1
|
Chen YC, Li Y, Yan CCS, Hsu CP, Cheng PL, Tu HL. DNA tension assays reveal that force-dependent integrin activation regulates neurite outgrowth in primary cortical neurons. BIOMATERIALS ADVANCES 2023; 150:213431. [PMID: 37116456 DOI: 10.1016/j.bioadv.2023.213431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 04/12/2023] [Accepted: 04/13/2023] [Indexed: 04/30/2023]
Abstract
Biomechanical inputs are ubiquitously present in biological systems and are known to regulate various cell functions. In particular, neural cell development is sensitive to mechanical regulation, as these cells reside in one of the softest microenvironments in the body. To fully characterize and comprehend how mechanical force modulates early neuronal processes, we prepared substrates functionalized with DNA probes displaying integrin ligands, including cRGD and laminin, to quantify integrin-mediated molecular tension during neurite initiation in primary cortical neurons. Our live-cell imaging analysis reveals that integrin-mediated tension force is highly dynamic and distributed across the cell body, with the overall tension signal gradually increasing during neurite outgrowth. Notably, we detected a consistent level of mechanical force (amplitude = 4.7-12 piconewtons, pN) for cell integrin-ligand interactions. Further quantifications reveal that neurons exhibit faster cell spreading and neurite outgrowth upon interacting with ligands functionalized with 4.7 pN relative to 12 pN probes. These findings indicate that the magnitude of integrin-mediated mechanical feedback regulates neuronal activity during early neuritogenesis. Additionally, we observed that mechanical tension is correlated with calcium signaling, since inhibiting calcium influx substantially reduced mechanical tension. Thus, our findings support that the magnitude of integrin-mediated mechanical feedback regulates neuronal activity during early neuritogenesis and that mechanical force is an essential element complementing well-known biochemical regulatory mechanisms orchestrating the integrin activation machinery and controlled neurite outgrowth in cortical neurons.
Collapse
Affiliation(s)
- Ying-Chi Chen
- Institute of Chemistry, Academia Sinica, Taipei 11529, Taiwan
| | - Ying Li
- Institute of Chemistry, Academia Sinica, Taipei 11529, Taiwan; Institute of Bioscience and Biotechnology, National Taiwan Ocean University, Keelung 20224, Taiwan
| | | | - Chao-Ping Hsu
- Institute of Chemistry, Academia Sinica, Taipei 11529, Taiwan; Genome and Systems Biology Degree Program, Academia Sinica and National Taiwan University, Taipei 10617, Taiwan
| | - Pei-Lin Cheng
- Institute of Molecular Biology, Academia Sinica, Taipei 11529, Taiwan.
| | - Hsiung-Lin Tu
- Institute of Chemistry, Academia Sinica, Taipei 11529, Taiwan; Genome and Systems Biology Degree Program, Academia Sinica and National Taiwan University, Taipei 10617, Taiwan.
| |
Collapse
|
2
|
Kahle ER, Patel N, Sreenivasappa HB, Marcolongo MS, Han L. Targeting cell-matrix interface mechanobiology by integrating AFM with fluorescence microscopy. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2022; 176:67-81. [PMID: 36055517 PMCID: PMC9691605 DOI: 10.1016/j.pbiomolbio.2022.08.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 08/14/2022] [Accepted: 08/18/2022] [Indexed: 06/15/2023]
Abstract
Mechanosensing at the interface of a cell and its surrounding microenvironment is an essential driving force of physiological processes. Understanding molecular activities at the cell-matrix interface has the potential to provide novel targets for improving tissue regeneration and early disease intervention. In the past few decades, the advancement of atomic force microscopy (AFM) has offered a unique platform for probing mechanobiology at this crucial microdomain. In this review, we describe key advances under this topic through the use of an integrated system of AFM (as a biomechanical testing tool) with complementary immunofluorescence (IF) imaging (as an in situ navigation system). We first describe the body of work investigating the micromechanics of the pericellular matrix (PCM), the immediate cell micro-niche, in healthy, diseased, and genetically modified tissues, with a focus on articular cartilage. We then summarize the key findings in understanding cellular biomechanics and mechanotransduction, in which, molecular mechanisms governing transmembrane ion channel-mediated mechanosensing, cytoskeleton remodeling, and nucleus remodeling have been studied in various cell and tissue types. Lastly, we provide an overview of major technical advances that have enabled more in-depth studies of mechanobiology, including the integration of AFM with a side-view microscope, multiple optomicroscopy, a fluorescence recovery after photobleaching (FRAP) module, and a tensile stretching device. The innovations described here have contributed greatly to advancing the fundamental knowledge of extracellular matrix biomechanics and cell mechanobiology for improved understanding, detection, and intervention of various diseases.
Collapse
Affiliation(s)
- Elizabeth R Kahle
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, PA 19104, United States
| | - Neil Patel
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, PA 19104, United States
| | - Harini B Sreenivasappa
- Cell Imaging Center, Office of Research and Innovation, Drexel University, PA 19104, United States
| | - Michele S Marcolongo
- Department of Mechanical Engineering, Villanova University, Villanova, PA 19085, United States
| | - Lin Han
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, PA 19104, United States.
| |
Collapse
|
3
|
Rheinlaender J, Dimitracopoulos A, Wallmeyer B, Kronenberg NM, Chalut KJ, Gather MC, Betz T, Charras G, Franze K. Cortical cell stiffness is independent of substrate mechanics. NATURE MATERIALS 2020; 19:1019-1025. [PMID: 32451510 PMCID: PMC7610513 DOI: 10.1038/s41563-020-0684-x] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 04/15/2020] [Indexed: 05/18/2023]
Abstract
Cortical stiffness is an important cellular property that changes during migration, adhesion and growth. Previous atomic force microscopy (AFM) indentation measurements of cells cultured on deformable substrates have suggested that cells adapt their stiffness to that of their surroundings. Here we show that the force applied by AFM to a cell results in a significant deformation of the underlying substrate if this substrate is softer than the cell. This 'soft substrate effect' leads to an underestimation of a cell's elastic modulus when analysing data using a standard Hertz model, as confirmed by finite element modelling and AFM measurements of calibrated polyacrylamide beads, microglial cells and fibroblasts. To account for this substrate deformation, we developed a 'composite cell-substrate model'. Correcting for the substrate indentation revealed that cortical cell stiffness is largely independent of substrate mechanics, which has major implications for our interpretation of many physiological and pathological processes.
Collapse
Affiliation(s)
- Johannes Rheinlaender
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK.
- Institute of Applied Physics, University of Tübingen, Tübingen, Germany.
| | - Andrea Dimitracopoulos
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - Bernhard Wallmeyer
- Centre for Molecular Biology of Inflammation, Institute of Cell Biology, Excellence Cluster Cells in Motion, University of Münster, Münster, Germany
| | - Nils M Kronenberg
- SUPA, School of Physics and Astronomy, University of St Andrews, St Andrews, UK
- Centre for Nanobiophotonics, Department of Chemistry, University of Cologne, Cologne, Germany
| | - Kevin J Chalut
- Wellcome Trust-Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
| | - Malte C Gather
- SUPA, School of Physics and Astronomy, University of St Andrews, St Andrews, UK
- Centre for Nanobiophotonics, Department of Chemistry, University of Cologne, Cologne, Germany
| | - Timo Betz
- Centre for Molecular Biology of Inflammation, Institute of Cell Biology, Excellence Cluster Cells in Motion, University of Münster, Münster, Germany
| | - Guillaume Charras
- London Centre for Nanotechnology, University College London, London, UK
- Department of Cell and Developmental Biology, University College London, London, UK
| | - Kristian Franze
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK.
| |
Collapse
|
4
|
Abstract
Mechanotransduction, a conversion of mechanical forces into biochemical signals, is essential for human development and physiology. It is observable at all levels ranging from the whole body, organs, tissues, organelles down to molecules. Dysregulation results in various diseases such as muscular dystrophies, hypertension-induced vascular and cardiac hypertrophy, altered bone repair and cell deaths. Since mechanotransduction occurs at nanoscale, nanosciences and applied nanotechnology are powerful for studying molecular mechanisms and pathways of mechanotransduction. Atomic force microscopy, magnetic and optical tweezers are commonly used for force measurement and manipulation at the single molecular level. Force is also used to control cells, topographically and mechanically by specific types of nano materials for tissue engineering. Mechanotransduction research will become increasingly important as a sub-discipline under nanomedicine. Here we review nanotechnology approaches using force measurements and manipulations at the molecular and cellular levels during mechanotransduction, which has been increasingly play important role in the advancement of nanomedicine.
Collapse
Affiliation(s)
- Xiaowei Liu
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China
| | - Fumihiko Nakamura
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China
| |
Collapse
|
5
|
Movilla N, Valero C, Borau C, García-Aznar JM. Matrix degradation regulates osteoblast protrusion dynamics and individual migration. Integr Biol (Camb) 2020; 11:404-413. [PMID: 31922533 DOI: 10.1093/intbio/zyz035] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2019] [Revised: 09/06/2019] [Accepted: 10/19/2019] [Indexed: 01/21/2023]
Abstract
Protrusions are one of the structures that cells use to sense their surrounding environment in a probing and exploratory manner as well as to communicate with other cells. In particular, osteoblasts embedded within a 3D matrix tend to originate a large number of protrusions compared to other type of cells. In this work, we study the role that mechanochemical properties of the extracellular matrix (ECM) play on the dynamics of these protrusions, namely, the regulation of the size and number of emanating structures. In addition, we also determine how the dynamics of the protrusions may lead the 3D movement of the osteoblasts. Significant differences were found in protrusion size and cell velocity, when degradation activity due to metalloproteases was blocked by means of an artificial broad-spectrum matrix metalloproteinase inhibitor, whereas stiffening of the matrix by introducing transglutaminase crosslinking, only induced slight changes in both protrusion size and cell velocity, suggesting that the ability of cells to create a path through the matrix is more critical than the matrix mechanical properties themselves. To confirm this, we developed a cell migration computational model in 3D including both the mechanical and chemical properties of the ECM as well as the protrusion mechanics, obtaining good agreement with experimental results.
