1
|
Zhao X, Ma X, Dupius JH, Qi R, Tian JJ, Chen J, Ou X, Qian Z, Liang D, Wang P, Yada RY, Wang S. Negatively charged phospholipids accelerate the membrane fusion activity of the plant-specific insert domain of an aspartic protease. J Biol Chem 2021; 298:101430. [PMID: 34801553 PMCID: PMC8683733 DOI: 10.1016/j.jbc.2021.101430] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 11/10/2021] [Accepted: 11/16/2021] [Indexed: 11/27/2022] Open
Abstract
Various plants use antimicrobial proteins/peptides to resist phytopathogens. In the potato, Solanum tuberosum, the plant-specific insert (PSI) domain of an aspartic protease performs this role by disrupting phytopathogen plasma membranes. However, the mechanism by which PSI selects target membranes has not been elucidated. Here, we studied PSI-induced membrane fusion, focusing on the effects of lipid composition on fusion efficiency. Membrane fusion by the PSI involves an intermediate state whereby adjacent liposomes share their bilayers. We found that increasing the concentration of negatively charged phosphatidylserine (PS) phospholipids substantially accelerated PSI-mediated membrane fusion. NMR data demonstrated that PS did not affect the binding between the PSI and liposomes but had seminal effects on the dynamics of PSI interaction with liposomes. In PS-free liposomes, the PSI underwent significant motion, which was suppressed on PS-contained liposomes. Molecular dynamics simulations showed that the PSI binds to PS-containing membranes with a dominant angle ranging from −31° to 30°, with respect to the bilayer, and is closer to the membrane surfaces. In contrast, PSI is mobile and exhibits multiple topological states on the surface of PS-free membranes. Taken together, our data suggested that PS lipids limit the motion of the anchored PSI, bringing it closer to the membrane surface and efficiently bridging different liposomes to accelerate fusion. As most phytopathogens have a higher content of negatively charged lipids as compared with host cells, these results indicate that the PSI selectively targets negatively charged lipids, which likely represents a way of distinguishing the pathogen from the host.
Collapse
Affiliation(s)
- Xiaoli Zhao
- College of Chemistry and Molecular Engineering and Beijing NMR Center, Peking University, Beijing, China; State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China; Beijing National Laboratory for Molecular Sciences, Beijing, China
| | - Xiaomin Ma
- Cryo-EM Center, Southern University of Science and Technology, Shenzhen, China
| | - John H Dupius
- Food, Nutrition, and Health Program, Faculty of Land and Food Systems, University of British Columbia, Vancouver, British Columbia, Canada
| | - Ruxi Qi
- Cryo-EM Center, Southern University of Science and Technology, Shenzhen, China
| | - Jenny Jingxin Tian
- Food, Nutrition, and Health Program, Faculty of Land and Food Systems, University of British Columbia, Vancouver, British Columbia, Canada
| | - Jiaxin Chen
- College of Chemistry and Molecular Engineering and Beijing NMR Center, Peking University, Beijing, China
| | - Xiuyuan Ou
- MOH Key Laboratory, Institute of Pathogen Biology, Chinese Academy of Medical Science, Beijing, China
| | - Zhaohui Qian
- MOH Key Laboratory, Institute of Pathogen Biology, Chinese Academy of Medical Science, Beijing, China
| | - Dehai Liang
- College of Chemistry and Molecular Engineering and Beijing NMR Center, Peking University, Beijing, China
| | - Peiyi Wang
- Cryo-EM Center, Southern University of Science and Technology, Shenzhen, China.
| | - Rickey Y Yada
- Food, Nutrition, and Health Program, Faculty of Land and Food Systems, University of British Columbia, Vancouver, British Columbia, Canada.
| | - Shenlin Wang
- College of Chemistry and Molecular Engineering and Beijing NMR Center, Peking University, Beijing, China; State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China; Beijing National Laboratory for Molecular Sciences, Beijing, China.
| |
Collapse
|
2
|
Mach M, Kowalska M, Olechowska K, Płachta Ł, Wydro P. The studies on the membrane activity of triester of phosphatidylcholine in artificial membrane systems. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2021; 1863:183711. [PMID: 34343534 DOI: 10.1016/j.bbamem.2021.183711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 07/14/2021] [Accepted: 07/21/2021] [Indexed: 11/28/2022]
Abstract
Due to the increasing number of infections together with the appearance of bacteria exhibiting multi-drug resistance, new antibiotics are being sought. In this context the interest of the cationic lipoids increases because of their amphiphilic structure and positive charge that can stimulates the antibacterial action of these compounds. Thus, in this work we have performed the studies on the effect of one selected triesters of phosphatidylcholine, namely 1,2-dipalmitoyl-sn-glycero-3-ethylphosphocholine (EDPPC), on the model lipid membranes. The investigations included the analysis of the impact of EDPPC on multicomponent monolayers and bilayers consisting of the lipids naturally occurring in bacterial membranes (phosphatidylethanolamines (PE), phosphatidylglycerols (PG) and cardiolipin (CL)), mixed in proportions reflecting the lipid composition of these biomembranes. In the study, the Langmuir monolayers (registered on water and PBS buffer) and liposomes as model bacterial biomembranes were applied. The obtained results demonstrate that the presence of cationic lipoid in PE/PG and PE/PG/CL systems significantly modifies their properties and molecular organization. The incorporation of EDPPC into model bacterial membranes primarily impact on the intermolecular interactions. It was shown that the strength of the interaction between the cationic lipid and the components of the model membranes depends both on the composition of the membrane as well as on the type of subphase. Furthermore, the investigated cationic lipoid leads to the decrease of the ordering of acyl chains and thus to the increase of fluidity of membranes. The obtained results allow one to propose that EDPPC may behave as antibiotic active at the level of membrane.
Collapse
Affiliation(s)
- Marzena Mach
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Krakow, Poland.
| | - Magdalena Kowalska
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Krakow, Poland
| | - Karolina Olechowska
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Krakow, Poland
| | - Łukasz Płachta
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Krakow, Poland
| | - Paweł Wydro
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Krakow, Poland.
| |
Collapse
|
3
|
Ciumac D, Gong H, Campbell RA, Campana M, Xu H, Lu JR. Structural elucidation upon binding of antimicrobial peptides into binary mixed lipid monolayers mimicking bacterial membranes. J Colloid Interface Sci 2021; 598:193-205. [PMID: 33901846 DOI: 10.1016/j.jcis.2021.04.037] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 04/07/2021] [Accepted: 04/09/2021] [Indexed: 11/28/2022]
Abstract
HYPOTHESIS Antimicrobial peptides (AMPs) kill microorganisms by causing structural damage to bacterial membranes. Different microorganisms often require a different type and concentration of an AMP to achieve full microbial killing. We hypothesise that the difference is caused by different membrane structure and composition. EXPERIMENTS Given the complexities of bacterial membranes, we have used monolayers of the binary DPPG/TMCL mixture to mimic the cytoplasmic membrane of Gram-positive bacteria and the binary DPPG/DPPE mixture to mimic the cytoplasmic membrane of Gram-negative bacteria, where DPPG, TMCL and DPPE stand for 1,2-dipalmitoyl-sn-glycero-3-phospho-(1'-rac-glycerol), 1',3'-bis[1,2-dimyristoyl-sn-glycero-3-phospho]-sn-glycerol, and 1,2-dipalmitoyl-sn-glycero-3-phosphoethanolamine, respectively. A Langmuir trough was specially designed to control the spread lipid monolayers and facilitate neutron reflectivity measurements. FINDINGS Surface pressure-area isotherm analysis revealed that all binary lipid systems mix non-ideally, but mixing is thermodynamically favoured. An increase in the surface pressure encourages demixing, resulting in phase separation and formation of clusters. Neutron reflectivity measurements were undertaken to study the binding of an antimicrobial peptide G(IIKK)4-I-NH2 (G4) to the binary DPPG/TMCL and DPPG/DPPE monolayer mixtures at the molar ratios of 6/4 and 3/7, respectively. The results revealed stronger binding and penetration of G4 to the DPPG/TMCL monolayer, indicating greater affinity of the antimicrobial peptide due to the electrostatic interaction and more extensive penetration into the more loosely packed lipid film. This work helps explain how AMPs attack different bacterial membranes, and the results are discussed in the context of other lipid models and antibacterial studies.
Collapse
Affiliation(s)
- Daniela Ciumac
- Biological Physics Laboratory, School of Physics and Astronomy, University of Manchester, Oxford Road, Schuster Building, Manchester M13 9PL, UK
| | - Haoning Gong
- Biological Physics Laboratory, School of Physics and Astronomy, University of Manchester, Oxford Road, Schuster Building, Manchester M13 9PL, UK
| | - Richard A Campbell
- Institut Laue-Langevin, 71 Avenue des Martyrs, CS-20156, 38042 Grenoble, France; Division of Pharmacy and Optometry, University of Manchester, Oxford Road, Stopford Building, Manchester M13 9PT, UK
| | - Mario Campana
- ISIS Neutron Facility, STFC, Chilton, Didcot OX11 0QZ, UK
| | - Hai Xu
- Centre for Bioengineering and Biotechnology, China University of Petroleum, Qingdao, China
| | - Jian R Lu
- Biological Physics Laboratory, School of Physics and Astronomy, University of Manchester, Oxford Road, Schuster Building, Manchester M13 9PL, UK.
| |
Collapse
|
4
|
Perczyk P, Broniatowski M. Simultaneous action of microbial phospholipase C and lipase on model bacterial membranes - Modeling the processes crucial for bioaugmentation. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2021; 1863:183620. [PMID: 33831405 DOI: 10.1016/j.bbamem.2021.183620] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 03/17/2021] [Accepted: 03/26/2021] [Indexed: 12/27/2022]
Abstract
Bioaugmentation is a promising method of the remediation of soils polluted by persistent organic pollutants (POP). Unfortunately, it happens frequently that the microorganisms inoculated into the soil die out due to the presence of enzymes secreted by autochthonous microorganisms. Especially destructive are here phospholipases C (PLC) and lipases which destruct the microorganism's cellular membrane. The composition of bacterial membranes differs between species, so it is highly possible that depending on the membrane constitution some bacteria are more resistant to PLCs and lipases than other. To shed light on these problems we applied phospholipid Langmuir monolayers as model microbial membranes and studied their interactions with α-toxin (model bacterial PLC) and the lipase isolated from soil fungus Candida rugosa. Membrane phospholipids differing in their headgroup (phosphatidylcholines, phosphatidylethanolamines, phosphatidylglycerols and cardiolipins) and in their tail structure were applied. The monolayers were characterized by the Langmuir technique, visualized by Brewster angle microscopy, and the packing mode of the phospholipid molecules was verified by the application of the diffraction of synchrotron radiation. We also studied the mutual miscibility of diacylglycerols and the native phospholipids as their interaction is crucial for the understanding of the PLC and lipase activity. It turned out that all the investigated phospholipid classes can be hydrolyzed by PLC; however, they differ profoundly in the hydrolysis degree. Depending on the effects of the initial PLC action and the mutual organization of the diacylglycerol and phospholipid molecules the lipase can ruin the model membranes or can be completely neutral to them.
