1
|
Kondrakhova D, Unger M, Stadler H, Zakuťanská K, Tomašovičová N, Tomečková V, Horák J, Kimákova T, Komanický V. Determination diabetes mellitus disease markers in tear fluid by photothermal AFM-IR analysis. NANOMEDICINE : NANOTECHNOLOGY, BIOLOGY, AND MEDICINE 2025; 64:102803. [PMID: 39788273 DOI: 10.1016/j.nano.2025.102803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 12/10/2024] [Accepted: 12/29/2024] [Indexed: 01/12/2025]
Abstract
The tear fluids from three healthy individuals and three patients with diabetes mellitus were examined using atomic force microscopy-infrared spectroscopy (AFM-IR) and Fourier transform infrared spectroscopy (FTIR). The dried tear samples showed different surface morphologies: the control sample had a dense network of heart-shaped dendrites, while the diabetic sample had fern-shaped dendrites. By using the AFM-IR technique we identified spatial distribution of constituents, indicating how diabetes affects the structural characteristics of dried tears. FTIR showed that the dendritic structures gradually disappeared over time due to glucose-induced lysozyme damage. The tear fluid from diabetes mellitus patients has a higher concentration of glucose, which accelerates the breakdown of lysozyme and, as a result, the quick loss of the dendritic structure. Our study shows that analysis of dry tear fluid can be promising technique for the detection of glycated proteins that reveal long lasting hyperglycemia and diabetes mellitus.
Collapse
Affiliation(s)
- Daria Kondrakhova
- Institute of Physics, Department of Condensed Matter Physics, Faculty of Science, Pavol Jozef Šafárik University in Košice, Park Angelinum 9, Košice 041 54, Slovakia
| | - Miriam Unger
- Bruker Nano Surfaces & Metrology, Östliche Rheinbrückenstrasse 49, 76187 Karlsruhe, Germany
| | - Hartmut Stadler
- Bruker Nano Surfaces & Metrology, Östliche Rheinbrückenstrasse 49, 76187 Karlsruhe, Germany
| | - Katarína Zakuťanská
- Department of Magnetism, Institute of Experimental Physics, Slovak Academy of Sciences, Watsonova 47, Košice 040 01, Slovakia
| | - Natália Tomašovičová
- Department of Magnetism, Institute of Experimental Physics, Slovak Academy of Sciences, Watsonova 47, Košice 040 01, Slovakia
| | - Vladimíra Tomečková
- Department of Medical and Clinical Biochemistry, Faculty of Medicine, Pavol Jozef Šafárik University in Košice, Košice, Slovakia
| | - Jakub Horák
- Měřicí technika Morava s.r.o., Babická 619, 664 84 Zastávka, Czech Republic
| | - Tatiana Kimákova
- Department of Public Health and Hygiene, Faculty of Medicine, Pavol Jozef Šafárik University in Košice, Šrobárová 2, Košice 041 80, Slovakia
| | - Vladimír Komanický
- Institute of Physics, Department of Condensed Matter Physics, Faculty of Science, Pavol Jozef Šafárik University in Košice, Park Angelinum 9, Košice 041 54, Slovakia.
| |
Collapse
|
2
|
Vergari M, Niccolini B, Pitocco D, Rizzi A, Ciasca G, de Spirito M, Gavioli L. Optical discrimination of pathological red blood cells. Biotechnol Bioeng 2024; 121:3311-3318. [PMID: 38973124 DOI: 10.1002/bit.28798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 06/26/2024] [Accepted: 06/27/2024] [Indexed: 07/09/2024]
Abstract
Fast diagnostic methods are crucial to reduce the burden on healthcare systems. Currently, detection of diabetes complications such as neuropathy requires time-consuming approaches to observe the correlated red blood cells (RBCs) morphological changes. To tackle this issue, an optical analysis of RBCs in air was conducted in the 250-2500 nm range. The distinct oscillations present in the scattered and direct transmittance spectra have been analyzed with both Mie theory and anomalous diffraction approximation. The results provide information about the swelling at the ends of RBCs and directly relate the optical data to RBCs morphology and deformability. Both models agree on a reduction in the size and deformability of RBCs in diabetic patients, thus opening the way to diabetes diagnosis and disease progression assessment.