Collapse
Affiliation(s)
- Nieves Movilla
- Multiscale in Mechanical and Biological Engineering, Aragon Institute of Engineering Research, Department of Mechanical Engineering, University of Zaragoza, Zaragoza, Spain
| | - Clara Valero
- Multiscale in Mechanical and Biological Engineering, Aragon Institute of Engineering Research, Department of Mechanical Engineering, University of Zaragoza, Zaragoza, Spain
| | - Carlos Borau
- Multiscale in Mechanical and Biological Engineering, Aragon Institute of Engineering Research, Department of Mechanical Engineering, University of Zaragoza, Zaragoza, Spain
| | - Jose Manuel García-Aznar
- Multiscale in Mechanical and Biological Engineering, Aragon Institute of Engineering Research, Department of Mechanical Engineering, University of Zaragoza, Zaragoza, Spain
| |
Collapse
|
6
|
Efremov YM, Okajima T, Raman A. Measuring viscoelasticity of soft biological samples using atomic force microscopy. SOFT MATTER 2020; 16:64-81. [PMID: 31720656 DOI: 10.1039/c9sm01020c] [Citation(s) in RCA: 118] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Mechanical properties play important roles at different scales in biology. At the level of a single cell, the mechanical properties mediate mechanosensing and mechanotransduction, while at the tissue and organ levels, changes in mechanical properties are closely connected to disease and physiological processes. Over the past three decades, atomic force microscopy (AFM) has become one of the most widely used tools in the mechanical characterization of soft samples, ranging from molecules, cell organoids and cells to whole tissue. AFM methods can be used to quantify both elastic and viscoelastic properties, and significant recent developments in the latter have been enabled by the introduction of new techniques and models for data analysis. Here, we review AFM techniques developed in recent years for examining the viscoelastic properties of cells and soft gels, describe the main steps in typical data acquisition and analysis protocols, and discuss relevant viscoelastic models and how these have been used to characterize the specific features of cellular and other biological samples. We also discuss recent trends and potential directions for this field.
Collapse
Affiliation(s)
- Yuri M Efremov
- School of Mechanical Engineering, Purdue University, West Lafayette, Indiana, USA. and Birck Nanotechnology Center, Purdue University, West Lafayette, Indiana, USA and Institute for Regenerative Medicine, Sechenov University, Moscow, Russia
| | - Takaharu Okajima
- Graduate School of Information Science and Technology, Hokkaido University, Sapporo, Japan
| | - Arvind Raman
- School of Mechanical Engineering, Purdue University, West Lafayette, Indiana, USA. and Birck Nanotechnology Center, Purdue University, West Lafayette, Indiana, USA
| |
Collapse
|
7
|
Mohammadkhah M, Marinkovic D, Zehn M, Checa S. A review on computer modeling of bone piezoelectricity and its application to bone adaptation and regeneration. Bone 2019; 127:544-555. [PMID: 31356890 DOI: 10.1016/j.bone.2019.07.024] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 07/17/2019] [Accepted: 07/20/2019] [Indexed: 02/07/2023]
Abstract
Bone is a hierarchical, multiphasic and anisotropic structure which in addition possess piezoelectric properties. The generation of piezoelectricity in bone is a complex process which has been shown to play a key role both in bone adaptation and regeneration. In order to understand the complex biological, mechanical and electrical interactions that take place during these processes, several computer models have been developed and used to test hypothesis on potential mechanisms behind experimental observations. This paper aims to review the available literature on computer modeling of bone piezoelectricity and its application to bone adaptation and healing. We first provide a brief overview of the fundamentals of piezoelectricity and bone piezoelectric effects. We then review how these properties have been used in computational models of bone adaptation and electromechanical behaviour of bone. In addition, in the last section, we summarize current limitations and potential directions for future work.
Collapse
Affiliation(s)
- Melika Mohammadkhah
- Department of Structural Mechanics, Berlin Institute of Technology, Fakultät V - Institut für Mechanik, FG Strukturmechanik und Strukturberechnung, Sekr. C 8-3, Geb. M Str. des 17, Juni 135, D-10623 Berlin, Germany.
| | - Dragan Marinkovic
- Department of Structural Mechanics, Berlin Institute of Technology, Fakultät V - Institut für Mechanik, FG Strukturmechanik und Strukturberechnung, Sekr. C 8-3, Geb. M Str. des 17, Juni 135, D-10623 Berlin, Germany; Faculty of Mechanical Engineering, University of Nis, Aleksandra Medvedeva 14, 18000 Nis, Serbia.
| | - Manfred Zehn
- Department of Structural Mechanics, Berlin Institute of Technology, Fakultät V - Institut für Mechanik, FG Strukturmechanik und Strukturberechnung, Sekr. C 8-3, Geb. M Str. des 17, Juni 135, D-10623 Berlin, Germany.
| | - Sara Checa
- Department of Structural Mechanics, Berlin Institute of Technology, Fakultät V - Institut für Mechanik, FG Strukturmechanik und Strukturberechnung, Sekr. C 8-3, Geb. M Str. des 17, Juni 135, D-10623 Berlin, Germany; Julius Wolff Institute, Charité - Universitätsmedizin Berlin, Föhrer Str. 15, 13353 Berlin, Germany.
| |
Collapse
|
8
|
Connor Y, Tekleab Y, Tekleab S, Nandakumar S, Bharat D, Sengupta S. A mathematical model of tumor-endothelial interactions in a 3D co-culture. Sci Rep 2019; 9:8429. [PMID: 31182723 PMCID: PMC6557844 DOI: 10.1038/s41598-019-44713-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Accepted: 05/23/2019] [Indexed: 11/09/2022] Open
Abstract
Intravasation and extravasation of cancer cells through blood/lymph vessel endothelium are essential steps during metastasis. Successful invasion requires coordinated tumor-endothelial crosstalk, utilizing mechanochemical signaling to direct cytoskeletal rearrangement for transmigration of cancer cells. However, mechanisms underlying physical interactions are difficult to observe due to the lack of experimental models easily combined with theoretical models that better elucidate these pathways. We have previously demonstrated that an engineered 3D in vitro endothelial-epithelial co-culture system can be used to isolate both molecular and physical tumor-endothelial interactions in a platform that is easily modeled, quantified, and probed for experimental investigation. Using this platform with mathematical modeling, we show that breast metastatic cells display unique behavior with the endothelium, exhibiting a 3.2-fold increase in interaction with the endothelium and a 61-fold increase in elongation compared to normal breast epithelial cells. Our mathematical model suggests energetic favorability for cellular deformation prior to breeching endothelial junctions, expending less energy as compared to undeformed cells, which is consistent with the observed phenotype. Finally, we show experimentally that pharmacological inhibition of the cytoskeleton can disrupt the elongatation and alignment of metastatic cells with endothelial tubes, reverting to a less invasive phenotype.
Collapse
Affiliation(s)
- Yamicia Connor
- Harvard-MIT Division of Health Sciences and Technology, Cambridge, MA, 02139, USA.,Brigham and Women's Hospital, Department of Medicine, Boston, MA, 02115, USA.,Harvard Medical School, Health Sciences & Technology, Boston, MA, 02115, USA.,Beth Israel Deaconess Medical Center, Department of Medicine, Boston, MA, 02215, USA
| | - Yonatan Tekleab
- Massachusetts Institute of Technology, Department of Aeronautics and Astronautics, Cambridge, MA, 02139, USA
| | - Sarah Tekleab
- Brigham and Women's Hospital, Department of Medicine, Boston, MA, 02115, USA
| | - Shyama Nandakumar
- Brigham and Women's Hospital, Department of Medicine, Boston, MA, 02115, USA
| | - Divya Bharat
- Brigham and Women's Hospital, Department of Medicine, Boston, MA, 02115, USA
| | - Shiladitya Sengupta
- Harvard-MIT Division of Health Sciences and Technology, Cambridge, MA, 02139, USA. .,Brigham and Women's Hospital, Department of Medicine, Boston, MA, 02115, USA. .,Harvard Medical School, Health Sciences & Technology, Boston, MA, 02115, USA.
| |
Collapse
|
9
|
Zhao Y, Wetter NM, Wang X. Imaging Integrin Tension and Cellular Force at Submicron Resolution with an Integrative Tension Sensor. J Vis Exp 2019. [PMID: 31081814 DOI: 10.3791/59476] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Molecular tension transmitted by integrin-ligand bonds is the fundamental mechanical signal in the integrin pathway that plays significant roles in many cell functions and behaviors. To calibrate and image integrin tension with high force sensitivity and spatial resolution, we developed an integrative tension sensor (ITS), a DNA-based fluorescent tension sensor. The ITS is activated to fluoresce if sustaining a molecular tension, thus converting force to fluorescent signal at the molecular level. The tension threshold for ITS activation is tunable in the range of 10-60 pN that well covers the dynamic range of integrin tension in cells. On a substrate grafted with an ITS, the integrin tension of adherent cells is visualized by fluorescence and imaged at submicron resolution. The ITS is also compatible with cell structural imaging in both live cells and fixed cells. The ITS has been successfully applied to the study of platelet contraction and cell migration. This paper details the procedure for the synthesis and application of the ITS in the study of integrin-transmitted cellular force.