Collapse
Affiliation(s)
- Paulina Perczyk
- Department of Environmental Chemistry, Faculty of Chemistry, Jagiellonian University in Krakow, Gronostajowa 2, 30-387 Kraków, Poland
| | - Marcin Broniatowski
- Department of Environmental Chemistry, Faculty of Chemistry, Jagiellonian University in Krakow, Gronostajowa 2, 30-387 Kraków, Poland.
| |
Collapse
|
5
|
Study of the Mechanism of the Antimicrobial Activity of Novel Water Soluble Ammonium Quaternary Benzanthrone on Model Membranes. J Membr Biol 2020; 253:247-256. [PMID: 32393995 DOI: 10.1007/s00232-020-00121-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 05/02/2020] [Indexed: 10/24/2022]
Abstract
The increasing resistance of many pathogens to most of the common antimicrobials requires the development of new substances with more effective antimicrobial properties. In the present work, we investigated the mechanism of the antimicrobial activity of novel water soluble ammonium quaternary benzanthrone (Compound B) on model membranes, composed of dipalmitoylphosphatidylcholine, 1-palmitoyl-2-oleoylphosphatidylcholine, dipalmitoylphosphatidylglycerol, 1-palmitoyl-2-oleoylphosphatidylglycerol, and dipalmitoylphosphatidylethanolamine (DPPE). The lipids were chosen to represent a model of a bacterial membrane. The changes in surface pressure of the model membranes, before and after the addition of Compound B, were studied by the Langmuir's monolayer method, and the compressional modulus for each monolayer was determined. In addition, the surface morphology of the lipid monolayers before and after injection of Compound B was monitored by Brewster Angle Microscopy. The results showed that Compound B penetrated all the monolayers studied. The most noticeable effects were found with the negatively charged phosphatidylglycerols and with DPPE leading to the conclusion that the electrostatic interactions between the compound and the lipid head groups and the possible formation of hydrogen bonds between the amino group of the ethanolamine and the keto groups in the structure of Compound B are of great importance. In addition, the penetration ability of the benzoquinone with all phospholipids studied was stable even at higher values of the surface pressure, i.e. thicker monolayers, due to the hydrophobic interaction, which plays also an important role for the antimicrobial activity of Compound B.
Collapse
|
6
|
Perczyk P, Wójcik A, Wydro P, Broniatowski M. The role of phospholipid composition and ergosterol presence in the adaptation of fungal membranes to harsh environmental conditions-membrane modeling study. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2019; 1862:183136. [PMID: 31751523 DOI: 10.1016/j.bbamem.2019.183136] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 09/30/2019] [Accepted: 10/28/2019] [Indexed: 01/18/2023]
Abstract
Soil fungi play an important role in the environment decomposing dead organic matter and degrading persistent organic pollutants (POP). The presence of hydrophobic POP in the soil and membrane-lytic substances excreted by competing microorganism to the soil solution is the constant threat to these organisms. To survive in the harsh environment and counteract these hazards the fungal cells have to strictly control the composition of the lipids in their cellular membranes. However, in the case of fungal membranes the correlation between their composition and physical properties is not fully understood. In our studies we applied Langmuir monolayers formed by phospholipids typical to fungal membranes and ergosterol as versatile model membranes. These membranes were characterized by the Langmuir technique, Brewster Angle Microscopy and Grazing Incidence X-ray Diffraction, as well as were exposed to the action of phospholipase A2 treated as a model membrane-lytic protein. We started our studies from the equimolar mixture of phosphatidylethanolamine with phosphatidylcholine and doped this matrix with phosphatidylserine (PS) or phosphatidylinositol (PI). It turned out that the membranes with PS were much more condensed at the mesoscale and periodically organized at the molecular level. Starting from these models we derived two families of model fungal membranes adding to these phospholipid matrices ergosterol. It turned out that the level of ergosterol content is of crucial importance for the model membrane structure and its durability. Changing the ergosterol mole ratio from 0 to 0.5 we defined and described in detail four different 2D crystalline phases.
Collapse
Affiliation(s)
- Paulina Perczyk
- Department of Environmental Chemistry, Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Kraków, Poland
| | - Aneta Wójcik
- Department of Environmental Chemistry, Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Kraków, Poland
| | - Paweł Wydro
- Department of Physical Chemistry and Electrochemistry, Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Kraków, Poland
| | - Marcin Broniatowski
- Department of Environmental Chemistry, Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Kraków, Poland.
| |
Collapse
|
7
|
Wójcik A, Bieniasz A, Wydro P, Broniatowski M. The effect of chlorination degree and substitution pattern on the interactions of polychlorinated biphenyls with model bacterial membranes. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2019; 1861:1057-1068. [PMID: 30890470 DOI: 10.1016/j.bbamem.2019.03.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 02/21/2019] [Accepted: 03/14/2019] [Indexed: 01/07/2023]
Abstract
Polychlorinated biphenyls (PCB) are persistent organic pollutants that due to their chemical resistivity and inflammability found multiple applications. In spite of the global ban for PCB production, due to their long half-lives periods, PCB accumulate in the soils, so effective bioremediation of the polluted lands is of crucial importance. Some of the 209 PCB congeners exhibit increased toxicity to soil bacteria and their presence impoverish the soil decomposer community and slows down the degradation of environmental pollutants in the soils. The exact mechanism of PCB antimicrobial activity is unknown, but it is strictly related with the membrane activity of PCB. Therefore, to shed light on these interactions we applied Langmuir monolayers formed by selected phospholipids as model bacterial membranes. In our studies we tested 5 PCB congeners differing in the degree of chlorination and the distribution of the chlorine substituents around the biphenyl frame. Special attention was paid to tetra-substituted PCB because of their increased presence in the environment and disubstituted PCB being their degradation products. To characterize the model membranes as Langmuir monolayers, we used surface pressure measurements, Brewster angle microscopy and Grazing Incidence X-ray Diffraction. It turned out that among the tetra-substituted PCB the ortho-substituted non-dioxin like compound was much more membrane destructive than the flat dioxin-like congener. On the contrary, among the di-substituted PCB the flat para-substituted 2,2'-dichlorobiphenyl turned out to exhibit high membrane activity.
Collapse
Affiliation(s)
- Aneta Wójcik
- Department of Environmental Chemistry, Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Kraków, Poland
| | - Agata Bieniasz
- Department of Environmental Chemistry, Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Kraków, Poland
| | - Paweł Wydro
- Department of Physical Chemistry and Electrochemistry, Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Kraków, Poland
| | - Marcin Broniatowski
- Department of Environmental Chemistry, Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Kraków, Poland.
| |
Collapse
|
8
|
Abbes I, Rihouey C, Hardouin J, Jouenne T, De E, Alexandre S. Identification by mass spectrometry of glucosaminylphosphatidylglycerol, a phosphatidylglycerol derivative, produced by Pseudomonas aeruginosa. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2018; 32:2113-2121. [PMID: 30171632 DOI: 10.1002/rcm.8277] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Revised: 08/21/2018] [Accepted: 08/21/2018] [Indexed: 06/08/2023]
Abstract
RATIONALE Pseudomonas aeruginosa is an opportunistic pathogen bacterium widely considered to be an excellent research model in several areas of molecular studies, namely genomics and proteomics. However, its lipid metabolism is still not totally decrypted. While it is known that this bacterium has the particularity to produce phosphatidylcholine, a lipid mainly found in eukaryotes, other singularities are still to be discovered. METHODS P. aeruginosa was grown as planktonic cultures to the stationary state. Membrane pellets were collected and lipids were extracted using the Bligh and Dyer protocol. Lipid extracts were analyzed by Electrospray Ionization Mass Spectrometry (ESI-MS) using high-resolution mass spectrometer (LTQ Orbitrap Elite, Thermo Scientific) in the negative mode. MSn spectra were recorded both in the Orbitrap and in the ion trap analyzer (collision-induced dissociation (CID) or higher energy collision-induced dissociation (HCD) mode). RESULTS We observed by mass spectrometry and thin layer chromatography that P. aeruginosa produced an unreferenced lipid in classical growth conditions. MS2 analysis of the unknown ion indicates that it is a phosphatidylglycerol derivative. The exact mass shift corresponds to glucosamine which is largely found in the metabolism of this bacterium. MS3 analysis of secondary ions allowed us to conclude that this lipid is a glucosaminylphosphatidylglycerol, a phosphatidylglycerol derivative containing a glucosamine substituted at C4. CONCLUSIONS We show here that P. aeruginosa is able to produce glucosaminylphosphatidylglycerols via a probable esterification of phosphatidylglycerols by glucosamine.
