1
|
Sun WL, Quizon PM, Zhu J. Molecular Mechanism: ERK Signaling, Drug Addiction, and Behavioral Effects. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2015; 137:1-40. [PMID: 26809997 DOI: 10.1016/bs.pmbts.2015.10.017] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Addiction to psychostimulants has been considered as a chronic psychiatric disorder characterized by craving and compulsive drug seeking and use. Over the past two decades, accumulating evidence has demonstrated that repeated drug exposure causes long-lasting neurochemical and cellular changes that result in enduring neuroadaptation in brain circuitry and underlie compulsive drug consumption and relapse. Through intercellular signaling cascades, drugs of abuse induce remodeling in the rewarding circuitry that contributes to the neuroplasticity of learning and memory associated with addiction. Here, we review the role of the extracellular signal-regulated kinase (ERK), a member of the mitogen-activated protein kinase, and its related intracellular signaling pathways in drug-induced neuroadaptive changes that are associated with drug-mediated psychomotor activity, rewarding properties and relapse of drug seeking behaviors. We also discuss the neurobiological and behavioral effects of pharmacological and genetic interferences with ERK-associated molecular cascades in response to abused substances. Understanding the dynamic modulation of ERK signaling in response to drugs may provide novel molecular targets for therapeutic strategies to drug addiction.
Collapse
Affiliation(s)
- Wei-Lun Sun
- Department of Drug Discovery and Biomedical Sciences, South Carolina College of Pharmacy, University of South Carolina, Columbia, South Carolina, USA
| | - Pamela M Quizon
- Department of Drug Discovery and Biomedical Sciences, South Carolina College of Pharmacy, University of South Carolina, Columbia, South Carolina, USA
| | - Jun Zhu
- Department of Drug Discovery and Biomedical Sciences, South Carolina College of Pharmacy, University of South Carolina, Columbia, South Carolina, USA.
| |
Collapse
|
2
|
Foxworthy WA, Medina AE. Overexpression of Serum Response Factor in Neurons Restores Ocular Dominance Plasticity in a Model of Fetal Alcohol Spectrum Disorders. Alcohol Clin Exp Res 2015; 39:1951-6. [PMID: 26342644 DOI: 10.1111/acer.12844] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Accepted: 07/14/2015] [Indexed: 01/06/2023]
Abstract
BACKGROUND Deficits in neuronal plasticity underlie many neurobehavioral and cognitive problems presented in fetal alcohol spectrum disorder (FASD). Our laboratory has developed a ferret model showing that early alcohol exposure leads to a persistent disruption in ocular dominance plasticity (ODP). For instance, a few days of monocular deprivation results in a robust reduction of visual cortex neurons' responsiveness to stimulation of the deprived eye in normal animals, but not in ferrets with early alcohol exposure. Previously our laboratory demonstrated that overexpression of serum response factor (SRF) exclusively in astrocytes can improve neuronal plasticity in FASD. Here, we test whether neuronal overexpression of SRF can achieve similar effects. METHODS Ferrets received 3.5 g/kg alcohol intraperitoneally (25% in saline) or saline as control every other day between postnatal day 10 to 30, which is roughly equivalent to the third trimester of human gestation. Animals were given intracortical injections of a Herpes Simplex Virus-based vector to express either green fluorescent protein or a constitutively active form of SRF in infected neurons. They were then monocularly deprived by eyelid suture for 4 to 5 days after which single-unit recordings were conducted to determine whether changes in ocular dominance had occurred. RESULTS Overexpression of a constitutively active form of SRF by neurons restored ODP in alcohol-treated animals. This effect was observed only in areas near the site of viral infection. CONCLUSIONS Overexpression of SRF in neurons can restore plasticity in the ferret model of FASD, but only in areas near the site of infection. This contrasts with SRF overexpression in astrocytes which restored plasticity throughout the visual cortex.
Collapse
Affiliation(s)
- W Alex Foxworthy
- Department of Pediatrics (WAF, AEM), University of Maryland, Baltimore, Maryland
| | - Alexandre E Medina
- Department of Pediatrics (WAF, AEM), University of Maryland, Baltimore, Maryland
| |
Collapse
|
3
|
Rosas M, Zaru A, Sabariego M, Giugliano V, Carboni E, Colombo G, Acquas E. Differential sensitivity of ethanol-elicited ERK phosphorylation in nucleus accumbens of Sardinian alcohol-preferring and -non preferring rats. Alcohol 2014; 48:471-6. [PMID: 24877898 DOI: 10.1016/j.alcohol.2014.04.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2013] [Revised: 04/30/2014] [Accepted: 04/30/2014] [Indexed: 01/19/2023]
Abstract
Sardinian alcohol-preferring (sP) and -non preferring (sNP) rats have been selectively bred for opposite ethanol preference and consumption; sP rats represent a validated experimental tool to model several aspects of excessive ethanol drinking in humans. Phosphorylated Extracellular signal-Regulated Kinase (pERK) in dopamine-rich terminal areas plays a critical role in several psychopharmacological effects of addictive drugs, including ethanol. This study was aimed at investigating whether ethanol-elicited ERK activation may differ in key brain areas of ethanol-naïve sP and sNP rats. To this end, the effects of ethanol (0, 0.5, 1, and 2 g/kg, administered intra-gastrically [i.g.]) on ERK phosphorylation were assessed by pERK immunohistochemistry in the shell (AcbSh) and core (AcbC) of the nucleus accumbens (Acb) as well as in the prelimbic (PrL) and infralimbic (IL) prefrontal cortex (PFCx), in the bed nucleus of stria terminalis (BSTL) and in the central nucleus of the amygdala (CeA). Ethanol (1 g/kg) significantly increased pERK immunoreactivity in AcbSh and AcbC of sP but not sNP rats. Conversely, ethanol failed to affect pERK expression in PrL and IL PFCx as well as in BSTL and CeA of both sP and sNP rats. These results suggest that selective breeding of these rat lines results in differential effects of acute ethanol on ERK phosphorylation in brain regions critical for the psychopharmacological effects of ethanol.
Collapse
Affiliation(s)
- Michela Rosas
- Pharmaceutical, Pharmacological and Nutraceutical Sciences Section, Department of Life and Environmental Sciences, University of Cagliari, Cagliari, Italy
| | - Alessandro Zaru
- Neuroscience Institute, Section of Cagliari, National Research Council of Italy, Monserrato, Cagliari, Italy
| | - Marta Sabariego
- Department of Psychology, University of Jaèn, Campus Las Lagunillas s/n Building C-5, 23071 Jaèn, Spain
| | - Valentina Giugliano
- Department of Biomedical Sciences, Division of Neuropsychopharmacology, University of Cagliari, Cagliari, Italy; Department of Life and Environmental Sciences, University of Cagliari, Cagliari, Italy
| | - Ezio Carboni
- Neuroscience Institute, Section of Cagliari, National Research Council of Italy, Monserrato, Cagliari, Italy; Department of Biomedical Sciences, Division of Neuropsychopharmacology, University of Cagliari, Cagliari, Italy; Centre of Excellence on Neurobiology of Addiction, University of Cagliari, Cagliari, Italy; National Institute of Neuroscience - INN, University of Cagliari, Cagliari, Italy
| | - Giancarlo Colombo
- Neuroscience Institute, Section of Cagliari, National Research Council of Italy, Monserrato, Cagliari, Italy
| | - Elio Acquas
- Pharmaceutical, Pharmacological and Nutraceutical Sciences Section, Department of Life and Environmental Sciences, University of Cagliari, Cagliari, Italy; Centre of Excellence on Neurobiology of Addiction, University of Cagliari, Cagliari, Italy; National Institute of Neuroscience - INN, University of Cagliari, Cagliari, Italy.
| |
Collapse
|
4
|
Lindsley TA, Shah SN, Ruggiero EA. Ethanol alters BDNF-induced Rho GTPase activation in axonal growth cones. Alcohol Clin Exp Res 2012; 35:1321-30. [PMID: 21676004 DOI: 10.1111/j.1530-0277.2011.01468.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
BACKGROUND The effects of ethanol on development of postmitotic neurons include altered neurite outgrowth and differentiation, which may contribute to neuropathology associated with fetal alcohol spectrum disorders. We previously reported that ethanol exposure alters axon growth dynamics in dissociated cultures of rat hippocampal pyramidal neurons. Given the important regulatory role of small Rho guanosine triphosphatases (GTPases) in cytoskeletal reorganization associated with axon growth, and reports that ethanol alters whole cell Rho GTPase activity in other cell types, this study explored the hypothesis that ethanol alters Rho GTPase activity specifically in axonal growth cones. METHODS Fetal rat hippocampal pyramidal neurons were maintained in dissociated cultures for 1 day in control medium or medium containing 11 to 43 mM ethanol. Some cultures were also treated with brain-derived neurotrophic factor (BDNF), an activator of Rac1 and Cdc42 GTPases that promotes axon extension. Levels of active Rho GTPases in growth cones were measured using in situ binding assays for GTP-bound Rac1, Cdc42, and RhoA. Axon length, growth cone area, and growth cone surface expression of tyrosine kinase B (TrkB), the receptor for BDNF, were assessed by digital morphometry and immunocytochemistry. RESULTS Although ethanol increased the surface area of growth cones, the levels of active Rho GTPases in axonal growth cones were not affected in the absence of exogenous BDNF. In contrast, ethanol exposure inhibited BDNF-induced Rac1/Cdc42 activation in a dose-dependent manner and increased RhoA activation at the highest concentration tested. Similar TrkB expression was observed on the surface of axonal growth cones of control and ethanol-treated neurons. CONCLUSIONS These results reveal an inhibitory effect of ethanol on growth cone signaling via small Rho GTPases during early stages of hippocampal development in vitro, and suggest a mechanism whereby ethanol may disrupt neurotrophic factor regulation of axon growth and guidance.
