine-4-carboxylate (OTC) supports glutathione synthesis and is approved for use in humans but has not been evaluated for effects on skeletal muscle. We tested the hypotheses that OTC would 1) increase reduced glutathione (GSH) levels and decrease oxidized glutathione, and 2) inhibit functional indexes of fatigue. Diaphragm fiber bundles from adult male ICR mice were incubated for 1 or 2 h at 37 degrees C with buffer (control, C) or OTC (10 mM). N-acetylcysteine (NAC; 10 mM) was used as a positive control. We measured GSH metabolites and fatigue characteristics. We found that muscle GSH content was increased after 1-h incubation with OTC or NAC but was not altered after 2-h incubation. One-hour treatment with OTC or NAC slowed the decline in force with repetitive stimulation [mean (SD) fatigue index at 300 s: OTC = 34 +/- 6% vs. C = 50 +/- 8%, P < 0.05; NAC = 55 +/- 4% vs. C = 65 +/- 8%, P < 0.05] as did the 2-h OTC treatment (OTC = 38 +/- 9% vs. C = 51 +/- 9%, P < 0.05). These results demonstrate that OTC modulates the muscle GSH pool and opposes fatigue under the current experimental conditions.
Collapse
Affiliation(s)
- Leonardo F Ferreira
- Dept. of Physiology, Univ. of Kentucky, 800 Rose St., MS-508, Lexington, KY 40536-0298, USA
| | | | | |
Collapse
|
44
|
Brown RD, Burke GAA, Brown GC. Dependence of leukemic cell proliferation and survival on H2O2 and L-arginine. Free Radic Biol Med 2009; 46:1211-20. [PMID: 19439212 DOI: 10.1016/j.freeradbiomed.2009.02.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2008] [Revised: 12/12/2008] [Accepted: 02/02/2009] [Indexed: 11/19/2022]
Abstract
The proliferation and/or survival of a variety of cells is dependent on cellular hydrogen peroxide (H(2)O(2)) production. We tested whether this was true of leukemic cells, using cell lines from leukemic patients (CEM, 697, Mn-60, and Tanoue). We found that addition of catalase inhibited proliferation of all cell lines and induced death in two. However, this turned out to be due to arginase contamination of the catalase. Pure arginase inhibited cell proliferation and survival, which was reversible by adding L-arginine, demonstrating the L-arginine dependency of these cells. The glutathione peroxidase mimetic ebselen killed the cells by a novel, rapid form of death, preceded by cell blebbing and prevented by N-acetylcysteine, suggesting toxicity is not due to ebselen's antioxidant activity. Addition of N-acetylcysteine to remove endogenous H(2)O(2) stimulated survival and proliferation, suggesting that basal levels of H(2)O(2) promoted cell death. Consistent with this, leukemic cell death was induced by adding as little as 5 microM H(2)O(2). Ascorbic acid, even at 100 microM, induced death through H(2)O(2) production. Thus H(2)O(2) does not promote proliferation and survival, rather the opposite, and previous literature may have misinterpreted the effects of antioxidants. Arginase, H(2)O(2), ascorbic acid, and ebselen might be useful in the treatment of leukemia.
Collapse
Affiliation(s)
- Richard D Brown
- Department of Biochemistry, University of Cambridge, Cambridge, UK.
| | | | | |
Collapse
|
45
|
Abstract
The brain is among the major organs generating large amounts of reactive oxygen species and is especially susceptible to oxidative stress. Glutathione (GSH) plays critical roles as an antioxidant, enzyme cofactor, cysteine storage form, the major redox buffer, and a neuromodulator in the central nervous system. GSH deficiency has been implicated in neurodegenerative diseases. GSH is a tripeptide comprised of glutamate, cysteine, and glycine. Cysteine is the rate-limiting substrate for GSH synthesis within neurons. Most neuronal cysteine uptake is mediated by sodium-dependent excitatory amino acid transporter (EAAT) systems, known as excitatory amino acid carrier 1 (EAAC1). Previous studies demonstrated EAAT is vulnerable to oxidative stress, leading to impaired function. A recent study found EAAC1-deficient mice to have decreased brain GSH levels and increased susceptibility to oxidative stress. The function of EAAC1 is also regulated by glutamate transporter associated protein 3-18. This review focuses on the mechanisms underlying GSH synthesis, especially those related to neuronal cysteine transport via EAAC1, as well as on the importance of GSH functions against oxidative stress.
Collapse
Affiliation(s)
- Koji Aoyama
- Department of Pharmacology, Teikyo University School of Medicine, Itabashi, Tokyo, Japan
| | | | | |
Collapse
|
46
|
Shadnia S, Dasgar M, Taghikhani S, Mohammadirad A, Khorasani R, Abdollahi M. Protective Effects of α-Tocopherol and N-Acetyl-Cysteine on Diazinon-Induced Oxidative Stress and Acetylcholinesterase Inhibition in Rats. Toxicol Mech Methods 2008; 17:109-15. [DOI: 10.1080/15376510600860318] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
47
|
Berk M, Ng F, Dean O, Dodd S, Bush AI. Glutathione: a novel treatment target in psychiatry. Trends Pharmacol Sci 2008; 29:346-51. [DOI: 10.1016/j.tips.2008.05.001] [Citation(s) in RCA: 120] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2008] [Revised: 05/05/2008] [Accepted: 05/07/2008] [Indexed: 12/31/2022]
|
48
|
CHAO P, FAN S, CHOU Y, LIN ANYAM. N-Acetylcysteine Attenuates Arsenite-Induced Oxidative Injury in Dorsal Root Ganglion Explants. Ann N Y Acad Sci 2007; 1122:276-88. [DOI: 10.1196/annals.1403.020] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
49
|
Bates KA, Martins RN, Harvey AR. Oxidative stress in a rat model of chronic gliosis. Neurobiol Aging 2007; 28:995-1008. [DOI: 10.1016/j.neurobiolaging.2006.05.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2006] [Revised: 04/18/2006] [Accepted: 05/03/2006] [Indexed: 10/24/2022]
|
50
|
Jurkowska H, Wróbel M. N-acetyl-L-cysteine as a source of sulfane sulfur in astrocytoma and astrocyte cultures: correlations with cell proliferation. Amino Acids 2007; 34:231-7. [PMID: 17450321 DOI: 10.1007/s00726-007-0471-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2006] [Accepted: 10/22/2006] [Indexed: 11/28/2022]
Abstract
N-acetyl-L-cysteine (NAC), a precursor of L-cysteine, not only elevates the level of glutathione in both astrocytoma and astrocyte cultures, but also affects the cellular level of sulfane sulfur. Astrocytoma cells were investigated using the stable U373 human cell line. In the U373 cells, N-acetyl-L-cysteine, depending on the concentration in the culture medium and culture duration, either elevated or diminished the level of sulfane sulfur, and this was respectively accompanied by decreased or increased cellular proliferation. In murine astrocytes, in turn, NAC was capable of lowering the level of sulfane sulfur and in this way decreased cellular proliferation. It seems that normal (astrocyte) and transformed (astrocytoma) cells differed in their reaction to NAC in the culture medium. The effect of N-acetyl-L-cysteine on astrocytoma cells was advantageous in that it inhibited their proliferation through the elevation of the level of sulfane sulfur.
Collapse
Affiliation(s)
- H Jurkowska
- Chair of Medical Biochemistry, Jagiellonian University Medical College, Kraków, Poland
| | | |
Collapse
|