Collapse
Affiliation(s)
- Imen Abbes
- CNRS, UMR 6270, "Polymères, Biopolymères, Surfaces", Université de Rouen, F-76821, Mont-Saint-Aignan, France
- Normandie Université, F-14032, Caen, France
| | - Christophe Rihouey
- CNRS, UMR 6270, "Polymères, Biopolymères, Surfaces", Université de Rouen, F-76821, Mont-Saint-Aignan, France
- Normandie Université, F-14032, Caen, France
| | - Julie Hardouin
- CNRS, UMR 6270, "Polymères, Biopolymères, Surfaces", Université de Rouen, F-76821, Mont-Saint-Aignan, France
- Normandie Université, F-14032, Caen, France
- PISSARO proteomics facility, Université de Rouen, F-76821, Mont-Saint-Aignan, France
| | - Thierry Jouenne
- CNRS, UMR 6270, "Polymères, Biopolymères, Surfaces", Université de Rouen, F-76821, Mont-Saint-Aignan, France
- Normandie Université, F-14032, Caen, France
- PISSARO proteomics facility, Université de Rouen, F-76821, Mont-Saint-Aignan, France
| | - Emmanuelle De
- CNRS, UMR 6270, "Polymères, Biopolymères, Surfaces", Université de Rouen, F-76821, Mont-Saint-Aignan, France
- Normandie Université, F-14032, Caen, France
| | - Stéphane Alexandre
- CNRS, UMR 6270, "Polymères, Biopolymères, Surfaces", Université de Rouen, F-76821, Mont-Saint-Aignan, France
- Normandie Université, F-14032, Caen, France
| |
Collapse
|
9
|
Wojcik A, Pawłowski M, Wydro P, Broniatowski M. Effects of Polychlorinated Pesticides and Their Metabolites on Phospholipid Organization in Model Microbial Membranes. J Phys Chem B 2018; 122:12017-12030. [DOI: 10.1021/acs.jpcb.8b08989] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Aneta Wojcik
- Department of Environmental Chemistry, Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Krakow, Poland
| | - Marcin Pawłowski
- Department of Environmental Chemistry, Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Krakow, Poland
| | - Paweł Wydro
- Department of Physical Chemistry and Electrochemistry, Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Krakow, Poland
| | - Marcin Broniatowski
- Department of Environmental Chemistry, Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Krakow, Poland
| |
Collapse
|
10
|
Broniatowski M, Binczycka M, Wójcik A, Flasiński M, Wydro P. Polycyclic aromatic hydrocarbons in model bacterial membranes – Langmuir monolayer studies. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2017; 1859:2402-2412. [DOI: 10.1016/j.bbamem.2017.09.017] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 08/31/2017] [Accepted: 09/14/2017] [Indexed: 12/16/2022]
|
11
|
|
12
|
Visscher KM, Medeiros-Silva J, Mance D, Rodrigues JPGLM, Daniëls M, Bonvin AMJJ, Baldus M, Weingarth M. Supramolekulare Organisation und funktionale Auswirkungen von Ballungen von K +
-Kanälen in Membranen. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201705723] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Koen M. Visscher
- NMR Spectroscopy, Bijvoet Center for Biomolecular Research, Department of Chemistry; Utrecht University; Pandualaan 8 3584 CH Utrecht Niederlande
| | - João Medeiros-Silva
- NMR Spectroscopy, Bijvoet Center for Biomolecular Research, Department of Chemistry; Utrecht University; Pandualaan 8 3584 CH Utrecht Niederlande
| | - Deni Mance
- NMR Spectroscopy, Bijvoet Center for Biomolecular Research, Department of Chemistry; Utrecht University; Pandualaan 8 3584 CH Utrecht Niederlande
| | - João P. G. L. M. Rodrigues
- NMR Spectroscopy, Bijvoet Center for Biomolecular Research, Department of Chemistry; Utrecht University; Pandualaan 8 3584 CH Utrecht Niederlande
| | - Mark Daniëls
- NMR Spectroscopy, Bijvoet Center for Biomolecular Research, Department of Chemistry; Utrecht University; Pandualaan 8 3584 CH Utrecht Niederlande
| | - Alexandre M. J. J. Bonvin
- NMR Spectroscopy, Bijvoet Center for Biomolecular Research, Department of Chemistry; Utrecht University; Pandualaan 8 3584 CH Utrecht Niederlande
| | - Marc Baldus
- NMR Spectroscopy, Bijvoet Center for Biomolecular Research, Department of Chemistry; Utrecht University; Pandualaan 8 3584 CH Utrecht Niederlande
| | - Markus Weingarth
- NMR Spectroscopy, Bijvoet Center for Biomolecular Research, Department of Chemistry; Utrecht University; Pandualaan 8 3584 CH Utrecht Niederlande
| |
Collapse
|
13
|
Visscher KM, Medeiros‐Silva J, Mance D, Rodrigues JPGLM, Daniëls M, Bonvin AMJJ, Baldus M, Weingarth M. Supramolecular Organization and Functional Implications of K + Channel Clusters in Membranes. Angew Chem Int Ed Engl 2017; 56:13222-13227. [PMID: 28685953 PMCID: PMC5655921 DOI: 10.1002/anie.201705723] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Revised: 06/29/2017] [Indexed: 11/19/2022]
Abstract
The segregation of cellular surfaces in heterogeneous patches is considered to be a common motif in bacteria and eukaryotes that is underpinned by the observation of clustering and cooperative gating of signaling membrane proteins such as receptors or channels. Such processes could represent an important cellular strategy to shape signaling activity. Hence, structural knowledge of the arrangement of channels or receptors in supramolecular assemblies represents a crucial step towards a better understanding of signaling across membranes. We herein report on the supramolecular organization of clusters of the K+ channel KcsA in bacterial membranes, which was analyzed by a combination of DNP-enhanced solid-state NMR experiments and MD simulations. We used solid-state NMR spectroscopy to determine the channel-channel interface and to demonstrate the strong correlation between channel function and clustering, which suggests a yet unknown mechanism of communication between K+ channels.
Collapse
Affiliation(s)
- Koen M. Visscher
- NMR Spectroscopy, Bijvoet Center for Biomolecular Research, Department of ChemistryUtrecht UniversityPandualaan 83584CHUtrechtThe Netherlands
| | - João Medeiros‐Silva
- NMR Spectroscopy, Bijvoet Center for Biomolecular Research, Department of ChemistryUtrecht UniversityPandualaan 83584CHUtrechtThe Netherlands
| | - Deni Mance
- NMR Spectroscopy, Bijvoet Center for Biomolecular Research, Department of ChemistryUtrecht UniversityPandualaan 83584CHUtrechtThe Netherlands
| | - João P. G. L. M. Rodrigues
- NMR Spectroscopy, Bijvoet Center for Biomolecular Research, Department of ChemistryUtrecht UniversityPandualaan 83584CHUtrechtThe Netherlands
| | - Mark Daniëls
- NMR Spectroscopy, Bijvoet Center for Biomolecular Research, Department of ChemistryUtrecht UniversityPandualaan 83584CHUtrechtThe Netherlands
| | - Alexandre M. J. J. Bonvin
- NMR Spectroscopy, Bijvoet Center for Biomolecular Research, Department of ChemistryUtrecht UniversityPandualaan 83584CHUtrechtThe Netherlands
| | - Marc Baldus
- NMR Spectroscopy, Bijvoet Center for Biomolecular Research, Department of ChemistryUtrecht UniversityPandualaan 83584CHUtrechtThe Netherlands
| | - Markus Weingarth
- NMR Spectroscopy, Bijvoet Center for Biomolecular Research, Department of ChemistryUtrecht UniversityPandualaan 83584CHUtrechtThe Netherlands
| |
Collapse
|
14
|
Bigan E, Plateau P. On the Relation between Chemical Oscillations and Self-Replication. ARTIFICIAL LIFE 2017; 23:453-480. [PMID: 28985117 DOI: 10.1162/artl_a_00241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
One proposed scenario for the emergence of biochemical oscillations is that they may have provided the basic mechanism behind cellular self-replication by growth and division. However, alternative scenarios not requiring any chemical oscillation have also been proposed. Each of the various protocell models proposed to support one or another scenario comes with its own set of specific assumptions, which makes it difficult to ascertain whether chemical oscillations are required or not for cellular self-replication. This article compares these two cases within a single whole-cell model framework. This model relies upon a membrane embedding a chemical reaction network (CRN) synthesizing all the cellular constituents, including the membrane, by feeding from an external nutrient. Assuming the osmolarity is kept constant, the system dynamics are governed by a set of nonlinear differential equations coupling the chemical concentrations and the surface-area-to-volume ratio. The resulting asymptotic trajectories are used to determine the cellular shape by minimizing the membrane bending energy (within an approximate predefined family of shapes). While the stationary case can be handled quite generally, the oscillatory one is investigated using a simple oscillating CRN example, which is used to identify features that are expected to hold for any network. It is found that cellular self-replication can be reached with or without chemical oscillations, and that a requirement common to both stationary and oscillatory cases is that a minimum spontaneous curvature of the membrane is required for the cell to divide once its area and volume are both doubled. The oscillatory case can result in a greater variety of cellular shape trajectories but raises additional constraints for cellular division and self-replication: (i) the ratio of doubling time to oscillation period should be an integer, and (ii) if the oscillation amplitude is sufficiently high, then the spontaneous curvature must be below a maximum value to avoid early division before the end of the cycle. Because of these additional stringent constraints, it is likely that early protocells did not rely upon chemical oscillations. Biochemical oscillations typical of modern evolved cells may have emerged later through evolution for other reasons (e.g., metabolic advantage) and must have required additional feedback mechanisms for such a self-replicating system to be robust against even slight environmental variations (e.g., temperature fluctuations).
Collapse
|
15
|
Zhou J, Smith MD, Cooper CJ, Cheng X, Smith JC, Parks JM. Modeling of the Passive Permeation of Mercury and Methylmercury Complexes Through a Bacterial Cytoplasmic Membrane. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2017; 51:10595-10604. [PMID: 28806072 DOI: 10.1021/acs.est.7b02204] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Cellular uptake and export are important steps in the biotransformation of mercury (Hg) by microorganisms. However, the mechanisms of transport across biological membranes remain unclear. Membrane-bound transporters are known to be relevant, but passive permeation may also be involved. Inorganic HgII and methylmercury ([CH3HgII]+) are commonly complexed with thiolate ligands. Here, we have performed extensive molecular dynamics simulations of the passive permeation of HgII and [CH3HgII]+ complexes with thiolate ligands through a model bacterial cytoplasmic membrane. We find that the differences in free energy between the individual complexes in bulk water and at their most favorable position within the membrane are ∼2 kcal mol-1. We provide a detailed description of the molecular interactions that drive the membrane crossing process. Favorable interactions with carbonyl and tail groups of phospholipids stabilize Hg-containing solutes in the tail-head interface region of the membrane. The calculated permeability coefficients for the neutral compounds CH3S-HgII-SCH3 and CH3HgII-SCH3 are on the order of 10-5 cm s-1. We conclude that small, nonionized Hg-containing species can permeate readily through cytoplasmic membranes.
Collapse
Affiliation(s)
- Jing Zhou
- Graduate School of Genome Science and Technology, University of Tennessee , Knoxville, Tennessee 37996, United States
- UT/ORNL Center for Molecular Biophysics, Biosciences Division, Oak Ridge National Laboratory , 1 Bethel Valley Road, Oak Ridge, Tennessee 37831-6309, United States
| | - Micholas Dean Smith
- UT/ORNL Center for Molecular Biophysics, Biosciences Division, Oak Ridge National Laboratory , 1 Bethel Valley Road, Oak Ridge, Tennessee 37831-6309, United States
- Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee , Knoxville, Tennessee 37996, United States
| | - Connor J Cooper
- Graduate School of Genome Science and Technology, University of Tennessee , Knoxville, Tennessee 37996, United States
- UT/ORNL Center for Molecular Biophysics, Biosciences Division, Oak Ridge National Laboratory , 1 Bethel Valley Road, Oak Ridge, Tennessee 37831-6309, United States
| | - Xiaolin Cheng
- UT/ORNL Center for Molecular Biophysics, Biosciences Division, Oak Ridge National Laboratory , 1 Bethel Valley Road, Oak Ridge, Tennessee 37831-6309, United States
- Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee , Knoxville, Tennessee 37996, United States
| | - Jeremy C Smith
- UT/ORNL Center for Molecular Biophysics, Biosciences Division, Oak Ridge National Laboratory , 1 Bethel Valley Road, Oak Ridge, Tennessee 37831-6309, United States
- Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee , Knoxville, Tennessee 37996, United States
| | - Jerry M Parks
- Graduate School of Genome Science and Technology, University of Tennessee , Knoxville, Tennessee 37996, United States
- UT/ORNL Center for Molecular Biophysics, Biosciences Division, Oak Ridge National Laboratory , 1 Bethel Valley Road, Oak Ridge, Tennessee 37831-6309, United States
| |
Collapse
|
16
|
Faas R, Pohle A, Moß K, Henkel M, Hausmann R. Self-assembly of nanoscale particles with biosurfactants and membrane scaffold proteins. ACTA ACUST UNITED AC 2017; 16:1-4. [PMID: 28948158 PMCID: PMC5602816 DOI: 10.1016/j.btre.2017.08.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Revised: 06/21/2017] [Accepted: 08/28/2017] [Indexed: 10/29/2022]
Abstract
Nanodiscs are membrane mimetics which may be used as tools for biochemical and biophysical studies of a variety of membrane proteins. These nanoscale structures are composed of a phospholipid bilayer held together by an amphipathic membrane scaffold protein (MSP). In the past, nanodiscs were successfully assembled with membrane scaffold protein 1D1 and 1,2-dipalmitoyl-sn-glycero-3-phosphorylcholine with a homogeneous diameter of ∼10 nm. In this study, the formation of nanoscale particles from MSP1D1 and rhamnolipid biosurfactants is investigated. Different protein to lipid ratios of 1:80, 1:90 and 1:100 were used for the assembly reaction, which were consecutively separated, purified and analyzed by size-exclusion chromatography (SEC) and dynamic light scattering (DLS). Size distributions were measured to determine homogeneity and confirm size dimensions. In this study, first evidence is presented on the formation of nanoscale particles with rhamnolipid biosurfactants and membrane scaffold proteins.