Collapse
Affiliation(s)
- Tara A Lindsley
- Center for Neuropharmacology & Neuroscience, Albany Medical College, 47 New Scotland Ave., Albany, NY 12208, USA.
| | | | | |
Collapse
|
5
|
Hamilton GF, Boschen KE, Goodlett CR, Greenough WT, Klintsova AY. Housing in environmental complexity following wheel running augments survival of newly generated hippocampal neurons in a rat model of binge alcohol exposure during the third trimester equivalent. Alcohol Clin Exp Res 2012; 36:1196-204. [PMID: 22324755 DOI: 10.1111/j.1530-0277.2011.01726.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2011] [Accepted: 11/11/2011] [Indexed: 01/17/2023]
Abstract
BACKGROUND Binge-like alcohol exposure in neonatal rats during the brain growth spurt causes deficits in adult neurogenesis in the hippocampal dentate gyrus (DG). Previous data from our laboratory demonstrated that 12 days of voluntary wheel running (WR) beginning on postnatal day (PD) 30 significantly increased the number of newly generated cells evident in the DG on PD42 in both alcohol-exposed (AE) and control rats, but 30 days later a sustained beneficial effect of WR was evident only in control rats. This study tested the hypothesis that housing rats in environmental complexity (EC) following WR would promote the survival of the newly generated cells stimulated by WR, particularly in AE rats. METHODS On PD4 to 9, pups were intubated with alcohol in a binge-like manner (5.25 g/kg/d), sham-intubated (SI), or reared normally. In Experiment 1, animals were either assigned to WR during PD30 to 42 or socially housed (SH). On PD42, animals were injected with bromodeoxyuridine (BrdU; 200 mg/kg) and perfused 2 hours later to confirm the WR-induced stimulation of proliferation. In Experiment 2, all animals received WR on PD30 to 42 and were injected with BrdU on the last full day of WR. On PD42, animals were randomly assigned either to EC (WR/EC) or to SH (WR/SH) for 30 days and subsequently perfused and brains were processed for immunohistochemical staining to identify BrdU+-, Ki67+-, and BrdU+/NeuN+-labeled cells in DG. RESULTS In Experiment 1, WR exposure significantly increased the number of proliferating cells in all 3 postnatal conditions. In Experiment 2, the AE rats given WR/SH had significantly fewer BrdU+ cells compared with control rats given WR/SH. However, WR/EC experience significantly increased the number of surviving BrdU+ cells in both the AE and SI groups compared with WR/SH rats of the same neonatal treatment. Approximately 80% of the surviving BrdU+ cells in the DG across the conditions were colabeled with NeuN. CONCLUSIONS WR followed by EC could provide a behavioral model for developing interventions in humans to ameliorate hippocampal-dependent impairments associated with fetal alcohol spectrum disorders.
Collapse
|
6
|
Mooney SM, Miller MW. Role of neurotrophins on postnatal neurogenesis in the thalamus: prenatal exposure to ethanol. Neuroscience 2011; 179:256-66. [PMID: 21277941 DOI: 10.1016/j.neuroscience.2011.01.046] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2010] [Revised: 01/20/2011] [Accepted: 01/21/2011] [Indexed: 12/23/2022]
Abstract
A second wave of neuronal generation occurs in the ventrobasal nucleus of the rat thalamus (VB) during the first three postnatal weeks. The present study tested the hypotheses (1) that postnatal neurogenesis in the VB is neurotrophin-regulated and (2) that ethanol-induced changes in this proliferation are mediated by neurotrophins. The first studies examined the effects of neurotrophins on the numbers of cycling cells in ex vivo preparations of the VB from 3-day-old rats. The proportion of cycling (Ki-67-positive) VB cells was higher in cultured thalamic slices treated with neurotrophins than in controls. Interestingly, this increase occurred with nerve growth factor (NGF) alone or with a combination of NGF and brain-derived neurotrophic factor (BDNF), but not with BDNF alone. Based on these data, the VBs from young offspring of pregnant rats fed an ethanol-containing or an isocaloric non-alcoholic liquid diet were examined between postnatal day (P) 1 and P31. Studies used enzyme-linked immunosorbent assays and immunoblots to explore the effects of ethanol on the expression of neurotrophins, their receptors, and representative signaling proteins. Ethanol altered the expression of neurotrophins and receptors throughout the first postnatal month. Expression of NGF increased, but there was no change in the expression of BDNF. The high affinity receptors (TrkA and TrkB) were unchanged but ethanol decreased expression of the low affinity receptor, p75. One downstream signaling protein, extracellular signal-regulated kinase (ERK), decreased but Akt expression was unchanged. Thus, postnatal cell proliferation in the VB of young rat pups is neurotrophin-responsive and is affected by ethanol.
Collapse
Affiliation(s)
- S M Mooney
- Department of Neuroscience and Physiology, State University of New York Upstate Medical University, Syracuse, NY 13210, USA.
| | | |
Collapse
|
7
|
Overexpression of serum response factor restores ocular dominance plasticity in a model of fetal alcohol spectrum disorders. J Neurosci 2010; 30:2513-20. [PMID: 20164336 DOI: 10.1523/jneurosci.5840-09.2010] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Neuronal plasticity deficits underlie many of the neurobehavioral problems seen in fetal alcohol spectrum disorders (FASD). Recently, we showed that third trimester alcohol exposure leads to a persistent disruption in ocular dominance (OD) plasticity. For instance, a few days of monocular deprivation results in a robust reduction of cortical regions responsive to the deprived eye in normal animals, but not in ferrets exposed early to alcohol. This plasticity deficit can be reversed if alcohol-exposed animals are treated with a phosphodiesterase type 1 (PDE1) inhibitor during the period of monocular deprivation. PDE1 inhibition can increase cAMP and cGMP levels, activating transcription factors such as the cAMP response element binding protein (CREB) and the serum response factor (SRF). SRF is important for many plasticity processes such as LTP, LTD, spine motility, and axonal pathfinding. Here we attempt to rescue OD plasticity in alcohol-treated ferrets using a Sindbis viral vector to express a constitutively active form of SRF during the period of monocular deprivation. Using optical imaging of intrinsic signals and single-unit recordings, we observed that overexpression of a constitutively active form of SRF, but neither its dominant-negative nor GFP, restored OD plasticity in alcohol-treated animals. Surprisingly, this restoration was observed throughout the extent of the primary visual cortex and most cells infected by the virus were positive for GFAP rather than NeuN. This finding suggests that overexpression of SRF in astrocytes may reduce the deficits in neuronal plasticity seen in models of FASD.
Collapse
|
8
|
Ethanol-modulated camouflage response screen in zebrafish uncovers a novel role for cAMP and extracellular signal-regulated kinase signaling in behavioral sensitivity to ethanol. J Neurosci 2009; 29:8408-18. [PMID: 19571131 DOI: 10.1523/jneurosci.0714-09.2009] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Ethanol, a widely abused substance, elicits evolutionarily conserved behavioral responses in a concentration-dependent manner in vivo. The molecular mechanisms underlying such behavioral sensitivity to ethanol are poorly understood. While locomotor-based behavioral genetic screening is successful in identifying genes in invertebrate models, such complex behavior-based screening has proven difficult for recovering genes in vertebrates. Here we report a novel and tractable ethanol response in zebrafish. Using this ethanol-modulated camouflage response as a screening assay, we have identified a zebrafish mutant named fantasma (fan), which displays reduced behavioral sensitivity to ethanol. Positional cloning reveals that fan encodes type 5 adenylyl cyclase (AC5). fan/ac5 is required to maintain the phosphorylation of extracellular signal-regulated kinase (ERK) in the forebrain structures, including the telencephalon and hypothalamus. Partial inhibition of phosphorylation of ERK in wild-type zebrafish mimics the reduction in sensitivity to stimulatory effects of ethanol observed in the fan mutant, whereas, strikingly, strong inhibition of phosphorylation of ERK renders a stimulatory dose of ethanol sedating. Since previous studies in Drosophila and mice show a role of cAMP signaling in suppressing behavioral sensitivity to ethanol, our findings reveal a novel, isoform-specific role of AC signaling in promoting ethanol sensitivity, and suggest that the phosphorylation level of the downstream effector ERK is a critical "gatekeeper" of behavioral sensitivity to ethanol.
