1
|
Sagheer U, Shu J, Yu H, Ren X, Haroon K, Majeed U, Xu C, Zhang F, Xie H, Li Z. Protein glycopatterns for natural regulation of microbiota in lung adenocarcinoma. Int J Biol Macromol 2025; 306:141542. [PMID: 40023429 DOI: 10.1016/j.ijbiomac.2025.141542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 12/22/2024] [Accepted: 02/25/2025] [Indexed: 03/04/2025]
Abstract
Despite medical advancements, lung cancer remains a leading cause of mortality, necessitating a deeper understanding. Recent studies show that protein glycopatterns and lung microbiome are crucial in lung cancer development, but their relationship in adenocarcinoma remains unexplored. Therefore, this study evaluated protein glycopatterns and microbial changes between lung adenocarcinoma (n = 70) and paracancerous tissues (n = 70) through lectin microarrays and 16S rDNA sequencing. Further, we explored the impact of protein glycopatterns against a decreased abundant microbiota using extracted glycoproteins reflecting high expression protein glycopatterns observed in lung adenocarcinoma tissues. The results demonstrated a significant up-regulation of protein glycopatterns in tumor tissues, including WGA binding to multivalent Sia/(GlcNAc)n (P = 0.0078) and Jacalin binding to T/Tn antigens (P = 0.0313). Meanwhile, two bacterial species of the genus Sphingomonas showed a significant decrease (P < 0.01) in adenocarcinoma as compared to paracancerous tissue. Interestingly, adhesion assay results showed glycoproteins (25-100 μg/ml) with multivalent Sia and (GlcNAc)n structures extracted by WGA-magnetic particle conjugates significantly reduce (P < 0.0001) Sphingomonas mucosissima adhesion and toxicity to lung cancer cells (A-549). The findings indicated that protein glycopatterns could inhibit cancer-instigating oncomicrobes to intercept cancer progression, offering insights into molecular mechanisms driving disease progression and aiding to develop new treatment strategies.
Collapse
Affiliation(s)
- Usman Sagheer
- Laboratory for Functional Glycomics, College of Life Sciences, Northwest University, Xi'an, China
| | - Jian Shu
- Laboratory for Functional Glycomics, College of Life Sciences, Northwest University, Xi'an, China
| | - Hanjie Yu
- Laboratory for Functional Glycomics, College of Life Sciences, Northwest University, Xi'an, China
| | - Xiameng Ren
- Laboratory for Functional Glycomics, College of Life Sciences, Northwest University, Xi'an, China
| | - Kashmala Haroon
- Laboratory for Functional Glycomics, College of Life Sciences, Northwest University, Xi'an, China
| | - Usman Majeed
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Chen Xu
- Laboratory for Functional Glycomics, College of Life Sciences, Northwest University, Xi'an, China
| | - Fan Zhang
- Laboratory for Functional Glycomics, College of Life Sciences, Northwest University, Xi'an, China
| | - Hailong Xie
- Institute of Cancer Research, University of South China, Hengyang, China.
| | - Zheng Li
- Laboratory for Functional Glycomics, College of Life Sciences, Northwest University, Xi'an, China.
| |
Collapse
|
2
|
Bastian K, Orozco‐Moreno M, Thomas H, Hodgson K, Visser EA, Rossing E, Pijnenborg JFA, Eerden N, Wilson L, Saravannan H, Hanley O, Grimsley G, Frame F, Peng Z, Knight B, McCullagh P, McGrath J, Crundwell M, Harries L, Maitland NJ, Heer R, Wang N, Goddard‐Borger ED, Guerrero RH, Boltje TJ, Drake RR, Scott E, Elliott DJ, Munkley J. FUT8 Is a Critical Driver of Prostate Tumour Growth and Can Be Targeted Using Fucosylation Inhibitors. Cancer Med 2025; 14:e70959. [PMID: 40387385 PMCID: PMC12086987 DOI: 10.1002/cam4.70959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2025] [Revised: 04/20/2025] [Accepted: 04/29/2025] [Indexed: 05/20/2025] Open
Abstract
BACKGROUND An unmet clinical need requires the discovery of new treatments for men facing advanced prostate cancer. Aberrant glycosylation is a universal feature of cancer cells and plays a key role in tumour growth, immune evasion and metastasis. Alterations in tumour glycosylation are closely associated with prostate cancer progression, making glycans promising therapeutic targets. Fucosyltransferase 8 (FUT8) drives core fucosylation by adding α1,6-fucose to the innermost GlcNAc residue on N-glycans. While FUT8 is recognised as a crucial factor in cancer progression, its role in prostate cancer remains poorly understood. METHODS & RESULTS Here, we demonstrate using multiple independent clinical cohorts that FUT8 is upregulated in high grade and metastatic prostate tumours, and in the blood of prostate cancer patients with aggressive disease. Using novel tools, including PhosL lectin immunofluorescence and N-glycan MALDI mass spectrometry imaging (MALDI-MSI), we find FUT8 underpins the biosynthesis of malignant core fucosylated N-glycans in prostate cancer cells and using both in vitro and in vivo models, we find FUT8 promotes prostate tumour growth, cell motility and invasion. Mechanistically we show FUT8 regulates the expression of genes and signalling pathways linked to prostate cancer progression. Furthermore, we find that fucosylation inhibitors can inhibit the activity of FUT8 in prostate cancer to suppress the growth of prostate tumours. CONCLUSIONS Our study cements FUT8-mediated core fucosylation as an important driver of prostate cancer progression and suggests targeting FUT8 activity for prostate cancer therapy as an exciting area to explore.
Collapse
Affiliation(s)
- Kayla Bastian
- Newcastle University Centre for CancerNewcastle University Institute of BiosciencesNewcastleUK
| | - Margarita Orozco‐Moreno
- Newcastle University Centre for CancerNewcastle University Institute of BiosciencesNewcastleUK
| | - Huw Thomas
- Newcastle University Centre for Cancer, Translational and Clinical Research Institute, Paul O'gorman BuildingNewcastle UniversityNewcastle upon TyneUK
| | - Kirsty Hodgson
- Newcastle University Centre for CancerNewcastle University Institute of BiosciencesNewcastleUK
| | - Eline A. Visser
- Synthetic Organic Chemistry, Institute for Molecules and MaterialsRadboud UniversityNijmegenthe Netherlands
| | - Emiel Rossing
- Synthetic Organic Chemistry, Institute for Molecules and MaterialsRadboud UniversityNijmegenthe Netherlands
| | | | | | - Laura Wilson
- Newcastle University Centre for Cancer, Translational and Clinical Research Institute, Paul O'gorman BuildingNewcastle UniversityNewcastle upon TyneUK
| | - Hasvini Saravannan
- Newcastle University Centre for CancerNewcastle University Institute of BiosciencesNewcastleUK
| | - Oliver Hanley
- Newcastle University Centre for CancerNewcastle University Institute of BiosciencesNewcastleUK
| | - Grace Grimsley
- Department of Cell and Molecular PharmacologyMedical University of South CarolinaCharlestonSouth CarolinaUSA
| | - Fiona Frame
- Cancer Research Unit, Department of BiologyUniversity of YorkNorth YorkshireUK
| | - Ziqian Peng
- Newcastle University Centre for CancerNewcastle University Institute of BiosciencesNewcastleUK
| | - Bridget Knight
- NIHR Exeter Clinical Research FacilityRoyal Devon and Exeter NHS Foundation TrustExeterUK
| | - Paul McCullagh
- Department of PathologyRoyal Devon and Exeter NHS Foundation TrustExeterUK
| | - John McGrath
- Exeter Surgical Health Services Research UnitRoyal Devon and Exeter NHS Foundation TrustExeterUK
| | - Malcolm Crundwell
- Institute of Biomedical and Clinical Sciences, Medical School, College of Medicine and HealthUniversity of ExeterExeterUK
| | - Lorna Harries
- Institute of Biomedical and Clinical Sciences, Medical School, College of Medicine and HealthUniversity of ExeterExeterUK
| | - Norman J. Maitland
- Cancer Research Unit, Department of BiologyUniversity of YorkNorth YorkshireUK
| | - Rakesh Heer
- Newcastle University Centre for Cancer, Translational and Clinical Research Institute, Paul O'gorman BuildingNewcastle UniversityNewcastle upon TyneUK
| | - Ning Wang
- The Mellanby Centre for Musculoskeletal Research, Division of Clinical MedicineThe University of SheffieldSheffieldUK
- Leicester Cancer Research Centre, Department of Genetics, Genomics, and Cancer SciencesUniversity of LeicesterLeicesterUK
| | - Ethan D. Goddard‐Borger
- The Walter and Eliza Hall Institute of Medical ResearchParkvilleVictoriaAustralia
- Department of Medical BiologyUniversity of MelbourneParkvilleVictoriaAustralia
| | - Ramon Hurtado Guerrero
- University of ZaragozaZaragozaSpain
- Copenhagen Center for Glycomics, Department of Cellular and Molecular MedicineUniversity of CopenhagenCopenhagenDenmark
| | - Thomas J. Boltje
- Synthetic Organic Chemistry, Institute for Molecules and MaterialsRadboud UniversityNijmegenthe Netherlands
| | - Richard R. Drake
- Department of Cell and Molecular PharmacologyMedical University of South CarolinaCharlestonSouth CarolinaUSA
| | - Emma Scott
- Newcastle University Centre for CancerNewcastle University Institute of BiosciencesNewcastleUK
| | - David J. Elliott
- Newcastle University Centre for CancerNewcastle University Institute of BiosciencesNewcastleUK
| | - Jennifer Munkley
- Newcastle University Centre for CancerNewcastle University Institute of BiosciencesNewcastleUK
| |
Collapse
|
3
|
Huang HW, Zeng YF, Shivatare VS, Tseng TH, Wong CH. Cell-based glycoengineering for production of homogeneous and specific glycoform-enriched antibodies with improved effector functions. Proc Natl Acad Sci U S A 2025; 122:e2423853122. [PMID: 39969996 PMCID: PMC11874607 DOI: 10.1073/pnas.2423853122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2024] [Accepted: 01/18/2025] [Indexed: 02/21/2025] Open
Abstract
Glycosylation of humanized antibody at Fc-Asn297 significantly affects the Fc-mediated killing of target cells through effector functions, especially antibody-dependent cellular cytotoxicity (ADCC), antibody-dependent cell-mediated phagocytosis (ADCP), and antibody-dependent vaccinal effect (ADVE). Previous studies showed that therapeutic immunoglobulin G (IgG) antibodies with α2,6-sialyl complex type (SCT) glycan attached to Fc-Asn297 exhibited optimal binding to the Fc receptors on effector cells associated with ADCC, ADCP, and ADVE. However, the production of antibodies with homogeneous Fc-SCT glycan requires multiple in vitro enzymatic and purification steps. In this study, we report two cell-based methods to produce Fc-GlcNAc antibody and Fc-SCT-enriched antibodies with improved effector functions. First, we expressed endoglycosidase S2 in Expi293F GnT1- cells to trim all N-glycans to Fc-GlcNAc antibody for in vitro transglycosylation to generate homogeneous antibodies with well-defined Fc glycan. Second, we engineered the glycosylation pathway of HEK293T cells through knock-out of undesired glycosyltransferases and knock-in of desired glycosyltransferases to produce Fc-SCT-enriched antibodies and evaluated their binding to Fc receptors, and we found that the Fc-SCT-enriched antibody is like or better than the homogeneous Fc-SCT antibody in binding to the Fc receptors associated with ADCC, ADCP, and ADVE.
Collapse
Affiliation(s)
- Han-Wen Huang
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA92037
| | - Yi-Fang Zeng
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA92037
| | - Vidya S. Shivatare
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA92037
| | - Tzu-Hao Tseng
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA92037
| | - Chi-Huey Wong
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA92037
| |
Collapse
|
4
|
Felixberger PT, Andrieux G, Maul-Pavicic A, Goldacker S, Harder I, Gutenberger S, Landry JJM, Benes V, Jakob TF, Boerries M, Nitschke L, Voll RE, Warnatz K, Keller B. CD21 low B cells reveal a unique glycosylation pattern with hypersialylation and hyperfucosylation. Front Immunol 2025; 16:1512279. [PMID: 40013136 PMCID: PMC11861550 DOI: 10.3389/fimmu.2025.1512279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Accepted: 01/10/2025] [Indexed: 02/28/2025] Open
Abstract
Background The posttranslational modification of cellular macromolecules by glycosylation is considered to contribute to disease pathogenesis in autoimmune and inflammatory conditions. In a subgroup of patients with common variable immunodeficiency (CVID), the occurrence of such complications is associated with an expansion of naïve-like CD21low B cells during a chronic type 1 immune activation. The glycosylation pattern of B cells in CVID patients has not been addressed to date. Objective The objective of this study was to examine the surface glycome of B cells in patients with CVID and associated immune dysregulation. Methods We performed surface lectin staining on B cells from peripheral blood and tonsils, both ex vivo and after in vitro stimulation. Additionally, we examined the expression of glycosylation-related genes by RNAseq in naïve-like CD21low B cells ex vivo, as well as in naïve CD21pos B cells from healthy controls after in vitro stimulation. Results Unlike CD21pos B cells, naïve-like CD21low B cells from CVID patients and CD21low B cells from healthy controls exhibited a unique glycosylation pattern with high levels of α2,6 sialic acids and fucose. This hypersialylation and hyperfucosylation were particularly induced by activation with anti-IgM and interferon-γ (IFN-γ). Transcriptome analysis suggested that naïve-like CD21low B cells possess a comprehensively reorganised glycosylation machinery, with anti-IgM/IFN-γ having the potential to initiate these changes in vitro. Conclusion CD21low B cells are hypersialylated and hyperfucosylated. This may implicate altered lectin-ligand interactions on the cell surface potentially affecting the CD21low B-cell function. These glycome changes appear to be driven by the prominent type I immune response in complicated CVID patients. A better understanding of how altered glycosylation influences immune cell function could lead to new therapeutic strategies.