Collapse
Affiliation(s)
- Michele Vergari
- Interdisciplinary Laboratories for Advanced Materials Physics (i-LAMP) and Dipartimento di Matematica e Fisica, Università Cattolica del Sacro Cuore, Brescia, Italy
| | - Benedetta Niccolini
- Dipartimento di Neuroscienze, Sezione di Fisica, Università Cattolica del Sacro Cuore, Fondazione Policlinico Universitario "A. Gemelli", IRCCS, Rome, Italy
| | - Dario Pitocco
- Dipartimento di Neuroscienze, Sezione di Fisica, Università Cattolica del Sacro Cuore, Fondazione Policlinico Universitario "A. Gemelli", IRCCS, Rome, Italy
- UOSD Diabetologia, Fondazione Policlinico Universitario Agostino Gemelli, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Alessandro Rizzi
- UOSD Diabetologia, Fondazione Policlinico Universitario Agostino Gemelli, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Gabriele Ciasca
- Dipartimento di Neuroscienze, Sezione di Fisica, Università Cattolica del Sacro Cuore, Fondazione Policlinico Universitario "A. Gemelli", IRCCS, Rome, Italy
- UOSD Diabetologia, Fondazione Policlinico Universitario Agostino Gemelli, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Marco de Spirito
- Dipartimento di Neuroscienze, Sezione di Fisica, Università Cattolica del Sacro Cuore, Fondazione Policlinico Universitario "A. Gemelli", IRCCS, Rome, Italy
- UOSD Diabetologia, Fondazione Policlinico Universitario Agostino Gemelli, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Luca Gavioli
- Interdisciplinary Laboratories for Advanced Materials Physics (i-LAMP) and Dipartimento di Matematica e Fisica, Università Cattolica del Sacro Cuore, Brescia, Italy
| |
Collapse
|
3
|
Blat A, Makowski W, Smenda J, Pięta Ł, Bania M, Zapotoczny S, Malek K. Human erythrocytes under stress. Spectroscopic fingerprints of known oxidative mechanisms and beyond. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 313:124142. [PMID: 38493515 DOI: 10.1016/j.saa.2024.124142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 03/01/2024] [Accepted: 03/08/2024] [Indexed: 03/19/2024]
Abstract
In this work, we investigated the oxidative stress-related biochemical alterations in red blood cells (RBCs) and their membranes with the use of spectroscopic techniques. We aimed to show their great advantage for the in situ detection of lipid classes and secondary structures of proteins without the need for their extraction in the cellular environment. The exposition of the cells to peroxides, t-butyl hydroperoxide (tBOOH) or hydrogen peroxide (H2O2) led to different degradation processes encompassing the changes in the composition of membranes and structural modifications of hemoglobin (Hb). Our results indicated that tBOOH is generally a stronger oxidizing agent than H2O2 and this observation was congruent with the activity of superoxide and glutathione peroxidase. ATR-FTIR and Raman spectroscopies of membranes revealed that tBOOH caused primarily the partial loss and peroxidation of the lipids resulting in loss of the integrity of membranes. In turn, both peroxides induced several kinds of damage in the protein layer, including the partial decrease of their content and irreversible aggregation of spectrin, ankyrin, and membrane-bound globin. These changes were especially pronounced on the membrane surface where stress conditions induced the formation of β-sheets and intramolecular aggregates, particularly for tBOOH. Interestingly, nano-FTIR spectroscopy revealed the lipid peroxidative damage on the membrane surface in both cases. As far as hemoglobin was concerned, tBOOH and H2O2 caused the increase of the oxyhemoglobin species and conformational alterations of its polypeptide chain into β-sheets. Our findings confirm that applied spectroscopies effectively track the oxidative changes occurring in the structural components of red blood cells and the simplicity of conducting measurements and sample preparation can be readily applied to pharmacological and clinical studies.
Collapse
Affiliation(s)
- Aneta Blat
- Faculty of Chemistry, Jagiellonian University in Krakow, Gronostajowa 2, 30-387 Krakow, Poland
| | - Wojciech Makowski
- Faculty of Biotechnology and Horticulture, University of Agriculture in Kraków, Al. 29 Listopada 54, 31-425 Krakow, Poland
| | - Joanna Smenda
- Faculty of Chemistry, Jagiellonian University in Krakow, Gronostajowa 2, 30-387 Krakow, Poland; Doctoral School of Exact and Natural Sciences, Jagiellonian University in Kraków, Prof. S. Lojasiewicza 11, 30-348 Krakow, Poland
| | - Łukasz Pięta
- Faculty of Chemistry, Jagiellonian University in Krakow, Gronostajowa 2, 30-387 Krakow, Poland; Doctoral School of Exact and Natural Sciences, Jagiellonian University in Kraków, Prof. S. Lojasiewicza 11, 30-348 Krakow, Poland
| | - Monika Bania
- Faculty of Chemistry, Jagiellonian University in Krakow, Gronostajowa 2, 30-387 Krakow, Poland
| | - Szczepan Zapotoczny
- Faculty of Chemistry, Jagiellonian University in Krakow, Gronostajowa 2, 30-387 Krakow, Poland
| | - Kamilla Malek
- Faculty of Chemistry, Jagiellonian University in Krakow, Gronostajowa 2, 30-387 Krakow, Poland.
| |
Collapse
|
4
|
Kwon S, Lee DH, Han SJ, Yang W, Quan FS, Kim KS. Biomechanical properties of red blood cells infected by Plasmodium berghei ANKA. J Cell Physiol 2019; 234:20546-20553. [PMID: 30989677 DOI: 10.1002/jcp.28654] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2018] [Revised: 03/12/2019] [Accepted: 03/19/2019] [Indexed: 12/31/2022]
Abstract
Malaria is a pathogenic disease in mammal species and typically causes destruction of red blood cells (RBCs). The malaria-infected RBCs undergoes alterations in morphology and its rheological properties, and the altered rheological properties of RBCs have a significant impact on disease pathophysiology. In this study, we investigated detailed topological and biomechanical properties of RBCs infected with malaria Plasmodium berghei ANKA using atomic force microscopy. Mouse (BALB/c) RBCs were obtained on Days 4, 10, and 14 after infection. We found that malaria-infected RBCs changed significantly in shape. The RBCs maintained a biconcave disk shape until Day 4 after infection and then became lopsided on Day 7 after infection. The central region of RBCs began to swell beginning on Day 10 after infection. More schizont stages were present on Days 10 and 14 compared with on Day 4. The malaria-infected RBCs also showed changes in mechanical properties and the cytoskeleton. The stiffness of infected RBCs increased 4.4-4.6-fold and their cytoskeletal F-actin level increased 18.99-67.85% compared with the control cells. The increase in F-actin depending on infection time was in good agreement with the increased stiffness of infected RBCs. Because more schizont stages were found at a late period of infection at Days 10 and 14, the significant changes in biomechanical properties might contribute to the destruction of RBCs, possibly resulting in the release of merozoites into the blood circulation.