Collapse
|
9
|
Neznanova O, Björk K, Rimondini R, Hansson AC, Hyytiä P, Heilig M, Sommer WH. Acute ethanol challenge inhibits glycogen synthase kinase-3beta in the rat prefrontal cortex. Int J Neuropsychopharmacol 2009; 12:275-80. [PMID: 19007447 PMCID: PMC2698134 DOI: 10.1017/s1461145708009620] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Intracellular signalling pathways emerge as key mediators of the molecular and behavioural effects of addictive drugs including ethanol. Previously, we demonstrated that the innate high ethanol preference in AA rats is driven by dysfunctional endocannabinoid signalling in the medial prefrontal cortex (mPFC). Here, we report that acute ethanol challenge, at a dose commonly regarded as reinforcing, strongly phosphorylates glycogen synthase kinase-3beta (GSK-3beta) in this region with corresponding increased phosphorylation of AKT, a major regulator of GSK-3beta. In the non-preferring counterpart ANA line we found a weaker, AKT-independent phosphorylation of GSK-3beta by ethanol. Furthermore, AA rats showed rapid and transient dephosphorylation of ERK1/2 upon acute ethanol challenge in the medial prefrontal cortex (mPFC) and to a lesser degree in the nucleus accumbens; ANA rats were completely non-responsive for this mechanism. Together, these results identify candidate pathways for mediating high ethanol preference and emphasize the importance of the mPFC in controlling this behaviour.
Collapse
Affiliation(s)
- Olga Neznanova
- Laboratory of Clinical and Translational Studies, NIAAA, National Institutes of Health, Bethesda, MD, USA
| | | | | | | | | | | | | |
Collapse
|
10
|
Hellmann J, Rommelspacher H, Wernicke C. Long-term ethanol exposure impairs neuronal differentiation of human neuroblastoma cells involving neurotrophin-mediated intracellular signaling and in particular protein kinase C. Alcohol Clin Exp Res 2008; 33:538-50. [PMID: 19120063 DOI: 10.1111/j.1530-0277.2008.00867.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
BACKGROUND Revealing the molecular changes in chronic ethanol-impaired neuronal differentiation may be of great importance for understanding ethanol-related pathology in embryonic development but also in the adult brain. In this study, both acute and long-term effects of ethanol on neuronal differentiation of human neuroblastoma cells were investigated. We focused on several aspects of brain-derived neurotrophic factor (BDNF) signaling because BDNF activates the extracellular signal-regulated kinase (ERK) cascade, promoting neuronal differentiation including neurite outgrowth. METHODS The effects of ethanol exposure on morphological differentiation, cellular density, neuronal marker proteins, basal ERK activity, and ERK responsiveness to BDNF were measured over 2 to 4 weeks. qRT-PCR and Western blotting were performed to investigate the expression of neurotrophin receptor tyrosin kinase B (TrkB), members of the ERK-cascade, protein kinase C (PKC) isoforms and Raf-Kinase-Inhibitor-Protein (RKIP). RESULTS Chronic ethanol interfered with the development of a neuronal network consisting of cell clusters and neuritic bundles. Furthermore, neuronal and synaptic markers were reduced, indicating impaired neuronal differentiation. BDNF-mediated activation of the ERK cascade was found to be continuously impaired by ethanol. This could not be explained by expressional changes monitored for TrkB, Raf-1, MEK, and ERK. However, BDNF also activates PKC signaling which involves RKIP, which finally leads to ERK activation as well. Therefore, we hypothesized that ethanol impairs this branch of BDNF signaling. Indeed, both PKC and RKIP were significantly down-regulated. CONCLUSIONS Chronic ethanol exposure impaired neuronal differentiation of neuroblastoma cells and BDNF signaling, particularly the PKC-dependent branch. RKIP, acting as a signaling switch at the merge of the PKC cascade and the Raf/MEK/ERK cascade, was associated with neuronal differentiation and significantly reduced in ethanol treatment. Moreover, PKC expression itself was even more strongly reduced. In contrast, members of the Raf-1/MEK/ERK cascade were less affected and the observed changes were not associated with impaired differentiation. Thus, reduced RKIP and PKC levels and subsequently reduced positive feedback on ERK activation provide an explanation for the striking effects of long-term ethanol exposure on BDNF signal transduction and neuronal differentiation, respectively.
Collapse
Affiliation(s)
- Julian Hellmann
- Department of Psychiatry, Section of Clinical Neurobiology, CBF, Charité-University Medicine Berlin, Germany
| | | | | |
Collapse
|
11
|
Ethanol regulation of D(1) dopamine receptor signaling is mediated by protein kinase C in an isozyme-specific manner. Neuropsychopharmacology 2008; 33:2900-11. [PMID: 18288091 DOI: 10.1038/npp.2008.16] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Ethanol consumption potentiates dopaminergic signaling that is partially mediated by the D(1) dopamine receptor; however, the mechanism(s) underlying ethanol-dependent modulation of D(1) signaling is unclear. We now show that ethanol treatment of D(1) receptor-expressing cells decreases D(1) receptor phosphorylation and concurrently potentiates dopamine-stimulated cAMP accumulation. Protein kinase C (PKC) inhibitors mimic the effects of ethanol on D(1) receptor phosphorylation and dopamine-stimulated cAMP levels in a manner that is non-additive with ethanol treatment. Ethanol was also found to modulate specific PKC activities as demonstrated using in vitro kinase assays where ethanol treatment attenuated the activities of lipid-stimulated PKCgamma and PKCdelta in membrane fractions, but did not affect the activities of PKCalpha, PKCbeta(1), or PKCvarepsilon. Importantly, ethanol treatment potentiated D(1) receptor-mediated DARPP-32 phosphorylation in rat striatal slices, supporting the notion that ethanol enhances D(1) receptor signaling in vivo. These findings suggest that ethanol inhibits the activities of specific PKC isozymes, resulting in decreased D(1) receptor phosphorylation and enhanced dopaminergic signaling.
Collapse
|
12
|
Young C, Straiko MMW, Johnson SA, Creeley C, Olney JW. Ethanol causes and lithium prevents neuroapoptosis and suppression of pERK in the infant mouse brain. Neurobiol Dis 2008; 31:355-60. [PMID: 18595723 PMCID: PMC2592843 DOI: 10.1016/j.nbd.2008.05.009] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2008] [Revised: 05/10/2008] [Accepted: 05/18/2008] [Indexed: 11/20/2022] Open
Abstract
Transient exposure of immature animals during the brain growth spurt period to ethanol triggers neuroapoptosis in the developing brain. Here we report that lithium, when administered in a single, well-tolerated dose to infant mice, suppresses spontaneous neuroapoptosis that occurs naturally in the developing brain, and prevents ethanol from triggering neuroapoptosis. To explore lithium's mechanism of action, we focused on kinase signaling systems (ERK, Akt, JNK) that are believed to play a regulatory role in cell survival, and found that very rapidly after ethanol administration there is a suppression of ERK phosphorylation, and that lithium stimulates ERK phosphorylation and prevents ethanol from suppressing this phosphorylation process. Ethanol also suppressed pAKT, but lithium did not counteract this effect. We also found that ethanol activates the JNK system, but this cannot explain the neurotoxic action of ethanol, because JNK activation did not occur in the same neuronal populations that are killed by ethanol.