Collapse
Affiliation(s)
- Peter Tobias Felixberger
- Department of Rheumatology and Clinical Immunology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Center for Chronic Immunodeficiency (CCI), Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Geoffroy Andrieux
- Institute of Medical Bioinformatics and Systems Medicine, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Andrea Maul-Pavicic
- Department of Rheumatology and Clinical Immunology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Center for Chronic Immunodeficiency (CCI), Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Sigune Goldacker
- Department of Rheumatology and Clinical Immunology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Center for Chronic Immunodeficiency (CCI), Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Ina Harder
- Department of Rheumatology and Clinical Immunology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Center for Chronic Immunodeficiency (CCI), Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Sylvia Gutenberger
- Department of Rheumatology and Clinical Immunology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Center for Chronic Immunodeficiency (CCI), Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | | | - Vladimir Benes
- Genomics Core Facility, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Till Fabian Jakob
- Department of Oto-Rhino-Laryngology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Melanie Boerries
- Institute of Medical Bioinformatics and Systems Medicine, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- German Cancer Consortium (DKTK), Partner site Freiburg, a partnership between DKFZ and Medical Center - University of Freiburg, Freiburg, Germany
| | - Lars Nitschke
- Division of Genetics, Department of Biology, University of Erlangen, Erlangen, Germany
| | - Reinhard Edmund Voll
- Department of Rheumatology and Clinical Immunology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Center for Chronic Immunodeficiency (CCI), Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Klaus Warnatz
- Department of Rheumatology and Clinical Immunology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Center for Chronic Immunodeficiency (CCI), Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Baerbel Keller
- Department of Rheumatology and Clinical Immunology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Center for Chronic Immunodeficiency (CCI), Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| |
Collapse
|
5
|
Xu H, Li Q, Zhang Y, He C, Zhang X, Wang Z, Zhao M, Chai Y, Zhuang W, Li B. Targeting fucosyltransferase FUT8 as a prospective therapeutic approach for DLBCL. Oncogenesis 2025; 14:1. [PMID: 39881135 PMCID: PMC11779920 DOI: 10.1038/s41389-025-00544-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 12/19/2024] [Accepted: 01/17/2025] [Indexed: 01/31/2025] Open
Abstract
Diffuse large B-cell lymphoma (DLBCL) is characterized by its aggressive nature and resistance to standard chemotherapy, necessitating the development of new therapeutic approaches. The emergence of natural products and their derivatives has notably influenced cancer treatment, making morusinol, a medicine-derived monomer, a promising candidate. Here, we showed that morusinol exerted antitumor effects on DLBCL in vitro by inducing apoptosis and cell cycle arrest. Impressively, morusinol treatment exhibited potent tumor growth inhibition in vivo, proving both well-tolerated and safe in mouse models. Moreover, our investigation identified FUT8, a fucosyltransferase, as a potential target for morusinol. FUT8's role as an oncogene in DLBCL and its correlation with poor survival further underscored its significance. Furthermore, our screening efforts involving clinical and preclinical drugs unveiled a compelling synergistic effect between chidamide and morusinol. Additionally, morusinol's ability to hinder M2-like polarization of tumor-associated macrophages suggested its potential in immune response modulation within DLBCL. Collectively, morusinol showcased substantial promise as an anti-tumor agent for potential clinical application in DLBCL management, potentially augmenting established therapeutic strategies. Moreover, our findings offered promising prospects for natural products to effectively leverage its therapeutic advantages. Working model: The role of Morusinol in treating DLBCL.
Collapse
Affiliation(s)
- Hao Xu
- Department of Hematology, The Second Affiliated Hospital of Soochow University, Suzhou, China
- Department of Cell Biology, School of Biology & Basic Medical Sciences, Suzhou Medical College of Soochow University, Suzhou, China
- Department of Medical Oncology, The People's Hospital of Rugao, Nantong, China
| | - Qi Li
- Department of Hematology, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Yuchen Zhang
- Department of Hematology, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Chuan He
- Department of Hematology, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Xinyun Zhang
- Department of Hematology, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Zhiming Wang
- Department of Cell Biology, School of Biology & Basic Medical Sciences, Suzhou Medical College of Soochow University, Suzhou, China
| | - Meifang Zhao
- Department of Hematology, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Yali Chai
- Department of Cell Biology, School of Biology & Basic Medical Sciences, Suzhou Medical College of Soochow University, Suzhou, China
| | - Wenzhuo Zhuang
- Department of Cell Biology, School of Biology & Basic Medical Sciences, Suzhou Medical College of Soochow University, Suzhou, China.
| | - Bingzong Li
- Department of Hematology, The Second Affiliated Hospital of Soochow University, Suzhou, China.
| |
Collapse
|
6
|
Kamada Y, Ueda Y, Matsuno E, Matsumoto R, Akita M, Takamatsu S, Miyoshi E. Core-fucose-specific Pholiota squarrosa lectin decreased hepatic inflammatory macrophage infiltration in steatohepatitis mice. Glycoconj J 2024; 41:267-278. [PMID: 39249179 DOI: 10.1007/s10719-024-10163-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 07/12/2024] [Accepted: 07/29/2024] [Indexed: 09/10/2024]
Abstract
Recent findings in glycobiology revealed direct evidence of the involvement of oligosaccharide changes in human diseases, including liver diseases. Fucosylation describes the attachment of a fucose residue to a glycan or glycolipid. We demonstrated that fucosylated proteins are useful serum biomarkers for nonalcoholic fatty liver disease. Among fucosyltransferases, expression of alpha-1, 6-fucosyltransferase (Fut8), which produces core fucose, is frequently elevated during the progression of human chronic liver diseases. Previously, we discovered core-fucose-specific Pholiota squarrosa lectin (PhoSL) from Japanese mushroom Sugitake. Lectins are bioactive compounds that bind to glycan specifically, and various kinds of lectin have a variety of biological functions. Using high-fat and high-cholesterol (HFHC)-fed steatohepatitic mice, we found that core fucosylation increases in hepatic inflammatory macrophages. Antibody drugs bind to specific antigens and block protein function. We hypothesized that, like antibody drugs, PhoSL could have inhibitory effects on glycoproteins involved in steatohepatitis progression. PhoSL administration dramatically decreased hepatic macrophage infiltration and liver fibrosis-related gene expression. Using mouse macrophage-like cell RAW264.7, we found that PhoSL enhanced core-fucose-mediated activation of macrophage cell death by blocking interferon-γ/signal transducer and activator of transcription 1 (STAT1) signaling. Core-fucose-mediated cell death is a mechanism for the anti-inflammatory effects and anti-fibrotic effects of PhoSL on activated macrophages in steatohepatitic liver. In addition, PhoSL provides an anti-fibrotic effect by blocking transforming growth factor-β/SMAD family member 3 signaling in hepatic stellate cells. In conclusion, we found core-fucose-specific PhoSL administration could suppress steatohepatitis progression by decreasing inflammatory macrophage infiltration and fibrotic signaling in hepatic stellate cells.
Collapse
Affiliation(s)
- Yoshihiro Kamada
- Department of Advanced Metabolic Hepatology, Osaka University Graduate School of Medicine, 1-7, Yamada-Oka, Suita, Osaka, 565-0871, Japan.
| | - Yui Ueda
- Department of Molecular Biochemistry and Clinical Investigation, Osaka University Graduate School of Medicine, 1-7, Yamada-Oka, Suita, Osaka, 565-0871, Japan
| | - Eriko Matsuno
- Department of Molecular Biochemistry and Clinical Investigation, Osaka University Graduate School of Medicine, 1-7, Yamada-Oka, Suita, Osaka, 565-0871, Japan
| | - Riku Matsumoto
- Department of Molecular Biochemistry and Clinical Investigation, Osaka University Graduate School of Medicine, 1-7, Yamada-Oka, Suita, Osaka, 565-0871, Japan
| | - Maaya Akita
- Department of Molecular Biochemistry and Clinical Investigation, Osaka University Graduate School of Medicine, 1-7, Yamada-Oka, Suita, Osaka, 565-0871, Japan
| | - Shinji Takamatsu
- Department of Molecular Biochemistry and Clinical Investigation, Osaka University Graduate School of Medicine, 1-7, Yamada-Oka, Suita, Osaka, 565-0871, Japan
| | - Eiji Miyoshi
- Department of Molecular Biochemistry and Clinical Investigation, Osaka University Graduate School of Medicine, 1-7, Yamada-Oka, Suita, Osaka, 565-0871, Japan.
| |
Collapse
|
7
|
Solomon J, Gutierrez-Reyes CD, Chávez-Reyes J, Onigbinde S, Marichal-Cancino BA, López-Lariz CH, Beck M, Mechref Y. Neuroglycome alterations of hippocampus and prefrontal cortex of juvenile rats chronically exposed to glyphosate-based herbicide. Front Neurosci 2024; 18:1442772. [PMID: 39234181 PMCID: PMC11371619 DOI: 10.3389/fnins.2024.1442772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Accepted: 07/19/2024] [Indexed: 09/06/2024] Open
Abstract
Introduction Glyphosate-based herbicides (GBHs) have been shown to have significant neurotoxic effects, affecting both the structure and function of the brain, and potentially contributing to the development of neurodegenerative disorders. Despite the known importance of glycosylation in disease progression, the glycome profile of systems exposed to GBH has not been thoroughly investigated. Methods In this study, we conducted a comprehensive glycomic profiling using LC-MS/MS, on the hippocampus and prefrontal cortex (PFC) of juvenile rats exposed to GBH orally, aiming to identify glyco-signature aberrations after herbicide exposure. Results We observed changes in the glycome profile, particularly in fucosylated, high mannose, and sialofucosylated N-glycans, which may be triggered by GBH exposure. Moreover, we found major significant differences in the N-glycan profiles between the GBH-exposed group and the control group when analyzing each gender independently, in contrast to the analysis that included both genders. Notably, gender differences in the behavioral test of object recognition showed a decreased performance in female animals exposed to GBH compared to controls (p < 0.05), while normal behavior was recorded in GBH-exposed male rats (p > 0.05). Conclusion These findings suggest that glycans may play a role in the neurotoxic effect caused by GBH. The result suggests that gender variation may influence the response to GBH exposure, with potential implications for disease progression and specifically the neurotoxic effects of GBHs. Understanding these gender-specific responses could enhance knowledge of the mechanisms underlying GBH-induced toxicity and its impact on brain health. Overall, our study represents the first detailed analysis of N-glycome profiles in the hippocampus and PFC of rats chronically exposed to GBH. The observed alterations in the expression of N-glycan structures suggest a potential neurotoxic effect associated with chronic GBH exposure, highlighting the importance of further research in this area.