Collapse
Affiliation(s)
- Ramona Faas
- Institute of Food Science and Biotechnology (150), Department of Bioprocess Engineering (150k), University of Hohenheim, Fruwirthstraße 12, 70599 Stuttgart, Germany
| | - Annelie Pohle
- Institute of Food Science and Biotechnology (150), Department of Bioprocess Engineering (150k), University of Hohenheim, Fruwirthstraße 12, 70599 Stuttgart, Germany
| | - Karin Moß
- Institute of Food Science and Biotechnology (150), Department of Bioprocess Engineering (150k), University of Hohenheim, Fruwirthstraße 12, 70599 Stuttgart, Germany
| | - Marius Henkel
- Institute of Food Science and Biotechnology (150), Department of Bioprocess Engineering (150k), University of Hohenheim, Fruwirthstraße 12, 70599 Stuttgart, Germany
| | - Rudolf Hausmann
- Institute of Food Science and Biotechnology (150), Department of Bioprocess Engineering (150k), University of Hohenheim, Fruwirthstraße 12, 70599 Stuttgart, Germany
| |
Collapse
|
17
|
Zou J, Nguyen V, Yin X, Wu Z, Cai Q. Photoelectrocatalytic Inactivation of E. coli by ZnSe/CdS Co-sensitized TiO2 Nanotube Array. ANAL SCI 2016; 32:607-10. [PMID: 27302579 DOI: 10.2116/analsci.32.607] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
A step-wise structural ZnSe/CdS co-sensitized TiO2 nanotube (NT) electrode was prepared by pulse-electrodeposition and successive ionic layer adsorption and reaction (SILAR), with an aim towards enhancing the absorption efficiency of TiO2 NTs in visible light region and enhancing the photo-electrical transform efficiency. The as-prepared CdS/ZnSe/TiO2 NTs were applied to the photoelectrocatalytic inactivation of E. coli. A complete inactivation of 3.0 × 10(8) cfu mL(-1) E. coli was observed after 60 min of photoelectrocatalysis process under the illumination of visble light.
Collapse
Affiliation(s)
- Jianmei Zou
- State Key Lab of Chemo/Biosensing & Chemometrics, College of Chemistry & Chemical Engineering, Hunan University
| | | | | | | | | |
Collapse
|
18
|
Abstract
Osmotic pressure influences cellular shape. In a growing cell, chemical reactions and dilution induce changes in osmolarity, which in turn influence the cellular shape. Using a protocell model relying upon random conservative chemical reaction networks with arbitrary stoichiometry, we find that when the membrane is so flexible that its shape adjusts itself quasi-instantaneously to balance the osmotic pressure, the protocell either grows filamentous or fails to grow. This behavior is consistent with a mathematical proof. This suggests that filamentation may be a primitive growth mode resulting from the simple physical property of balanced osmotic pressure. We also find that growth is favored if some chemical species are only present inside the protocell, but not in the outside growth medium. Such an insulation requires specific chemical schemes. Modern evolved cells such as E. coli meet these requirements through active transport mechanisms such as the phosphotransferase system.
Collapse
Affiliation(s)
- Erwan Bigan
- Laboratoire d'Informatique (LIX), École Polytechnique, F-91128 Palaiseau Cedex, France. Laboratoire Matière et Systèmes Complexes, UMR7057 CNRS, Université Paris Diderot, F-75205 Paris Cedex 13, France
| | | | | |
Collapse
|
19
|
Bigan E, Steyaert JM, Douady S. Chemical Schemes for Maintaining Different Compositions Across a Semi-permeable Membrane with Application to Proto-cells. ORIGINS LIFE EVOL B 2015; 45:439-54. [PMID: 26205651 DOI: 10.1007/s11084-015-9453-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2014] [Accepted: 01/30/2015] [Indexed: 11/25/2022]
Abstract
Osmotic pressure arising from a higher total chemical concentration inside proto-cells is thought to have played a role in the emergence and selection of self-replicating proto-cells. We present two chemical schemes through which different equilibrium compositions can coexist on each side of a semi-permeable membrane. The first scheme relies upon the concept of moieties and associated number of degrees of freedom. The second scheme relies upon the concept of siphons and of pass reaction capable of transferring matter from outside a siphon into it. Using simple example reaction networks, we show that both schemes are compatible with stationary proto-cell growth with up-concentration, but suffer from shortcomings. To alleviate these we propose a third scheme derived from the second one by having the pass reaction catalyzed by the membrane surface instead of occurring in bulk solution. This may have proven an intermediate step before having the pass reaction occurring only when the nutrient crosses the membrane. This suggests an evolutionary path for the emergence of active transport.
Collapse
Affiliation(s)
- Erwan Bigan
- Laboratoire d'Informatique, École Polytechnique, Palaiseau, France,
| | | | | |
Collapse
|
20
|
Abstract
The dramatic rise in the incidence of antibiotic resistance demands that new therapeutic options will have to be developed. One potentially interesting class of antimicrobials are the modified bacteriocins termed lantibiotics, which are bacterially produced, posttranslationally modified, lanthionine/methyllanthionine-containing peptides. It is interesting that low levels of resistance have been reported for lantibiotics compared with commercial antibiotics. Given that there are very few examples of naturally occurring lantibiotic resistance, attempts have been made to deliberately induce resistance phenotypes in order to investigate this phenomenon. Mechanisms that hinder the action of lantibiotics are often innate systems that react to the presence of any cationic peptides/proteins or ones which result from cell well damage, rather than being lantibiotic specific. Such resistance mechanisms often arise due to altered gene regulation following detection of antimicrobials/cell wall damage by sensory proteins at the membrane. This facilitates alterations to the cell wall or changes in the composition of the membrane. Other general forms of resistance include the formation of spores or biofilms, which are a common mechanistic response to many classes of antimicrobials. In rare cases, bacteria have been shown to possess specific antilantibiotic mechanisms. These are often species specific and include the nisin lytic protein nisinase and the phenomenon of immune mimicry.
Collapse
Affiliation(s)
- Lorraine A Draper
- School of Microbiology, University College Cork, Cork, Ireland Alimentary Pharmabiotic Centre, University College Cork, Cork, Ireland
| | - Paul D Cotter
- Alimentary Pharmabiotic Centre, University College Cork, Cork, Ireland Teagasc Food Research Centre, Moorepark, Fermoy, County Cork, Ireland
| | - Colin Hill
- School of Microbiology, University College Cork, Cork, Ireland Alimentary Pharmabiotic Centre, University College Cork, Cork, Ireland
| | - R Paul Ross
- School of Microbiology, University College Cork, Cork, Ireland Alimentary Pharmabiotic Centre, University College Cork, Cork, Ireland
| |
Collapse
|
21
|
Bigan E, Steyaert JM, Douady S. Minimal conditions for protocell stationary growth. ARTIFICIAL LIFE 2015; 21:166-192. [PMID: 25951201 DOI: 10.1162/artl_a_00165] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
We show that self-replication of a chemical system encapsulated within a membrane growing from within is possible without any explicit feature such as autocatalysis or metabolic closure, and without the need for their emergence through complexity. We use a protocell model relying upon random conservative chemical reaction networks with arbitrary stoichiometry, and we investigate the protocell's capability for self-replication, for various numbers of reactions in the network. We elucidate the underlying mechanisms in terms of simple minimal conditions pertaining only to the topology of the embedded chemical reaction network. A necessary condition is that each moiety must be fed, and a sufficient condition is that each siphon is fed. Although these minimal conditions are purely topological, by further endowing conservative chemical reaction networks with thermodynamically consistent kinetics, we show that the growth rate tends to increase on increasing the Gibbs energy per unit molecular weight of the nutrient and on decreasing that of the membrane precursor.
Collapse
|
22
|
Farnoud AM, Toledo AM, Konopka JB, Del Poeta M, London E. Raft-like membrane domains in pathogenic microorganisms. CURRENT TOPICS IN MEMBRANES 2015; 75:233-68. [PMID: 26015285 DOI: 10.1016/bs.ctm.2015.03.005] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The lipid bilayer of the plasma membrane is thought to be compartmentalized by the presence of lipid-protein microdomains. In eukaryotic cells, microdomains composed of sterols and sphingolipids, commonly known as lipid rafts, are believed to exist, and reports on the presence of sterol- or protein-mediated microdomains in bacterial cell membranes are also appearing. Despite increasing attention, little is known about microdomains in the plasma membrane of pathogenic microorganisms. This review attempts to provide an overview of the current state of knowledge of lipid rafts in pathogenic fungi and bacteria. The current literature on characterization of microdomains in pathogens is reviewed, and their potential role in growth, pathogenesis, and drug resistance is discussed. Better insight into the structure and function of membrane microdomains in pathogenic microorganisms might lead to a better understanding of their pathogenesis and development of raft-mediated approaches for therapy.