Collapse
Affiliation(s)
- Chainllie Young
- Department of Psychiatry, Washington University School of Medicine, 660 South Euclid, St. Louis, MO 63110, USA
| | | | | | | | | |
Collapse
|
13
|
Schroeder JP, Spanos M, Stevenson JR, Besheer J, Salling M, Hodge CW. Cue-induced reinstatement of alcohol-seeking behavior is associated with increased ERK1/2 phosphorylation in specific limbic brain regions: blockade by the mGluR5 antagonist MPEP. Neuropharmacology 2008; 55:546-54. [PMID: 18619984 DOI: 10.1016/j.neuropharm.2008.06.057] [Citation(s) in RCA: 99] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2008] [Revised: 06/24/2008] [Accepted: 06/25/2008] [Indexed: 01/15/2023]
Abstract
Relapse to alcohol use after periods of abstinence is a hallmark behavioral pathology of alcoholism and a major clinical problem. Emerging evidence indicates that metabotropic glutamate receptor 5 (mGluR5) antagonists attenuate relapse to alcohol-seeking behavior but the molecular mechanisms of this potential therapeutic effect remain unexplored. The extracellular signal-regulated kinase (ERK1/2) pathway is downstream of mGluR5 and has been implicated in addiction. We sought to determine if cue-induced reinstatement of alcohol-seeking behavior, and its reduction by an mGluR5 antagonist, is associated with changes in ERK1/2 activation in reward-related limbic brain regions. Selectively-bred alcohol-preferring (P) rats were trained to lever press on a concurrent schedule of alcohol (15% v/v) vs. water reinforcement. Following 9 days of extinction, rats were given an additional extinction trial or injected with the mGluR5 antagonist MPEP (0, 1, 3, or 10mg/kg) and tested for cue-induced reinstatement. Brains were removed 90-min later from the rats in the extinction and MPEP (0 or 10mg/kg) conditions for analysis of p-ERK1/2, total ERK1/2, and p-ERK5 immunoreactivity (IR). Cue-induced reinstatement of alcohol-seeking behavior was associated with a three to five-fold increase in p-ERK1/2 IR in the basolateral amygdala and nucleus accumbens shell. MPEP administration blocked both the relapse-like behavior and increase in p-ERK1/2 IR. p-ERK1/2 IR in the central amygdala and NAcb core was dissociated with the relapse-like behavior and the pharmacological effect of mGluR5 blockade. No changes in total ERK or p-ERK5 were observed. These results suggest that exposure to cues previously associated with alcohol self-administration is sufficient to produce concomitant increases in relapse-like behavior and ERK1/2 activation in specific limbic brain regions. Pharmacological compounds, such as mGluR5 antagonists, that reduce cue-induced ERK1/2 activation may be useful for treatment of relapse in alcoholics that is triggered by exposure to environmental events.
Collapse
Affiliation(s)
- Jason P Schroeder
- Department of Psychiatry, Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, Thurston-Bowles Building; CB #7178, Chapel Hill, NC 27599, USA
| | | | | | | | | | | |
Collapse
|
14
|
Fattori V, Abe SI, Kobayashi K, Costa LG, Tsuji R. Effects of postnatal ethanol exposure on neurotrophic factors and signal transduction pathways in rat brain. J Appl Toxicol 2008; 28:370-6. [PMID: 17685400 DOI: 10.1002/jat.1288] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Exposure to ethanol during development induces severe brain damage, resulting in a number of CNS dysfunctions including microencephaly and mental retardation. Potential targets of ethanol-induced neurotoxicity include neurotrophic factors and their signal transduction pathways. In the present study, rat pups were given ethanol at the dose of 5 g kg(-1) via gavage from postnatal day (PND) 5 to 8, and mRNA expression of nerve growth-factor (NGF), brain-derived neurotrophic factor (BDNF), and neurotrophic factor-3 (NT-3) in the cerebral cortex was examined, with attention to signal transduction, on PND 8. The mRNA level of BDNF was decreased by ethanol while those of NGF or NT-3 were not changed. Brain weights were decreased and the levels of phospho-MAPK, phospho-p70S6K and phospho Akt were decreased while phosphor-PKCzeta and phospho-CREB remained unchanged. These results suggest that BDNF and its related signal pathways involving Akt, MAPK and p70S6K are potential targets of ethanol-induced developmental neurotoxicity.
Collapse
Affiliation(s)
- Vittorio Fattori
- Environmental Health Science Laboratory, Sumitomo Chemical Co. Ltd., 3-1-98 Kasugade-Naka, Konohana-Ku, Osaka 554-8558, Japan
| | | | | | | | | |
Collapse
|
15
|
Hansson AC, Rimondini R, Neznanova O, Sommer WH, Heilig M. Neuroplasticity in brain reward circuitry following a history of ethanol dependence. Eur J Neurosci 2008; 27:1912-22. [PMID: 18412612 PMCID: PMC2486413 DOI: 10.1111/j.1460-9568.2008.06159.x] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Mitogen-activated and extracellular regulated kinase (MEK) and extracellular signal-regulated protein kinase (ERK) pathways may underlie ethanol-induced neuroplasticity. Here, we used the MEK inhibitor 1,4-diamino-2,3-dicyano-1,4-bis(2-aminophenylthio)butadiene (UO126) to probe the role of MEK/ERK signaling for the cellular response to an acute ethanol challenge in rats with or without a history of ethanol dependence. Ethanol (1.5 g/kg, i.p.) induced expression of the marker genes c-fos and egr-1 in brain regions associated with both rewarding and stressful ethanol actions. Under non-dependent conditions, ethanol-induced c-fos expression was generally not affected by MEK inhibition, with the exception of the medial amygdala (MeA). In contrast, following a history of dependence, a markedly suppressed c-fos response to acute ethanol was found in the medial pre-frontal/orbitofrontal cortex (OFC), nucleus accumbens shell (AcbSh) and paraventricular nucleus (PVN). The suppressed ethanol response in the OFC and AcbSh, key regions involved in ethanol preference and seeking, was restored by pre-treatment with UO126, demonstrating a recruitment of an ERK/MEK-mediated inhibitory regulation in the post-dependent state. Conversely, in brain areas involved in stress responses (MeA and PVN), an MEK/ERK-mediated cellular activation by acute ethanol was lost following a history of dependence. These data reveal region-specific neuroadaptations encompassing the MEK/ERK pathway in ethanol dependence. Recruitment of MEK/ERK-mediated suppression of the ethanol response in the OFC and AcbSh may reflect devaluation of ethanol as a reinforcer, whereas loss of an MEK/ERK-mediated response in the MeA and PVN may reflect tolerance to its aversive actions. These two neuroadaptations could act in concert to facilitate progression into ethanol dependence.
Collapse
Affiliation(s)
- Anita C Hansson
- Laboratory of Clinical and Translational Studies, NIAAA/NIH, Bethesda, MD 20892-1108, USA.
| | | | | | | | | |
Collapse
|
16
|
Davis MI. Ethanol-BDNF interactions: still more questions than answers. Pharmacol Ther 2008; 118:36-57. [PMID: 18394710 DOI: 10.1016/j.pharmthera.2008.01.003] [Citation(s) in RCA: 115] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2008] [Accepted: 01/08/2008] [Indexed: 01/02/2023]
Abstract
Brain-derived neurotrophic factor (BDNF) has emerged as a regulator of development, plasticity and, recently, addiction. Decreased neurotrophic activity may be involved in ethanol-induced neurodegeneration in the adult brain and in the etiology of alcohol-related neurodevelopmental disorders. This can occur through decreased expression of BDNF or through inability of the receptor to transduce signals in the presence of ethanol. In contrast, recent studies implicate region-specific up-regulation of BDNF and associated signaling pathways in anxiety, addiction and homeostasis after ethanol exposure. Anxiety and depression are precipitating factors for substance abuse and these disorders also involve region-specific changes in BDNF in both pathogenesis and response to pharmacotherapy. Polymorphisms in the genes coding for BDNF and its receptor TrkB are linked to affective, substance abuse and appetitive disorders and therefore may play a role in the development of alcoholism. This review summarizes historical and pre-clinical data on BDNF and TrkB as it relates to ethanol toxicity and addiction. Many unresolved questions about region-specific changes in BDNF expression and the precise role of BDNF in neuropsychiatric disorders and addiction remain to be elucidated. Resolution of these questions will require significant integration of the literature on addiction and comorbid psychiatric disorders that contribute to the development of alcoholism.
Collapse
Affiliation(s)
- Margaret I Davis
- Section on Synaptic Pharmacology, Laboratory for Integrative Neuroscience, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
17
|
Zhai H, Li Y, Wang X, Lu L. Drug-induced alterations in the extracellular signal-regulated kinase (ERK) signalling pathway: implications for reinforcement and reinstatement. Cell Mol Neurobiol 2008; 28:157-72. [PMID: 18041576 PMCID: PMC11515050 DOI: 10.1007/s10571-007-9240-3] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2007] [Accepted: 11/06/2007] [Indexed: 12/01/2022]
Abstract
Drug addiction, characterized by high rates of relapse, is recognized as a kind of neuroadaptive disorder. Since the extracellular signal-regulated kinase (ERK) pathway is critical to neuroplasticity in the adult brain, understanding the role this pathway plays is important for understanding the molecular mechanism underlying drug addiction and relapse. Here, we review previous literatures that focus on the effects of exposure to cocaine, amphetamine, Delta(9)-tetrahydrocannabinol (THC), nicotine, morphine, and alcohol on ERK signaling in the mesocorticolimbic dopamine system; these alterations of ERK signaling have been thought to contribute to the drug's rewarding effects and to the long-term maladaptation induced by drug abuse. We then discuss the possible upstreams of the ERK signaling pathway activated by exposure of drugs of abuse and the environmental cues previously paired with drugs. Finally, we argue that since ERK activation is a key molecular process in reinstatement of conditioned place preference and drug self-administration, the pharmacological manipulation of the ERK pathway is a potential treatment strategy for drug addiction.