Collapse
Affiliation(s)
- Joy Solomon
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX, United States
| | | | - Jesús Chávez-Reyes
- Department of Physiology and Pharmacology, Center of Basic Sciences, Universidad Autonoma de Aguascalientes, Aguascalientes, Mexico
| | - Sherifdeen Onigbinde
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX, United States
| | - Bruno A Marichal-Cancino
- Department of Physiology and Pharmacology, Center of Basic Sciences, Universidad Autonoma de Aguascalientes, Aguascalientes, Mexico
| | - Carlos H López-Lariz
- Department of Physiology and Pharmacology, Center of Basic Sciences, Universidad Autonoma de Aguascalientes, Aguascalientes, Mexico
| | - Mia Beck
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX, United States
| | - Yehia Mechref
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX, United States
| |
Collapse
|
8
|
Guo H, Sun Q, Huang X, Wang X, Zhang F, Qu W, Liu J, Cheng X, Zhu Q, Yi W, Shu Q, Li X. Fucosyltransferase 8 regulates adult neurogenesis and cognition of mice by modulating the Itga6-PI3K/Akt signaling pathway. SCIENCE CHINA. LIFE SCIENCES 2024; 67:1427-1440. [PMID: 38523237 DOI: 10.1007/s11427-023-2510-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 11/14/2023] [Indexed: 03/26/2024]
Abstract
Fucosyltransferase 8 (Fut8) and core fucosylation play critical roles in regulating various biological processes, including immune response, signal transduction, proteasomal degradation, and energy metabolism. However, the function and underlying mechanism of Fut8 and core fucosylation in regulating adult neurogenesis remains unknown. We have shown that Fut8 and core fucosylation display dynamic features during the differentiation of adult neural stem/progenitor cells (aNSPCs) and postnatal brain development. Fut8 depletion reduces the proliferation of aNSPCs and inhibits neuronal differentiation of aNSPCs in vitro and in vivo, respectively. Additionally, Fut8 deficiency impairs learning and memory in mice. Mechanistically, Fut8 directly interacts with integrin α6 (Itga6), an upstream regulator of the PI3k-Akt signaling pathway, and catalyzes core fucosylation of Itga6. Deletion of Fut8 enhances the ubiquitination of Itga6 by promoting the binding of ubiquitin ligase Trim21 to Itga6. Low levels of Itga6 inhibit the activity of the PI3K/Akt signaling pathway. Moreover, the Akt agonist SC79 can rescue neurogenic and behavioral deficits caused by Fut8 deficiency. In summary, our study uncovers an essential function of Fut8 and core fucosylation in regulating adult neurogenesis and sheds light on the underlying mechanisms.
Collapse
Affiliation(s)
- Hongfeng Guo
- The Children's Hospital, National Clinical Research Center for Child Health, School of Medicine, Zhejiang University, Hangzhou, 310052, China
- The Institute of Translational Medicine, School of Medicine, Zhejiang University, Hangzhou, 310029, China
| | - Qihang Sun
- The Children's Hospital, National Clinical Research Center for Child Health, School of Medicine, Zhejiang University, Hangzhou, 310052, China
- The Institute of Translational Medicine, School of Medicine, Zhejiang University, Hangzhou, 310029, China
| | - Xiaoli Huang
- The Children's Hospital, National Clinical Research Center for Child Health, School of Medicine, Zhejiang University, Hangzhou, 310052, China
| | - Xiaohao Wang
- The Children's Hospital, National Clinical Research Center for Child Health, School of Medicine, Zhejiang University, Hangzhou, 310052, China
| | - Feng Zhang
- The Children's Hospital, National Clinical Research Center for Child Health, School of Medicine, Zhejiang University, Hangzhou, 310052, China
| | - Wenzheng Qu
- The Children's Hospital, National Clinical Research Center for Child Health, School of Medicine, Zhejiang University, Hangzhou, 310052, China
| | - Jinling Liu
- The Children's Hospital, National Clinical Research Center for Child Health, School of Medicine, Zhejiang University, Hangzhou, 310052, China
| | - Xuejun Cheng
- The Children's Hospital, National Clinical Research Center for Child Health, School of Medicine, Zhejiang University, Hangzhou, 310052, China
| | - Qiang Zhu
- College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Wen Yi
- College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Qiang Shu
- The Children's Hospital, National Clinical Research Center for Child Health, School of Medicine, Zhejiang University, Hangzhou, 310052, China.
| | - Xuekun Li
- The Children's Hospital, National Clinical Research Center for Child Health, School of Medicine, Zhejiang University, Hangzhou, 310052, China.
- The Institute of Translational Medicine, School of Medicine, Zhejiang University, Hangzhou, 310029, China.
- Binjiang Institute of Zhejiang University, Hangzhou, 310053, China.
- Zhejiang University Cancer Center, Zhejiang University, Hangzhou, 310029, China.
| |
Collapse
|
9
|
Kumar BS. Recent Developments and Application of Mass Spectrometry Imaging in N-Glycosylation Studies: An Overview. Mass Spectrom (Tokyo) 2024; 13:A0142. [PMID: 38435075 PMCID: PMC10904931 DOI: 10.5702/massspectrometry.a0142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 01/06/2024] [Indexed: 03/05/2024] Open
Abstract
Among the most typical posttranslational modifications is glycosylation, which often involves the covalent binding of an oligosaccharide (glycan) to either an asparagine (N-linked) or a serine/threonine (O-linked) residue. Studies imply that the N-glycan portion of a glycoprotein could serve as a particular disease biomarker rather than the protein itself because N-linked glycans have been widely recognized to evolve with the advancement of tumors and other diseases. N-glycans found on protein asparagine sites have been especially significant. Since N-glycans play clearly defined functions in the folding of proteins, cellular transport, and transmission of signals, modifications to them have been linked to several illnesses. However, because these N-glycans' production is not template driven, they have a substantial morphological range, rendering it difficult to distinguish the species that are most relevant to biology and medicine using standard techniques. Mass spectrometry (MS) techniques have emerged as effective analytical tools for investigating the role of glycosylation in health and illness. This is due to developments in MS equipment, data collection, and sample handling techniques. By recording the spatial dimension of a glycan's distribution in situ, mass spectrometry imaging (MSI) builds atop existing methods while offering added knowledge concerning the structure and functionality of biomolecules. In this review article, we address the current development of glycan MSI, starting with the most used tissue imaging techniques and ionization sources before proceeding on to a discussion on applications and concluding with implications for clinical research.
Collapse
|
10
|
Xin Z, Wen X, Zhou M, Lin H, Liu J. Identification of molecular characteristics of FUT8 and alteration of core fucosylation in kidney renal clear cell cancer. Aging (Albany NY) 2024; 16:2299-2319. [PMID: 38277230 PMCID: PMC10911337 DOI: 10.18632/aging.205482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 12/04/2023] [Indexed: 01/28/2024]
Abstract
BACKGROUND Kidney renal clear cell cancer (KIRC) is a type of urological cancer that occurs worldwide. Core fucosylation (CF), as the most common post-translational modification, is involved in the tumorigenesis. METHODS The alterations of CF-related genes were summarized in pan-cancer. The "ConsensusClusterPlus" package was utilized to identify two CF-related KIRC subtypes. The "ssgsea" function was chosen to estimate the CF score, signaling pathways and cell deaths. Multiple algorithms were applied to assess immune responses. The "oncoPredict" was utilized to estimate the drug sensitivity. The IHC and subgroup analysis was performed to reveal the molecular features of FUT8. Single-cell RNA sequencing (scRNA-seq) data were scrutinized to evaluate the CF state. RESULTS In pan-cancer, there was a noticeable alteration in the expression of CF-related genes. In KIRC, two CF-related subtypes (i.e., C1, C2) were obtained. In comparison to C2, C1 exhibited a higher CF score and correlated with poorer overall survival. Additionally, the TME of C2 demonstrated increased activity in neutrophils, macrophages, myeloid dendritic cells, and B cells, alongside a higher presence of silent mast cells, NK cells, and endothelial cells. Compared to normal samples, higher expression of FUT8 is observed in KIRC. The mutation of SETD2 was more frequent in low-FUT8 samples while the mutation of DNAH9 was more frequent in high-FUT8 samples. scRNA-seq analyses revealed that the CF score was predominantly higher in endothelial cells and fibroblast cells. CONCLUSIONS Two CF-related subtypes with distinct prognosis and TME were identified in KIRC. FUT8 exhibited elevated expression in KIRC samples.
Collapse
Affiliation(s)
- Zhu Xin
- Department of Nephrology, The First Affiliated Hospital of Dalian Medical University, Key Laboratory of Kidney Disease of Liaoning Province, The Center for the Transformation Medicine of Kidney Disease of Liaoning Province, Dalian, China
- Liaoning Laboratory of Cancer Genomics and Epigenomics, College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| | - Xinyu Wen
- Department of Nephrology, The First Affiliated Hospital of Dalian Medical University, Key Laboratory of Kidney Disease of Liaoning Province, The Center for the Transformation Medicine of Kidney Disease of Liaoning Province, Dalian, China
| | - Mengying Zhou
- Department of Nephrology, The First Affiliated Hospital of Dalian Medical University, Key Laboratory of Kidney Disease of Liaoning Province, The Center for the Transformation Medicine of Kidney Disease of Liaoning Province, Dalian, China
| | - Hongli Lin
- Department of Nephrology, The First Affiliated Hospital of Dalian Medical University, Key Laboratory of Kidney Disease of Liaoning Province, The Center for the Transformation Medicine of Kidney Disease of Liaoning Province, Dalian, China
| | - Jia Liu
- Liaoning Laboratory of Cancer Genomics and Epigenomics, College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| |
Collapse
|
11
|
Barlan K, Bhide GP, White DR, Lake MR, Lu C, Rieder SE, Fan L, Hsieh CL. Genome-scale functional genomics screening highlights genes impacting protein fucosylation in Chinese hamster ovary cells. SLAS DISCOVERY : ADVANCING LIFE SCIENCES R & D 2024; 29:52-58. [PMID: 37844762 DOI: 10.1016/j.slasd.2023.10.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 10/05/2023] [Accepted: 10/11/2023] [Indexed: 10/18/2023]
Abstract
N-linked glycosylation is a common post-translational modification that has various effects on multiple types of proteins. The extent to which an N-linked glycoprotein is modified and the identity of glycans species involved is of great interest to the biopharmaceutical industry, since glycosylation can impact the efficacy and safety of therapeutic monoclonal antibodies (mAbs). mAbs lacking core fucose, for example, display enhanced clinical efficacy through increased antibody-dependent cellular cytotoxicity. We performed a genome-wide CRISPR knockout screen in Chinese hamster ovary (CHO) cells, the workhorse cell culture system for industrial production of mAbs, aimed at identifying novel regulators of protein fucosylation. Using a lectin binding assay, we identified 224 gene perturbations that significantly alter protein fucosylation, including well-known glycosylation genes. This functional genomics framework could readily be extended and applied to study the genetic pathways involved in regulation of other glycoforms. We hope this resource will provide useful guidance toward the development of next generation CHO cell lines and mAb therapeutics.
Collapse
Affiliation(s)
- Kari Barlan
- Genomics Research Center, North Chicago, IL, United States
| | - Gaurang P Bhide
- Biologics Analytical Research and Development, Worcester, MA, United States
| | - Derek R White
- Biologics Production, AbbVie, North Chicago, IL, United States
| | - Marc R Lake
- Biologics Production, AbbVie, North Chicago, IL, United States
| | - Charles Lu
- Genomics Research Center, North Chicago, IL, United States
| | - Stephanie E Rieder
- Biologics Science and Technology, AbbVie Bioresearch Center, Worcester, MA, United States
| | - Lianchun Fan
- Biologics Science and Technology, AbbVie Bioresearch Center, Worcester, MA, United States
| | - Chen-Lin Hsieh
- Genomics Research Center, North Chicago, IL, United States.
| |
Collapse
|
12
|
Wang Q, Aliyu L, Chung CY, Rosenberg JN, Yu G, Betenbaugh MJ. Application of the CRISPR/Cas9 Gene Editing Method for Modulating Antibody Fucosylation in CHO Cells. Methods Mol Biol 2024; 2810:249-271. [PMID: 38926284 DOI: 10.1007/978-1-0716-3878-1_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/28/2024]
Abstract
Genetic engineering plays an essential role in the development of cell lines for biopharmaceutical manufacturing. Advanced gene editing tools can improve both the productivity of recombinant cell lines as well as the quality of therapeutic antibodies. Antibody glycosylation is a critical quality attribute for therapeutic biologics because the glycan patterns on the antibody fragment crystallizable (Fc) region can alter its clinical efficacy and safety as a therapeutic drug. As an example, recombinant antibodies derived from Chinese hamster ovary (CHO) cells are generally highly fucosylated; the absence of α1,6-fucose significantly enhances antibody-dependent cell-mediated cytotoxicity (ADCC) against cancer cells. This chapter describes a protocol applying clustered regularly interspaced short palindromic repeats (CRISPR) and CRISPR-associated protein 9 (Cas9) approach with different formats to disrupt the α-1,6-fucosyltransferase (FUT8) gene and subsequently inhibit α-1,6 fucosylation on antibodies expressed in CHO cells.