Collapse
Affiliation(s)
- Yuanchang Zhao
- Department of Physics and Astronomy, Iowa State University
| | | | - Xuefeng Wang
- Department of Physics and Astronomy, Molecular, Cellular, and Developmental Biology Interdepartmental Program, Iowa State University;
| |
Collapse
|
10
|
Efremov YM, Velay-Lizancos M, Weaver CJ, Athamneh AI, Zavattieri PD, Suter DM, Raman A. Anisotropy vs isotropy in living cell indentation with AFM. Sci Rep 2019; 9:5757. [PMID: 30962474 PMCID: PMC6453879 DOI: 10.1038/s41598-019-42077-1] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Accepted: 03/18/2019] [Indexed: 12/30/2022] Open
Abstract
The measurement of local mechanical properties of living cells by nano/micro indentation relies on the foundational assumption of locally isotropic cellular deformation. As a consequence of assumed isotropy, the cell membrane and underlying cytoskeleton are expected to locally deform axisymmetrically when indented by a spherical tip. Here, we directly observe the local geometry of deformation of membrane and cytoskeleton of different living adherent cells during nanoindentation with the integrated Atomic Force (AFM) and spinning disk confocal (SDC) microscope. We show that the presence of the perinuclear actin cap (apical stress fibers), such as those encountered in cells subject to physiological forces, causes a strongly non-axisymmetric membrane deformation during indentation reflecting local mechanical anisotropy. In contrast, axisymmetric membrane deformation reflecting mechanical isotropy was found in cells without actin cap: cancerous cells MDA-MB-231, which naturally lack the actin cap, and NIH 3T3 cells in which the actin cap is disrupted by latrunculin A. Careful studies were undertaken to quantify the effect of the live cell fluorescent stains on the measured mechanical properties. Using finite element computations and the numerical analysis, we explored the capability of one of the simplest anisotropic models – transverse isotropy model with three local mechanical parameters (longitudinal and transverse modulus and planar shear modulus) – to capture the observed non-axisymmetric deformation. These results help identifying which cell types are likely to exhibit non-isotropic properties, how to measure and quantify cellular deformation during AFM indentation using live cell stains and SDC, and suggest modelling guidelines to recover quantitative estimates of the mechanical properties of living cells.
Collapse
Affiliation(s)
- Yuri M Efremov
- School of Mechanical Engineering, Purdue University, West Lafayette, Indiana, USA.,Birck Nanotechnology Center, Purdue University, West Lafayette, Indiana, USA
| | | | - Cory J Weaver
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana, USA.,University of South Carolina, Department of Biological Sciences, Jones PSC Building, 712 Main Street, room 517, Columbia, SC, 29208, USA
| | - Ahmad I Athamneh
- Birck Nanotechnology Center, Purdue University, West Lafayette, Indiana, USA.,Department of Biological Sciences, Purdue University, West Lafayette, Indiana, USA
| | - Pablo D Zavattieri
- Lyles School of Civil Engineering, Purdue University, West Lafayette, Indiana, USA
| | - Daniel M Suter
- Birck Nanotechnology Center, Purdue University, West Lafayette, Indiana, USA. .,Department of Biological Sciences, Purdue University, West Lafayette, Indiana, USA. .,Bindley Bioscience Center, Purdue University, West Lafayette, Indiana, USA. .,Purdue Institute for Integrative Neuroscience, West Lafayette, Indiana, USA.
| | - Arvind Raman
- School of Mechanical Engineering, Purdue University, West Lafayette, Indiana, USA. .,Birck Nanotechnology Center, Purdue University, West Lafayette, Indiana, USA.
| |
Collapse
|
11
|
Mollaeian K, Liu Y, Bi S, Wang Y, Ren J, Lu M. Nonlinear Cellular Mechanical Behavior Adaptation to Substrate Mechanics Identified by Atomic Force Microscope. Int J Mol Sci 2018; 19:ijms19113461. [PMID: 30400365 PMCID: PMC6274799 DOI: 10.3390/ijms19113461] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 10/13/2018] [Accepted: 10/31/2018] [Indexed: 12/15/2022] Open
Abstract
Cell–substrate interaction plays an important role in intracellular behavior and function. Adherent cell mechanics is directly regulated by the substrate mechanics. However, previous studies on the effect of substrate mechanics only focused on the stiffness relation between the substrate and the cells, and how the substrate stiffness affects the time-scale and length-scale of the cell mechanics has not yet been studied. The absence of this information directly limits the in-depth understanding of the cellular mechanotransduction process. In this study, the effect of substrate mechanics on the nonlinear biomechanical behavior of living cells was investigated using indentation-based atomic force microscopy. The mechanical properties and their nonlinearities of the cells cultured on four substrates with distinct mechanical properties were thoroughly investigated. Furthermore, the actin filament (F-actin) cytoskeleton of the cells was fluorescently stained to investigate the adaptation of F-actin cytoskeleton structure to the substrate mechanics. It was found that living cells sense and adapt to substrate mechanics: the cellular Young’s modulus, shear modulus, apparent viscosity, and their nonlinearities (mechanical property vs. measurement depth relation) were adapted to the substrates’ nonlinear mechanics. Moreover, the positive correlation between the cellular poroelasticity and the indentation remained the same regardless of the substrate stiffness nonlinearity, but was indeed more pronounced for the cells seeded on the softer substrates. Comparison of the F-actin cytoskeleton morphology confirmed that the substrate affects the cell mechanics by regulating the intracellular structure.
Collapse
Affiliation(s)
- Keyvan Mollaeian
- Department of Mechanical Engineering, Iowa State University, Ames, IA 50011, USA.
| | - Yi Liu
- Department of Mechanical Engineering, Iowa State University, Ames, IA 50011, USA.
| | - Siyu Bi
- Department of Mechanical Engineering, Iowa State University, Ames, IA 50011, USA.
| | - Yifei Wang
- Department of Electrical and Computer Engineering, Iowa State University, Ames, IA 50011, USA.
| | - Juan Ren
- Department of Mechanical Engineering, Iowa State University, Ames, IA 50011, USA.
| | - Meng Lu
- Department of Electrical and Computer Engineering, Iowa State University, Ames, IA 50011, USA.
| |
Collapse
|
12
|
Li Y, Chen J, Wang L, Guo Y, Feng J, Chen W. Experimental Verification of the Elastic Formula for the Aspirated Length of a Single Cell Considering the Size and Compressibility of Cell During Micropipette Aspiration. Ann Biomed Eng 2018; 46:1026-1037. [PMID: 29637316 DOI: 10.1007/s10439-018-2023-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Accepted: 04/03/2018] [Indexed: 12/15/2022]
Abstract
In this study, an aspiration system for elastic spheres was developed to verify the approximate elastic formula for the aspirated length of a single solid-like cell undergoing micropipette aspiration (MPA), which was obtained in our previous study by theoretical analysis and numerical simulation. Using this system, foam silicone rubber spheres with different diameters and mechanical properties were aspirated in a manner similar to the MPA of single cells. Comparisons between the approximate elastic formula and aspiration experiments of spheres indicated that the predictions of the formula agreed with the experimental results. Additionally, combined with the MPA data of rabbit chondrocytes, differences in terms of the elastic parameters derived from the half-space model, incompressible sphere model, and compressible sphere model were explored. The results demonstrated that the parameter ξ (ξ = R/a, where R is the radius of the cell and a is the inner radius of the micropipette) and Poisson's ratio significantly influenced the determination of the elastic modulus and bulk modulus of the cell. This work developed for the first time an aspiration system of elastic spheres to study the elastic responses of the MPA of a single cell and provided new evidence supporting the use of the approximate elastic formula to determine cellular elastic parameters from the MPA data.
Collapse
Affiliation(s)
- YongSheng Li
- Department of Mechanics and Engineering Science, Taiyuan University of Technology, 79 West Yingze Street, Taiyuan, 030024, China
| | - Jing Chen
- Department of Mechanics and Engineering Science, Taiyuan University of Technology, 79 West Yingze Street, Taiyuan, 030024, China
| | - LiLi Wang
- Institute of Applied Mechanics and Biomedical Engineering, Taiyuan University of Technology, 79 West Yingze Street, Taiyuan, 030024, China
| | - Yuan Guo
- Institute of Applied Mechanics and Biomedical Engineering, Taiyuan University of Technology, 79 West Yingze Street, Taiyuan, 030024, China
| | - JiLing Feng
- Department of Design, Manufacture, and Engineering Management, University of Strathclyde, Glasgow, G1 1XQ, Scotland, UK
| | - WeiYi Chen
- Institute of Applied Mechanics and Biomedical Engineering, Taiyuan University of Technology, 79 West Yingze Street, Taiyuan, 030024, China.
| |
Collapse
|
13
|
Yang R, Broussard JA, Green KJ, Espinosa HD. Techniques to stimulate and interrogate cell-cell adhesion mechanics. EXTREME MECHANICS LETTERS 2018; 20:125-139. [PMID: 30320194 PMCID: PMC6181239 DOI: 10.1016/j.eml.2017.12.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Cell-cell adhesions maintain the mechanical integrity of multicellular tissues and have recently been found to act as mechanotransducers, translating mechanical cues into biochemical signals. Mechanotransduction studies have primarily focused on focal adhesions, sites of cell-substrate attachment. These studies leverage technical advances in devices and systems interfacing with living cells through cell-extracellular matrix adhesions. As reports of aberrant signal transduction originating from mutations in cell-cell adhesion molecules are being increasingly associated with disease states, growing attention is being paid to this intercellular signaling hub. Along with this renewed focus, new requirements arise for the interrogation and stimulation of cell-cell adhesive junctions. This review covers established experimental techniques for stimulation and interrogation of cell-cell adhesion from cell pairs to monolayers.