Collapse
Affiliation(s)
- Haifeng Zhai
- Department of Neuropharmacology, National Institute on Drug Dependence, Peking University, 38, Xue Yuan Road, Hai Dian District, Beijing 100083 China
| | - Yanqin Li
- Department of Neuropharmacology, National Institute on Drug Dependence, Peking University, 38, Xue Yuan Road, Hai Dian District, Beijing 100083 China
| | - Xi Wang
- Department of Neuropharmacology, National Institute on Drug Dependence, Peking University, 38, Xue Yuan Road, Hai Dian District, Beijing 100083 China
| | - Lin Lu
- Department of Neuropharmacology, National Institute on Drug Dependence, Peking University, 38, Xue Yuan Road, Hai Dian District, Beijing 100083 China
| |
Collapse
|
18
|
Chen ZH, Saito Y, Yoshida Y, Noguchi N, Niki E. Regulation of GCL activity and cellular glutathione through inhibition of ERK phosphorylation. Biofactors 2008; 33:1-11. [PMID: 19276532 DOI: 10.1002/biof.5520330101] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Extracellular signal-regulated protein kinase (ERK), one of the mitogen-activated protein kinase, has been known to be involved in diverse cellular functions. In this work, we found that basically inhibition of this kinase in cultured cells markedly increased the gamma-glutamate-cysteine ligase (GCL; EC 6.3.2.2) activity, but without any considerable induction of the GCL genes. The increased GCL activity consequently elevated the cellular GSH level and eventually enhanced the cellular antioxidant capacity. Genetic inhibition of B-Raf, the upstream of ERK, also resulted in increased GCL activity and GSH level. Recent evidence also suggests that chronic pro-oxidant exposure results in the loss of ERK phosphorylation in vivo. Therefore, the findings in the present study suggest that inhibition of B-Raf/MEK/ERK pathway might be a promising physiological approach to up-regulate GCL activity and GSH. This study would also help us to understand the comprehensive role of the Raf/MEK/ERK pathway in overall physio/pathological conditions.
Collapse
Affiliation(s)
- Zhi-Hua Chen
- Human Stress Signal Research Center (HSSRC), National Institute of Advanced Industrial Science & Technology (AIST), Osaka, Japan
| | | | | | | | | |
Collapse
|
19
|
Kovacic P, Pozos RS. Cell signaling (mechanism and reproductive toxicity): redox chains, radicals, electrons, relays, conduit, electrochemistry, and other medical implications. ACTA ACUST UNITED AC 2007; 78:333-44. [PMID: 17315245 DOI: 10.1002/bdrc.20083] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
This article deals with a novel, simple, integrated approach to cell signaling involving basic biochemical principles, and their relationship to reproductive toxicity. Initially, an overview of the biological aspects is presented. According to the hypothetical approach, cell signaling entails interaction of redox chains, involving initiation, propagation, and termination. The messengers are mainly radicals and electrons that are generated during electron transfer (ET) and hydrogen atom abstraction reactions. Termination and initiation processes in the chain occur at relay sites occupied by redox functionalities, including quinones, metal complexes, and imines, as well as redox amino acids. Conduits for the messengers, comprising species with nonbonding electrons, are omnipresent. Details are provided for the various electron transfer processes. In relation to the varying rates of cell communication, rationale is based on electrons and size of radicals. Another fit is similarly seen in inspection of endogenous precursors of reactive oxygen species (ROS); namely, proteins bearing redox moieties, lipid oxidation products, and carbohydrate radicals. A hypothesis is advanced in which electromagnetic fields associated with mobile radicals and electrons play a role. Although radicals have previously been investigated as messengers, the area occupies a minor part of the research, and it has not attracted broad consensus as an important component. For the first time, an integrated framework is presented composed of radicals, electrons, relays, conduits, and electrical fields. The approach is in keeping with the vast majority of experimental observations. Cell signaling also plays an important role in reproductive toxicity. The main classes that cause birth defects, including ROS, radiation, metal compounds, medicinals, abused drugs, and miscellaneous substances, are known to participate in the signaling process. A unifying basis exists, in that both signaling and reproductive toxicity are characterized by the electron transfer-reactive oxygen species-oxidative stress (ET-ROS-OS) scheme. This article also incorporates representative examples of the extensive investigations dealing with various medical implications. There is considerable literature pointing to a role for cell communication in a wide variety of illnesses.
Collapse
Affiliation(s)
- Peter Kovacic
- Department of Chemistry, San Diego State University, San Diego, California 92182-1030, USA.
| | | |
Collapse
|
20
|
Sampey BP, Carbone DL, Doorn JA, Drechsel DA, Petersen DR. 4-Hydroxy-2-nonenal adduction of extracellular signal-regulated kinase (Erk) and the inhibition of hepatocyte Erk-Est-like protein-1-activating protein-1 signal transduction. Mol Pharmacol 2007; 71:871-83. [PMID: 17164404 DOI: 10.1124/mol.106.029686] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
4-Hydroxy-2-nonenal (4-HNE) is a major lipid peroxidation (LPO) product formed during oxidative stress. 4-HNE is highly reactive toward cellular nucleophiles and is implicated in the evolution of numerous pathologies associated with oxidative stress and LPO. Recent evidence suggests that chronic prooxidant exposure results in the loss of extracellular signal-regulated kinase (Erk)-1/2 phosphorylation in vivo, a signaling pathway associated with cellular proliferation, survival, and homeostasis. Immunodetection and molecular analysis were used in this study to evaluate the hypothesis that 4-HNE modification of Erk-1/2 inhibits constitutive Erk-Est-like protein (Elk)-1-activating protein (AP)-1 signaling. Primary rat hepatocytes treated with subcytotoxic, pathologically relevant concentrations of 4-HNE demonstrated a concentration-dependent loss of constitutive Erk-1/2 phosphorylation, activity, and nuclear localization. These findings were consistent with iron-induced intracellular LPO, which also resulted in a concentration-dependent decrease in hepatocyte Erk-1/2 phosphorylation and activity. 4-HNE and iron-induced inhibition of Erk-1/2 was inversely correlated with the accumulation of 4-HNE-Erk-1/2 monomer adducts. 4-HNE treatment of hepatocytes decreased nuclear total and phosphorylated Erk-1/2, Elk-1, and AP-1 phosphorylation as well as cFos and cJun activities. The cytosolic modification of unphosphorylated Erk-1/2 was evaluated in vitro using molar ratios of inactive Erk-2 to 4-HNE consistent with increasing oxidative stress in vivo. Liquid chromatography combined with tandem mass spectrometry confirmed monomer adduct formation and identified the major adduct species at the histidine 178 residue within the kinase phosphorylation lip. These novel results show that the formation of 4-HNE-Erk-1/2 monomer-adducts results in the inhibition of Erk-Elk-AP-1 signaling in hepatocytes and implicates the His 178 residue with the mechanism of inhibition.
Collapse
Affiliation(s)
- Brante P Sampey
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Colorado Health Sciences Center, School of Pharmacy, Denver, CO 80262, USA
| | | | | | | | | |
Collapse
|
21
|
Sampey BP, Stewart BJ, Petersen DR. Ethanol-induced modulation of hepatocellular extracellular signal-regulated kinase-1/2 activity via 4-hydroxynonenal. J Biol Chem 2007; 282:1925-37. [PMID: 17107949 PMCID: PMC2956423 DOI: 10.1074/jbc.m610602200] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Modulation of the extracellular signal-regulated kinases (ERK-1/2), a signaling pathway directly associated with cell proliferation, survival, and homeostasis, has been implicated in several pathologies, including alcoholic liver disease. However, the underlying mechanism of ethanol-induced ERK-1/2 modulation remains unknown. This investigation explored the effects of ethanol-associated oxidative stress on constitutive hepatic ERK-1/2 activity and assessed the contribution of the lipid peroxidation product 4-hydroxynonenal (4-HNE) to the observations made in vivo. Constitutive ERK-1/2 phosphorylation was suppressed in hepatocytes isolated from rats chronically consuming ethanol for 45 days. This observation was associated with an increase in 4-HNE-ERK monomer adduct concentration and a hepatic cellular and lobular redistribution of ERK-1/2 that correlated with 4-HNE-protein adduct accumulation. Chronic ethanol consumption was also associated with a decrease in hepatocyte nuclear ELK-1 phosphorylation, independent of changes in total nuclear ELK-1 protein. Primary hepatocytes treated with concentrations of 4-HNE consistent with those occurring during oxidative stress displayed a concentration-dependent decrease in constitutive ERK-1/2 phosphorylation, activity, and nuclear localization that negatively correlated with 4-HNE-ERK-1/2 monomer adduct accumulation. These data paralleled the decreased phosphorylation of the downstream kinase ELK-1. Molar ratios of purified ERK-2 to 4-HNE consistent with pathologic ratios found in vivo resulted in protein monomer-adduct formation across a range of concentrations. Collectively, these data demonstrate a novel association between ethanol-induced lipid peroxidation and the inhibition of constitutive ERK-1/2, and suggest an inhibitory mechanism mediated by the lipid peroxidation product 4-hydroxynonenal.