Collapse
Affiliation(s)
- Qiong Wang
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Lateef Aliyu
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Cheng-Yu Chung
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Julian N Rosenberg
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Geng Yu
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Michael J Betenbaugh
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, USA.
| |
Collapse
|
13
|
Huang HW, Shivatare VS, Tseng TH, Wong CH. Cell-based production of Fc-GlcNAc and Fc-alpha-2,6 sialyl glycan enriched antibody with improved effector functions through glycosylation pathway engineering. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.18.572280. [PMID: 38187613 PMCID: PMC10769250 DOI: 10.1101/2023.12.18.572280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
Glycosylation of antibody plays an important role in Fc-mediated killing of tumor cells and virus-infected cells through effector functions such as antibody-dependent cellular cytotoxicity (ADCC), antibody dependent cell-mediated phagocytosis (ADCP) and vaccinal effect. Previous studies showed that therapeutical humanized antibodies with α2-6 sialyl complex type (SCT) glycan attached to Fc-Asn297 exhibited optimal binding to the Fc receptors on effector cells associated with ADCC, ADCP and vaccinal effect. However, the production of antibodies with homogeneous Fc-SCT needs multiple in vitro enzymatic and purification steps. In this study, we report two different approaches to shorten the processes to produce SCT-enriched antibodies. First, we expressed a bacterial endoglycosidase in GNT1-KO EXPI293 cells to trim all N -glycans to mono-GlcNAc glycoforms for in vitro transglycosylation to generate homogeneous SCT antibody. Second, we engineered the glycosylation pathway of HEK293 cells through knockout of the undesired glycosyltransferases and expression of the desired glycosyltransferases to produce SCT enriched antibodies with similar binding affinity to Fc receptors and ADCC activity to homogenous SCT antibody.
Collapse
|
14
|
Manabe Y, Fukase K, Hizume K, Takakura Y, Takamatsu S, Miyoshi E, Kamada Y, Hurtado-Guerrero R. Systematic Strategy for the Development of Glycosyltransferase Inhibitors: Diversity-Oriented Synthesis of FUT8 Inhibitors. Synlett 2023. [DOI: 10.1055/a-2221-9096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2025]
Abstract
AbstractGlycans control various biological processes, depending on their structures. Particularly, core fucose, formed by α1,6-fucosyltransferase (FUT8), has a substantial influence on multiple biological processes. In this study, we investigated the development of FUT8 inhibitors with structural elements encompassing both the glycosyl donor (GDP-fucose) and acceptor (N-glycan) of FUT8. To efficiently optimize the structure of FUT8 inhibitors, we employed a strategy involving fragmentation of the target structure, followed by a structure optimization using a diversity-oriented synthesis approach. This study proposes an efficient strategy to accelerate the structural optimization of middle molecules.
Collapse
Affiliation(s)
- Yoshiyuki Manabe
- Department of Chemistry, Graduate School of Science, Osaka University
- Forefront Research Center, Osaka University
| | - Koichi Fukase
- Department of Chemistry, Graduate School of Science, Osaka University
- Forefront Research Center, Osaka University
- Center for Advanced Modalities and DDS, Osaka University
| | - Koki Hizume
- Department of Chemistry, Graduate School of Science, Osaka University
| | - Yohei Takakura
- Department of Chemistry, Graduate School of Science, Osaka University
| | - Shinji Takamatsu
- Department of Molecular Biochemistry and Clinical Investigation, Graduate School of Medicine, Osaka University
| | - Eiji Miyoshi
- Department of Molecular Biochemistry and Clinical Investigation, Graduate School of Medicine, Osaka University
| | - Yoshihiro Kamada
- Department of Advanced Metabolic Hepatology, Graduate School of Medicine, Osaka University
| | - Ramón Hurtado-Guerrero
- Institute of Biocomputation and Physics of Complex Systems (BIFI), University of Zaragoza
- Fundación ARAID
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, University of Copenhagen
| |
Collapse
|
15
|
Zhang NZ, Zhao LF, Zhang Q, Fang H, Song WL, Li WZ, Ge YS, Gao P. Core fucosylation and its roles in gastrointestinal glycoimmunology. World J Gastrointest Oncol 2023; 15:1119-1134. [PMID: 37546555 PMCID: PMC10401475 DOI: 10.4251/wjgo.v15.i7.1119] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 02/28/2023] [Accepted: 05/08/2023] [Indexed: 07/12/2023] Open
Abstract
Glycosylation is a common post-translational modification in eukaryotic cells. It is involved in the production of many biologically active glycoproteins and the regulation of protein structure and function. Core fucosylation plays a vital role in the immune response. Most immune system molecules are core fucosylated glycoproteins such as complements, cluster differentiation antigens, immunoglobulins, cytokines, major histocompatibility complex molecules, adhesion molecules, and immune molecule synthesis-related transcription factors. These core fucosylated glycoproteins play important roles in antigen recognition and clearance, cell adhesion, lymphocyte activation, apoptosis, signal transduction, and endocytosis. Core fucosylation is dominated by fucosyltransferase 8 (Fut8), which catalyzes the addition of α-1,6-fucose to the innermost GlcNAc residue of N-glycans. Fut8 is involved in humoral, cellular, and mucosal immunity. Tumor immunology is associated with aberrant core fucosylation. Here, we summarize the roles and potential modulatory mechanisms of Fut8 in various immune processes of the gastrointestinal system.
Collapse
Affiliation(s)
- Nian-Zhu Zhang
- Clinical Laboratory, The Second Hospital of Dalian Medical University, Dalian 116023, Liaoning Province, China
| | - Li-Fen Zhao
- Clinical Laboratory, The Second Hospital of Dalian Medical University, Dalian 116023, Liaoning Province, China
| | - Qian Zhang
- Department of Cell Therapy, Shanghai Tianze Yuntai Biomedical Co., Ltd., Shanghai 200100, China
| | - Hui Fang
- Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba 305-0005, Ibaraki, Japan
| | - Wan-Li Song
- Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Shantou University Medical College, Shantou 515041, Guangdong Province, China
| | - Wen-Zhe Li
- Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Shantou University Medical College, Shantou 515041, Guangdong Province, China
| | - Yu-Song Ge
- Department of Neurology, The Second Hospital of Dalian Medical University, Dalian 116023, Liaoning Province, China
| | - Peng Gao
- Clinical Laboratory, The Second Hospital of Dalian Medical University, Dalian 116023, Liaoning Province, China
| |
Collapse
|
16
|
Identification of Cell Culture Factors Influencing Afucosylation Levels in Monoclonal Antibodies by Partial Least-Squares Regression and Variable Importance Metrics. Processes (Basel) 2023. [DOI: 10.3390/pr11010223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Retrospective analysis of historic data for cell culture processes is a powerful tool to develop further process understanding. In particular, deploying retrospective analyses can identify important cell culture process parameters for controlling critical quality attributes, e.g., afucosylation, for the production of monoclonal antibodies (mAbs). However, a challenge of analyzing large cell culture data is the high correlation between regressors (particularly media composition), which makes traditional analyses, such as analysis of variance and multivariate linear regression, inappropriate. Instead, partial least-squares regression (PLSR) models, in combination with machine learning techniques such as variable importance metrics, are an orthogonal or alternative approach to identifying important regressors and overcoming the challenge of a highly covariant data structure. A specific workflow for the retrospective analysis of cell culture data is proposed that covers data curation, PLS regression, model analysis, and further steps. In this study, the proposed workflow was applied to data from four mAb products in an industrial cell culture process to identify significant process parameters that influence the afucosylation levels. The PLSR workflow successfully identified several significant parameters, such as temperature and media composition, to enhance process understanding of the relationship between cell culture processes and afucosylation levels.
Collapse
|
17
|
α-1,6-Fucosyltransferase Is Essential for Myogenesis in Zebrafish. Cells 2022; 12:cells12010144. [PMID: 36611938 PMCID: PMC9818595 DOI: 10.3390/cells12010144] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 12/08/2022] [Accepted: 12/24/2022] [Indexed: 12/31/2022] Open
Abstract
Glycosylation is an important mechanism regulating various biological processes, including intercellular signaling and adhesion. α-1,6-fucosyltransferase (Fut8) belongs to a family of enzymes that determine the terminal structure of glycans. Fut8 is widely conserved from Caenorhabditis elegans to humans, and its mutants have been reported in humans, mice, and zebrafish. Although mutants show various symptoms, such as spinal deformity and growth retardation, its effects on skeletal muscles are unknown. We aimed to elucidate the function of Fut8 in skeletal muscle using zebrafish and C2C12 cells for evaluation. We observed that most fut8a morphants died at 2 days post-fertilization (dpf) or in earlier developmental stages even at low concentrations of morpholino oligonucleotides (MOs). Mutant juveniles also had small body sizes, and abnormal myocepta and sarcomere structures, suggesting that Fut8a plays important roles in myogenesis. Moreover, treatment of C2C12 cells with 2-fluorofucose (2FF), a fucosylation inhibitor, during cell differentiation dramatically reduced the expression of myogenic genes, such as Myomaker and other myogenic fusion genes, and inhibited myotube formation. These results indicate that Fut8 is an important factor in myogenesis, and myofusion in particular.
Collapse
|
18
|
Chen Z, Shen J, Dong W, Li P, Xin M, Liu D, Jia L, Zhu B, Li W, Sun S. Recognition of Core-Fucosylated Glycopeptides Based on the Y1+Fuc/Y1 Ratio in Low-Energy HCD Spectra. Anal Chem 2022; 94:17349-17353. [PMID: 36484784 DOI: 10.1021/acs.analchem.2c03182] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Accurate identification of core fucosylation on N-glycopeptides remains challenging due to fucose migration during mass spectrometry analysis. Here, we introduce a simple and straightforward method for core-fucosylated glycopeptide recognition based on the relative intensities of Y1+Fuc ions compared with their corresponding Y1 ions (labeled as Y1+Fuc/Y1 or simply Y1F/Y1 ratio > 0.1) in low-energy HCD-based spectra. The method was first developed by systematically evaluating the influence of fucose migration on the Y1F ion from antenna fucoses based on the distribution of the Y1F/Y1 ratios in the MS/MS spectra of antenna-fucosylated glycopeptides from Fut8-/- mouse brain. The feasibility of the method was then confirmed by using two standard glycoproteins, comparison with glycopeptides in Fut8+/+ mouse brain with/without in silico core-fucosylation removal, and Y1F/Y1 ratio alterations under a lower HCD energy. This method will be applicable to the manual interpretation and software-based high-throughput analysis of core-fucosylated glycopeptides.
Collapse
Affiliation(s)
- Zexuan Chen
- College of Life Sciences, Northwest University, Xi'an 710069, China
| | - Jiechen Shen
- College of Life Sciences, Northwest University, Xi'an 710069, China
| | - Wenbo Dong
- College of Life Sciences, Northwest University, Xi'an 710069, China
| | - Pengfei Li
- College of Life Sciences, Northwest University, Xi'an 710069, China
| | - Miaomiao Xin
- College of Life Sciences, Northwest University, Xi'an 710069, China
| | - Didi Liu
- College of Life Sciences, Northwest University, Xi'an 710069, China
| | - Li Jia
- College of Life Sciences, Northwest University, Xi'an 710069, China
| | - Bojing Zhu
- College of Life Sciences, Northwest University, Xi'an 710069, China
| | - Wenzhe Li
- Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Shantou University Medical College, Shantou, Guangdong 515041, China
| | - Shisheng Sun
- College of Life Sciences, Northwest University, Xi'an 710069, China
| |
Collapse
|
19
|
Zhong X, Schenk J, Sakorafas P, Chamberland J, Tam A, Thomas LM, Yan G, D' Antona AM, Lin L, Nocula-Lugowska M, Zhang Y, Sousa E, Cohen J, Gu L, Abel M, Donahue J, Lim S, Meade C, Zhou J, Riegel L, Birch A, Fennell BJ, Franklin E, Gomes JM, Tzvetkova B, Scarcelli JJ. Impacts of fast production of afucosylated antibodies and Fc mutants in ExpiCHO-S™ for enhancing FcγRIIIa binding and NK cell activation. J Biotechnol 2022; 360:79-91. [PMID: 36341973 DOI: 10.1016/j.jbiotec.2022.10.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 09/29/2022] [Accepted: 10/21/2022] [Indexed: 11/06/2022]
Abstract
This study has employed mammalian transient expression systems to generate afucosylated antibodies and antibody Fc mutants for rapid candidate screening in discovery and early development. While chemical treatment with the fucose analogue 2-fluoro-peracetyl-fucose during transient expression only partially produced antibodies with afucosylated N-glycans, the genetic inactivation of the FUT8 gene in ExpiCHO-S™ by CRISPR/Cas9 enabled the transient production of fully afucosylated antibodies. Human IgG1 and murine IgG2a generated by the ExpiCHOfut8KO cell line possessed a 8-to-11-fold enhanced FcγRIIIa binding activity in comparison with those produced by ExpiCHO-S™. The Fc mutant S239D/S298A/I332E produced by ExpiCHO-S™ had an approximate 2-fold higher FcγRIIIa affinity than that of the afucosylated wildtype molecule, although it displayed significantly lower thermal-stability. When the Fc mutant was produced in the ExpiCHOfut8KO cell line, the resulting afucosylated Fc mutant antibody had an additional approximate 6-fold increase in FcγRIIIa binding affinity. This synergistic effect between afucosylation and the Fc mutations was further verified by a natural killer (NK) cell activation assay. Together, these results have not only established an efficient large-scale transient CHO system for rapid production of afucosylated antibodies, but also confirmed a cooperative impact between afucosylation and Fc mutations on FcγRIIIa binding and NK cell activation.