Collapse
Affiliation(s)
- Amir M Farnoud
- Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook, NY, USA
| | - Alvaro M Toledo
- Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook, NY, USA
| | - James B Konopka
- Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook, NY, USA
| | - Maurizio Del Poeta
- Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook, NY, USA
| | - Erwin London
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY, USA
| |
Collapse
|
23
|
The zeamine antibiotics affect the integrity of bacterial membranes. Appl Environ Microbiol 2014; 81:1139-46. [PMID: 25452285 DOI: 10.1128/aem.03146-14] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The zeamines (zeamine, zeamine I, and zeamine II) constitute an unusual class of cationic polyamine-polyketide-nonribosomal peptide antibiotics produced by Serratia plymuthica RVH1. They exhibit potent bactericidal activity, killing a broad range of Gram-negative and Gram-positive bacteria, including multidrug-resistant pathogens. Examination of their specific mode of action and molecular target revealed that the zeamines affect the integrity of cell membranes. The zeamines provoke rapid release of carboxyfluorescein from unilamellar vesicles with different phospholipid compositions, demonstrating that they can interact directly with the lipid bilayer in the absence of a specific target. DNA, RNA, fatty acid, and protein biosynthetic processes ceased simultaneously at subinhibitory levels of the antibiotics, presumably as a direct consequence of membrane disruption. The zeamine antibiotics also facilitated the uptake of small molecules, such as 1-N-phenylnaphtylamine, indicating their ability to permeabilize the Gram-negative outer membrane (OM). The valine-linked polyketide moiety present in zeamine and zeamine I was found to increase the efficiency of this process. In contrast, translocation of the large hydrophilic fluorescent peptidoglycan binding protein PBDKZ-GFP was not facilitated, suggesting that the zeamines cause subtle perturbation of the OM rather than drastic alterations or defined pore formation. At zeamine concentrations above those required for growth inhibition, membrane lysis occurred as indicated by time-lapse microscopy. Together, these findings show that the bactericidal activity of the zeamines derives from generalized membrane permeabilization, which likely is initiated by electrostatic interactions with negatively charged membrane components.
Collapse
|
24
|
Correa W, Manrique-Moreno M, Patiño E, Peláez-Jaramillo C, Kaconis Y, Gutsmann T, Garidel P, Heinbockel L, Brandenburg K. Galleria mellonella native and analogue peptides Gm1 and ΔGm1. I) biophysical characterization of the interaction mechanisms with bacterial model membranes. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2014; 1838:2728-38. [PMID: 25017800 DOI: 10.1016/j.bbamem.2014.07.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2013] [Revised: 04/29/2014] [Accepted: 07/01/2014] [Indexed: 10/25/2022]
Abstract
Natural occurring antimicrobial peptides (AMPs) are important components of the innate immune system of animals and plants. They are considered to be promising alternatives to conventional antibiotics. Here we present a comparative study of two synthetic peptides: Gm1, corresponding to the natural overall uncharged peptide from Galleria mellonella (Gm) and ΔGm1, a modified overall positively charged Gm1 variant. We have studied the interaction of the peptides with lipid membranes composed of different kinds of lipopolysaccharides (LPS) and dimyristoylphosphatidylglycerol (DMPG), in some cases also dimyristoylphosphatidylethanolamine (DMPE) as representative lipid components of Gram-negative bacterial membranes, by applying Fourier-transform infrared spectroscopy (FTIR), Förster resonance energy transfer spectroscopy (FRET), differential scanning calorimetry (DSC) and isothermal titration calorimetry (ITC). Gm1 generates a destabilizing effect on the gel to liquid crystalline phase transition of the acyl chains of the lipids, as deduced from a decrease in the phase transition temperature and enthalpy, suggesting a fluidization, whereas ΔGm1 led to the opposite behavior. Further, FTIR analysis of the functional groups of the lipids participating in the interaction with the peptides indicated a shift in the band position and intensity of the asymmetric PO2(-) stretching vibration originating from the lipid phosphate groups, a consequence of the sterical changes in the head group region. Interestingly, FRET spectroscopy showed a similar intercalation of both peptides into the DMPG and LPS, but much less into the DMPE membrane systems. These results are discussed in the light of a possible use of the peptides as antimicrobial and anti-endotoxin drugs.
Collapse
Affiliation(s)
- Wilmar Correa
- Instituto de Química, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia, AA. 1226 Medellín, Colombia.
| | - Marcela Manrique-Moreno
- Instituto de Química, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia, AA. 1226 Medellín, Colombia.
| | - Edwin Patiño
- Instituto de Química, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia, AA. 1226 Medellín, Colombia.
| | - Carlos Peláez-Jaramillo
- Instituto de Química, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia, AA. 1226 Medellín, Colombia.
| | - Yani Kaconis
- Forschungszentrum Borstel, LG Biophysik, D-23845 Borstel, Germany.
| | - Thomas Gutsmann
- Forschungszentrum Borstel, LG Biophysik, D-23845 Borstel, Germany.
| | - Patrick Garidel
- Martin-Luther-University Halle/Wittenberg, Department of Chemistry/Physical Chemistry, D-06120 Halle/Saale, Germany.
| | - Lena Heinbockel
- Forschungszentrum Borstel, LG Biophysik, D-23845 Borstel, Germany.
| | | |
Collapse
|
25
|
Colonization and infection of the skin by S. aureus: immune system evasion and the response to cationic antimicrobial peptides. Int J Mol Sci 2014; 15:8753-72. [PMID: 24840573 PMCID: PMC4057757 DOI: 10.3390/ijms15058753] [Citation(s) in RCA: 95] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2014] [Revised: 05/02/2014] [Accepted: 05/07/2014] [Indexed: 02/08/2023] Open
Abstract
Staphylococcus aureus (S. aureus) is a widespread cutaneous pathogen responsible for the great majority of bacterial skin infections in humans. The incidence of skin infections by S. aureus reflects in part the competition between host cutaneous immune defenses and S. aureus virulence factors. As part of the innate immune system in the skin, cationic antimicrobial peptides (CAMPs) such as the β-defensins and cathelicidin contribute to host cutaneous defense, which prevents harmful microorganisms, like S. aureus, from crossing epithelial barriers. Conversely, S. aureus utilizes evasive mechanisms against host defenses to promote its colonization and infection of the skin. In this review, we focus on host-pathogen interactions during colonization and infection of the skin by S. aureus and methicillin-resistant Staphylococcus aureus (MRSA). We will discuss the peptides (defensins, cathelicidins, RNase7, dermcidin) and other mediators (toll-like receptor, IL-1 and IL-17) that comprise the host defense against S. aureus skin infection, as well as the various mechanisms by which S. aureus evades host defenses. It is anticipated that greater understanding of these mechanisms will enable development of more sustainable antimicrobial compounds and new therapeutic approaches to the treatment of S. aureus skin infection and colonization.
Collapse
|
26
|
Wydro P, Flasiński M, Broniatowski M. Molecular organization of bacterial membrane lipids in mixed systems--A comprehensive monolayer study combined with Grazing Incidence X-ray Diffraction and Brewster Angle Microscopy experiments. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2013; 1818:1745-54. [PMID: 22465064 DOI: 10.1016/j.bbamem.2012.03.010] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2012] [Revised: 02/25/2012] [Accepted: 03/13/2012] [Indexed: 01/11/2023]
Abstract
To properly design and investigate new antibacterial drugs a detailed description of the organization of bacterial membrane is highly important. Therefore in this work we performed a comprehensive characteristic of the Langmuir monolayers composed of phosphatidylethanolamine (PE) and phosphatidylglycerol (PG) mixed in a wide range of composition and treated as an artificial cytoplasmic layer of bacterial membrane. To obtain detailed information on the properties of these films we combined the analysis of the surface pressure-area curves with the surface potential measurements, Brewster Angle Microscopy studies and Grazing Incidence X-ray Diffraction experiments. It was found that the investigated phospholipids mix nonideally in the monolayers and that the most favorable packing of molecules occurs at their equimolar proportion. This is directly connected with the formation of hydrogen bonds between both types of molecules in the system. All the collected experimental data evidenced that dipalmitoylphosphatidylethanolamine (DPPE) and dipalmitoylphosphatidylglycerol (DPPG) form highly ordered associates of fixed (DPPE:DPPG 1:1) stoichiometry. The obtained results allow one to conclude a nonuniform distribution of lipids in bacterial membranes and the existence of domains composed of the investigated phospholipids. The latter seems to be of great importance in the perspective of further studies on the mechanism of action of antibacterial agents.
Collapse
Affiliation(s)
- Paweł Wydro
- Faculty of Chemistry, Jagiellonian University, Ingardena 3, 30-060 Kraków, Poland.
| | | | | |
Collapse
|
27
|
Weingarth M, Prokofyev A, van der Cruijsen EAW, Nand D, Bonvin AMJJ, Pongs O, Baldus M. Structural determinants of specific lipid binding to potassium channels. J Am Chem Soc 2013; 135:3983-8. [PMID: 23425320 DOI: 10.1021/ja3119114] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We have investigated specific lipid binding to the pore domain of potassium channels KcsA and chimeric KcsA-Kv1.3 on the structural and functional level using extensive coarse-grained and atomistic molecular dynamics simulations, solid-state NMR, and single channel measurements. We show that, while KcsA activity is critically modulated by the specific and cooperative binding of anionic nonannular lipids close to the channel's selectivity filter, the influence of nonannular lipid binding on KcsA-Kv1.3 is much reduced. The diminished impact of specific lipid binding on KcsA-Kv1.3 results from a point-mutation at the corresponding nonannular lipid binding site leading to a salt-bridge between adjacent KcsA-Kv1.3 subunits, which is conserved in many voltage-gated potassium channels and prevents strong nonannular lipid binding to the pore domain. Our findings elucidate how protein-lipid and protein-protein interactions modulate K(+) channel activity. The combination of MD, NMR, and functional studies as shown here may help to dissect the structural and dynamical processes that are critical for the functioning of larger membrane proteins, including Kv channels in a membrane setting.
Collapse
Affiliation(s)
- Markus Weingarth
- Bijvoet Center for Biomolecular Research, Faculty of Science, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
28
|
Roos C, Zocher M, Müller D, Münch D, Schneider T, Sahl HG, Scholz F, Wachtveitl J, Ma Y, Proverbio D, Henrich E, Dötsch V, Bernhard F. Characterization of co-translationally formed nanodisc complexes with small multidrug transporters, proteorhodopsin and with the E. coli MraY translocase. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2012; 1818:3098-106. [DOI: 10.1016/j.bbamem.2012.08.007] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2012] [Revised: 08/10/2012] [Accepted: 08/10/2012] [Indexed: 10/28/2022]
|
29
|
Henriques ST, Huang YH, Castanho MARB, Bagatolli LA, Sonza S, Tachedjian G, Daly NL, Craik DJ. Phosphatidylethanolamine binding is a conserved feature of cyclotide-membrane interactions. J Biol Chem 2012; 287:33629-43. [PMID: 22854971 DOI: 10.1074/jbc.m112.372011] [Citation(s) in RCA: 94] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Cyclotides are bioactive cyclic peptides isolated from plants that are characterized by a topologically complex structure and exceptional resistance to enzymatic or thermal degradation. With their sequence diversity, ultra-stable core structural motif, and range of bioactivities, cyclotides are regarded as a combinatorial peptide template with potential applications in drug design. The mode of action of cyclotides remains elusive, but all reported biological activities are consistent with a mechanism involving membrane interactions. In this study, a diverse set of cyclotides from the two major subfamilies, Möbius and bracelet, and an all-d mirror image form, were examined to determine their mode of action. Their lipid selectivity and membrane affinity were determined, as were their toxicities against a range of targets (red blood cells, bacteria, and HIV particles). Although they had different membrane-binding affinities, all of the tested cyclotides targeted membranes through binding to phospholipids containing phosphatidylethanolamine headgroups. Furthermore, the biological potency of the tested cyclotides broadly correlated with their ability to target and disrupt cell membranes. The finding that a broad range of cyclotides target a specific lipid suggests their categorization as a new lipid-binding protein family. Knowledge of their membrane specificity has the potential to assist in the design of novel drugs based on the cyclotide framework, perhaps allowing the targeting of peptide drugs to specific cell types.