Collapse
Affiliation(s)
- Brante P. Sampey
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Colorado Denver and Health Sciences Center, Denver, Colorado 80262
- Departments of Nutrition, and Pathology and Laboratory Medicine, School of Medicine, University of North Carolina, Chapel Hill, North Carolina 27599
| | - Benjamin J. Stewart
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Colorado Denver and Health Sciences Center, Denver, Colorado 80262
| | - Dennis R. Petersen
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Colorado Denver and Health Sciences Center, Denver, Colorado 80262
| |
Collapse
|
22
|
Lee YJ, Lee JH, Han HJ. Ethanol-Inhibited [3H]Thymidine Incorporation via Protein Kinase C-p44/42 Mitogen-Activated Protein Kinase/Phospholipase A2Signal Pathway in Renal Proximal Tubule Cells. Alcohol Clin Exp Res 2006; 28:1172-9. [PMID: 15318115 DOI: 10.1097/01.alc.0000134235.53049.6f] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Ethanol exposure leads to changes of cell proliferation in a variety of cell types. However, how ethanol affects the proliferation of renal proximal tubule cells is not known. METHODS To examine the effect of ethanol on cell proliferation and its related signaling pathway, [H]thymidine incorporation, release of [H]arachidonic acid (AA), and Western blotting of protein kinase C (PKC)/mitogen-activated protein kinase (MAPK) were performed in primary cultured rabbit renal proximal tubule cells. RESULTS Ethanol inhibited [H]thymidine incorporation in a time- and dose-dependent manner. An inhibitory effect of ethanol on [H]thymidine incorporation was predominantly observed after 12 hr of treatment with 100 mM ethanol. Ethanol increased AA release and prostaglandin E2 production. In addition, ethanol-induced inhibition of [H]thymidine incorporation was blocked by phospholipase A2 inhibitors and was significantly blocked by PKC inhibitors. Indeed, ethanol induced a PKC translocation from the cytosolic to the membrane fraction. In addition, ethanol-induced inhibition of [H]thymidine incorporation was blocked by PD 98059 (a p44/42 MAPK inhibitor), but not by SB 203580 (a p38 MAPK inhibitor), and ethanol increased the phosphorylation of p44/42 MAPK. Results of phosphorylated p44/42 MAPK by ethanol were consistent with those of [H]thymidine incorporation and [H]AA-release experiments. CONCLUSIONS Ethanol inhibited [H]thymidine incorporation via PKC, p44/42 MAPK, and phospholipase A2 signaling pathways in primary cultured renal proximal tubule cells.
Collapse
Affiliation(s)
- Yun Jung Lee
- Department of Veterinary Physiology, College of Veterinary Medicine, Chonnam National University, Gwangju, Korea
| | | | | |
Collapse
|
23
|
Ohrtman JD, Stancik EK, Lovinger DM, Davis MI. Ethanol inhibits brain-derived neurotrophic factor stimulation of extracellular signal-regulated/mitogen-activated protein kinase in cerebellar granule cells. Alcohol 2006; 39:29-37. [PMID: 16938627 DOI: 10.1016/j.alcohol.2006.06.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2006] [Revised: 06/16/2006] [Accepted: 06/20/2006] [Indexed: 10/24/2022]
Abstract
Brain-derived neurotrophic factor (BDNF) has emerged as a prominent mediator of neuronal development and synaptic plasticity. BDNF activates multiple signal transduction cascades that regulate cellular function through phosphorylation, transcription, and translation. Ethanol is known to inhibit neurotrophin signaling, but a thorough pharmacological analysis of the effect of ethanol on BDNF signaling in developing neurons has not been performed. These experiments were undertaken to determine the interactions between membrane depolarization, BDNF concentration, and ethanol concentration on extracellular signal-regulated protein kinase (ERK) activation in neurons. We examined cerebellar granule cells grown under physiological (5mM) or elevated (25mM) potassium culture conditions after 3 days in vitro. BDNF-stimulated ERK phosphorylation (pERK) within 10min and supported stimulation from 20 to 60min. Ethanol decreased basal pERK and reduced the magnitude of BDNF stimulation of ERK under both conditions. The NMDA receptor antagonist 2-amino-5-phosphonovalerate did not effect basal pERK or inhibit BDNF stimulation of ERK, suggesting that NMDA receptors do not modulate BDNF stimulation of ERK in short-term cultures. These data characterize the pharmacological effects of ethanol on growth factor signaling and provide the basis of a model for further characterization of the biochemical mechanisms of ERK inhibition by ethanol. Perturbation of BDNF signal transduction by ethanol may underlie some of the cognitive deficits and developmental abnormalities resulting from ethanol exposure.
Collapse
Affiliation(s)
- Joshua D Ohrtman
- Section on Synaptic Pharmacology, Laboratory for Integrative Neuroscience, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, 5625 Fisher's Lane MSC 9411, Bethesda, MD 20892-9411, USA
| | | | | | | |
Collapse
|
24
|
Feng MJ, Yan SE, Yan QS. Effects of prenatal alcohol exposure on brain-derived neurotrophic factor and its receptor tyrosine kinase B in offspring. Brain Res 2005; 1042:125-32. [PMID: 15854584 DOI: 10.1016/j.brainres.2005.02.017] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2004] [Revised: 02/03/2005] [Accepted: 02/04/2005] [Indexed: 01/19/2023]
Abstract
Prenatal alcohol exposure produces many developmental defects in the central nervous system. The underlying molecular mechanism, however, has not been fully understood. The present study was undertaken to examine the effects of prenatal alcohol exposure on brain-derived neurotrophic factor (BDNF) and its receptor tyrosine kinase B (TrkB) in offspring. The pregnant Sprague-Dawley rats received 1 or 3 g/kg of alcohol or an isocaloric solution by intragastric intubation once a day from gestational day (GD) 5 to GD 20. On postnatal day 7-8, pups were killed and the hippocampus, striatum, cortex, and cerebellum dissected out. Levels of BDNF mRNA and proteins, total TrkB proteins and receptor phosphorylation were measured. The results showed that prenatal alcohol exposure at the dose of 1 g/kg/day did not significantly affect BDNF protein levels in any region examined. However, administration of alcohol at the dose of 3 g/kg/day markedly reduced levels of BDNF protein and mRNA in the cortex and hippocampus of offspring. Western blotting showed that prenatal alcohol exposure at the dose of 3 g/kg/day also inhibited TrkB phosphorylation in the hippocampus although no changes in total TrkB protein levels were observed in any region examined. Our data suggest that prenatal alcohol exposure alters both presynaptic and postsynaptic BDNF function in certain brain areas of offspring. These alterations in BDNF function may contribute to the development of alcohol-related birth defects.
Collapse
Affiliation(s)
- Mei-Jiang Feng
- Department of Biomedical and Therapeutic Sciences, University of Illinois College of Medicine at Peoria, Peoria, IL 61656, USA
| | | | | |
Collapse
|
25
|
Chandler LJ, Sutton G. Acute ethanol inhibits extracellular signal-regulated kinase, protein kinase B, and adenosine 3':5'-cyclic monophosphate response element binding protein activity in an age- and brain region-specific manner. Alcohol Clin Exp Res 2005; 29:672-82. [PMID: 15834234 DOI: 10.1097/01.alc.0000158935.53360.5f] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
BACKGROUND As little as a single episode of exposure of the developing brain to ethanol can result in developmental neuropathology and mental retardation. Extracellular signal-regulated kinases (ERKs), protein kinase B (PKB), and adenosine 3':5'-cyclic monophosphate response element binding protein (CREB) are messenger molecules that play important roles in neuronal plasticity and survival. This study was undertaken to examine the effects of acute ethanol on ERK, PKB, and CREB activation in the brain. METHODS Immunoblot analysis was used to determine the effects of a 1-hr exposure of ethanol on levels of phospho-ERC in primary cortical cultures and in the cerebral cortex, hippocampus, and cerebellum of postnatal day 5 (PN5), postnatal day 21 (PN21), and adult rats. RESULTS In cortical cultures, ethanol (100 mM) significantly reduced activity-dependent activation of phospho-ERK, phospho-PKB, and phospho-CREB by approximately 50%. In PN5 rats, ethanol (3.5 g/kg) inhibited both phospho-ERK and phospho-PKB in the cerebral cortex and hippocampus but was without effect in the cerebellum. A similar brain region-specific inhibition of phospho-ERK was observed in PN21 rats, whereas in adult rats, ethanol inhibited phospho-ERK in all three brain regions. In contrast, ethanol had no effect on phospho-PKB in either PN21 or adult rats. Without exception, ethanol inhibited phospho-CREB in an identical brain region- and age-dependent manner as was observed for phospho-ERK. Finally, administration of the NMDA antagonist MK-801 (0.5 mg/kg) to PN5 rats had no effect on phospho-ERK or phospho-PKB levels in any brain region. CONCLUSION The results demonstrate that acute ethanol inhibits ERK/PKB/CREB signaling in brain. This inhibition occurs in an age- and brain region-specific manner, with inhibition of PKB restricted to a time during the brain growth-spurt period. Furthermore, the lack of effect of MK-801 suggests that inhibition of NMDA receptors is unlikely to play a major role in binge ethanol inhibition of ERK/PKB/CREB signaling in vivo.