Collapse
Affiliation(s)
- Xiaotian Zhong
- BioMedicine Design, Medicinal Sciences, Pfizer Worldwide R&D, 610 Main Street, Cambridge, MA 02139, USA.
| | - Jennifer Schenk
- Analytical R&D, Biotherapeutics Pharmaceutical Sciences, Medicinal Sciences, Pfizer Worldwide R&D, 1 Burtt Road, Andover, MA 01810, USA
| | - Paul Sakorafas
- Analytical R&D, Biotherapeutics Pharmaceutical Sciences, Medicinal Sciences, Pfizer Worldwide R&D, 1 Burtt Road, Andover, MA 01810, USA
| | - John Chamberland
- BioProcess R&D, Biotherapeutics Pharmaceutical Sciences, Medicinal Sciences, Pfizer Worldwide R&D, 1 Burtt Road, Andover, MA 01810, USA
| | - Amy Tam
- BioMedicine Design, Medicinal Sciences, Pfizer Worldwide R&D, 610 Main Street, Cambridge, MA 02139, USA
| | - L Michael Thomas
- BioMedicine Design, Medicinal Sciences, Pfizer Worldwide R&D, 610 Main Street, Cambridge, MA 02139, USA
| | - Grace Yan
- BioMedicine Design, Medicinal Sciences, Pfizer Worldwide R&D, 610 Main Street, Cambridge, MA 02139, USA
| | - Aaron M D' Antona
- BioMedicine Design, Medicinal Sciences, Pfizer Worldwide R&D, 610 Main Street, Cambridge, MA 02139, USA
| | - Laura Lin
- BioMedicine Design, Medicinal Sciences, Pfizer Worldwide R&D, 610 Main Street, Cambridge, MA 02139, USA
| | | | - Yan Zhang
- BioMedicine Design, Medicinal Sciences, Pfizer Worldwide R&D, 610 Main Street, Cambridge, MA 02139, USA
| | - Eric Sousa
- BioMedicine Design, Medicinal Sciences, Pfizer Worldwide R&D, 610 Main Street, Cambridge, MA 02139, USA
| | - Justin Cohen
- BioMedicine Design, Medicinal Sciences, Pfizer Worldwide R&D, 610 Main Street, Cambridge, MA 02139, USA
| | - Ling Gu
- Analytical R&D, Biotherapeutics Pharmaceutical Sciences, Medicinal Sciences, Pfizer Worldwide R&D, 1 Burtt Road, Andover, MA 01810, USA
| | - Molica Abel
- BioMedicine Design, Medicinal Sciences, Pfizer Worldwide R&D, 610 Main Street, Cambridge, MA 02139, USA
| | - Jacob Donahue
- BioMedicine Design, Medicinal Sciences, Pfizer Worldwide R&D, 610 Main Street, Cambridge, MA 02139, USA
| | - Sean Lim
- BioMedicine Design, Medicinal Sciences, Pfizer Worldwide R&D, 610 Main Street, Cambridge, MA 02139, USA
| | - Caryl Meade
- BioMedicine Design, Medicinal Sciences, Pfizer Worldwide R&D, 610 Main Street, Cambridge, MA 02139, USA
| | - Jing Zhou
- BioMedicine Design, Medicinal Sciences, Pfizer Worldwide R&D, 610 Main Street, Cambridge, MA 02139, USA
| | - Logan Riegel
- BioMedicine Design, Medicinal Sciences, Pfizer Worldwide R&D, 610 Main Street, Cambridge, MA 02139, USA
| | - Alex Birch
- BioMedicine Design, Medicinal Sciences, Pfizer Worldwide R&D, 610 Main Street, Cambridge, MA 02139, USA
| | - Brian J Fennell
- BioMedicine Design, Medicinal Sciences, Pfizer Worldwide R&D, Grange Castle, Dublin, Ireland
| | - Edward Franklin
- BioMedicine Design, Medicinal Sciences, Pfizer Worldwide R&D, Grange Castle, Dublin, Ireland
| | - Jose M Gomes
- BioProcess R&D, Biotherapeutics Pharmaceutical Sciences, Medicinal Sciences, Pfizer Worldwide R&D, 1 Burtt Road, Andover, MA 01810, USA
| | - Boriana Tzvetkova
- Analytical R&D, Biotherapeutics Pharmaceutical Sciences, Medicinal Sciences, Pfizer Worldwide R&D, 1 Burtt Road, Andover, MA 01810, USA
| | - John J Scarcelli
- BioProcess R&D, Biotherapeutics Pharmaceutical Sciences, Medicinal Sciences, Pfizer Worldwide R&D, 1 Burtt Road, Andover, MA 01810, USA.
| |
Collapse
|
20
|
Tu CF, Li FA, Li LH, Yang RB. Quantitative glycoproteomics analysis identifies novel FUT8 targets and signaling networks critical for breast cancer cell invasiveness. Breast Cancer Res 2022; 24:21. [PMID: 35303925 PMCID: PMC8932202 DOI: 10.1186/s13058-022-01513-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 02/25/2022] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND We recently showed that fucosyltransferase 8 (FUT8)-mediated core fucosylation of transforming growth factor-β receptor enhances its signaling and promotes breast cancer invasion and metastasis. However, the complete FUT8 target glycoproteins and their downstream signaling networks critical for breast cancer progression remain largely unknown. METHOD We performed quantitative glycoproteomics with two highly invasive breast cancer cell lines to unravel a comprehensive list of core-fucosylated glycoproteins by comparison to parental wild-type and FUT8-knockout counterpart cells. In addition, ingenuity pathway analysis (IPA) was performed to highlight the most enriched biological functions and signaling pathways mediated by FUT8 targets. Novel FUT8 target glycoproteins with biological interest were functionally studied and validated by using LCA (Lens culinaris agglutinin) blotting and LC-MS/MS (liquid chromatography-tandem mass spectrometry) analysis. RESULTS Loss-of-function studies demonstrated that FUT8 knockout suppressed the invasiveness of highly aggressive breast carcinoma cells. Quantitative glycoproteomics identified 140 common target glycoproteins. Ingenuity pathway analysis (IPA) of these target proteins gave a global and novel perspective on signaling networks essential for breast cancer cell migration and invasion. In addition, we showed that core fucosylation of integrin αvβ5 or IL6ST might be crucial for breast cancer cell adhesion to vitronectin or enhanced cellular signaling to interleukin 6 and oncostatin M, two cytokines implicated in the breast cancer epithelial-mesenchymal transition and metastasis. CONCLUSIONS Our report reveals a comprehensive list of core-fucosylated target proteins and provides novel insights into signaling networks crucial for breast cancer progression. These findings will assist in deciphering the complex molecular mechanisms and developing diagnostic or therapeutic approaches targeting these signaling pathways in breast cancer metastasis.
Collapse
Affiliation(s)
- Cheng-Fen Tu
- Institute of Biomedical Sciences, Academia Sinica, 128 Academia Rd., Sec. 2, Taipei, 115201, Taiwan
| | - Fu-An Li
- Institute of Biomedical Sciences, Academia Sinica, 128 Academia Rd., Sec. 2, Taipei, 115201, Taiwan
| | - Ling-Hui Li
- Institute of Biomedical Sciences, Academia Sinica, 128 Academia Rd., Sec. 2, Taipei, 115201, Taiwan
| | - Ruey-Bing Yang
- Institute of Biomedical Sciences, Academia Sinica, 128 Academia Rd., Sec. 2, Taipei, 115201, Taiwan. .,Biomedical Translation Research Center, Academia Sinica, Taipei, 115202, Taiwan. .,Ph.D. Program in Drug Discovery and Development Industry, College of Pharmacy, Taipei Medical University, Taipei, 110301, Taiwan.
| |
Collapse
|
21
|
Sanda M, Ahn J, Kozlik P, Goldman R. Analysis of site and structure specific core fucosylation in liver cirrhosis using exoglycosidase-assisted data-independent LC-MS/MS. Sci Rep 2021; 11:23273. [PMID: 34857845 PMCID: PMC8639754 DOI: 10.1038/s41598-021-02838-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 11/03/2021] [Indexed: 12/16/2022] Open
Abstract
Carbohydrates form one of the major groups of biological macromolecules in living organisms. Many biological processes including protein folding, stability, immune response, and receptor activation are regulated by glycosylation. Fucosylation of proteins regulates such processes and is associated with various diseases including autoimmunity and cancer. Mass spectrometry efficiently identifies structures of fucosylated glycans or sites of core fucosylated N-glycopeptides but quantification of the glycopeptides remains less explored. We performed experiments that facilitate quantitative analysis of the core fucosylation of proteins with partial structural resolution of the glycans and we present results of the mass spectrometric SWATH-type DIA analysis of relative abundances of the core fucosylated glycoforms of 45 glycopeptides to their nonfucosylated glycoforms derived from 18 serum proteins in liver disease of different etiologies. Our results show that a combination of soft fragmentation with exoglycosidases is efficient at the assignment and quantification of the core fucosylated N-glycoforms at specific sites of protein attachment. In addition, our results show that disease-associated changes in core fucosylation are peptide-dependent and further differ by branching of the core fucosylated glycans. Further studies are needed to verify whether tri- and tetra-antennary core fucosylated glycopeptides could be used as markers of liver disease progression.
Collapse
Affiliation(s)
- Miloslav Sanda
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC, 20057, USA. .,Clinical and Translational Glycoscience Research Center, Georgetown University, Washington, DC, 20057, USA.
| | - Jaeil Ahn
- Department of Biostatistics, Bioinformatics and Biomathematics, Georgetown University Medical Center, Washington, DC, 20057, USA
| | - Petr Kozlik
- Department of Analytical Chemistry, Faculty of Science, Charles University, Prague, Czech Republic
| | - Radoslav Goldman
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC, 20057, USA.,Department of Biochemistry and Molecular and Cellular Biology, Georgetown University, Washington, DC, 20057, USA.,Clinical and Translational Glycoscience Research Center, Georgetown University, Washington, DC, 20057, USA
| |
Collapse
|
22
|
Li Y, Zhao C, Zhao K, Yu N, Li Y, Yu Y, Zhang Y, Song Z, Huang Y, Lu G, Gao Y, Zhang J, Guo X. Glycosylation of Anti-Thyroglobulin IgG1 and IgG4 Subclasses in Thyroid Diseases. Eur Thyroid J 2021; 10:114-124. [PMID: 33981616 PMCID: PMC8077608 DOI: 10.1159/000507699] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Accepted: 03/30/2020] [Indexed: 12/15/2022] Open
Abstract
OBJECTIVE Thyroglobulin antibodies (TgAb), principally comprising immunoglobulin G (IgG), are frequently found in healthy individuals. Previously, we showed that the glycosylation levels of TgAb IgG differed across various thyroid diseases, suggesting an important role of glycosylation on antibodies in the pathogenesis of thyroid diseases. Since IgG1 and IgG4 are the primary TgAb IgG subclasses, this study aimed to investigate the glycosylation of TgAb IgG1 and IgG4 subclasses in thyroid diseases. METHODS TgAb IgG was purified by affinity chromatography from the serum of patients with Hashimoto's thyroiditis (HT) (n = 16), Graves' disease (GD) (n = 8), papillary thyroid carcinoma (PTC) (n = 6), and PTC with histological lymphocytic thyroiditis (PTC-T) (n = 9) as well as healthy donors (n = 10). TgAb IgG1 and IgG4 concentrations were determined by enzyme-linked immunosorbent assay, and a lectin microassay was used to assess TgAb IgG1 and IgG4 glycosylation. RESULTS Significantly elevated mannose, sialic acid, and galactose levels on TgAb IgG1 were found in HT and PTC patients compared to GD patients and healthy controls (all p < 0.05). The mannose, sialic acid, and core fucose levels on TgAb IgG1 in PTC-T patients were higher than in healthy controls (all p < 0.05). Additionally, TgAb IgG1 from PTC-T patients exhibited lower sialylation than that from patients with PTC and higher fucosylation than that from patients with HT (both p < 0.05). However, TgAb IgG4 glycosylation did not differ among the five groups (p < 0.05). CONCLUSION Our study describes different distributions of TgAb IgG1 glycosylation in various thyroid diseases. The aberrantly increased glycosylation levels of TgAb IgG1 observed in HT, PTC, and PTC-T might be indicative of immune disorders and participate in the pathogenesis of these diseases.