Collapse
Affiliation(s)
- Ruiguo Yang
- Department of Mechanical and Materials Engineering, University of Nebraska-Lincoln, Lincoln, NE 68588, United States
- Nebraska Center for Integrated Biomolecular Communication, University of Nebraska-Lincoln, Lincoln, NE 68588, United States
| | - Joshua A. Broussard
- Department of Pathology, Northwestern University, Feinberg School of Medicine, Chicago, IL 60611, United States
- Department of Dermatology, Northwestern University, Feinberg School of Medicine, Chicago, IL 60611, United States
| | - Kathleen J. Green
- Department of Pathology, Northwestern University, Feinberg School of Medicine, Chicago, IL 60611, United States
- Department of Dermatology, Northwestern University, Feinberg School of Medicine, Chicago, IL 60611, United States
| | - Horacio D. Espinosa
- Department of Mechanical Engineering, Northwestern University, Evanston, IL 60208, United States
- Theoretical and Applied Mechanics Program, Northwestern University, Evanston, IL 60208, United States
- Institute for Cellular Engineering Technologies, Northwestern University, Evanston, IL 60208, United States
| |
Collapse
|
14
|
Mollaeian K, Liu Y, Bi S, Ren J. Atomic force microscopy study revealed velocity-dependence and nonlinearity of nanoscale poroelasticity of eukaryotic cells. J Mech Behav Biomed Mater 2018; 78:65-73. [DOI: 10.1016/j.jmbbm.2017.11.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Revised: 10/30/2017] [Accepted: 11/01/2017] [Indexed: 11/25/2022]
|
15
|
Iturri J, Toca-Herrera JL. Characterization of Cell Scaffolds by Atomic Force Microscopy. Polymers (Basel) 2017; 9:E383. [PMID: 30971057 PMCID: PMC6418519 DOI: 10.3390/polym9080383] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2017] [Revised: 08/13/2017] [Accepted: 08/16/2017] [Indexed: 12/12/2022] Open
Abstract
This review reports on the use of the atomic force microscopy (AFM) in the investigation of cell scaffolds in recent years. It is shown how the technique is able to deliver information about the scaffold surface properties (e.g., topography), as well as about its mechanical behavior (Young's modulus, viscosity, and adhesion). In addition, this short review also points out the utilization of the atomic force microscope technique beyond its usual employment in order to investigate another type of basic questions related to materials physics, chemistry, and biology. The final section discusses in detail the novel uses that those alternative measuring modes can bring to this field in the future.
Collapse
Affiliation(s)
- Jagoba Iturri
- Institute for Biophysics, Department of NanoBiotechnology, University of Natural Resources and Life Sciences, Muthgasse 11, 1190 Wien, Austria.
| | - José L Toca-Herrera
- Institute for Biophysics, Department of NanoBiotechnology, University of Natural Resources and Life Sciences, Muthgasse 11, 1190 Wien, Austria.
| |
Collapse
|
16
|
Moreno-Cencerrado A, Iturri J, Pecorari I, D M Vivanco M, Sbaizero O, Toca-Herrera JL. Investigating cell-substrate and cell-cell interactions by means of single-cell-probe force spectroscopy. Microsc Res Tech 2016; 80:124-130. [PMID: 27341785 DOI: 10.1002/jemt.22706] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Accepted: 06/02/2016] [Indexed: 11/08/2022]
Abstract
Cell adhesion forces are typically a mixture of specific and nonspecific cell-substrate and cell-cell interactions. In order to resolve these phenomena, Atomic Force Microscopy appears as a powerful device which can measure cell parameters by means of manipulation of single cells. This method, commonly known as cell-probe force spectroscopy, allows us to control the force applied, the area of interest, the approach/retracting speed, the force rate, and the time of interaction. Here, we developed a novel approach for in situ cantilever cell capturing and measurement of specific cell interactions. In particular, we present a new setup consisting of two different half-surfaces coated either with recrystallized SbpA bacterial cell surface layer proteins (S-layers) or integrin binding Fibronectin, on which MCF-7 breast cancer cells are incubated. The presence of a clear physical boundary between both surfaces benefits for a quick detection of the region under analysis. Thus, quantitative results about SbpA-cell and Fibronectin-cell adhesion forces as a function of the contact time are described. Additionally, the importance of the cell spreading in cell-cell interactions has been studied for surfaces coated with two different Fibronectin concentrations: 20 μg/mL (FN20) and 100 μg/mL (FN100), which impact the number of substrate receptors. Microsc. Res. Tech. 80:124-130, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Alberto Moreno-Cencerrado
- Department of Nanobiotechnology, Institute for Biophysics, University of Natural Resources and Life Sciences Vienna (BOKU), Muthgasse 11, Vienna, 1190, Austria
| | - Jagoba Iturri
- Department of Nanobiotechnology, Institute for Biophysics, University of Natural Resources and Life Sciences Vienna (BOKU), Muthgasse 11, Vienna, 1190, Austria
| | - Ilaria Pecorari
- Department of Engineering and Architecture, Università Degli Studi Di Trieste, via Valerio 6 - 34127, Trieste, Italy
| | - Maria D M Vivanco
- Cell Biology and Stem Cells Unit, CIC bioGUNE, Bizkaia Science and Technology Park, Derio, Spain
| | - Orfeo Sbaizero
- Department of Engineering and Architecture, Università Degli Studi Di Trieste, via Valerio 6 - 34127, Trieste, Italy
| | - José L Toca-Herrera
- Department of Nanobiotechnology, Institute for Biophysics, University of Natural Resources and Life Sciences Vienna (BOKU), Muthgasse 11, Vienna, 1190, Austria
| |
Collapse
|
17
|
Verbruggen SW, Mc Garrigle MJ, Haugh MG, Voisin MC, McNamara LM. Altered mechanical environment of bone cells in an animal model of short- and long-term osteoporosis. Biophys J 2016; 108:1587-1598. [PMID: 25863050 DOI: 10.1016/j.bpj.2015.02.031] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2014] [Revised: 01/28/2015] [Accepted: 02/03/2015] [Indexed: 01/18/2023] Open
Abstract
Alterations in bone tissue composition during osteoporosis likely disrupt the mechanical environment of bone cells and may thereby initiate a mechanobiological response. It has proved challenging to characterize the mechanical environment of bone cells in vivo, and the mechanical environment of osteoporotic bone cells is not known. The objective of this research is to characterize the local mechanical environment of osteocytes and osteoblasts from healthy and osteoporotic bone in a rat model of osteoporosis. Using a custom-designed micromechanical loading device, we apply strains representative of a range of physical activity (up to 3000 με) to fluorescently stained femur samples from normal and ovariectomized rats. Confocal imaging was simultaneously performed, and digital image correlation techniques were applied to characterize cellular strains. In healthy bone tissue, osteocytes experience higher maximum strains (31,028 ± 4213 με) than osteoblasts (24,921 ± 3,832 με), whereas a larger proportion of the osteoblast experiences strains >10,000 με. Most interestingly, we show that osteoporotic bone cells experience similar or higher maximum strains than healthy bone cells after short durations of estrogen deficiency (5 weeks), and exceeded the osteogenic strain threshold (10,000 με) in a similar or significantly larger proportion of the cell (osteoblast, 12.68% vs. 13.68%; osteocyte, 15.74% vs. 5.37%). However, in long-term estrogen deficiency (34 weeks), there was no significant difference between bone cells in healthy and osteoporotic bone. These results suggest that the mechanical environment of bone cells is altered during early-stage osteoporosis, and that mechanobiological responses act to restore the mechanical environment of the bone tissue after it has been perturbed by ovariectomy.
Collapse
Affiliation(s)
- Stefaan W Verbruggen
- Biomechanics Research Centre, National Centre for Biomedical Engineering Science, Biomedical Engineering, College of Engineering and Informatics, National University of Ireland, Galway, Ireland
| | - Myles J Mc Garrigle
- Biomechanics Research Centre, National Centre for Biomedical Engineering Science, Biomedical Engineering, College of Engineering and Informatics, National University of Ireland, Galway, Ireland
| | - Matthew G Haugh
- Biomechanics Research Centre, National Centre for Biomedical Engineering Science, Biomedical Engineering, College of Engineering and Informatics, National University of Ireland, Galway, Ireland
| | - Muriel C Voisin
- Biomechanics Research Centre, National Centre for Biomedical Engineering Science, Biomedical Engineering, College of Engineering and Informatics, National University of Ireland, Galway, Ireland
| | - Laoise M McNamara
- Biomechanics Research Centre, National Centre for Biomedical Engineering Science, Biomedical Engineering, College of Engineering and Informatics, National University of Ireland, Galway, Ireland.
| |
Collapse
|
18
|
Cazaux S, Sadoun A, Biarnes-Pelicot M, Martinez M, Obeid S, Bongrand P, Limozin L, Puech PH. Synchronizing atomic force microscopy force mode and fluorescence microscopy in real time for immune cell stimulation and activation studies. Ultramicroscopy 2015; 160:168-181. [PMID: 26521163 DOI: 10.1016/j.ultramic.2015.10.014] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Revised: 09/17/2015] [Accepted: 10/12/2015] [Indexed: 11/24/2022]
Abstract
A method is presented for combining atomic force microscopy (AFM) force mode and fluorescence microscopy in order to (a) mechanically stimulate immune cells while recording the subsequent activation under the form of calcium pulses, and (b) observe the mechanical response of a cell upon photoactivation of a small G protein, namely Rac. Using commercial set-ups and a robust signal coupling the fluorescence excitation light and the cantilever bending, the applied force and activation signals were very easily synchronized. This approach allows to control the entire mechanical history of a single cell up to its activation and response down to a few hundreds of milliseconds, and can be extended with very minimal adaptations to other cellular systems where mechanotransduction is studied, using either purely mechanical stimuli or via a surface bound specific ligand.