Collapse
Affiliation(s)
- Sónia Troeira Henriques
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, 4072 Queensland, Australia
| | | | | | | | | | | | | | | |
Collapse
|
30
|
French S, Puddephatt D, Habash M, Glasauer S. The dynamic nature of bacterial surfaces: Implications for metal–membrane interaction. Crit Rev Microbiol 2012; 39:196-217. [DOI: 10.3109/1040841x.2012.702098] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
31
|
Muñoz F, Palomares-Jerez MF, Daleo G, Villalaín J, Guevara MG. Cholesterol and membrane phospholipid compositions modulate the leakage capacity of the swaposin domain from a potato aspartic protease (StAsp-PSI). Biochim Biophys Acta Mol Cell Biol Lipids 2011; 1811:1038-44. [DOI: 10.1016/j.bbalip.2011.08.013] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2011] [Revised: 07/08/2011] [Accepted: 08/03/2011] [Indexed: 12/26/2022]
|
32
|
Abstract
Membrane proteins that bind and transport lipids face special challenges. Since lipids typically have low water solubility, both accessibility of the substrate to the protein and delivery to the desired destination are problematical. The amphipathic nature of membrane lipids, and their relatively large molecular size, also means that these proteins must possess substrate-binding sites of a different nature than those designed to handle small polar molecules. This review considers two integral proteins whose function is to bind and transfer membrane lipids within or across a membrane. The first protein, MsbA, is a putative lipid flippase that is a member of the ATP-binding cassette (ABC) superfamily. The protein is found in the inner (cytoplasmic) membrane (IM) of Gram-negative bacteria such as E. coli, where it is proposed to move lipid A from the inner to the outer membrane (OM) leaflet, an important step in the lipopolysaccharide biosynthetic pathway. Cholesterol is a major component of the plasma membrane in eukaryotic cells, where it regulates bilayer fluidity. The other lipid-binding protein discussed here, mammalian NPC1 (Niemann-Pick disease, Type C1), binds cholesterol inside late endosomes/lysosomes (LE/LY) and is involved in its transfer to the cytosol as part of a key intracellular sterol-trafficking pathway. Mutations in NPC1 lead to a devastating neurodegenerative condition, Niemann-Pick Type C disease, which is characterized by massive cholesterol accumulation in LE/LY. The accelerating pace of membrane protein structure determination over the past decade has allowed us a glimpse of how lipid binding and transfer by membrane proteins such as MsbA and NPC1 might be achieved.
Collapse
Affiliation(s)
- Gavin King
- Department of Molecular and Cellular Biology and Biophysics Interdepartmental Group, University of Guelph, Guelph ON Canada
| | | |
Collapse
|
33
|
Ricci DP, Silhavy TJ. The Bam machine: a molecular cooper. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2011; 1818:1067-84. [PMID: 21893027 DOI: 10.1016/j.bbamem.2011.08.020] [Citation(s) in RCA: 134] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2011] [Revised: 08/08/2011] [Accepted: 08/15/2011] [Indexed: 11/24/2022]
Abstract
The bacterial outer membrane (OM) is an exceptional biological structure with a unique composition that contributes significantly to the resiliency of Gram-negative bacteria. Since all OM components are synthesized in the cytosol, the cell must efficiently transport OM-specific lipids and proteins across the cell envelope and stably integrate them into a growing membrane. In this review, we discuss the challenges associated with these processes and detail the elegant solutions that cells have evolved to address the topological problem of OM biogenesis. Special attention will be paid to the Bam machine, a highly conserved multiprotein complex that facilitates OM β-barrel folding. This article is part of a Special Issue entitled: Protein Folding in Membranes.
Collapse
Affiliation(s)
- Dante P Ricci
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | | |
Collapse
|
34
|
Kamaraju K, Smith J, Wang J, Roy V, Sintim HO, Bentley WE, Sukharev S. Effects on membrane lateral pressure suggest permeation mechanisms for bacterial quorum signaling molecules. Biochemistry 2011; 50:6983-93. [PMID: 21736305 PMCID: PMC3163381 DOI: 10.1021/bi200684z] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Quorum sensing is an intricate example of "social" behavior in microbial communities mediated by small secreted molecules (autoinducers). The mechanisms of membrane permeation remain elusive for many of them. Here we present the assessment of membrane permeability for three natural autoinducers and four synthetic analogues based on their polarity, surface activity, affinity for lipid monolayers, and ability to induce lateral pressure changes in the inner E. coli membrane sensed by the bacterial tension-activated channel MscS. AI-1 (N-(3-oxodecanoyl)-l-homoserine lactone) is surface-active, and it robustly inserts into lipid monolayers, indicating strong propensity toward membranes. When presented to membrane patches from the cytoplasmic side, AI-1 transiently shifts MscS's activation curve toward higher tensions due to intercalation into the cytoplasmic leaflet followed by redistribution to the opposite side. Indole showed no detectable surface activity at the air-water interface but produced a moderate increase of lateral pressure in monolayers and was potent at shifting activation curves of MscS, demonstrating transients on sequential additions. AI-2 (4,5-dihydroxy-2,3-pentanedione, DPD) showed little activity at the interfaces, correspondingly with no effect on MscS activation. After chemical modification with isobutyl, hexyl, or heptyl chains, AI-2 displayed strong surface activity. Hexyl and especially heptyl AI-2 induced robust transient shifts of MscS activation curves. The data strongly suggest that both AI-1 and indole are directly permeable through the membrane. AI-2, more hydrophilic, shows low affinity toward lipids and thus requires a transport system, whereas alkyl analogues of AI-2 should permeate the membrane directly.
Collapse
Affiliation(s)
- Kishore Kamaraju
- Department of Biology, University of Maryland, College Park, Maryland 20742
| | - Jacqueline Smith
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742
| | - Jingxin Wang
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742
| | - Varnika Roy
- Graduate Program in Molecular and Cell Biology, University of Maryland, College Park, Maryland 20742
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland 20742
| | - Herman O. Sintim
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742
| | - William E. Bentley
- Graduate Program in Molecular and Cell Biology, University of Maryland, College Park, Maryland 20742
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland 20742
| | - Sergei Sukharev
- Department of Biology, University of Maryland, College Park, Maryland 20742
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland 20742
| |
Collapse
|
35
|
Abstract
The MsbA protein is an essential ABC (ATP-binding-cassette) superfamily member in Gram-negative bacteria. This 65 kDa membrane protein is thought to function as a homodimeric ATP-dependent lipid translocase or flippase that transports lipid A from the inner to the outer leaflet of the cytoplasmic membrane. We have previously shown that purified MsbA from Escherichia coli displays high ATPase activity, and binds to lipids and lipid-like molecules, including lipid A, with affinity in the low micromolar range. Bacterial membrane vesicles isolated from E. coli overexpressing His6-tagged MsbA displayed ATP-dependent translocation of several fluorescently NBD (7-nitrobenz-2-oxa-1,3-diazole)-labelled phospholipid species. Purified MsbA was reconstituted into proteoliposomes of E. coli lipid and its ability to translocate NBD-labelled lipid derivatives was characterized. In this system, the protein displayed maximal lipid flippase activity of 7.7 nmol of lipid translocated per mg of protein over a 20 min period for an acyl chain-labelled PE (phosphatidylethanolamine) derivative. The protein showed the highest rates of flippase activity when reconstituted into an E. coli lipid mixture. Substantial flippase activity was also observed for a variety of other NBD-labelled phospholipids and glycolipids, including molecules labelled on either the headgroup or the acyl chain. Lipid flippase activity required ATP hydrolysis, and was dependent on the concentration of ATP and NBD–lipid. Translocation of NBD–PE was inhibited by the presence of the putative physiological substrate lipid A. The present paper represents the first report of a direct measurement of the lipid flippase activity of purified MsbA in a reconstituted system.
Collapse
|
36
|
Prossnigg F, Hickel A, Pabst G, Lohner K. Packing behaviour of two predominant anionic phospholipids of bacterial cytoplasmic membranes. Biophys Chem 2010; 150:129-35. [PMID: 20451316 PMCID: PMC2905515 DOI: 10.1016/j.bpc.2010.04.004] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2010] [Revised: 04/07/2010] [Accepted: 04/08/2010] [Indexed: 11/08/2022]
Abstract
Phosphatidylglycerol and cardiolipin represent the most abundant anionic phospholipid components of cytoplasmic bacterial membranes and thus are used as constituents for membrane mimetic systems. In this study, we have characterized the temperature dependent phase behaviour of the binary system dipalmitoyl-phosphatidylglycerol (DPPG) and tetramyristoyl-cardiolipin (TMCL) using microcalorimetry and X-ray scattering techniques. Both lipids exhibited a very similar main transition temperature (∼ 41 °C), showing a minimum (39.4 °C) for the binary mixtures at XDPPG = 0.8, and exhibited low-temperature phase transitions, which were abolished by incorporation of small amounts (≤ 10 mol%) of the other lipid component. Therefore, over a wide temperature and composition range a lamellar Lβ gel phase is the predominant structure below the chain melting transition, characterized by a relatively broad wide-angle peak for XDPPG ≤ 0.8. This observation suggests the existence of packing inconsistencies of the TMCL/DPPG hydrocarbon lattices in the gel phase, supported by the small average size of lipid clusters (∼ 50 lipids) within this composition range. The bilayer thickness for the lamellar-gel phase showed a monotonic increase (56 Å for TMCL to about 58 Å for XDPPG = 0.8 at 30 °C), which may be explained by different degrees of partial interdigitation of the acyl chains to compensate for the differences in the hydrocarbon lengths of DPPG and TMCL in the Lβ phase.