Collapse
Affiliation(s)
- L Judson Chandler
- Department of Neuroscience, Medical University of South Carolina, Charleston, South Carolina 29425, USA.
| | | |
Collapse
|
26
|
Constantinescu A, Wu M, Asher O, Diamond I. cAMP-dependent protein kinase type I regulates ethanol-induced cAMP response element-mediated gene expression via activation of CREB-binding protein and inhibition of MAPK. J Biol Chem 2004; 279:43321-9. [PMID: 15299023 DOI: 10.1074/jbc.m406994200] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We have shown that the two types of cAMP-dependent protein kinase (PKA) in NG108-15 cells differentially mediate forskolin- and ethanol-induced cAMP response element (CRE)-binding protein (CREB) phosphorylation and CRE-mediated gene transcription. Activated type II PKA is translocated into the nucleus where it phosphorylates CREB. By contrast, activated type I PKA does not translocate to the nucleus but is required for CRE-mediated gene transcription by inducing the activation of other transcription cofactors such as CREB-binding protein (CBP). We show here that CBP is required for forskolin- and ethanol-induced CRE-mediated gene expression. Forskolin- and ethanol-induced CBP phosphorylation, demonstrable at 10 min, persists up to 24 h. CBP phosphorylation requires type I PKA but not type II PKA. In NG108-15 cells, ethanol and forskolin activation of type I PKA also inhibits several components of the MAPK pathway including B-Raf kinase, ERK1/2, and p90RSK phosphorylation. As a result, unphosphorylated p90RSK no longer binds to nor inhibits CBP. Moreover, MEK inhibition by PD98059 induces a significant increase of CRE-mediated gene activation. Taken together, our findings suggest that inhibition of the MAPK pathway enhances cAMP-dependent gene activation during exposure of NG108-15 cells to ethanol. This mechanism appears to involve type I PKA-dependent phosphorylation of CBP and inhibition of MEK-dependent phosphorylation of p90RSK. Under these conditions p90RSK is no longer bound to CBP, thereby promoting CBP-dependent CREB-mediated gene expression.
Collapse
Affiliation(s)
- Anastasia Constantinescu
- Ernest Gallo Clinic and Research Center, Department of Neurology, University of California, San Francisco, Emeryville, CA 94608, USA.
| | | | | | | |
Collapse
|
27
|
Allen GC, West JR, Chen WJA, Earnest DJ. Developmental alcohol exposure disrupts circadian regulation of BDNF in the rat suprachiasmatic nucleus. Neurotoxicol Teratol 2004; 26:353-8. [PMID: 15113597 PMCID: PMC2695980 DOI: 10.1016/j.ntt.2004.02.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2003] [Revised: 02/11/2004] [Accepted: 02/12/2004] [Indexed: 10/26/2022]
Abstract
In rats, damage to neuronal populations in some brain regions occurs in response to neonatal alcohol exposure coinciding with the period of rapid brain growth. These alcohol-induced defects in brain development may persist into adulthood and thus have long-term implications for the functional characteristics of damaged neuronal populations. The present study examined the effects of neonatal alcohol exposure on endogenous rhythmicity of the circadian clock located in the rat suprachiasmatic nucleus (SCN). Specifically, experiments were conducted to determine whether neonatal alcohol exposure alters the circadian rhythm of brain-derived neurotrophic factor (BDNF) content in the rat SCN because this neurotrophin is an important rhythmic output from the SCN clock. Male rat pups were exposed to alcohol (4.5 g/kg/day) or isocaloric milk formula on postnatal days 4-9 using artificial rearing methods. At 5-6 months of age, SCN and hippocampal tissue was harvested and subsequently examined for content of BDNF protein. Time-dependent fluctuations in BDNF protein levels were assessed by enzyme-linked immunosorbent assay (ELISA). In alcohol-treated rats, SCN levels of BDNF were significantly decreased and were characterized by a loss of circadian rhythmicity relative to those observed in control animals. In comparison, hippocampal levels of BDNF displayed no evidence of circadian regulation in all three treatment groups, but were slightly lower in alcohol-treated animals than in control groups. Importantly, these observations suggest that alcohol exposure during the period of rapid brain development may cause permanent changes in the SCN circadian clock.
Collapse
Affiliation(s)
- Gregg C Allen
- Department of Human Anatomy and Medical Neurobiology, The Texas A&M University System Health Science Center, 228 Reynolds Medical Building, College Station, TX 77843-1114, USA
| | | | | | | |
Collapse
|
28
|
Morrow AL, Ferrani-Kile K, Davis MI, Shumilla JA, Kumar S, Maldve R, Pandey SC. Ethanol effects on cell signaling mechanisms. Alcohol Clin Exp Res 2004; 28:217-27. [PMID: 15112929 DOI: 10.1097/01.alc.0000113439.97498.ac] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- A Leslie Morrow
- Department of Psychiatry, Center For Alcohol Studies, University of Chapel Hill at North Carolina, Chapel Hill, North Carolina 27599-7178, USA.
| | | | | | | | | | | | | |
Collapse
|
29
|
Abstract
Chronic ethanol abuse is associated with liver injury, neurotoxicity, hypertension, cardiomyopathy, modulation of immune responses and increased risk for cancer, whereas moderate alcohol consumption exerts protective effect on coronary heart disease. However, the signal transduction mechanisms underlying these processes are not well understood. Emerging evidences highlight a central role for mitogen activated protein kinase (MAPK) family in several of these effects of ethanol. MAPK signaling cascade plays an essential role in the initiation of cellular processes such as proliferation, differentiation, development, apoptosis, stress and inflammatory responses. Modulation of MAPK signaling pathway by ethanol is distinctive, depending on the cell type; acute or chronic; normal or transformed cell phenotype and on the type of agonist stimulating the MAPK. Acute exposure to ethanol results in modest activation of p42/44 MAPK in hepatocytes, astrocytes, and vascular smooth muscle cells. Acute ethanol exposure also results in potentiation or prolonged activation of p42/44MAPK in an agonist selective manner. Acute ethanol treatment also inhibits serum stimulated p42/44 MAPK activation and DNA synthesis in vascular smooth muscle cells. Chronic ethanol treatment causes decreased activation of p42/44 MAPK and inhibition of growth factor stimulated p42/44 MAPK activation and these effects of ethanol are correlated to suppression of DNA synthesis, impaired synaptic plasticity and neurotoxicity. In contrast, chronic ethanol treatment causes potentiation of endotoxin stimulated p42/44 MAPK and p38 MAPK signaling in Kupffer cells leading to increased synthesis of tumor necrosis factor. Acute exposure to ethanol activates pro-apoptotic JNK pathway and anti-apoptotic p42/44 MAPK pathway. Apoptosis caused by chronic ethanol treatment may be due to ethanol potentiation of TNF induced activation of p38 MAPK. Ethanol induced activation of MAPK signaling is also involved in collagen expression in stellate cells. Ethanol did not potentiate serum stimulated or Gi-protein dependent activation of p42/44 MAPK in normal hepatocytes but did so in embryonic liver cells and transformed hepatocytes leading to enhanced DNA synthesis. Ethanol has a 'triangular effect' on MAPK that involve direct effects of ethanol, its metabolically derived mediators and oxidative stress. Acetaldehyde, phosphatidylethanol, fatty acid ethyl ester and oxidative stress, mediate some of the effects seen after ethanol alone whereas ethanol modulation of agonist stimulated MAPK signaling appears to be mediated by phosphatidylethanol. Nuclear MAPKs are also affected by ethanol. Ethanol modulation of nuclear p42/44 MAPK occurs by both nuclear translocation of p42/44 MAPK and its activation in the nucleus. Of interest is the observation that ethanol caused selective acetylation of Lys 9 of histone 3 in the hepatocyte nucleus. It is plausible that ethanol modulation of cross talk between phosphorylation and acetylations of histone may regulate chromatin remodeling. Taken together, these recent developments place MAPK in a pivotal position in relation to cellular actions of ethanol. Furthermore, they offer promising insights into the specificity of ethanol effects and pharmacological modulation of MAPK signaling. Such molecular signaling approaches have the potential to provide mechanism-based therapy for the management of deleterious effects of ethanol or for exploiting its beneficial effects.