Collapse
Affiliation(s)
- Sangwoo Kwon
- Department of Physics, Dongguk University, Seoul, Republic of Korea
| | - Dong-Hun Lee
- Department of Biomedical Engineering, Graduate School, Kyung Hee University, Seoul, Republic of Korea.,Department of Medical Zoology, School of Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Se-Jik Han
- Department of Biomedical Engineering, Graduate School, Kyung Hee University, Seoul, Republic of Korea.,Department of Biomedical Engineering, College of Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Woochul Yang
- Department of Physics, Dongguk University, Seoul, Republic of Korea
| | - Fu-Shi Quan
- Department of Medical Zoology, School of Medicine, Kyung Hee University, Seoul, Republic of Korea.,Medical Research Center for Bioreaction to Reactive Oxygen Species and Biomedical Science Institute, School of Medicine, Graduate School, Kyung Hee University, Seoul, Republic of Korea
| | - Kyung Sook Kim
- Department of Biomedical Engineering, College of Medicine, Kyung Hee University, Seoul, Republic of Korea
| |
Collapse
|
5
|
Dumitru AC, Poncin MA, Conrard L, Dufrêne YF, Tyteca D, Alsteens D. Nanoscale membrane architecture of healthy and pathological red blood cells. NANOSCALE HORIZONS 2018; 3:293-304. [PMID: 32254077 DOI: 10.1039/c7nh00187h] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Red blood cells feature remarkable mechanical properties while navigating through microcirculation vessels and during spleen filtration. An unusual combination of plasma membrane and cytoskeleton physical properties allows red blood cells to undergo extensive deformation. Here we used atomic force microscopy multiparametric imaging to probe how cellular organization influences nanoscale and global mechanical properties of cells in both physiological and pathological conditions. Our data obtained in native conditions confirmed that, compared to healthy cells, cells from patients with hereditary spherocytosis are stiffer. Through vertical segmentation of the cell elasticity, we found that healthy and pathological cells display nanoscale architecture with an increasing stiffness along the direction of the applied force. By decoupling the mechanical response of the plasma membrane from its underlying cytoskeleton, we find that both components show altered properties in pathological conditions. Nanoscale multiparametric imaging also revealed lipid domains that exhibit differential mechanical properties than the bulk membrane in both healthy and pathological conditions. Thanks to correlated AFM-fluorescence imaging, we identified submicrometric sphingomyelin-enriched lipid domains of variable stiffness at the red blood cell surface. Our experiments provide novel insights into the interplay between nanoscale organization of red blood cell plasma membrane and their nanomechanical properties. Overall, this work contributes to a better understanding of the complex relationship between cellular nanoscale organization, cellular nanomechanics and how this 3D organization is altered in pathological conditions.
Collapse
Affiliation(s)
- Andra C Dumitru
- Université catholique de Louvain, Institute of Life Sciences, Croix du Sud 4-5, bte L7.07.06, B-1348 Louvain-la-Neuve, Belgium.
| | | | | | | | | | | |
Collapse
|
6
|
Peñuela L, Negro C, Massa M, Repaci E, Cozzani E, Parodi A, Scaglione S, Quarto R, Raiteri R. Atomic force microscopy for biomechanical and structural analysis of human dermis: A complementary tool for medical diagnosis and therapy monitoring. Exp Dermatol 2018; 27:150-155. [DOI: 10.1111/exd.13468] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/30/2017] [Indexed: 01/28/2023]
Affiliation(s)
- Leonardo Peñuela
- Department of Informatics, Bioengineering, Robotics, and System Engineering; University of Genoa; Genoa Italy
| | - Carola Negro
- Department of Informatics, Bioengineering, Robotics, and System Engineering; University of Genoa; Genoa Italy
| | - Michela Massa
- Advanced Biotechnology Center; San Martino Hospital; University of Genoa; Genoa Italy
| | - Erica Repaci
- Advanced Biotechnology Center; San Martino Hospital; University of Genoa; Genoa Italy
| | - Emanuele Cozzani
- Clinic of Dermatology, DISSAL; Section of Dermatology; University of Genoa; IRCCS-AOU San Martino-IST; Genoa Italy
| | - Aurora Parodi
- Clinic of Dermatology, DISSAL; Section of Dermatology; University of Genoa; IRCCS-AOU San Martino-IST; Genoa Italy
| | - Silvia Scaglione
- Research National Council; IEIIT Institute (CNR-IEIIT) Genoa; Genoa Italy
| | - Rodolfo Quarto
- Advanced Biotechnology Center; San Martino Hospital; University of Genoa; Genoa Italy
| | - Roberto Raiteri
- Department of Informatics, Bioengineering, Robotics, and System Engineering; University of Genoa; Genoa Italy
| |
Collapse
|
7
|
Oprisan B, Stoica I, Avadanei MI. Morphological changes induced in erythrocyte membrane by the antiepileptic treatment: An atomic force microscopy study. Microsc Res Tech 2016; 80:364-373. [DOI: 10.1002/jemt.22804] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Revised: 10/04/2016] [Accepted: 10/22/2016] [Indexed: 11/05/2022]
Affiliation(s)
- Bogdan Oprisan
- Faculty of Medicine, Discipline Biophysics and Medical Physics; “Grigore T. Popa” University of Medicine and Pharmacy; Iasi Romania
| | - Iuliana Stoica
- Department of Polymer Materials Physics; “Petru Poni” Institute of Macromolecular Chemistry; Iasi Romania
| | - Mihaela Iuliana Avadanei
- Department of Polymer Materials Physics; “Petru Poni” Institute of Macromolecular Chemistry; Iasi Romania