Collapse
Affiliation(s)
- Séverine Cazaux
- Aix Marseille Université, LAI UM 61, Marseille F-13288, France; Inserm, UMR_S 1067, Marseille F-13288, France; CNRS, UMR 7333, Marseille F-13288, France
| | - Anaïs Sadoun
- Aix Marseille Université, LAI UM 61, Marseille F-13288, France; Inserm, UMR_S 1067, Marseille F-13288, France; CNRS, UMR 7333, Marseille F-13288, France
| | - Martine Biarnes-Pelicot
- Aix Marseille Université, LAI UM 61, Marseille F-13288, France; Inserm, UMR_S 1067, Marseille F-13288, France; CNRS, UMR 7333, Marseille F-13288, France
| | - Manuel Martinez
- Aix Marseille Université, LAI UM 61, Marseille F-13288, France; Inserm, UMR_S 1067, Marseille F-13288, France; CNRS, UMR 7333, Marseille F-13288, France
| | - Sameh Obeid
- Aix Marseille Université, LAI UM 61, Marseille F-13288, France; Inserm, UMR_S 1067, Marseille F-13288, France; CNRS, UMR 7333, Marseille F-13288, France
| | - Pierre Bongrand
- Aix Marseille Université, LAI UM 61, Marseille F-13288, France; Inserm, UMR_S 1067, Marseille F-13288, France; CNRS, UMR 7333, Marseille F-13288, France; APHM, Hôpital de la Conception, Laboratoire d'Immunologie, Marseille F-13385, France
| | - Laurent Limozin
- Aix Marseille Université, LAI UM 61, Marseille F-13288, France; Inserm, UMR_S 1067, Marseille F-13288, France; CNRS, UMR 7333, Marseille F-13288, France
| | - Pierre-Henri Puech
- Aix Marseille Université, LAI UM 61, Marseille F-13288, France; Inserm, UMR_S 1067, Marseille F-13288, France; CNRS, UMR 7333, Marseille F-13288, France.
| |
Collapse
|
19
|
Shih HJ, Shih PJ. Tip Effect of the Tapping Mode of Atomic Force Microscope in Viscous Fluid Environments. SENSORS (BASEL, SWITZERLAND) 2015; 15:18381-401. [PMID: 26225979 PMCID: PMC4570326 DOI: 10.3390/s150818381] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Revised: 07/02/2015] [Accepted: 07/14/2015] [Indexed: 11/16/2022]
Abstract
Atomic force microscope with applicable types of operation in a liquid environment is widely used to scan the contours of biological specimens. The contact mode of operation allows a tip to touch a specimen directly but sometimes it damages the specimen; thus, a tapping mode of operation may replace the contact mode. The tapping mode triggers the cantilever of the microscope approximately at resonance frequencies, and so the tip periodically knocks the specimen. It is well known that the cantilever induces extra liquid pressure that leads to drift in the resonance frequency. Studies have noted that the heights of protein surfaces measured via the tapping mode of an atomic force microscope are ~25% smaller than those measured by other methods. This discrepancy may be attributable to the induced superficial hydrodynamic pressure, which is worth investigating. In this paper, we introduce a semi-analytical method to analyze the pressure distribution of various tip geometries. According to our analysis, the maximum hydrodynamic pressure on the specimen caused by a cone-shaped tip is ~0.5 Pa, which can, for example, pre-deform a cell by several nanometers in compression before the tip taps it. Moreover, the pressure calculated on the surface of the specimen is 20 times larger than the pressure without considering the tip effect; these results have not been motioned in other papers. Dominating factors, such as surface heights of protein surface, mechanical stiffness of protein increasing with loading velocity, and radius of tip affecting the local pressure of specimen, are also addressed in this study.
Collapse
Affiliation(s)
- Hua-Ju Shih
- Department of Civil and Environmental Engineering, National University of Kaohsiung, No. 700, Kaohsiung University Rd., Nanzih District, 81148 Kaohsiung, Taiwan.
| | - Po-Jen Shih
- Department of Civil and Environmental Engineering, National University of Kaohsiung, No. 700, Kaohsiung University Rd., Nanzih District, 81148 Kaohsiung, Taiwan.
| |
Collapse
|
20
|
Galie PA, Byfield FJ, Chen CS, Kresh JY, Janmey PA. Mechanically stimulated contraction of engineered cardiac constructs using a microcantilever. IEEE Trans Biomed Eng 2014; 62:438-42. [PMID: 25248171 DOI: 10.1109/tbme.2014.2357778] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The beating heart undergoes cyclic mechanical and electrical activity during systole and diastole. The interaction between mechanical stimulation and propagation of the depolarization wavefront is important for understanding not just normal sinus rhythm, but also mechanically induced cardiac arrhythmia. This study presents a new platform to study mechanoelectrical coupling in a 3-D in vitro model of the myocardium. Cardiomyocytes and cardiac fibroblasts are seeded within extracellular matrix proteins and form constructs constrained by microfabricated tissue gauges that provide in situ measurement of contractile function. The microcantilever of an atomic force microscope is indented into the construct at varying magnitudes and frequencies to cause a coordinated contraction. The results indicate that changes in indentation depth and frequency do not significantly affect the magnitude of contraction, but increasing indentation frequency significantly increases the contractile velocity. Overall, this study demonstrates the validity of this platform as a means to study mechanoelectrical coupling in a 3-D setting, and to investigate the mechanism underlying mechanically stimulated contraction.
Collapse
|
21
|
Effect of bioactive extruded PLA/HA composite films on focal adhesion formation of preosteoblastic cells. Colloids Surf B Biointerfaces 2014; 121:409-16. [PMID: 24986753 DOI: 10.1016/j.colsurfb.2014.06.029] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2014] [Revised: 06/10/2014] [Accepted: 06/11/2014] [Indexed: 11/23/2022]
Abstract
The quality of the initial cell attachment to a biomaterial will influence any further cell function, including spreading, proliferation, differentiation and viability. Cell attachment is influenced by the material's ability to adsorb proteins, which is related to the surface chemistry and topography of the material. In this study, we incorporated hydroxyapatite (HA) particles into a poly(lactic acid) (PLA) composite and evaluated the surface structure and the effects of HA density on the initial cell attachment in vitro of murine calvarial preosteoblasts (MC3T3-EI). Scanning electron microscopy (SEM), atomic force microscopy (AFM) and infrared spectroscopy (FTIR) showed that the HA particles were successfully incorporated into the PLA matrix and located at the surface which is of importance in order to maintain the bioactive effect of the HA particles. SEM and AFM investigation revealed that the HA density (particles/area) as well as surface roughness increased with HA loading concentration (i.e. 5, 10, 15 and 20wt%), which promoted protein adsorption. Furthermore, the presence of HA on the surface enhanced cell spreading, increased the formation of actin stress fibers and significantly improved the expression of vinculin in MC3T3-E1 cells which is a key player in the regulation of cell adhesion. These results suggest the potential utility of PLA/HA composites as biomaterials for use as a bone substitute material and in tissue engineering applications.
Collapse
|
22
|
Vargas-Pinto R, Gong H, Vahabikashi A, Johnson M. The effect of the endothelial cell cortex on atomic force microscopy measurements. Biophys J 2014; 105:300-9. [PMID: 23870251 DOI: 10.1016/j.bpj.2013.05.034] [Citation(s) in RCA: 117] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2012] [Revised: 04/24/2013] [Accepted: 05/13/2013] [Indexed: 10/26/2022] Open
Abstract
We examined whether the presence of the cell cortex might explain, in part, why previous studies using atomic force microscopy (AFM) to measure cell modulus (E) gave higher values with sharp tips than for larger spherical tips. We confirmed these AFM findings in human umbilical vein endothelial cells (HUVEC) and Schlemm's canal (SC) endothelial cells with AFM indentation ≤ 400 nm, two cell types with prominent cortices (312 ± 65 nm in HUVEC and 371 ± 91 nm in SC cells). With spherical tips, E (kPa) was 0.71 ± 0.16 in HUVEC and 0.94 ± 0.06 in SC cells. Much higher values of E were measured using sharp tips: 3.23 ± 0.54 in HUVEC and 6.67 ± 1.07 in SC cells. Previous explanations for this difference such as strain hardening or a substrate effect were shown to be inconsistent with our measurements. Finite element modeling studies showed that a stiff cell cortex could explain the results. In both cell types, Latrunculin-A greatly reduced E for sharp and rounded tips, and also reduced the ratio of the values measured with a sharp tip as compared to a rounded tip. Our results suggest that the cell cortex increases the apparent endothelial cell modulus considerably when measured using a sharp AFM tip.