Collapse
Affiliation(s)
- Annayya R Aroor
- Department of Medical Pharmacology and Physiology, School of Medicine, University of Missouri, Columbia, MO 65212, USA.
| | | |
Collapse
|
30
|
|
31
|
Climent E, Pascual M, Renau-Piqueras J, Guerri C. Ethanol exposure enhances cell death in the developing cerebral cortex: role of brain-derived neurotrophic factor and its signaling pathways. J Neurosci Res 2002; 68:213-25. [PMID: 11948666 DOI: 10.1002/jnr.10208] [Citation(s) in RCA: 102] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Exposure to ethanol during fetal development induces brain damage, causing cell loss in several brain areas and affecting synaptic connections. Because neurotrophin signaling plays an important role in neuronal survival and differentiation, we have investigated the effect of ethanol exposure on cell death in the developing cerebral cortex and whether this effect correlates with alterations in brain-derived neurotrophic factor (BDNF) levels, expression of its receptors, TrkB, and its signaling. We report that chronic ethanol intake during gestation and lactation enhances natural cell death and induces cell necrosis, decreases BDNF levels, and increases the ratio of the truncated to full-length TrkB mRNA receptors during postnatal developing cerebral cortex. Furthermore, we provide evidence that during brain development BDNF activates the extracellular signal-regulated kinases (ERK1 and ERK2) and the phosphoinoside-3-kinase (PI-3-K/Akt) pathways. However, BDNF-induced cell signaling throughout the above-mentioned survival pathways is significantly reduced by ethanol exposure. These findings suggest that ethanol-induced alterations in BDNF availability and in its receptor function might impair intracellular signaling pathways involved in cell survival, growth, and differentiation, leading to enhanced natural cell death during cerebral cortex development.
Collapse
Affiliation(s)
- E Climent
- Instituto de Investigaciones Citológicas (FVIB), Amadeo de Saboya 4, 46010-Valencia, Spain
| | | | | | | |
Collapse
|
32
|
Kalluri HSG, Ticku MK. Ethanol-mediated inhibition of mitogen-activated protein kinase phosphorylation in mouse brain. Eur J Pharmacol 2002; 439:53-8. [PMID: 11937092 DOI: 10.1016/s0014-2999(01)01599-0] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Ethanol (1.5-3.5 g/kg body weight) was administered intraperitoneally to mice and the phosphorylation of MAP (mitogen-activated protein) kinase in the cerebral cortex was determined using phospho-specific MAP kinase antibodies. Ethanol inhibited the phosphorylation of MAP kinase in a dose- and time-dependent manner. Developmental studies demonstrated that the levels of phospho-MAP kinase increased from fetal cortex (prenatal) to 16-day-old mice (postnatal) and remained constant up to 4 months of age. However, ethanol (3.5 g/kg) decreased the phospho-MAP kinase staining in all of the age groups studied. Subcellular fractionation studies demonstrated that ethanol inhibited the phosphorylation of MAP kinase in both the cytosol as well as nucleus, but did not alter the levels of MAP kinase. Likewise, MK-801 (0.4 mg/kg) or flurazepam (75 mg/kg) also decreased the phospho-MAP kinase content. These data indicate that ethanol may inhibit the phosphorylation of MAP kinase in vivo by either inhibiting NMDA receptors or activating GABA receptors.
Collapse
Affiliation(s)
- Haviryaji S G Kalluri
- Department of Pharmacology, The University of Texas Health Science Center, 7703 Floyd Curl Drive, Mail Code 7764, San Antonio, TX 78229-3900, USA
| | | |
Collapse
|
33
|
Simonyi A, Woods D, Sun AY, Sun GY. Grape Polyphenols Inhibit Chronic Ethanol-Induced COX-2 mRNA Expression in Rat Brain. Alcohol Clin Exp Res 2002. [DOI: 10.1111/j.1530-0277.2002.tb02545.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
34
|
Yagle K, Lu H, Guizzetti M, Möller T, Costa LG. Activation of mitogen-activated protein kinase by muscarinic receptors in astroglial cells: role in DNA synthesis and effect of ethanol. Glia 2001; 35:111-20. [PMID: 11460267 DOI: 10.1002/glia.1076] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Mitogen-activated protein kinase (MAPK) can be phosphorylated by mitogens binding to G-protein-coupled receptors and is considered a major pathway involved in cell proliferation. In this study, we report on the activation of MAPK by muscarinic acetylcholine receptors in astroglial cells, namely the 1321N1 human astrocytoma cell line, primary rat cortical astrocytes, and fetal human astrocytes. Carbachol caused a rapid and transient phorphorylation of MAPK (ERK1/2) in all cell types, with an increase in MAPK activity, without changing the levels of MAPK proteins. Human astrocytoma cells were used to characterize the effect of carbachol on MAPK. Experiments with M2- and M3-receptor subtype-selective antagonists, and with pertussis toxin, indicated that the M3 subtype is responsible for activating MAPK in glial cells. Pretreatment of cells with the protein kinase C (PKC) inhibitor bisindolylmaleimide I, or downregulation of PKC by 24-h treatment with the phorbol ester TPA inhibited carbachol-induced MAPK activation. Additional experiments with PKC alpha- or PKC epsilon-specific compounds indicated that the epsilon isozyme of PKC is primarily involved in MAPK activation by carbachol. Chelation of calcium also inhibited MAPK activation by carbachol. Two MEK (MAPK kinase) inhibitors inhibited carbachol-induced DNA synthesis but only at concentrations that exceeded those sufficient to block carbachol-induced MAPK activation. Ethanol (< or =200 mM) had no effect on MAPK when present alone and did not affect carbachol-induced MAPK activation under various experimental conditions, although it inhibits carbachol-induced DNA synthesis at low concentrations (10-100 mM). These results suggest that activation of MAPK by carbachol may be necessary but not sufficient for its mitogenic effect in astroglial cells, and that does not represent a target for ethanol-induced inhibition of DNA synthesis elicited by muscarinic receptors.
Collapse
Affiliation(s)
- K Yagle
- Department of Environmental Health, University of Washington, Seattle, Washington 98105, USA
| | | | | | | | | |
Collapse
|
35
|
Wilson SH, Davis MI, Caballero S, Grant MB. Modulation of retinal endothelial cell behaviour by insulin-like growth factor I and somatostatin analogues: implications for diabetic retinopathy. Growth Horm IGF Res 2001; 11 Suppl A:S53-S59. [PMID: 11527089 DOI: 10.1016/s1096-6374(01)80009-5] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Evidence suggests the involvement of growth hormone (GH), insulin-like growth factor I (IGF-I) and somatostatin in the pathology associated with diabetic retinopathy. We examined the effect of IGF-I on human retinal endothelial cell (HREC) survival following high glucose exposure and serum starvation, examined the signalling pathways mediating the protective effect of IGF-I on HREC, and characterized somatostatin receptor-induced retinal endothelial cell death. IGF-I (10 ng/ml) protected HREC from apoptosis induced by high glucose and serum starvation. Wortmannin, a specific inhibitor of phosphotidylinositol-3-kinase, blocks the ability of IGF-I to protect HREC from apoptosis. Incubation of HREC in serum-free medium caused a time-dependent increase in c-Jun N-terminal kinase (JNK) activity, and continuous culture of HREC in the presence of IGF-I or vascular endothelial growth factor (VEGF) prevented JNK activation and arrested apoptosis. Activation of tyrosine kinase receptors results in extracellular signal-related kinase (ERK) activation and activation of ERK is required for proliferation. Both IGF-I and VEGF produced a time- and concentration-dependent increase in the activation of ERK. Type 2 and type 3 somatostatin receptors have been implicated in cell-cycle arrest and apoptosis. Activation of the type 3 receptor in HREC resulted in cell death. These studies suggest that IGF-I is critical for HREC survival, and that somatostatin analogues acting through the type 3 receptor have direct effects on retinal endothelial cells. Furthermore, it appears that the therapeutic efficacy of somatostatin analogues lies not only in systemic inhibition of GH, but also in modulating local growth factor effects.
Collapse
|