Collapse
Affiliation(s)
- Yuan Li
- Department of Endocrinology, Peking University First Hospital, Beijing, China
| | - Chenxu Zhao
- Department of Endocrinology, Peking University First Hospital, Beijing, China
- Department of Endocrinology, The First Hospital of Hebei Medical University, Shijiazhuang, China
| | - Keli Zhao
- Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- College of Life Science, University of the Chinese Academy of Sciences, Beijing, China
| | - Nan Yu
- Department of Endocrinology, Peking University First Hospital, Beijing, China
| | - Yan Li
- Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- College of Life Science, University of the Chinese Academy of Sciences, Beijing, China
| | - Yang Yu
- Department of Endocrinology, Peking University First Hospital, Beijing, China
| | - Yang Zhang
- Department of Endocrinology, Peking University First Hospital, Beijing, China
| | - Zhijing Song
- Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- College of Life Science, University of the Chinese Academy of Sciences, Beijing, China
| | - Youyuan Huang
- Department of Endocrinology, Peking University First Hospital, Beijing, China
| | - Guizhi Lu
- Department of Endocrinology, Peking University First Hospital, Beijing, China
| | - Ying Gao
- Department of Endocrinology, Peking University First Hospital, Beijing, China
- *Ying Gao, Department of Endocrinology, Peking University First Hospital, No. 8 Xishiku Street, Xicheng District, Beijing 100034 (China),
| | - Junqing Zhang
- Department of Endocrinology, Peking University First Hospital, Beijing, China
| | - Xiaohui Guo
- Department of Endocrinology, Peking University First Hospital, Beijing, China
| |
Collapse
|
23
|
Zhou X, Motta F, Selmi C, Ridgway WM, Gershwin ME, Zhang W. Antibody glycosylation in autoimmune diseases. Autoimmun Rev 2021; 20:102804. [PMID: 33727152 DOI: 10.1016/j.autrev.2021.102804] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Accepted: 02/13/2021] [Indexed: 02/07/2023]
Abstract
The glycosylation of the fragment crystallizable (Fc) region of immunoglobulins (Ig) is critical for the modulation of antibody effects on inflammation. Moreover, antibody glycosylation may induce pathologic modifications and ultimately contribute to the development of autoimmune diseases. Thanks to progress in the analysis of glycosylation, more data are available on IgG and its subclass structures in the context of autoimmune diseases. In this review, we focused on the impact of Ig glycosylation in autoimmunity, describing how it modulates the immune response and how glycome profiles can be used as biomarkers of disease activity. The analysis of antibody glycosylation demonstrated specific features in human autoimmune and chronic inflammatory conditions, including rheumatoid arthritis, systemic lupus erythematosus, inflammatory bowel disease and autoimmune liver diseases, among others. Within the same disease, different patterns are associated with disease severity and treatment options. Future research may increase the information available on the distinct glycome profiles and expand their potential role as biomarkers and as targets for treatment, ultimately favoring an individualized approach.
Collapse
Affiliation(s)
- Xing Zhou
- Division of Rheumatology, Allergy and Clinical Immunology, University of California, Davis, CA 95616, USA; Department of Hepatobiliary Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Francesca Motta
- Division of Rheumatology and Clinical Immunology, Humanitas Clinical and Research Center-IRCCS, Rozzano, Milan, Italy; Department of Biomedical Sciences, Humanitas University, Rozzano, Milan, Italy
| | - Carlo Selmi
- Division of Rheumatology and Clinical Immunology, Humanitas Clinical and Research Center-IRCCS, Rozzano, Milan, Italy; Department of Biomedical Sciences, Humanitas University, Rozzano, Milan, Italy
| | - William M Ridgway
- Division of Rheumatology, Allergy and Clinical Immunology, University of California, Davis, CA 95616, USA
| | - M Eric Gershwin
- Division of Rheumatology, Allergy and Clinical Immunology, University of California, Davis, CA 95616, USA.
| | - Weici Zhang
- Division of Rheumatology, Allergy and Clinical Immunology, University of California, Davis, CA 95616, USA.
| |
Collapse
|
24
|
L-Fucose treatment of FUT8-CDG. Mol Genet Metab Rep 2020; 25:100680. [PMID: 33312876 PMCID: PMC7719959 DOI: 10.1016/j.ymgmr.2020.100680] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 11/12/2020] [Accepted: 11/12/2020] [Indexed: 11/22/2022] Open
Abstract
FUT8-CDG is a severe multisystem disorder caused by mutations in FUT8, encoding the α-1,6-fucosyltransferase. We report on dizygotic twins with FUT8-CDG presenting with dysmorphisms, failure to thrive, and respiratory abnormalities. Due to the severe phenotype, oral L-fucose supplementation was started. Glycosylation analysis using mass spectrometry indicated a limited response to fucose therapy while the clinical presentation stabilized. Further research is needed to assess the concept of substrate supplementation in FUT8-CDG.
Collapse
|
25
|
Lu X, Guo Y, Gu S, Tan D, Cheng B, Li Z, Huang W. An efficient and precise method for generating knockout cell lines based on CRISPR-Cas9 system. Eng Life Sci 2020; 20:585-593. [PMID: 33304232 PMCID: PMC7708952 DOI: 10.1002/elsc.202000032] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 07/07/2020] [Accepted: 08/11/2020] [Indexed: 11/25/2022] Open
Abstract
Although the efficiency and versatility of CRISPR-Cas9 system has been greatly improved over conventional genome editing methods such as zinc finger or TALEN, it is still time-consuming and labor-intensive for screening knockout/knock-in cell clones due to differences of the targeted location or efficacies of guide RNAs (gRNAs). Here, we adapted a targeted knock-in strategy with CRISPR-Cas9 system and characterized the efficiency for generating single or double knockout cell lines. Specifically, a homology-arm based donor cassette consisting of genes encoding a fluorescence protein and antibiotic selection marker driven by a constitutive promoter was co-transfected with a gRNA expressing unit. Based on FACS sorting and antibiotic drug selection, positive cell clones were confirmed by genotyping and at the protein expression level. The results indicated that more than 70% of analyzed clones identified by cell sorting and selection were successfully targeted in both single and double knockout experiments. The procedure takes less than three weeks to obtain knockout cell lines. We believe that this methodology could be applicable and versatile in generating knockout cell clones with high efficiency in most cell lines.
Collapse
Affiliation(s)
- Xibin Lu
- Core Research FacilitiesSouthern University of Science and TechnologyShenzhenP. R. China
| | - Yuhan Guo
- Forward Pharmaceuticals Limited CoShenzhenP. R. China
| | - Shu Gu
- Department of BiologySouthern University of Science and TechnologyShenzhenP. R. China
| | - Deng Tan
- Department of BiologySouthern University of Science and TechnologyShenzhenP. R. China
| | - Baoyun Cheng
- Department of BiologySouthern University of Science and TechnologyShenzhenP. R. China
| | - Zhoufang Li
- Core Research FacilitiesSouthern University of Science and TechnologyShenzhenP. R. China
| | - Wei Huang
- Department of BiologySouthern University of Science and TechnologyShenzhenP. R. China
| |
Collapse
|
26
|
Wang SH, Wu TJ, Lee CW, Yu J. Dissecting the conformation of glycans and their interactions with proteins. J Biomed Sci 2020; 27:93. [PMID: 32900381 PMCID: PMC7487937 DOI: 10.1186/s12929-020-00684-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 08/26/2020] [Indexed: 12/20/2022] Open
Abstract
The use of in silico strategies to develop the structural basis for a rational optimization of glycan-protein interactions remains a great challenge. This problem derives, in part, from the lack of technologies to quantitatively and qualitatively assess the complex assembling between a glycan and the targeted protein molecule. Since there is an unmet need for developing new sugar-targeted therapeutics, many investigators are searching for technology platforms to elucidate various types of molecular interactions within glycan-protein complexes and aid in the development of glycan-targeted therapies. Here we discuss three important technology platforms commonly used in the assessment of the complex assembly of glycosylated biomolecules, such as glycoproteins or glycosphingolipids: Biacore analysis, molecular docking, and molecular dynamics simulations. We will also discuss the structural investigation of glycosylated biomolecules, including conformational changes of glycans and their impact on molecular interactions within the glycan-protein complex. For glycoproteins, secreted protein acidic and rich in cysteine (SPARC), which is associated with various lung disorders, such as chronic obstructive pulmonary disease (COPD) and lung cancer, will be taken as an example showing that the core fucosylation of N-glycan in SPARC regulates protein-binding affinity with extracellular matrix collagen. For glycosphingolipids (GSLs), Globo H ceramide, an important tumor-associated GSL which is being actively investigated as a target for new cancer immunotherapies, will be used to demonstrate how glycan structure plays a significant role in enhancing angiogenesis in tumor microenvironments.
Collapse
Affiliation(s)
- Sheng-Hung Wang
- Institute of Stem Cell and Translational Cancer Research, Chang Gung Memorial Hospital at Linkou, and Chang Gung University, Taoyuan, 333, Taiwan
| | - Tsai-Jung Wu
- Institute of Stem Cell and Translational Cancer Research, Chang Gung Memorial Hospital at Linkou, and Chang Gung University, Taoyuan, 333, Taiwan
| | - Chien-Wei Lee
- Institute of Stem Cell and Translational Cancer Research, Chang Gung Memorial Hospital at Linkou, and Chang Gung University, Taoyuan, 333, Taiwan
| | - John Yu
- Institute of Stem Cell and Translational Cancer Research, Chang Gung Memorial Hospital at Linkou, and Chang Gung University, Taoyuan, 333, Taiwan. .,Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan.
| |
Collapse
|
27
|
West CA, Liang H, Drake RR, Mehta AS. New Enzymatic Approach to Distinguish Fucosylation Isomers of N-Linked Glycans in Tissues Using MALDI Imaging Mass Spectrometry. J Proteome Res 2020; 19:2989-2996. [PMID: 32441096 PMCID: PMC8908332 DOI: 10.1021/acs.jproteome.0c00024] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Specific alterations in N-linked glycans, such as core fucosylation, are associated with many cancers and other disease states. Because of the many possible anomeric linkages associated with fucosylated N-glycans, determination of specific anomeric linkages and the site of fucosylation (i.e., core vs outer arm) can be difficult to elucidate. A new MALDI mass spectrometry imaging workflow in formalin-fixed clinical tissues is described using recombinant endoglycosidase F3 (Endo F3), an enzyme with a specific preference for cleaving core-fucosylated N-glycans attached to glycoproteins. In contrast to the broader substrate enzyme peptide-N-glycosidase F (PNGaseF), Endo F3 cleaves between the two core N-acetylglucosamine residues at the protein attachment site. On tissues, this results in a mass shift of 349.137 a.m.u. for core-fucosylated N-glycans when compared to N-glycans released with standard PNGaseF. Endo F3 can be used singly and in combination with PNGaseF digestion of the same tissue sections. Initial results in liver and prostate tissues indicate core-fucosylated glycans associated to specific tissue regions while still demonstrating a diverse mix of core- and outer arm-fucosylated glycans throughout all regions of tissue. By determining these specific linkages while preserving localization, more targeted diagnostic biomarkers for disease states are possible without the need for microdissection or solubilization of the tissue.
Collapse
Affiliation(s)
- Connor A. West
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, Charleston, South Carolina 29425, United States
| | - Hongyan Liang
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, Charleston, South Carolina 29425, United States
| | - Richard R. Drake
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, Charleston, South Carolina 29425, United States
| | - Anand S. Mehta
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, Charleston, South Carolina 29425, United States
| |
Collapse
|
28
|
Hao S, Fan Q, Bai Y, Fang H, Zhou J, Fukuda T, Gu J, Li M, Li W. Core Fucosylation of Intestinal Epithelial Cells Protects Against Salmonella Typhi Infection via Up-Regulating the Biological Antagonism of Intestinal Microbiota. Front Microbiol 2020; 11:1097. [PMID: 32528455 PMCID: PMC7266941 DOI: 10.3389/fmicb.2020.01097] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 05/04/2020] [Indexed: 12/15/2022] Open
Abstract
The fucosylated carbohydrate moieties on intestinal epithelial cells (IECs) are involved in the creation of an environmental niche for commensal and pathogenic bacteria. Core fucosylation catalyzed by fucosyltransferase 8 (Fut8) is the major fucosylation pattern on the N-glycans of the surface glycoproteins on IECs, however, the role of IECs core fucosylation during infection remains unclear. This study was conducted to investigate the interaction between IECs core fucosylation and gut microbiota, and the effects of this interaction on protecting Salmonella enterica subsp. enterica serovar Typhi (S. Typhi) infection. Firstly, the Fut8+/+ and Fut8+/– mice were infected with S. Typhi. The level of IECs core fucosylation and protein expression of intestinal mucosa were then detected by LCA blot and Western blot, respectively. The gut microbiota of Fut8+/+ and Fut8+/– mice before and after S. Typhi infection was assessed by 16S rRNA sequencing. Our results showed that core fucosylation was ubiquitous expressed on the intestinal mucosa of mice and had significant effects on their gut microbiota. Fut8+/– mice was more susceptive to S. Typhi infection than Fut8+/+ mice. Interestingly, infection of S. Typhi upregulated the core fucosylation level of IECs and increased the abundances of beneficial microorganisms such as Lactobacillus and Akkermansia spp. Further in vitro and in vivo studies demonstrated that Wnt/β-catenin signaling pathway mediated the elevation of IECs core fucosylation level upon infection of S. Typhi. Taken together, our data in this study revealed that the IECs core fucosylation plays an important role in protecting against S. Typhi infection via up-regulating the biological antagonism of intestinal microbiota.