| |
Collapse
|
8
|
Nagornov YS, Pahomova RA. Atomic force microscopy of the erythrocyte membrane in obstructive jaundice. Biophysics (Nagoya-shi) 2016. [DOI: 10.1134/s0006350916030106] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
9
|
Mukherjee R, Saha M, Routray A, Chakraborty C. Nanoscale Surface Characterization of Human Erythrocytes by Atomic Force Microscopy: A Critical Review. IEEE Trans Nanobioscience 2015; 14:625-33. [PMID: 25935044 DOI: 10.1109/tnb.2015.2424674] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Erythrocytes (red blood cells, RBCs), the most common type of blood cells in humans are well known for their ability in transporting oxygen to the whole body through hemoglobin. Alterations in their membrane skeletal proteins modify shape and mechanical properties resulting in several diseases. Atomic force microscopy (AFM), a new emerging technique allows non-invasive imaging of cell, its membrane and characterization of surface roughness at micrometer/nanometer resolution with minimal sample preparation. AFM imaging provides direct measurement of single cell morphology, its alteration and quantitative data on surface properties. Hence, AFM studies of human RBCs have picked up pace in the last decade. The aim of this paper is to review the various applications of AFM for characterization of human RBCs topology. AFM has been used for studying surface characteristics like nanostructure of membranes, cytoskeleton, microstructure, fluidity, vascular endothelium, etc., of human RBCs. Various modes of AFM imaging has been used to measure surface properties like stiffness, roughness, and elasticity. Topological alterations of erythrocytes in response to different pathological conditions have also been investigated by AFM. Thus, AFM-based studies and application of image processing techniques can effectively provide detailed insights about the morphology and membrane properties of human erythrocytes at nanoscale.
Collapse
|
10
|
Mukherjee A, Barnett MA, Venkatesh V, Verma S, Sadler PJ. Human serum transferrin fibrils: nanomineralisation in bacteria and destruction of red blood cells. Chembiochem 2015; 16:149-55. [PMID: 25476866 PMCID: PMC4371634 DOI: 10.1002/cbic.201402458] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2014] [Indexed: 12/15/2022]
Abstract
Fibrils formed by human serum transferrin [(1-3 μM) apo-Tf, partially iron-saturated (Fe0.6 -Tf) and holo-Tf (Fe2 -Tf) forms], from dilute bicarbonate solutions, were deposited on formvar surfaces and studied by electron microscopy. We observed that possible bacterial contamination appears to give rise to long, pea-pod-like (PPL) structures for Fe2 -Tf, attributable to the formation of polyhydroxybutyrate (PHB) storage granules, under the nutrient-limiting conditions used. These PPL structures contained periodic nanomineralisation sites susceptible to uranyl stain. Extended incubation of transferrin solutions (about four days) gave rise to extensive transferrin fibril structures. Optical microscopy and AFM studies showed that red blood cells (RBCs) readily adhere to these fibrils. Moreover, the fibrils appear to penetrate RBC membranes and to induce rapid cell destruction (within about 5 h). It is speculated that in situations in vivo where transferrin fibrils can form, such interactions might have adverse physiological consequences, and further studies could aid the understanding of related pathological events.
Collapse
Affiliation(s)
- Arindam Mukherjee
- Department of Chemistry, University of WarwickGibbet Hill Road, Coventry CV4 7AL (UK)
| | - Mark A Barnett
- Department of Chemistry, University of WarwickGibbet Hill Road, Coventry CV4 7AL (UK)
| | - V Venkatesh
- Department of Chemistry, Indian Institute of Technology KanpurKanpur 208016 (UP) (India)
| | - Sandeep Verma
- Department of Chemistry, Indian Institute of Technology KanpurKanpur 208016 (UP) (India)
| | - Peter J Sadler
- Department of Chemistry, University of WarwickGibbet Hill Road, Coventry CV4 7AL (UK)
| |
Collapse
|
11
|
Maixner F, Overath T, Linke D, Janko M, Guerriero G, van den Berg BHJ, Stade B, Leidinger P, Backes C, Jaremek M, Kneissl B, Meder B, Franke A, Egarter-Vigl E, Meese E, Schwarz A, Tholey A, Zink A, Keller A. Paleoproteomic study of the Iceman's brain tissue. Cell Mol Life Sci 2013; 70:3709-22. [PMID: 23739949 PMCID: PMC11113858 DOI: 10.1007/s00018-013-1360-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2012] [Revised: 03/27/2013] [Accepted: 04/30/2013] [Indexed: 01/02/2023]
Abstract
The Tyrolean Iceman, a Copper-age ice mummy, is one of the best-studied human individuals. While the genome of the Iceman has largely been decoded, tissue-specific proteomes have not yet been investigated. We studied the proteome of two distinct brain samples using gel-based and liquid chromatography-mass spectrometry-based proteomics technologies together with a multiple-databases and -search algorithms-driven data-analysis approach. Thereby, we identified a total of 502 different proteins. Of these, 41 proteins are known to be highly abundant in brain tissue and 9 are even specifically expressed in the brain. Furthermore, we found 10 proteins related to blood and coagulation. An enrichment analysis revealed a significant accumulation of proteins related to stress response and wound healing. Together with atomic force microscope scans, indicating clustered blood cells, our data reopens former discussions about a possible injury of the Iceman's head near the site where the tissue samples have been extracted.