Collapse
Affiliation(s)
- Florian Prossnigg
- Institute of Biophysics and Nanosystems Research, Austrian Academy of Sciences, Schmiedlstrasse 6, A-8042 Graz, Austria
| | | | | | | |
Collapse
|
37
|
Liu P, Duan W, Wang Q, Li X. The damage of outer membrane of Escherichia coli in the presence of TiO2 combined with UV light. Colloids Surf B Biointerfaces 2010; 78:171-6. [PMID: 20335010 DOI: 10.1016/j.colsurfb.2010.02.024] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2009] [Revised: 02/23/2010] [Accepted: 02/24/2010] [Indexed: 11/28/2022]
Abstract
The biological consequences of exposure to TiO2, UV light, and their combined effect were studied on the Escherichia coli (E. coli) cells. The damage of outer membrane was observed for the cells after treatment of TiO2 or UV light. TiO2 alone can break down lipopolysacchride (LPS), the outermost layer of the E. coli cells, but was not able to destroy peptidoglycan underneath. The same phenomenon was observed for E. coli under 500 W UV light treatment alone. However, the outer membrane of E. coli could be removed completely in the presence of both TiO2 and UV light, and the cells became elliptical or round without a mechanically strong network. From the analysis of the concentrations for Ca2+ and Mg2+, a large amount of Ca2+ and Mg2+ were detected in the solution of the treated cells by photo-catalysis, and this was attributed to the damage of LPS dispatches. After TiO2 or UV light treatment, a significant decrease in membrane fluidity of E. coli was found from an increase in fluorescence polarization by a fluorescence probe. The permeability of the treated cells increased to some degree that can be confirmed by quantum dots labeling technique.
Collapse
Affiliation(s)
- Peng Liu
- Department of Chemistry, School of Sciences, Wuhan University of Technology, Wuhan 430070, PR China
| | | | | | | |
Collapse
|
38
|
Abstract
The biosynthesis of glycoconjugates such as N-glycoproteins and GPI-anchored proteins in eukaryotes and cell wall peptidoglycan and lipopolysaccharide in bacteria requires lipid intermediates to be flipped rapidly across the endoplasmic reticulum or bacterial cytoplasmic membrane (so-called biogenic membranes). Rapid flipping is also required to normalize the number of glycerophospholipids in the two leaflets of the bilayer as the membrane expands in a growing cell. Although lipids diffuse rapidly in the plane of the membrane, the intrinsic rate at which they flip across membranes is very low. Biogenic membranes possess dedicated lipid transporters or flippases to increase flipping to a physiologically sufficient rate. The flippases are "ATP-independent" and facilitate "downhill" transport. Most predicted biogenic membrane flippases have not been identified at the molecular level, and the few flippases that have been identified by genetic approaches have not been biochemically validated. Here we summarize recent progress on this fundamental topic and speculate on the mechanism(s) by which biogenic membrane flippases facilitate transbilayer lipid movement.
Collapse
Affiliation(s)
- Sumana Sanyal
- Department of Biochemistry, Weill Cornell Medical College, 1300 York Avenue, New York, New York 10065
| | - Anant K. Menon
- Department of Biochemistry, Weill Cornell Medical College, 1300 York Avenue, New York, New York 10065
| |
Collapse
|
39
|
Omori S, Shibata Y, Arimoto T, Igarashi T, Baba K, Miyazaki T. Micro-organism and Cell Viability on Antimicrobially Modified Titanium. J Dent Res 2009; 88:957-62. [DOI: 10.1177/0022034509343426] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
When titanium is anodized by discharge in NaCl solution, both antimicrobial activity and osteoconductivity are conferred. The viability of adherent micro-organisms and cells on antimicrobial titanium remains uncertain. We hypothesized that a thin peroxidation barrier would efficiently destroy adherent bacteria, whereas adherent osteoblastic cells would be viable, since these cells adhere to the surface indirectly though serum proteins. The efficacy of antimicrobial titanium appears to be based on peroxidation, since peroxidation products were detected in parallel with the destruction of bacterial cell-surface structures. The peroxidation effect of antimicrobial titanium was confined to the surface within narrow limits. The viability of osteoblastic cells on the surface was strongly dependent on the presence of serum protein, whereas that of adherent Streptococcus mutans was not affected by the presence of serum proteins. Therefore, differences in the adherent systems used by bacteria and osteoblastic cells are important determinants of their viability on antimicrobial titanium.
Collapse
Affiliation(s)
- S. Omori
- Department of Prosthodontics, Showa University School of Dentistry, 2-1-2, Kitasenzoku, Ohta-ku, Tokyo 145-8515, Japan
- Department of Oral Biomaterials and Technology, Showa University School of Dentistry, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142-8555, Japan; and
- Department of Oral Microbiology, Showa University School of Dentistry, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142-8555, Japan
| | - Y. Shibata
- Department of Prosthodontics, Showa University School of Dentistry, 2-1-2, Kitasenzoku, Ohta-ku, Tokyo 145-8515, Japan
- Department of Oral Biomaterials and Technology, Showa University School of Dentistry, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142-8555, Japan; and
- Department of Oral Microbiology, Showa University School of Dentistry, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142-8555, Japan
| | - T. Arimoto
- Department of Prosthodontics, Showa University School of Dentistry, 2-1-2, Kitasenzoku, Ohta-ku, Tokyo 145-8515, Japan
- Department of Oral Biomaterials and Technology, Showa University School of Dentistry, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142-8555, Japan; and
- Department of Oral Microbiology, Showa University School of Dentistry, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142-8555, Japan
| | - T. Igarashi
- Department of Prosthodontics, Showa University School of Dentistry, 2-1-2, Kitasenzoku, Ohta-ku, Tokyo 145-8515, Japan
- Department of Oral Biomaterials and Technology, Showa University School of Dentistry, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142-8555, Japan; and
- Department of Oral Microbiology, Showa University School of Dentistry, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142-8555, Japan
| | - K. Baba
- Department of Prosthodontics, Showa University School of Dentistry, 2-1-2, Kitasenzoku, Ohta-ku, Tokyo 145-8515, Japan
- Department of Oral Biomaterials and Technology, Showa University School of Dentistry, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142-8555, Japan; and
- Department of Oral Microbiology, Showa University School of Dentistry, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142-8555, Japan
| | - T. Miyazaki
- Department of Prosthodontics, Showa University School of Dentistry, 2-1-2, Kitasenzoku, Ohta-ku, Tokyo 145-8515, Japan
- Department of Oral Biomaterials and Technology, Showa University School of Dentistry, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142-8555, Japan; and
- Department of Oral Microbiology, Showa University School of Dentistry, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142-8555, Japan
| |
Collapse
|
40
|
Tolokh IS, Vivcharuk V, Tomberli B, Gray CG. Binding free energy and counterion release for adsorption of the antimicrobial peptide lactoferricin B on a POPG membrane. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2009; 80:031911. [PMID: 19905150 DOI: 10.1103/physreve.80.031911] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2008] [Revised: 05/28/2009] [Indexed: 05/28/2023]
Abstract
Molecular dynamics (MD) simulations are used to study the interaction of an anionic palmitoyl-oleoyl-phosphatidylglycerol (POPG) bilayer with the cationic antimicrobial peptide bovine lactoferricin (LFCinB) in a 100 mM NaCl solution at 310 K. The interaction of LFCinB with a POPG bilayer is employed as a model system for studying the details of membrane adsorption selectivity of cationic antimicrobial peptides. Seventy eight 4 ns MD production run trajectories of the equilibrated system, with six restrained orientations of LFCinB at 13 different separations from the POPG membrane, are generated to determine the free energy profile for the peptide as a function of the distance between LFCinB and the membrane surface. To calculate the profile for this relatively large system, a variant of constrained MD and thermodynamic integration is used. A simplified method for relating the free energy profile to the LFCinB-POPG membrane binding constant is employed to predict a free energy of adsorption of -5.4+/-1.3 kcal/mol and a corresponding maximum adsorption binding force of about 58 pN. We analyze the results using Poisson-Boltzmann theory. We find the peptide-membrane attraction to be dominated by the entropy increase due to the release of counterions and polarized water from the region between the charged membrane and peptide, as the two approach each other. We contrast these results with those found earlier for adsorption of LFCinB on the mammalianlike palmitoyl-oleoyl-phosphatidylcholine membrane.
Collapse
Affiliation(s)
- Igor S Tolokh
- Department of Physics, University of Guelph, Guelph, Ontario, Canada.
| | | | | | | |
Collapse
|
41
|
Kraus D, Peschel A. Staphylococcus aureus evasion of innate antimicrobial defense. Future Microbiol 2008; 3:437-51. [PMID: 18651815 DOI: 10.2217/17460913.3.4.437] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Bacterial pathogens colonize human body surfaces soon after birth. In order to survive the constant threat of invasion and infection, the human innate immune system has evolved several efficient mechanisms to prevent harmful microorganisms from traversing epithelial barriers. These include cationic antimicrobial peptides (CAMPs) such as defensins and the cathelicidin LL-37, bacteriolytic enzymes such as lysozyme, antimicrobial fatty acids, toxic oxygen- or nitrogen-containing molecules, the bacteriolytic complement components and further mechanisms with indirect impacts on bacterial multiplication. Staphylococcus aureus is an important human commensal and pathogen. In order to successfully establish an infection, S. aureus has evolved several mechanisms to resist the innate immune system. In this review, we focus on the mechanisms employed by S. aureus to achieve protection against antimicrobial host defense molecules with special emphasis on CAMPs. Lessons from recent studies on antimicrobial host defense molecules and cognate bacterial resistance adaptation should help in the development of more sustainable anti-infective compounds.
Collapse
Affiliation(s)
- Dirk Kraus
- Cellular & Molecular Microbiology Division, Department of Medical Microbiology & Hygiene, University of Tübingen, Elfriede-Aulhorn-Strasse 6, 72076 Tübingen, Germany.
| | | |
Collapse
|
42
|
Zubova SV, Ivanov AY, Prokhorenko IR. Effect of growth conditions on electrophysical properties of Rhodobacter capsulatus PG cells. Microbiology (Reading) 2008. [DOI: 10.1134/s0026261708050093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
43
|
Bishop RE. Structural biology of membrane-intrinsic beta-barrel enzymes: sentinels of the bacterial outer membrane. BIOCHIMICA ET BIOPHYSICA ACTA 2008; 1778:1881-96. [PMID: 17880914 PMCID: PMC5007122 DOI: 10.1016/j.bbamem.2007.07.021] [Citation(s) in RCA: 101] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 05/25/2007] [Revised: 06/28/2007] [Accepted: 07/24/2007] [Indexed: 02/06/2023]
Abstract
The outer membranes of Gram-negative bacteria are replete with integral membrane proteins that exhibit antiparallel beta-barrel structures, but very few of these proteins function as enzymes. In Escherichia coli, only three beta-barrel enzymes are known to exist in the outer membrane; these are the phospholipase OMPLA, the protease OmpT, and the phospholipidColon, two colonslipid A palmitoyltransferase PagP, all of which have been characterized at the structural level. Structural details have also emerged for the outer membrane beta-barrel enzyme PagL, a lipid A 3-O-deacylase from Pseudomonas aeruginosa. Lipid A can be further modified in the outer membrane by two beta-barrel enzymes of unknown structure; namely, the Salmonella enterica 3'-acyloxyacyl hydrolase LpxR, and the Rhizobium leguminosarum oxidase LpxQ, which employs O(2) to convert the proximal glucosamine unit of lipid A into 2-aminogluconate. Structural biology now indicates how beta-barrel enzymes can function as sentinels that remain dormant when the outer membrane permeability barrier is intact. Host immune defenses and antibiotics that perturb this barrier can directly trigger beta-barrel enzymes in the outer membrane. The ensuing adaptive responses occur instantaneously and rapidly outpace other signal transduction mechanisms that similarly function to restore the outer membrane permeability barrier.