Collapse
Affiliation(s)
- R Vargas-Pinto
- Biomedical Engineering Department, Northwestern University, Evanston, Illinois, USA
| | | | | | | |
Collapse
|
23
|
Kim Y, Hong JW, Kim J, Shin JH. Comparative study on the differential mechanical properties of human liver cancer and normal cells. Anim Cells Syst (Seoul) 2013. [DOI: 10.1080/19768354.2013.789452] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
|
24
|
Aryaei A, Jayasuriya AC. Mechanical properties of human amniotic fluid stem cells using nanoindentation. J Biomech 2013; 46:1524-30. [PMID: 23628151 PMCID: PMC4930323 DOI: 10.1016/j.jbiomech.2013.03.023] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2012] [Revised: 03/22/2013] [Accepted: 03/22/2013] [Indexed: 10/26/2022]
Abstract
The aim of this study was to obtain nanomechanical properties of living cells focusing on human amniotic fluid stem (hAFS) cell using nanoindentation techniques. We modified the conventional method of atomic force microscopy (AFM) in aqueous environment for cell imaging and indentation to avoid inherent difficulties. Moreover, we determined the elastic modulus of murine osteoblast (OB6) cells and hAFS cells at the nucleus and cytoskeleton using force-displacement curves and Hertz theory. Since OB6 cell line has been widely used, it was selected to validate and compare the obtained results with the previous research studies. As a result, we were able to capture high resolution images through utilization of the tapping mode without adding protein or using fixation methods. The maximum depth of indentation was kept below 15% of the cell thickness to minimize the effect of substrate hardness. Nanostructural details on the surface of cells were visualized by AFM and fluorescence microscopy. The cytoskeletal fibers presented remarkable increase in elastic modulus as compared with the nucleus. Furthermore, our results showed that the elastic modulus of hAFS cell edge (31.6 kPa) was lower than that of OB6 cell edge (42.2 kPa). In addition, the elastic modulus of nucleus was 13.9 kPa for hAFS cell and 26.9 kPa for OB6 cells. Differences in cell elastic modulus possibly resulted from the type and number of actin cytoskeleton organization in these two cell types.
Collapse
Affiliation(s)
- Ashkan Aryaei
- Department of Mechanical Engineering, University of Toledo, 1650 N. Westwood Avenue, Toledo, OH 43606-3390, USA
| | - Ambalangodage C. Jayasuriya
- Department of Orthopaedic Surgery, University of Toledo, MS 1094, 3065 Arlington Avenue, Toledo, OH 43614-5807, USA
| |
Collapse
|
25
|
Celik E, Abdulreda MH, Maiguel D, Li J, Moy VT. Rearrangement of microtubule network under biochemical and mechanical stimulations. Methods 2013; 60:195-201. [PMID: 23466787 DOI: 10.1016/j.ymeth.2013.02.014] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2012] [Revised: 02/08/2013] [Accepted: 02/20/2013] [Indexed: 10/27/2022] Open
Abstract
Cells are constantly under the influence of various external forces in their physiological environment. These forces are countered by the viscoelastic properties of the cytoskeleton. To understand the response of the cytoskeleton to biochemical and mechanical stimuli, GFP-tubulin expressing CHO cells were investigated using scanning laser confocal microscopy. Cells treated with nocodazole revealed disruption in the microtubule network within minutes of treatment while keeping the cell shape intact. By contrast, trypsin, a proteolytic agent, altered the shape of CHO cells by breaking the peptide bonds at adhesion sites. CHO cells were also stimulated mechanically by applying an indentation force with an atomic force microscope (AFM) and by shear stress in a parallel plate flow chamber. Mechanical stimulation applied using AFM showed two distinct cytoskeletal responses to the applied force: an immediate response that resulted in the depolymerization and displacement of the microtubules out of the contact zone, and a slower response characterized by tubulin polymerization at the periphery of the indented area. Flow chamber experiments revealed that shear force did not induce formation of new microtubules in CHO cells and that detachment of adherent cells from the substrate occurred independent from the flow direction. Overall, the experimental system described here allows real-time characterization of dynamic changes in cell cytoskeleton in response to the mechano-chemical stimuli and, therefore, provides better understanding of the biophysical and functional properties of cells.
Collapse
Affiliation(s)
- Emrah Celik
- Department of Physiology and Biophysics, University of Miami, Miller School of Medicine, Miami, FL 33136, USA
| | | | | | | | | |
Collapse
|
26
|
Liu X, Shi J, Zong Z, Wan KT, Sun Y. Elastic and viscoelastic characterization of mouse oocytes using micropipette indentation. Ann Biomed Eng 2012; 40:2122-30. [PMID: 22644532 DOI: 10.1007/s10439-012-0595-3] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2012] [Accepted: 05/14/2012] [Indexed: 10/28/2022]
Abstract
This paper reports the first quantitative comparison study of elastic and viscoelastic properties of oocytes from young and aged mice. A force measurement technique, including a poly(dimethylsiloxane) (PDMS) cell holding device and a sub-pixel computer vision tracking algorithm, is utilized for measuring forces applied to an oocyte and resultant cell deformations in real time during oocyte manipulation. To characterize elastic and viscoelastic properties of the oocytes, a stress-relaxation indentation test is performed. A two-step, large-deformation mechanical model is developed to extract the mechanical properties of the oocytes from the measured force-deformation data. The experimental results demonstrate that the aged oocytes are significantly softer (instantaneous modulus: 2.2 vs. 5.2 kPa in young oocytes) but more viscous (relaxation time: 4.1 vs. 2.3 s in young oocytes) than the young oocytes.
Collapse
Affiliation(s)
- Xinyu Liu
- Department of Mechanical Engineering, McGill University, Montreal, QC, Canada.
| | | | | | | | | |
Collapse
|
27
|
Shinto H, Aso Y, Fukasawa T, Higashitani K. Adhesion of melanoma cells to the surfaces of microspheres studied by atomic force microscopy. Colloids Surf B Biointerfaces 2012; 91:114-21. [DOI: 10.1016/j.colsurfb.2011.10.060] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2011] [Revised: 10/22/2011] [Accepted: 10/26/2011] [Indexed: 11/28/2022]
|
28
|
A finite element study of micropipette aspiration of single cells: effect of compressibility. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2012; 2012:192618. [PMID: 22400045 PMCID: PMC3287019 DOI: 10.1155/2012/192618] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2011] [Accepted: 10/31/2011] [Indexed: 11/17/2022]
Abstract
Micropipette aspiration (MA) technique has been widely used to measure the viscoelastic properties of different cell types. Cells experience nonlinear large deformations during the aspiration procedure. Neo-Hookean viscohyperelastic (NHVH) incompressible and compressible models were used to simulate the creep behavior of cells in MA, particularly accounting for the effect of compressibility, bulk relaxation, and hardening phenomena under large strain. In order to find optimal material parameters, the models were fitted to the experimental data available for mesenchymal stem cells. Finally, through Neo-Hookean porohyperelastic (NHPH) material model for the cell, the influence of fluid flow on the aspiration length of the cell was studied. Based on the results, we suggest that the compressibility and bulk relaxation/fluid flow play a significant role in the deformation behavior of single cells and should be taken into account in the analysis of the mechanics of cells.
Collapse
|
29
|
Abstract
MEMS technology and devices have proven their importance in facilitating single cell studies by providing quantitative information on cellular and sub-cellular levels. This paper reviews existing techniques for cellular and sub-cellular force measurement and molecular detection using MEMS-based devices. Literature on these techniques and sample devices is reviewed. The significance and limitations of various approaches are analyzed.
Collapse
Affiliation(s)
- YU SUN
- Department of Mechanical & Industrial Engineering, University of Toronto, Canada
| | - BRADLEY J. NELSON
- Institute of Robotics and Intelligent Systems, Swiss Federal Institute of Technology, Zurich, Switzerland
| |
Collapse
|
30
|
Mackay JL, Kumar S. Measuring the elastic properties of living cells with atomic force microscopy indentation. Methods Mol Biol 2012; 931:313-29. [PMID: 23027009 DOI: 10.1007/978-1-62703-056-4_15] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Atomic force microscopy (AFM) is a powerful and versatile tool for probing the mechanical properties of biological samples. This chapter describes the procedures for using AFM indentation to measure the elastic moduli of living cells. We include step-by-step instructions for cantilever calibration and data acquisition using a combined AFM/optical microscope system, as well as a detailed protocol for data analysis. Our protocol is written specifically for the BioScope™ Catalyst™ AFM system (Bruker AXS Inc.); however, most of the general concepts can be readily translated to other commercial systems.
Collapse
Affiliation(s)
- Joanna L Mackay
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, CA, USA
| | | |
Collapse
|
31
|
Harris AR, Charras GT. Experimental validation of atomic force microscopy-based cell elasticity measurements. NANOTECHNOLOGY 2011; 22:345102. [PMID: 21795774 DOI: 10.1088/0957-4484/22/34/345102] [Citation(s) in RCA: 124] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Atomic force microscopy (AFM) is widely used for measuring the elasticity of living cells yielding values ranging from 100 Pa to 100 kPa, much larger than those obtained using bead-tracking microrheology or micropipette aspiration (100-500 Pa). AFM elasticity measurements appear dependent on tip geometry with pyramidal tips yielding elasticities 2-3 fold larger than spherical tips, an effect generally attributed to the larger contact area of spherical tips. In AFM elasticity measurements, experimental force-indentation curves are analyzed using contact mechanics models that infer the tip-cell contact area from the tip geometry and indentation depth. The validity of these assumptions has never been verified. Here we utilize combined AFM-confocal microscopy of epithelial cells expressing a GFP-tagged membrane marker to directly characterize the indentation geometry and measure the indentation depth. Comparison with data derived from AFM force-indentation curves showed that the experimentally measured contact area for spherical tips agrees well with predicted values, whereas for pyramidal tips, the contact area can be grossly underestimated at forces larger than ∼0.2 nN leading to a greater than two-fold overestimation of elasticity. These data suggest that a re-examination of absolute cellular elasticities reported in the literature may be necessary and we suggest guidelines for avoiding elasticity measurement artefacts introduced by extraneous cantilever-cell contact.