Collapse
Affiliation(s)
- Sijia Hao
- College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| | - Qingjie Fan
- College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| | - Yaqiang Bai
- College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| | - Hui Fang
- College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| | - Jiaorui Zhou
- College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| | - Tomohiko Fukuda
- Institute of Molecular Biomembrane and Glycobiology, Tohoku Medical and Pharmaceutical University, Sendai, Japan
| | - Jianguo Gu
- Institute of Molecular Biomembrane and Glycobiology, Tohoku Medical and Pharmaceutical University, Sendai, Japan
| | - Ming Li
- College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| | - Wenzhe Li
- College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| |
Collapse
|
29
|
Yang G, Höti N, Chen SY, Zhou Y, Wang Q, Betenbaugh M, Zhang H. One-Step Enrichment of Intact Glycopeptides From Glycoengineered Chinese Hamster Ovary Cells. Front Chem 2020; 8:240. [PMID: 32363175 PMCID: PMC7180227 DOI: 10.3389/fchem.2020.00240] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Accepted: 03/12/2020] [Indexed: 12/04/2022] Open
Abstract
Recently, the glycoproteomic analysis of intact glycopeptides has emerged as an effective approach to decipher the glycan modifications of glycoproteins at the site-specific level. A rapid method to enrich intact glycopeptides is essential for the analysis of glycoproteins, especially for biopharmaceutical proteins. In this study, we established a one-step method for the rapid capture of intact glycopeptides for analysis by mass spectrometry. Compared to the conventional sequential enrichment method, the one-step intact glycopeptide enrichment method reduced the sample preparation time and improved the detection of intact glycopeptides with long sequences or non-polar amino acids. Moreover, an increased number of glycosite-containing peptides was identified by the one-step method compared with the sequential method. When we applied this method to the glycoproteomic analysis of glycoengineered Chinese hamster ovary (CHO)-K1 cells with α1,6-fucosyltransferase (FUT8) knockout, the results showed that the knockout of FUT8 altered the overall glycosylation profile of CHO-K1 cells with the elimination of core fucosylation and together with increases in high-mannose and sialylated N-glycans. Interestingly, the knockout of the FUT8 also appeared to regulate the expression of glycoproteins involved in several functions and pathways in CHO-K1 cells, such as the down-regulation of an intracellular lectin LMAN2 showing cellular adaptation to the alterations in FUT8 knockout cells. These findings indicate that the site-specific characterization of glycoproteins from glycoengineered CHO-K1 cells can be achieved rapidly using the one-step intact glycopeptide enrichment method, which could provide insights for bio-analysts and biotechnologists to better tailor therapeutic drugs.
Collapse
Affiliation(s)
- Ganglong Yang
- Department of Pathology, Johns Hopkins University, Baltimore, MD, United States
| | - Naseruddin Höti
- Department of Pathology, Johns Hopkins University, Baltimore, MD, United States
| | - Shao-Yung Chen
- Department of Pathology, Johns Hopkins University, Baltimore, MD, United States.,Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, United States
| | - Yangying Zhou
- Department of Pathology, Johns Hopkins University, Baltimore, MD, United States
| | - Qiong Wang
- Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, United States
| | - Michael Betenbaugh
- Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, United States
| | - Hui Zhang
- Department of Pathology, Johns Hopkins University, Baltimore, MD, United States.,Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, United States
| |
Collapse
|
30
|
Advances in molecular mechanisms of drugs affecting abnormal glycosylation and metastasis of breast cancer. Pharmacol Res 2020; 155:104738. [PMID: 32151681 DOI: 10.1016/j.phrs.2020.104738] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 02/28/2020] [Accepted: 02/28/2020] [Indexed: 12/27/2022]
Abstract
Breast cancer remains the leading cause of cancer-related death among women worldwide, and its incidence is also increasing. High recurrence rate and metastasis rate are the key causes of poor prognosis and death. It is suggested that abnormal glycosylation plays an important role in the growth, invasion, metastasis and resistance to therapy of breast cancer cells. Meanwhile, it can be used as the biomarkers for the early detection and prognosis of breast cancer and the potential attractive targets for drug treatment. However, only a few attentions have been paid to the molecular mechanism of abnormal glycosylation in the epithelial-mesenchymal transition (EMT) of breast cancer cells and the related intervention of drugs. This manuscript thus investigated the relationship between abnormal glycosylation, the EMT, and breast cancer metastasis. Then, the process of abnormal glycosylation, the classification and their molecular regulatory mechanisms of breast cancer were analyzed in detail. Last, potential drugs are introduced in different categories, which are expected to reverse or intervene the abnormal glycosylation of breast cancer. This review is conducive to an in-depth understanding of the metastasis and drug resistance of breast cancer cells, which will provide new ideas for the clinical regulation of glycosylation and related drug treatments in breast cancer.
Collapse
|
31
|
Partial silencing of fucosyltransferase 8 gene expression inhibits proliferation of Ishikawa cells, a cell line of endometrial cancer. Biochem Biophys Rep 2020; 22:100740. [PMID: 32099910 PMCID: PMC7026730 DOI: 10.1016/j.bbrep.2020.100740] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 01/10/2020] [Accepted: 01/27/2020] [Indexed: 01/15/2023] Open
Abstract
Endometrial cancer is the most common gynecologic malignancy and is associated with increased morbidity each year, including young people. However, its mechanisms of proliferation and progression are not fully elucidated. It is well known that abnormal glycosylation is involved in oncogenesis, and fucosylation is one of the most important types of glycosylation. In particular, fucosyltransferase 8 (FUT8) is the only FUT responsible for α1, 6-linked fucosylation (core fucosylation), and it is involved in various physiological as well as pathophysiological processes, including cancer biology. Therefore, we aimed to identify the expression of FUT8 in endometrial endometrioid carcinoma and investigate the effect of the partial silencing of the FUT8 gene on the cell proliferation of Ishikawa cells, an epithelial-like endometrial cancer cell line. Quantitative real-time PCR analysis showed that FUT8 gene expression was significantly elevated in the endometrial endometrioid carcinoma, compared to the normal endometrium. The immunostaining of FUT8 and Ulex europaeus Agglutinin 1 (UEA-1), a kind of lectin family specifically binding to fucose, was detected endometrial endometrioid carcinoma. The proliferation assay showed FUT8 partial knockdown by transfection of siRNA significantly suppressed the proliferation of Ishikawa cells, concomitant with the upregulation in the gene expressions associated with the interesting pathways associated with de-ubiquitination, aspirin trigger, mesenchymal-epithelial transition (MET) et al. It was suggested that the core fucosylation brought about by FUT8 might be involved in the proliferation of endometrial endometrioid carcinoma cells. Fucosyltransferase 8 gene expression is elevated in the tissues affected by endometrial endometrioid carcinoma. Fucosyltransferase 8 protein is specifically detected in the glands affected by endometrial endometrioid carcinoma. Silencing of fucosyltransferase 8 suppressed the proliferation of Ishikawa cells, an endometrial cancer cell line. These results suggest that fucosyltransferase 8 might be involved in the proliferation of endometrial endometrioid carcinoma.
Collapse
|
32
|
Fuertes-Martín R, Correig X, Vallvé JC, Amigó N. Title: Human Serum/Plasma Glycoprotein Analysis by 1H-NMR, an Emerging Method of Inflammatory Assessment. J Clin Med 2020; 9:E354. [PMID: 32012794 PMCID: PMC7073769 DOI: 10.3390/jcm9020354] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 01/13/2020] [Accepted: 01/17/2020] [Indexed: 12/17/2022] Open
Abstract
Several studies suggest that variations in the concentration of plasma glycoproteins can influence cellular changes in a large number of diseases. In recent years, proton nuclear magnetic resonance (1H-NMR) has played a major role as an analytical tool for serum and plasma samples. In recent years, there is an increasing interest in the characterization of glycoproteins through 1H-NMR in order to search for reliable and robust biomarkers of disease. The objective of this review was to examine the existing studies in the literature related to the study of glycoproteins from an analytical and clinical point of view. There are currently several techniques to characterize circulating glycoproteins in serum or plasma, but in this review, we focus on 1H-NMR due to its great robustness and recent interest in its translation to the clinical setting. In fact, there is already a marker in H-NMR representing the acetyl groups of the glycoproteins, GlycA, which has been increasingly studied in clinical studies. A broad search of the literature was performed showing a general consensus that GlycA is a robust marker of systemic inflammation. The results also suggested that GlycA better captures systemic inflammation even more than C-reactive protein (CRP), a widely used classical inflammatory marker. The applications reviewed here demonstrated that GlycA was potentially a key biomarker in a wide range of diseases such as cancer, metabolic diseases, cardiovascular risk, and chronic inflammatory diseases among others. The profiling of glycoproteins through 1H-NMR launches an encouraging new paradigm for its future incorporation in clinical diagnosis.
Collapse
Affiliation(s)
- Rocío Fuertes-Martín
- Biosfer Teslab SL, 43201 Reus, Spain; (R.F.-M.); (N.A.)
- Metabolomic s platform, IISPV, CIBERDEM, Rovira i Virgili University, 43007 Tarragona, Spain
| | - Xavier Correig
- Metabolomic s platform, IISPV, CIBERDEM, Rovira i Virgili University, 43007 Tarragona, Spain
| | - Joan-Carles Vallvé
- Metabolomic s platform, IISPV, CIBERDEM, Rovira i Virgili University, 43007 Tarragona, Spain
- Lipids and Arteriosclerosis Research Unit, Sant Joan de Reus University Hospital, 43201 Reus, Spain
| | - Núria Amigó
- Biosfer Teslab SL, 43201 Reus, Spain; (R.F.-M.); (N.A.)
- Metabolomic s platform, IISPV, CIBERDEM, Rovira i Virgili University, 43007 Tarragona, Spain
| |
Collapse
|
33
|
Wang S, Zhang X, Yang C, Xu S. Micro
RNA
‐198‐5p inhibits the migration and invasion of non‐small lung cancer cells by targeting fucosyltransferase 8. Clin Exp Pharmacol Physiol 2019; 46:955-967. [PMID: 31381176 DOI: 10.1111/1440-1681.13154] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2018] [Revised: 07/19/2019] [Accepted: 07/31/2019] [Indexed: 12/22/2022]
Affiliation(s)
- Siyao Wang
- Department of Thoracic Surgery The First Hospital of China Medical University Shenyang Liaoning China
| | - Xin Zhang
- Department of Thoracic Surgery The First Hospital of China Medical University Shenyang Liaoning China
| | - Chunlu Yang
- Department of Thoracic Surgery The First Hospital of China Medical University Shenyang Liaoning China
| | - Shun Xu
- Department of Thoracic Surgery The First Hospital of China Medical University Shenyang Liaoning China
| |
Collapse
|
34
|
Liu D, Gao Z, Yue L. Fucosyltransferase 8 deficiency suppresses breast cancer cell migration by interference of the FAK/integrin pathway. Cancer Biomark 2019; 25:303-311. [DOI: 10.3233/cbm-190209] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
35
|
Ma M, Fu Y, Zhou X, Guan F, Wang Y, Li X. Functional roles of fucosylated and O-glycosylated cadherins during carcinogenesis and metastasis. Cell Signal 2019; 63:109365. [PMID: 31352008 DOI: 10.1016/j.cellsig.2019.109365] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 07/24/2019] [Accepted: 07/24/2019] [Indexed: 12/30/2022]
Abstract
Reduced cellular adhesiveness as a result of cadherin dysfunction is a defining feature of cancer and the mechanism involved in many aspects. Glycosylation is one of the most important post-translational modifications to cadherin. Major changes of glycosylation on cadherins can affect its stability, trafficking, and cell-adhesion properties. It has been reported that the different glycoforms of cadherins are promising biomarkers in cancer, with potential clinical application to constitute targets for the development of new therapies. Among the various glycoforms of cadherins, fucosylated and O-glycosylated cadherins are attracting more attention for their important roles in regulating cadherin functions during carcinogenesis. This review will discuss the most recent insights of the functional roles of fucosylated and O-glycosylated cadherins and their regulation mechanisms during carcinogenesis and metastasis. In summary, more understanding of fucosylated and O-glycosylated cadherins will lead to development of novel therapeutic approaches targeted to cancer.