Collapse
Affiliation(s)
- Russell E Bishop
- Department of Biochemistry and Biomedical Sciences, 1200 Main Street West, Health Sciences Centre 4H19, McMaster University, Hamilton, ON, Canada L8N 3Z5.
| |
Collapse
|
44
|
Lipid localization in bacterial cells through curvature-mediated microphase separation. Biophys J 2008; 95:1034-49. [PMID: 18390605 DOI: 10.1529/biophysj.107.126920] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Although many proteins are known to localize in bacterial cells, for the most part our understanding of how such localization takes place is limited. Recent evidence that the phospholipid cardiolipin localizes to the poles of rod-shaped bacteria suggests that targeting of some proteins may rely on the heterogeneous distribution of membrane lipids. Membrane curvature has been proposed as a factor in the polar localization of high-intrinsic-curvature lipids, but the small size of lipids compared to the dimensions of the cell means that single molecules cannot stably localize. At the other extreme, phase separation of the membrane energetically favors a single domain of such lipids at one pole. We have proposed a physical mechanism in which osmotic pinning of the membrane to the cell wall naturally produces microphase separation, i.e., lipid domains of finite size, whose aggregate sensitivity to cell curvature can support spontaneous and stable localization to both poles. Here, we demonstrate that variations in the strength of pinning of the membrane to the cell wall can also act as a strong localization mechanism, in agreement with observations of cardiolipin relocalization from the poles to the septum during sporulation in the bacterium Bacillus subtilis. In addition, we rigorously determine the relationship between localization and the domain-size distribution including the effects of entropy, and quantify the strength of domain-domain interactions. Our model predicts a critical concentration of cardiolipin below which domains will not form and hence polar localization will not take place. This observation is consistent with recent experiments showing that in Escherichia coli cells with reduced cardiolipin concentrations, cardiolipin and the osmoregulatory protein ProP fail to localize to the poles.
Collapse
|
45
|
Eckford PDW, Sharom FJ. Functional characterization of Escherichia coli MsbA: interaction with nucleotides and substrates. J Biol Chem 2008; 283:12840-50. [PMID: 18344567 DOI: 10.1074/jbc.m708274200] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The Escherichia coli MsbA protein is a 65-kDa member of the ATP-binding cassette superfamily. It is thought to function as an ATP-dependent lipid translocase that transports lipid A from the inner to the outer leaflet of the cytoplasmic membrane. MsbA with high ATPase activity was isolated and found to be homodimeric in detergent solution. The protein ATPase activity was inhibited by vanadate and showed variable patterns of stimulation and inhibition by lipid A and other compounds. The intrinsic tryptophan fluorescence of the protein was characterized, and dynamic quenching using acrylamide showed that a conformational change took place on binding of lipid A. Fluorescence quenching was used to characterize the interactions of MsbA with nucleotides and various putative substrates, including lipids, lipid-like compounds, and drugs. MsbA had an apparent binding affinity for ATP of approximately 2 mm and also bound nonhydrolyzable ATP analogs and fluorescent ATP derivatives. The putative substrate lipid A interacted with the protein with an affinity of 6.4 microm. Drugs that are known to be substrates for ABC multidrug transporters also interacted with MsbA with affinities in the range 0.25-50 microm. This study represents the first use of fluorescence approaches to estimate MsbA binding affinities for nucleotides and putative transport substrates.
Collapse
Affiliation(s)
- Paul D W Eckford
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | | |
Collapse
|
46
|
Lohner K, Sevcsik E, Pabst G. Chapter Five Liposome-Based Biomembrane Mimetic Systems: Implications for Lipid–Peptide Interactions. ADVANCES IN PLANAR LIPID BILAYERS AND LIPOSOMES 2008. [DOI: 10.1016/s1554-4516(07)06005-x] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
|
47
|
Castellanos M, Kushiro K, Lai SK, Shuler ML. A genomically/chemically complete module for synthesis of lipid membrane in a minimal cell. Biotechnol Bioeng 2007; 97:397-409. [PMID: 17149771 DOI: 10.1002/bit.21251] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
A minimal cell is a hypothetical cell defined by the essential functions required for life. We have developed a module for the synthesis of membrane precursors for a mathematical minimal cell model. This module describes, with chemical and genomic detail the production of the constituents required to build a cell membrane and identifies the corresponding essential genes. Membranes allow selective nutrient passage, harmful substance exclusion, and energy generation. Bacterial membrane components range from lipids to fatty acids with embedded proteins and are structurally similar to eukaryotic cell membranes. Membranes are dynamic structures and experimental analyses show great variations in bacterial membrane composition. The flexibility of the model is such that different membrane compositions could be obtained in response to simulated changes in culture conditions. The model's predictions are in close agreement with the observed biological trends. The model's predictions correspond well with the experimental values of total lipid content in cells grown in chemostat culture, but less well with data from batch growth. Cell shape and size results agree especially well for data for growth rate relative to maximum growth rate larger than 0.5; and DNA, RNA, and protein predictions are consistent with experimental observations. A better understanding of the simplest bacterial membrane should lead to insights on the more complex behavior of membranes of higher species as well as identification of potential targets for antimicrobials.
Collapse
|
48
|
Cristani M, D'Arrigo M, Mandalari G, Castelli F, Sarpietro MG, Micieli D, Venuti V, Bisignano G, Saija A, Trombetta D. Interaction of four monoterpenes contained in essential oils with model membranes: implications for their antibacterial activity. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2007; 55:6300-8. [PMID: 17602646 DOI: 10.1021/jf070094x] [Citation(s) in RCA: 351] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
The present article reports the antimicrobial efficacy of four monoterpenes (thymol, carvacrol, p-cymene, and gamma-terpinene) against the Gram-positive bacterium Staphylococcus aureus and the Gram-negative bacterium Escherichia coli. For a better understanding of their mechanism of action, the damage caused by these four monoterpenes on biomembranes was evaluated by monitoring the release, following exposure to the compounds under study, of the water-soluble fluorescent marker carboxyfluorescein (CF) from large unilamellar vesicles (LUVs) with different lipidic composition (phosphatidylcholine, PC, phosphatidylcholine/phosphatidylserine, PC/PS, 9:1; phosphatidylcholine/stearylamine, PC/SA, 9:1). Furthermore, the interaction of these terpenes with dimyristoylphosphatidylcholine multilamellar vesicles as model membranes was monitored by means of differential scanning calorimetry (DSC) technique. Finally, the results were related also with the relative lipophilicity and water solubility of the compounds examined. We observed that thymol is considerably more toxic against S. aureus than the other three terpenes, while carvacrol and p-cymene are the most inhibitory against E. coli. Thymol and carvacrol, but not gamma-terpinene and p-cymene, caused a concentration-dependent CF leakage from all kinds of LUVs employed; in particular, thymol was more effective on PC and PC/SA LUVS than on PC/PS vesicles, while carvacrol challenge evoked a CF leakage from PC/PS LUVs similar to that induced from PC/SA LUVs, and lower than that measured with PC vesicles. Concerning DSC experiments, these four terpenes caused a decrease in Tm and (especially carvacrol and p-cymene) DeltaH values, very likely acting as substitutional impurities. Taken together, our findings lead us to speculate that the antimicrobial effect of thymol, carvacrol, p-cymene, and gamma-terpinene may result, partially at least, from a gross perturbation of the lipidic fraction of the plasmic membrane of the microorganism. In addition to being related to the physicochemical characteristics of the compounds (such as lipophilicity and water solubility), this effect seems to be dependent on the lipidic composition and net surface charge of the microbic membranes. Furthermore, the compounds might cross the cell membranes, thus penetrating into the interior of the cell and interacting with intracellular sites critical for antibacterial activity.
Collapse
Affiliation(s)
- Mariateresa Cristani
- Department Farmaco-Biologico, School of Pharmacy, University of Messina, Contrada Annunziata, 98168 Messina, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Zubova SV, Ivanov AY, Prokhorenko IR. Relations between the chemotype of Rhodobacter capsulatus strains and the cell electrophoretic properties. Microbiology (Reading) 2007. [DOI: 10.1134/s0026261707020087] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
50
|
Barman H, Walch M, Latinovic-Golic S, Dumrese C, Dolder M, Groscurth P, Ziegler U. Cholesterol in negatively charged lipid bilayers modulates the effect of the antimicrobial protein granulysin. J Membr Biol 2007; 212:29-39. [PMID: 17206515 DOI: 10.1007/s00232-006-0040-3] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2006] [Revised: 09/05/2006] [Indexed: 10/23/2022]
Abstract
The release of granulysin, a 9-kDa cationic protein, from lysosomal granules of cytotoxic T lymphocytes and natural killer cells plays an important role in host defense against microbial pathogens. Granulysin is endocytosed by the infected target cell via lipid rafts and kills subsequently intracellular bacteria. The mechanism by which granulysin binds to eukaryotic and prokaryotic cells but lyses only the latter is not well understood. We have studied the effect of granulysin on large unilamellar vesicles (LUVs) and supported bilayers with prokaryotic and eukaryotic lipid mixtures or model membranes with various lipid compositions and charges. Binding of granulysin to bilayers with negative charges, as typically found in bacteria and lipid rafts of eukaryotic cells, was shown by immunoblotting. Fluorescence release assays using LUV revealed an increase in permeability of prokaryotic, negatively charged and lipid raft-like bilayers devoid of cholesterol. Changes in permeability of these bilayers could be correlated to defects of various sizes penetrating supported bilayers as shown by atomic force microscopy. Based on these results, we conclude that granulysin causes defects in negatively charged cholesterol-free membranes, a membrane composition typically found in bacteria. In contrast, granulysin is able to bind to lipid rafts in eukaryotic cell membranes, where it is taken up by the endocytotic pathway, leaving the cell intact.
Collapse
Affiliation(s)
- Hanna Barman
- Division of Cell Biology, Institute of Anatomy, University of Zurich, Winterthurerstrasse 190, CH-8057, Zurich, Switzerland
| | | | | | | | | | | | | |
Collapse
|