Collapse
Affiliation(s)
- Andrew R Harris
- London Centre for Nanotechnology, University College London, London WC1H 0AH, UK
| | | |
Collapse
|
32
|
Kim Y, Kim M, Shin JH, Kim J. Characterization of cellular elastic modulus using structure based double layer model. Med Biol Eng Comput 2011; 49:453-62. [DOI: 10.1007/s11517-010-0730-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2010] [Accepted: 08/18/2010] [Indexed: 11/29/2022]
|
33
|
Effect of outer mandibular cortex osteotomy on local morphology and biomechanics in young miniature pigs. J Craniomaxillofac Surg 2010; 39:425-30. [PMID: 21055959 DOI: 10.1016/j.jcms.2010.10.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2009] [Revised: 08/02/2010] [Accepted: 10/04/2010] [Indexed: 11/24/2022] Open
Abstract
AIM The purpose of this study was to research the effect of outer mandibular cortex osteotomy on local morphology and biomechanics in young miniature pigs. METHODS Eight 3-month-old miniature pigs were used as experimental animals to establish an animal model for removing the outer cortex of the mandibular body, and the changes in local morphology, fine structure, and biomechanics of the mandible after the operation were evaluated. RESULTS The thickness of the operated side decreased to a greater extent than that of the control side. Further, local histologic structure and biomechanics characteristics could be recovered under stress conditions and were close to those of the normal side after the operation. However, some animals (37.5%) exhibited mandible deviation after operation. CONCLUSION Under normal conditions, mandibular outer cortex osteotomy should not be performed in the case of children.
Collapse
|
34
|
Liu X, Fernandes R, Jurisicova A, Casper RF, Sun Y. In situ mechanical characterization of mouse oocytes using a cell holding device. LAB ON A CHIP 2010; 10:2154-2161. [PMID: 20544113 DOI: 10.1039/c004706f] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
This paper presents a cellular force measurement technique that allows for mechanical characterization of mouse oocytes during microinjection (i.e., in situ) without requiring a separate characterization process. The technique employs an elastic cell holding device and a sub-pixel computer vision tracking algorithm to resolve cellular forces in real time with a nanonewton force measurement resolution (2 nN at 30 Hz). Mechanical properties (i.e., stiffness) of both healthy and defective mouse oocytes are characterized. The experimental results suggest that the in situ obtained force-deformation data are useful for distinguishing healthy mouse oocytes from those with aging-induced cellular defects, promising an approach for oocyte quality assessment during microinjection. Biomembrane and cytoskeleton structures of the healthy and defective oocytes are also investigated in an attempt to correlate the measured subtle mechanical difference to cellular structure changes.
Collapse
Affiliation(s)
- Xinyu Liu
- Department of Mechanical and Industrial Engineering, University of Toronto, 5 King's College Road, Toronto, Ontario, CanadaM5S 3G8
| | | | | | | | | |
Collapse
|
35
|
Deng Z, Lulevich V, Liu FT, Liu GY. Applications of atomic force microscopy in biophysical chemistry of cells. J Phys Chem B 2010; 114:5971-82. [PMID: 20405961 PMCID: PMC3980964 DOI: 10.1021/jp9114546] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
This article addresses the question of what information and new insights atomic force microscopy (AFM) provides that are of importance and relevance to cellular biophysical chemistry research. Three enabling aspects of AFM are discussed: (a) visualization of membrane structural features with nanometer resolution, such as microvilli, ridges, porosomes, lamellapodia, and filopodia; (b) revealing structural evolution associated with cellular signaling pathways by time-dependent and high-resolution imaging of the cellular membrane in correlation with intracellular components from simultaneous optical microscopy; and (c) qualitative and quantitative measurements of single cell mechanics by acquisition of force-deformation profiles and extraction of Young's moduli for the membrane as well as cytoskeleton. A future prospective of AFM is also presented.
Collapse
Affiliation(s)
- Zhao Deng
- Department of Chemistry, University of California, Davis, Davis, California 95616
| | - Valentin Lulevich
- Department of Chemistry, University of California, Davis, Davis, California 95616
| | - Fu-tong Liu
- Department of Dermatology, University of California at Davis, Sacramento, California 95817
| | - Gang-yu Liu
- Department of Chemistry, University of California, Davis, Davis, California 95616
| |
Collapse
|
36
|
Huo B, Lu XL, Costa KD, Xu Q, Guo XE. An ATP-dependent mechanism mediates intercellular calcium signaling in bone cell network under single cell nanoindentation. Cell Calcium 2010; 47:234-41. [PMID: 20060586 DOI: 10.1016/j.ceca.2009.12.005] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2009] [Revised: 10/07/2009] [Accepted: 12/07/2009] [Indexed: 11/15/2022]
Abstract
To investigate the roles of intercellular gap junctions and extracellular ATP diffusion in bone cell calcium signaling propagation in bone tissue, in vitro bone cell networks were constructed by using microcontact printing and self-assembled monolayer technologies. In the network, neighboring cells were interconnected through functional gap junctions. A single cell at the center of the network was mechanically stimulated by using an AFM nanoindenter. Intracellular calcium ([Ca2+](i)) responses of the bone cell network were recorded and analyzed. In the untreated groups, calcium propagation from the stimulated cell to neighboring cells was observed in 40% of the tests. No significant difference was observed in this percentage when the intercellular gap junctions were blocked. This number, however, decreased to 10% in the extracellular ATP-pathway-blocked group. When both the gap junction and ATP pathways were blocked, intercellular calcium waves were abolished. When the intracellular calcium store in ER was depleted, the indented cell can generate calcium transients, but no [Ca2+](i) signal can be propagated to the neighboring cells. No [Ca2+](i) response was detected in the cell network when the extracellular calcium source was removed. These findings identified the biochemical pathways involved in the calcium signaling propagation in bone cell networks.
Collapse
Affiliation(s)
- Bo Huo
- Bone Bioengineering Laboratory, Department of Biomedical Engineering, Columbia University, New York, NY 10027, USA
| | | | | | | | | |
Collapse
|
37
|
Chan MWC, Hinz B, McCulloch CA. Mechanical induction of gene expression in connective tissue cells. Methods Cell Biol 2010; 98:178-205. [PMID: 20816235 DOI: 10.1016/s0091-679x(10)98008-4] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The extracellular matrices of mammals undergo coordinated synthesis and degradation, dynamic remodeling processes that enable tissue adaptations to a broad range of environmental factors, including applied mechanical forces. The soft and mineralized connective tissues of mammals also exhibit a wide repertoire of mechanical properties, which enable their tissue-specific functions and modulate cellular responses to forces. The expression of genes in response to applied forces are important for maintaining the support, attachment, and function of various organs including kidney, heart, liver, lung, joint, and periodontium. Several high-prevalence diseases of extracellular matrices including arthritis, heart failure, and periodontal diseases involve pathological levels of mechanical forces that impact the gene expression repertoires and function of bone, cartilage, and soft connective tissues. Recent work on the application of mechanical forces to cultured connective tissue cells and various in vivo force models have enabled study of the regulatory networks that control mechanically induced gene expression in connective tissue cells. In addition to the influence of mechanical forces on the expression of type 1 collagen, which is the most abundant protein of mammals, new work has shown that the expression of a wide range of matrix, signaling, and cytoskeletal proteins are regulated by exogenous mechanical forces and by the forces generated by cells themselves. In this chapter, we first discuss the fundamental nature of the extracellular matrix in health and the impact of mechanical forces. Next we consider the utilization of several, widely employed model systems for mechanical stimulation of cells. Finally, we consider in detail how application of tensile forces to cultured cardiac fibroblasts can be used for the characterization of the signaling systems by which mechanical forces regulate myofibroblast differentiation that is seen in cardiac pressure overload.
Collapse
Affiliation(s)
- Matthew W C Chan
- Matrix Dynamics Group, Faculty of Dentistry, University of Toronto, Fitzgerald Building, Toronto, ON, Canada M5S 3E2
| | | | | |
Collapse
|
38
|
Ghanbari A, Nock V, Blaikie R, Chase JG, Chen X, Hann CE, Wang W. Force pattern characterisation of Caenorhabditis elegans in motion. INTERNATIONAL JOURNAL OF COMPUTER APPLICATIONS IN TECHNOLOGY 2010. [DOI: 10.1504/ijcat.2010.034742] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
39
|
Saravia V, Toca-Herrera JL. Substrate influence on cell shape and cell mechanics: HepG2 cells spread on positively charged surfaces. Microsc Res Tech 2009; 72:957-64. [DOI: 10.1002/jemt.20742] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
40
|
Atomic Force Microscopy: A Versatile Tool for Studying Cell Morphology, Adhesion and Mechanics. Cell Mol Bioeng 2008. [DOI: 10.1007/s12195-008-0037-3] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
|
41
|
Williams MO, Murphy NC. Beyond the Ligament: A Whole-Bone Periodontal View of Dentofacial Orthopedics and Falsification of Universal Alveolar Immutability. Semin Orthod 2008. [DOI: 10.1053/j.sodo.2008.07.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
42
|
Coldren FM, Foteinopoulou K, Carroll DL, Laso M. Modeling the effect of cell-associated polymeric fluid layers on force spectroscopy measurements. Part I: model development. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2008; 24:9575-9587. [PMID: 18666790 DOI: 10.1021/la800943y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
The mechanical response, the force-indentation relationship, in normal force spectroscopy measurements carried out on individual polysaccharide encapsulated bacteria is modeled using three increasingly refined approaches that consider the elastic response of the bacterium and cantilever in combination with a fluid (hydrodynamic) model for the polysaccharide layer. For the hydrodynamic description of the polysaccharide layer, several increasingly realistic models are described in detail, together with numerical solution techniques. These models range from one-dimensional, Newtonian, to two-dimensional, axisymmetric, fully viscoelastic (Phan-Thien/Tanner). In all cases, the models rigorously consider the time-dependent rheological-mechanical coupling between the elastic and fluid viscoelastic physical components of the experimental setup. Effects of inherent variability in geometrical and material properties of the bacterium and polysaccharide layer on the measurable response are quantified. A parametric investigation of the force-indentation relationship highlights the importance of accurate knowledge of the rheology of the extracellular polysaccharides. We also draw conclusions about the design and evaluation of force spectroscopy experiments on single encapsulated bacteria. Supported by model calculations, we also point the way to methods of in vivo rheological characterization of the extracellular polysaccharide as a preferable alternative to characterization after its removal from the native environment.