Collapse
Affiliation(s)
- Frank Maixner
- Institute for Mummies and the Iceman, EURAC research, 39100 Bolzano, Italy
| | - Thorsten Overath
- Division for Systematic Proteome Research, Institute for Experimental Medicine, Christian-Albrechts-Universität Kiel, 24105 Kiel, Germany
| | - Dennis Linke
- Division for Systematic Proteome Research, Institute for Experimental Medicine, Christian-Albrechts-Universität Kiel, 24105 Kiel, Germany
| | - Marek Janko
- Center of Smart Interfaces, TU Darmstadt, 64287 Darmstadt, Germany
| | - Gea Guerriero
- Department Environment and Agro-biotechnologies (EVA), Centre de Recherche Public-Gabriel Lippmann, 41, rue du Brill, 4422 Belvaux, Luxembourg
| | - Bart H. J. van den Berg
- Division for Systematic Proteome Research, Institute for Experimental Medicine, Christian-Albrechts-Universität Kiel, 24105 Kiel, Germany
| | - Bjoern Stade
- Institute of Clinical Molecular Biology, Christian-Albrechts-Universität Kiel, 24105 Kiel, Germany
| | - Petra Leidinger
- Department of Human Genetics, Saarland University, 66421 Saar Homburg, Germany
| | - Christina Backes
- Department of Human Genetics, Saarland University, 66421 Saar Homburg, Germany
| | | | - Benny Kneissl
- Software Engineering and Bioinformatics, Johannes Gutenberg-University of Mainz, 55128 Mainz, Germany
| | - Benjamin Meder
- Department of Internal Medicine III, University of Heidelberg, 69120 Heidelberg, Germany
| | - Andre Franke
- Institute of Clinical Molecular Biology, Christian-Albrechts-Universität Kiel, 24105 Kiel, Germany
| | - Eduard Egarter-Vigl
- Department of Pathological Anatomy and Histology, General Hospital Bolzano, 39100 Bolzano, Italy
| | - Eckart Meese
- Department of Human Genetics, Saarland University, 66421 Saar Homburg, Germany
| | - Andreas Schwarz
- Department of Neurosurgery, General Hospital Bolzano, 39100 Bolzano, Italy
| | - Andreas Tholey
- Division for Systematic Proteome Research, Institute for Experimental Medicine, Christian-Albrechts-Universität Kiel, 24105 Kiel, Germany
| | - Albert Zink
- Institute for Mummies and the Iceman, EURAC research, 39100 Bolzano, Italy
| | - Andreas Keller
- Department of Human Genetics, Saarland University, 66421 Saar Homburg, Germany
- Siemens Healthcare, 91052 Erlangen, Germany
| |
Collapse
|
12
|
Stamopoulos D, Grapsa E, Manios E, Gogola V, Bakirtzi N. Defected red blood cell membranes and direct correlation with the uraemic milieu: the connection with the decreased red blood cell lifespan observed in haemodialysis patients. NANOTECHNOLOGY 2012; 23:485101. [PMID: 23124094 DOI: 10.1088/0957-4484/23/48/485101] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Together with impaired production of erythropoietin and iron deficiency, the decreased lifespan of red blood cells (RBCs) is a main factor contributing to the chronic anaemia observed in haemodialysis (HD) patients. Atomic force microscopy is employed in this work to thoroughly survey the membrane of intact RBCs (iRBCs) of HD patients in comparison to those of healthy donors, aiming to obtain direct information on the structural status of RBCs that can be related to their decreased lifespan. We observed that the iRBC membrane of the HD patients is overpopulated with extended circular defects, termed 'orifices', that have typical dimension ranging between 0.2 and 1.0 μm. The 'orifice' index-that is, the mean population of 'orifices' per top membrane surface-exhibits a pronounced relative increase of order 54 ± 12% for the HD patients as compared to healthy donors. Interestingly, for the HD patients, the 'orifice' index, which relates to the structural status of the RBC membrane, correlates strongly with urea concentration, which is a basic index of the uraemic milieu. Thus, these results indicate that the uraemic milieu downgrades the structural status of the RBC membrane, possibly triggering biochemical processes that result in their premature elimination from the circulation. This process could decrease the lifespan of RBCs, as observed in HD patients.