Collapse
Affiliation(s)
- Faith M Coldren
- Center for Nanotechnology and Molecular Materials and Department of Physics, Wake Forest University, Winston-Salem, North Carolina 27109, USA
| | | | | | | |
Collapse
|
43
|
Over-expression of alpha-actinin with a GFP fusion protein is sufficient to increase whole-cell stiffness in human osteoblasts. Ann Biomed Eng 2008; 36:1605-14. [PMID: 18636329 DOI: 10.1007/s10439-008-9533-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2007] [Accepted: 06/20/2008] [Indexed: 10/21/2022]
Abstract
Osteoblasts respond to shear stress by simultaneously increasing their whole-cell stiffness and up-regulating the cytoskeletal crosslinking protein alpha-actinin. The stiffness of reconstituted cytoskeletal networks increases following the addition of alpha-actinin, but the effect of alpha-actinin on whole-cell mechanical behavior has not been investigated. The hypothesis of this study was that increasing alpha-actinin in the cytoskeleton would be sufficient to increase whole-cell stiffness. hFOB osteoblasts were transfected with a plasmid for GFP-tagged alpha-actinin, resulting in a 150% increase in the amount of alpha-actinin. The GFP-alpha-actinin fusion protein co-fractionated with the cytoskeleton and co-localized to the same regions of the cytoskeleton as endogenous alpha-actinin. Whole-cell mechanical behavior was measured by atomic force microscopy using a 25 mum diameter microsphere as an indenter. The whole-cell stiffness of cells over-expressing GFP-alpha-actinin was 60% higher than cells expressing only endogenous alpha-actinin (p < 0.002), which was within the range of mechanical behavior observed in osteoblastic cells exposed to 1 and 2 Pa of fluid shear. These results indicate that the up-regulation of alpha-actinin synthesis in osteoblasts is sufficient to alter the whole-cell mechanical behavior and highlights the potential role of alpha-actinin to reinforce cells against mechanical loads.
Collapse
|
44
|
Kasas S, Dietler G. Probing nanomechanical properties from biomolecules to living cells. Pflugers Arch 2008; 456:13-27. [DOI: 10.1007/s00424-008-0448-y] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2008] [Accepted: 01/09/2008] [Indexed: 12/27/2022]
|
45
|
Silberberg YR, Pelling AE, Yakubov GE, Crum WR, Hawkes DJ, Horton MA. Mitochondrial displacements in response to nanomechanical forces. J Mol Recognit 2008; 21:30-6. [PMID: 18247356 DOI: 10.1002/jmr.868] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Mechanical stress affects and regulates many aspects of the cell, including morphology, growth, differentiation, gene expression and apoptosis. In this study we show how mechanical stress perturbs the intracellular structures of the cell and induces mechanical responses. In order to correlate mechanical perturbations to cellular responses, we used a combined fluorescence-atomic force microscope (AFM) to produce well defined nanomechanical perturbations of 10 nN while simultaneously tracking the real-time motion of fluorescently labelled mitochondria in live cells. The spatial displacement of the organelles in response to applied loads demonstrates the highly dynamic mechanical response of mitochondria in fibroblast cells. The average displacement of all mitochondrial structures analysed showed an increase of approximately 40%, post-perturbation ( approximately 160 nm in comparison to basal displacements of approximately 110 nm). These results show that local forces can produce organelle displacements at locations far from the initial point of contact (up to approximately 40 microm). In order to examine the role of the cytoskeleton in force transmission and its effect on mitochondrial displacements, both the actin and microtubule cytoskeleton were disrupted using Cytochalasin D and Nocodazole, respectively. Our results show that there is no significant change in mitochondrial displacement following indentation after such treatments. These results demonstrate the role of the cytoskeleton in force transmission through the cell and on mitochondrial displacements. In addition, it is suggested that care must be taken when performing mechanical experiments on living cells with the AFM, as these local mechanical perturbations may have significant structural and even biochemical effects on the cell.
Collapse
Affiliation(s)
- Yaron R Silberberg
- The London Centre for Nanotechnology and Centre for NanoMedicine, University College London, 17-19 Gordon Street, London, WC1H 0AH, UK
| | | | | | | | | | | |
Collapse
|
46
|
AFM as a tool to probe and manipulate cellular processes. Pflugers Arch 2007; 456:61-70. [DOI: 10.1007/s00424-007-0414-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2007] [Revised: 11/23/2007] [Accepted: 11/27/2007] [Indexed: 10/22/2022]
|
47
|
An historical perspective on cell mechanics. Pflugers Arch 2007; 456:3-12. [DOI: 10.1007/s00424-007-0405-1] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2007] [Revised: 11/12/2007] [Accepted: 11/15/2007] [Indexed: 11/26/2022]
|
48
|
Hansen JC, Lim JY, Xu LC, Siedlecki CA, Mauger DT, Donahue HJ. Effect of surface nanoscale topography on elastic modulus of individual osteoblastic cells as determined by atomic force microscopy. J Biomech 2007; 40:2865-71. [PMID: 17467715 PMCID: PMC3607429 DOI: 10.1016/j.jbiomech.2007.03.018] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2006] [Revised: 03/08/2007] [Accepted: 03/09/2007] [Indexed: 11/18/2022]
Abstract
Mechanical stimulation of osteoblasts by fluid flow promotes a variety of pro-differentiation effects and improving the efficiency of these mechanical signals could encourage specific differentiation pathways. One way this could be accomplished is by altering mechanical properties of osteoblasts. In this study, murine osteoblastic MC3T3-E1 cells were cultured on surfaces covered with nanometer-sized islands to examine the hypothesis that the elastic modulus of osteoblastic cells is affected by nanoscale topography. Nanoislands were produced by polymer demixing of polystyrene and poly(bromostyrene), which leads to a segregated polymer system and formation of nanometer-sized topographical features. The elastic modulus of MC3T3-E1 cells was determined using atomic force microscopy in conjunction with the Hertz mathematical model. Osteoblastic cells cultured on nanotopographic surfaces (11-38 nm high islands) had a different distribution of cellular modulus values, e.g., the distribution shifted toward higher modulus values, relative to cells on flat control surfaces. There were also differences in cell modulus distribution between two flat controls as surface chemistry was changed between polystyrene and glass. Taken together, our results demonstrate that both surface nanotopography and chemistry affect the mechanical properties of cells and may provide new methods for altering the response of cells to external mechanical signals.
Collapse
Affiliation(s)
- Joshua C. Hansen
- Department of Bioengineering, Center for Biomedical Devices and Functional Tissue Engineering and Biomedical Engineering Institute, College of Medicine, Pennsylvania State University, Hershey, PA 17033
| | - Jung Yul Lim
- Division of Musculoskeletal Sciences, Department of Orthopaedics and Rehabilitation, Center for Biomedical Devices and Functional Tissue Engineering and Biomedical Engineering Institute, College of Medicine, Pennsylvania State University, Hershey, PA 17033
| | - Li-Chong Xu
- Department of Surgery, Center for Biomedical Devices and Functional Tissue Engineering and Biomedical Engineering Institute, College of Medicine, Pennsylvania State University, Hershey, PA 17033
| | - Christopher A. Siedlecki
- Department of Bioengineering, Center for Biomedical Devices and Functional Tissue Engineering and Biomedical Engineering Institute, College of Medicine, Pennsylvania State University, Hershey, PA 17033
- Department of Surgery, Center for Biomedical Devices and Functional Tissue Engineering and Biomedical Engineering Institute, College of Medicine, Pennsylvania State University, Hershey, PA 17033
| | - David T. Mauger
- Department of Health Evaluation Sciences, Center for Biomedical Devices and Functional Tissue Engineering and Biomedical Engineering Institute, College of Medicine, Pennsylvania State University, Hershey, PA 17033
| | - Henry J. Donahue
- Division of Musculoskeletal Sciences, Department of Orthopaedics and Rehabilitation, Center for Biomedical Devices and Functional Tissue Engineering and Biomedical Engineering Institute, College of Medicine, Pennsylvania State University, Hershey, PA 17033
| |
Collapse
|
49
|
Abstract
Microelectromechanical systems (MEMS) are playing increasingly important roles in facilitating biological studies. They are capable of providing not only qualitative but also quantitative information on the cellular, sub-cellular and organism levels, which is instrumental to understanding the fundamental elements of biological systems. MEMS force sensors with their high bandwidth and high sensitivity combined with their small size, in particular, have found a role in this domain, because of the importance of quantifying forces and their effect on the function and morphology of many biological structures. This paper describes our research in the development of MEMS capacitive force sensors that have already demonstrated their effectiveness in the areas of cell mechanics and Drosophila flight dynamics studies.
Collapse
Affiliation(s)
- Yu Sun
- Advanced Micro and Nanosystems Laboratory, University of Toronto, 5 King's College Road, Toronto M5S 3G8, Canada.
| | | |
Collapse
|
50
|
Tranchida D, Piccarolo S, Soliman M. Nanoscale Mechanical Characterization of Polymers by AFM Nanoindentations: Critical Approach to the Elastic Characterization. Macromolecules 2006. [DOI: 10.1021/ma052727j] [Citation(s) in RCA: 114] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|