Collapse
Affiliation(s)
- D Stamopoulos
- Institute of Advanced Materials, Physicochemical Processes, Nanotechnology and Microsystems, National Centre for Scientific Research-Demokritos, Agia Paraskevi, Greece.
| | | | | | | | | |
Collapse
|
13
|
Zhang Y, Zhang W, Wang S, Wang C, Xie J, Chen X, Xu Y, Mao P. Detection of human erythrocytes influenced by iron deficiency anemia and thalassemia using atomic force microscopy. Micron 2012; 43:1287-92. [DOI: 10.1016/j.micron.2011.10.018] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2011] [Revised: 10/06/2011] [Accepted: 10/21/2011] [Indexed: 02/04/2023]
|
14
|
Abstract
Changes in elasticity and structures of red blood cells (RBCs) are important indicators of disease, and this makes them interesting for medical studies. In forensics, blood analyses represent a crucial part of crime scene investigations. For these reasons, the recovery and analysis of blood cells from ancient tissues is of major interest. In this study, we show that RBCs were preserved in Iceman tissue samples for more than 5000 years. The morphological and molecular composition of the blood corpuscle is verified by atomic force microscope and Raman spectroscopy measurements. The cell size and shape approximated those of healthy, dried, recent RBCs. Raman spectra of the ancient corpuscle revealed bands that are characteristic of haemoglobin. Additional vibrational modes typical for other proteinaceous fragments, possibly fibrin, suggested the formation of a blood clot. The band intensities, however, were approximately an order of magnitude weaker than those of recent RBCs. This fact points to a decrease in the RBC-specific metalloprotein haemoglobin and, thus, to a degradation of the cells. Together, the results show the preservation of RBCs in the 5000 year old mummy tissue and give the first insights into their degradation.
Collapse
Affiliation(s)
- Marek Janko
- Department of Earth and Environmental Sciences, Ludwig-Maximilians-Universität München, Theresienstraße 41, 80333 Munich, Germany
| | | | | |
Collapse
|
15
|
Zhang H, Chen T, Jiang J, Wong YS, Yang F, Zheng W. Selenium-containing allophycocyanin purified from selenium-enriched Spirulina platensis attenuates AAPH-induced oxidative stress in human erythrocytes through inhibition of ROS generation. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2011; 59:8683-90. [PMID: 21761878 DOI: 10.1021/jf2019769] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Both selenium and allophycocyanin (APC) have been reported to show novel antioxidant activities. In this study, a fast protein liquid chromatographic method for purification of selenium-containing allophycocyanin (Se-APC) from selenium-enriched Spirulina platensis and the protective effect of Se-APC on 2,2'-azobis(2-amidinopropane) dihydrochloride (AAPH)-induced oxidative stress have been described. After fractionation by ammonium sulfate precipitation, and separation by DEAE-Sepharose ion-exchange and Sephacryl S-300 size exclusion chromatography, Se-APC with purity ratio (A652/A280) of 5.30 and Se concentration of 343.02 μg g(-1) protein was obtained. Se-APC exhibited stronger antioxidant activity than APC by scavenging ABTS (2,2'-azinobis-3-ethylbenzothiazolin-6-sulfonic acid) and AAPH free radicals. The oxidative hemolysis and morphological changes induced by AAPH in human erythrocytes were effectively reversed by coincubation with Se-APC. Lipid oxidation induced by the pro-oxidant agent cupric chloride in human plasma, as evaluated by formation of conjugated diene, was blocked by Se-APC. The accumulation of malondialdehyde, loss of reduced glutathione, and increase in enzyme activities of glutathione peroxidase and reductase induced by AAPH in human erythrocytes were effectively suppressed by Se-APC. Furthermore, Se-APC significantly prevented AAPH-induced intracellular reactive oxygen species (ROS) generation. Taken together, our results suggest that Se-APC demonstrates application potential in treatment of diseases in which excess production of ROS acts as a casual or contributory factor.
Collapse
Affiliation(s)
- Haobin Zhang
- Department of Chemistry, Jinan University, Guangzhou, Guangdong Province, China
| | | | | | | | | | | |
Collapse
|
16
|
Zuk A, Targosz-Korecka M, Szymonski M. Effect of selected drugs used in asthma treatment on morphology and elastic properties of red blood cells. Int J Nanomedicine 2011; 6:249-57. [PMID: 21499423 PMCID: PMC3075899 DOI: 10.2147/ijn.s15802] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Background The main function of red blood cells is to transport oxygen to all parts of the body with the help of hemoglobin. Other proteins of the cell membrane can attach xenobiotics (eg, drugs) from the blood and transport them throughout the body. Only drugs able to bind to the membrane of the red blood cell can modify its structure and elastic properties. The morphology and local elastic properties of living red blood cells incubated with drug solutions commonly used in the treatment of severe asthma were studied by atomic force microscopy and nanoindentation with an atomic force microscopy tip. Methods The elasticity modules of native red blood cells, as well as those incubated with two types of drugs, ie, aminophylline and methylprednisolone, were determined from experimentally measured nanoindentation curves. Results The elasticity modules of erythrocytes incubated with aminophylline were substantially higher than those obtained for nonincubated native, ie, healthy, red blood cells. Conclusion The increase of the elasticity module obtained for aminophylline can reduce the cell’s ability to bind oxygen and transport it through capillaries.
Collapse
Affiliation(s)
- Anna Zuk
- Research Centre for Nanometer-Scale Science and Advanced Materials, Faculty of Physics, Astronomy, and Applied Computer Science, Jagiellonian University, Reymonta 4, Krakow, Poland.
| | | | | |
Collapse
|
17
|
Joshi KB, Venkatesh V, Verma S. Biotin interaction with human erythrocytes: contact on membrane surface and formation of self-assembled fibrous structures. Chem Commun (Camb) 2010; 46:3890-2. [DOI: 10.1039/c001924k] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
18
|
Kolarova H, Tomankova K, Bajgar R, Kolar P, Kubinek R. Photodynamic and sonodynamic treatment by phthalocyanine on cancer cell lines. ULTRASOUND IN MEDICINE & BIOLOGY 2009; 35:1397-1404. [PMID: 19515482 DOI: 10.1016/j.ultrasmedbio.2009.03.004] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2008] [Revised: 02/22/2009] [Accepted: 03/04/2009] [Indexed: 05/27/2023]
Abstract
Photodynamic therapy is a modality of treatment for tumors. The photochemical interactions of sensitizer, light and molecular oxygen produce reactive oxygen species (ROS) such as singlet oxygen, peroxide, hydroxyl radical and superoxide ion. The tumor is destroyed either by the formation of highly reactive singlet oxygen (type II mechanism) or by the formation of radical products (type 1 mechanism) generated in an energy transfer reaction. The resulting damage to organelles within malignant cells leads to tumor ablation. The cellular effects include membrane damage, mitochondrial damage and DNA damage. A new treatment modality called sonodynamic therapy has been developed, in which the ultrasound-induced cytotoxicity of sonochemical sensitizers inhibits tumor growth. In this study, the promising new generation of sensitizers - phthalocyanines - were used to induce the photodamage. In addition, we applied an ultrasound treatment to support the photodynamic effect. We report on the production of ROS in G361 melanoma cells. Light-emitting diodes were used to evoke the photodynamic effect. Changes in cells were evaluated using fluorescence microscope and atomic force microscopy. The quantitative ROS production changes in relation to sensitizer concentration, irradiation doses and ultrasound intensity were proved by a fluororeader. Our results showed the highest generation of ROS within G361 melanoma cells was achieved at an irradiation dose of 15 Jcm(-2) followed by ultrasound treatment at intensity of 2 Wcm(-2) and frequency of 1 MHz in the presence of 100 muM chloroaluminum phthalocyanine disulfonate (ClAlPcS2). These results suggest that ClAlPcS2 is a potential photosensitizer and sonosensitizer for sonodynamic or photodynamic treatment of cancer.
Collapse
Affiliation(s)
- Hana Kolarova
- Department of Medical Biophysics, Faculty of Medicine, Palacky University, Hnevotinska 3, 775 15 Olomouc, Czech Republic.
| | | | | | | | | |
Collapse
|
19
|
Wu Y, Hu Y, Cai J, Ma S, Wang X, Chen Y, Pan Y. Time-dependent surface adhesive force and morphology of RBC measured by AFM. Micron 2008; 40:359-64. [PMID: 19019689 DOI: 10.1016/j.micron.2008.10.003] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2008] [Revised: 09/11/2008] [Accepted: 10/03/2008] [Indexed: 11/29/2022]
Abstract
Atomic force microscopy (AFM) is a rapidly developing tool recently introduced into the evaluation of the age of bloodstains, potentially providing legal medical experts useful information for forensic investigation. In this study, the time-dependent, morphological changes of red blood cells (RBC) under three different conditions (including controlled, room-temperature condition, uncontrolled, outdoor-environmental condition, and controlled, low-temperature condition) were observed by AFM, as well as the cellular viscoelasticity via force-vs-distance curve measurements. Firstly, the data indicate that substrate types have different effects on cellular morphology of RBC. RBC presented the typical biconcave shape on mica, whereas either the biconcave shape or flattened shape was evident on glass. The mean volume of RBCs on mica was significantly larger than that of cells on glass. Surprisingly, the adhesive property of RBC membrane surfaces was substrate type-independent (the adhesive forces were statistically similar on glass and mica). With time lapse, the changes in cell volume and adhesive force of RBC under the controlled room-temperature condition were similar to those under the uncontrolled outdoor-environmental condition. Under the controlled low-temperature condition, however, the changes in cell volume occurred mainly due to the collapse of RBCs, and the curves of adhesive force showed the dramatic alternations in viscoelasticity of RBC. Taken together, the AFM detections on the time-dependent, substrate type-dependent, environment (temperature/humidity)-dependent changes in morphology and surface viscoelasticity of RBC imply a potential application of AFM in forensic medicine or investigations, e.g., estimating age of bloodstain or death time.
Collapse
Affiliation(s)
- Yangzhe Wu
- Chemistry Department, Jinan University, 601 Huang Pu Da DaoXi, Guangzhou 510632, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
20
|
KUNZE S, LEMKE K, METZE J, BLOUKAS G, KOTTA K, PANAGIOTIDIS CH, SKLAVIADIS T, BODEMER W. Atomic force microscopy to characterize the molecular size of prion protein. J Microsc 2008; 230:224-32. [DOI: 10.1111/j.1365-2818.2008.01979.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
21
|
Chen Y, Cai J. Membrane deformation of unfixed erythrocytes in air with time lapse investigated by tapping mode atomic force microscopy. Micron 2006; 37:339-46. [PMID: 16388949 DOI: 10.1016/j.micron.2005.11.011] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2005] [Revised: 11/19/2005] [Accepted: 11/19/2005] [Indexed: 11/24/2022]
Abstract
Estimation of the time of death is one of the most important problems for forensic medicine and law. Physical and chemical postmortem changes are evaluated together while estimating the time of death. The pattern analysis of antemortem and postmortem bloodstains is one of the important parameters for forensic science, and cellular changes of blood cells can be useful for the quantitative assessment of the time of death. In this study, by successively investigating erythrocytes exposed in air on mica for 5 days using tapping mode atomic force microscopy (TM-AFM), we observed deformation of whole cell and membrane surface of unfixed erythrocytes with time lapse. We found that the time-dependent cellular changes occurred after exposure of erythrocytes in air for several days. At 0.5 days of exposure, fissures and cell shrinkage were observed. At 2.5 days of exposure, the emergence of nanometer-scale protuberances were observed and these protuberances increased in number with increasing time. The changes of cell shape and cell membrane surface ultrastructure can be used to estimate the time of death. Futhermore, smear-induced abnormal erythrocytes and immunostained erythrocytes were observed here. The need for more precise research is indicated, such as the correlation of membrane changes to intervals of less than 0.5 day of air exposure, and use of various substrates in addition to mica, including glass, metals, fabrics, among others, on which the bloodstains appear in crime scenes. The results of this research demonstrate the efficacy of AFM as a potentially powerful analytical tool in forensic science.
Collapse
Affiliation(s)
- Yong Chen
- Department of Chemistry, Jinan University, Guangzhou 510632, People's Republic of China.
| | | |
Collapse
|
22
|
Berdyyeva T, Woodworth CD, Sokolov I. Visualization of cytoskeletal elements by the atomic force microscope. Ultramicroscopy 2005; 102:189-98. [PMID: 15639349 DOI: 10.1016/j.ultramic.2004.09.008] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2003] [Revised: 09/13/2004] [Accepted: 09/27/2004] [Indexed: 10/26/2022]
Abstract
We describe a novel application of atomic force microscopy (AFM) to directly visualize cytoskeletal fibers in human foreskin epithelial cells. The nonionic detergent Triton X-100 in a low concentration was used to remove the membrane, soluble proteins, and organelles from the cell. The remaining cytoskeleton can then be directly visualized in either liquid or air-dried ambient conditions. These two types of scanning provide complimentary information. Scanning in liquid visualizes the surface filaments of the cytoskeleton, whereas scanning in air shows both the surface filaments and the total "volume" of the cytoskeletal fibers. The smallest fibers observed were ca. 50 nm in diameter. The lateral resolution of this technique was ca.20 nm, which can be increased to a single nanometer level by choosing sharper AFM tips. Because the AFM is a true 3D technique, we are able to quantify the observed cytoskeleton by its density and volume. The types of fibers can be identified by their size, similar to electron microscopy.
Collapse
Affiliation(s)
- T Berdyyeva
- Department of Physics, Clarkson University, Potsdam, NY 13699, USA
| | | | | |
Collapse
|
23
|
Yingge Z, Xia J, Lan S. The relations between neurite development and the subcellular structures of hippocampal neuron somata. J Struct Biol 2004; 144:327-36. [PMID: 14643201 DOI: 10.1016/j.jsb.2003.09.022] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
The relations between neurite development and the subcellular structures of the hippocampal neuron somata have been studied with atomic force microscopy (AFM). The conformation of the neuron was achieved by the synapse-like structures found by AFM scanning along a neurite of the cell. Hippocampal neuron somata were divided into two or three subcellular parts by one or two horizontal grooves. The upper parts increased while the middle and the lower parts decreased with the number and the length of the neurites and the formation of the neurosynapse-like structures. When neurites sufficiently developed, the middle parts were lost and the lower parts became very small. Mitosis inhibitors could prevent the formation of such subcellular structures of hippocampal neuron somata, which was accompanied by the loss of ability to form synapse-like structures. These results suggest that the upper parts are responsible for neuritogenesis while the middle and the lower parts only have indirect effect on it.
Collapse
Affiliation(s)
- Zhang Yingge
- Beijing Institute of Pharmacology and Toxicology, 27 Taiping Road, Beijing 100850, China.
| | | | | |
Collapse
|
24
|
Méndez-Vilas A, González-Martin ML, Nuevo MJ. Optical interference artifacts in contact atomic force microscopy images. Ultramicroscopy 2002; 92:243-50. [PMID: 12213026 DOI: 10.1016/s0304-3991(02)00140-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Atomic force microscopy images are usually affected by different kinds of artifacts due to either the microscope design and operation mode or external environmental factors. Optical interferences between the laser light reflected off the top of the cantilever and the light scattered by the surface in the same direction is one of the most frequent sources of height artifact in contact (and occasionally non-contact) images. They are present when imaging highly reflective surfaces, or even when imaging non-reflective materials deposited onto reflective ones. In this study interference patterns have been obtained with a highly polished stainless steel planchet. The influence of these artifacts in surface roughness measurements is discussed, and a semi-quantitative method based on the fast Fourier transform technique is proposed to remove the artifacts from the images. This method improves the results obtained by applying the usual flattening routines.
Collapse
Affiliation(s)
- A Méndez-Vilas
- Departamento de Fisica Facultad de Ciencias, Universidad de Extremadura, Badajoz, Spain
| | | | | |
Collapse
|