Collapse
Affiliation(s)
- Minxing Ma
- Joint International Research Laboratory of Glycobiology and Medicinal Chemistry, College of Life Sciences, Northwest University, Xi'an, China; Department of Oncology, the Fifth People's Hospital of Qinghai Province, Xining, China
| | - Yutong Fu
- Joint International Research Laboratory of Glycobiology and Medicinal Chemistry, College of Life Sciences, Northwest University, Xi'an, China
| | - Xiaoman Zhou
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Feng Guan
- Joint International Research Laboratory of Glycobiology and Medicinal Chemistry, College of Life Sciences, Northwest University, Xi'an, China
| | - Yi Wang
- Department of Hematology, Provincial People's Hospital, Xi'an, China.
| | - Xiang Li
- Joint International Research Laboratory of Glycobiology and Medicinal Chemistry, College of Life Sciences, Northwest University, Xi'an, China; Wuxi School of Medicine, Jiangnan University, Wuxi, China.
| |
Collapse
|
36
|
Norton PA, Mehta AS. Expression of genes that control core fucosylation in hepatocellular carcinoma: Systematic review. World J Gastroenterol 2019; 25:2947-2960. [PMID: 31249452 PMCID: PMC6589740 DOI: 10.3748/wjg.v25.i23.2947] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 04/25/2019] [Accepted: 05/18/2019] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Changes in N-linked glycosylation have been observed in the circulation of individuals with hepatocellular carcinoma. In particular, an elevation in the level of core fucosylation has been observed. However, the mechanisms through which core fucose is increased are not well understood. We hypothesized that a review of the literature and related bioinformatic review regarding six genes known to be involved in the attachment of core fucosylation, the synthesis of the fucosylation substrate guanosine diphosphate (GDP)-fucose, or the transport of the substrate into the Golgi might offer mechanistic insight into the regulation of core fucose levels.
AIM To survey the literature to capture the involvement of genes regulating core N-linked fucosylation in hepatocellular carcinoma
METHODS The PubMed biomedical literature database was searched for the association of hepatocellular carcinoma and each of the core fucose-related genes and their protein products. We also queried The Cancer Genome Atlas Liver hepatocellular carcinoma (LIHC) dataset for genetic, epigenetic and gene expression changes for the set of six genes using the tools at cBioportal.
RESULTS A total of 27 citations involving one or more of the core fucosylation-related genes (FPGT, FUK, FUT8, GMDS, SLC35C1, TSTA3) and hepatocellular carcinoma were identified. The same set of gene symbols was used to query the 371 patients with liver cancer in the LIHC dataset to identify the frequency of mRNA over or under expression, as well as non-synonymous mutations, copy number variation and methylation level. Although all six genes trended to more samples displaying over expression relative to under-expression, it was noted that a number of tumor samples had undergone amplification of the genes of the de novo synthesis pathway, GMDS (27 samples) and TSTA3 (78 samples). In contrast, the other four genes had undergone amplification in 2 or fewer samples.
CONCLUSION Amplification of genes involved in the de novo pathway for generation of GDP-fucose, GMDS and TSTA3, likely contributes to the elevated core fucose observed in hepatocellular carcinoma.
Collapse
Affiliation(s)
- Pamela A Norton
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA 19102, United States
| | - Anand S Mehta
- Department of Cell and Molecular Pharmacology, Medical University of South Carolina, Charleston, SC 29425, United States
| |
Collapse
|
37
|
Yamasaki K, Kubota T, Yamasaki T, Nagashima I, Shimizu H, Terada RI, Nishigami H, Kang J, Tateno M, Tateno H. Structural basis for specific recognition of core fucosylation in N-glycans by Pholiota squarrosa lectin (PhoSL). Glycobiology 2019; 29:576-587. [DOI: 10.1093/glycob/cwz025] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 03/01/2019] [Accepted: 03/22/2019] [Indexed: 12/31/2022] Open
Affiliation(s)
- Kazuhiko Yamasaki
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba, Japan
| | - Tomomi Kubota
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba, Japan
| | - Tomoko Yamasaki
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba, Japan
| | - Izuru Nagashima
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba, Japan
| | - Hiroki Shimizu
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba, Japan
| | - Ryu-ichiro Terada
- Graduate School of Life Science, University of Hyogo, 3-2-1 Kouto, Kamigori, Hyogo, Japan
| | - Hiroshi Nishigami
- Graduate School of Life Science, University of Hyogo, 3-2-1 Kouto, Kamigori, Hyogo, Japan
| | - Jiyoung Kang
- Graduate School of Life Science, University of Hyogo, 3-2-1 Kouto, Kamigori, Hyogo, Japan
| | - Masaru Tateno
- Graduate School of Life Science, University of Hyogo, 3-2-1 Kouto, Kamigori, Hyogo, Japan
| | - Hiroaki Tateno
- Biotechnology Research Institute for Drug Discovery, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Umezono, Tsukuba, Japan
| |
Collapse
|
38
|
Pereira NA, Chan KF, Lin PC, Song Z. The "less-is-more" in therapeutic antibodies: Afucosylated anti-cancer antibodies with enhanced antibody-dependent cellular cytotoxicity. MAbs 2019; 10:693-711. [PMID: 29733746 PMCID: PMC6150623 DOI: 10.1080/19420862.2018.1466767] [Citation(s) in RCA: 217] [Impact Index Per Article: 36.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Therapeutic monoclonal antibodies are the fastest growing class of biological therapeutics for the treatment of various cancers and inflammatory disorders. In cancer immunotherapy, some IgG1 antibodies rely on the Fc-mediated immune effector function, antibody-dependent cellular cytotoxicity (ADCC), as the major mode of action to deplete tumor cells. It is well-known that this effector function is modulated by the N-linked glycosylation in the Fc region of the antibody. In particular, absence of core fucose on the Fc N-glycan has been shown to increase IgG1 Fc binding affinity to the FcγRIIIa present on immune effector cells such as natural killer cells and lead to enhanced ADCC activity. As such, various strategies have focused on producing afucosylated antibodies to improve therapeutic efficacy. This review discusses the relevance of antibody core fucosylation to ADCC, different strategies to produce afucosylated antibodies, and an update of afucosylated antibody drugs currently undergoing clinical trials as well as those that have been approved.
Collapse
Affiliation(s)
- Natasha A Pereira
- a Bioprocessing Technology Institute, Agency for Science, Technology and Research (A*STAR) , 20 Biopolis Way, Singapore
| | - Kah Fai Chan
- a Bioprocessing Technology Institute, Agency for Science, Technology and Research (A*STAR) , 20 Biopolis Way, Singapore
| | - Pao Chun Lin
- a Bioprocessing Technology Institute, Agency for Science, Technology and Research (A*STAR) , 20 Biopolis Way, Singapore
| | - Zhiwei Song
- a Bioprocessing Technology Institute, Agency for Science, Technology and Research (A*STAR) , 20 Biopolis Way, Singapore
| |
Collapse
|
39
|
Shan M, Yang D, Dou H, Zhang L. Fucosylation in cancer biology and its clinical applications. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2019; 162:93-119. [PMID: 30905466 DOI: 10.1016/bs.pmbts.2019.01.002] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Fucosylation is the process of transferring fucose from GDP-fucose to their substrates, which includes certain proteins, N- and O-linked glycans in glycoprotein or glycolipids, by fucosyltransferases in all mammalian cells. Fucosylated glycans play vital role in selectin-mediated leukocyte extravasation, lymphocyte homing, and pathogen-host interactions, whereas fucosylated proteins are essential for signaling transduction in numerous ontogenic events. Aberrant fucosylation due to the availability of high energy donor GDP-fucose, abnormal expression of FUTs and/or α-fucosidase, and the availability of their substrates leads to different fucosylated glycan or protein structures. Accumulating evidence demonstrates that aberrant fucosylation plays important role in all aspects of cancer biology. In this review, we will summarize the current knowledge about fucosylation in different physiological and pathological processes with a focus on their roles not only in cancer cell proliferation, invasion, and metastasis but also in tumor immune surveillance. Furthermore, the clinical potential and applications of fucosylation in cancer diagnosis and treatment will also be discussed.
Collapse
Affiliation(s)
- Ming Shan
- Systems Biology and Medicine Center for Complex Diseases, Affiliated Hospital of Qingdao University, Qingdao, China.
| | - Dandan Yang
- Systems Biology and Medicine Center for Complex Diseases, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Huaiqian Dou
- Systems Biology and Medicine Center for Complex Diseases, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Lijuan Zhang
- Systems Biology and Medicine Center for Complex Diseases, Affiliated Hospital of Qingdao University, Qingdao, China.
| |
Collapse
|
40
|
Bücher KS, Konietzny PB, Snyder NL, Hartmann L. Heteromultivalent Glycooligomers as Mimetics of Blood Group Antigens. Chemistry 2019; 25:3301-3309. [PMID: 30431195 DOI: 10.1002/chem.201804505] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 10/26/2018] [Indexed: 12/19/2022]
Abstract
Precision glycomacromolecules have proven to be important tools for the investigation of multivalent carbohydrate-lectin interactions by presenting multiple glycan epitopes on a highly-defined synthetic scaffold. Herein, we present a new strategy for the versatile assembly of heteromultivalent glycomacromolecules that contain different carbohydrate motifs in proximity within the side chains. A new building block suitable for the solid-phase polymer synthesis of precision glycomacromolecules was developed with a branching point in the side chain that bears a free alkyne and a TIPS-protected alkyne moiety, which enables the subsequent attachment of different carbohydrate motifs by on-resin copper-mediated azide-alkyne cycloaddition reactions. Applying this synthetic strategy, heteromultivalent glycooligomers presenting fragments of histo-blood group antigens and human milk oligosaccharides were synthesized and tested for their binding behavior towards bacterial lectin LecB.
Collapse
Affiliation(s)
- Katharina S Bücher
- Institute of Organic and Macromolecular Chemistry, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Patrick B Konietzny
- Institute of Organic and Macromolecular Chemistry, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Nicole L Snyder
- Department of Chemistry, Davidson College, Davidson, NC, USA
| | - Laura Hartmann
- Institute of Organic and Macromolecular Chemistry, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| |
Collapse
|
41
|
Jia L, Zhang J, Ma T, Guo Y, Yu Y, Cui J. The Function of Fucosylation in Progression of Lung Cancer. Front Oncol 2018; 8:565. [PMID: 30619732 PMCID: PMC6296341 DOI: 10.3389/fonc.2018.00565] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Accepted: 11/12/2018] [Indexed: 12/24/2022] Open
Abstract
Lung cancer is a disease that influences human health and has become a leading cause of cancer mortality worldwide. However, it is frequently diagnosed at the advanced stage. It is necessary by means of biology to identify specific lung tumor biomarkers with high sensitivity. Glycosylation is one of the most important post-translational modifications and is related to many different diseases. It is involved in numerous essential biological processes, such as cell proliferation, differentiation, migration, cell-cell integrity and recognition, and immune modulation. However, little was known about deregulation of glycosylation in lung cancer and contribution to tumor–microenvironment interactions. Among the numerous glycosylations, fucosylation is the most common modification of glycoproteins and glycosylated oligosaccharides. Increased levels of fucosylation have been detected in various pathological conditions, as well as in lung cancer. In this article, we reviewed the role of fucosylation in lung cancer. We highlighted some of the fucosylation alterations currently being pursued in sera or tissues of lung cancer patients. Moreover, we elaborated on the regulation mechanism of fucosylation in proliferative invasion and metastasis of lung tumor cells. In summary, alterations in fucosylation provide potential biomarkers and therapeutic targets in lung cancer.
Collapse
Affiliation(s)
- Liyuan Jia
- Laboratory of Tissue Engineering, College of Life Sciences, Northwest University, Xi'an, China
| | - Jing Zhang
- Laboratory of Tissue Engineering, College of Life Sciences, Northwest University, Xi'an, China
| | - Tianran Ma
- Laboratory for Functional Glycomics, College of Life Sciences, Northwest University, Xi'an, China
| | - Yayuan Guo
- Laboratory of Tissue Engineering, College of Life Sciences, Northwest University, Xi'an, China
| | - Yuan Yu
- Laboratory of Tissue Engineering, College of Life Sciences, Northwest University, Xi'an, China.,Key Laboratory of Resource Biology and Biotechnology in Western China Ministry of Education, Xi'an, China.,Provincial Key Laboratory of Biotechnology of Shaanxi, Xi'an, China
| | - Jihong Cui
- Laboratory of Tissue Engineering, College of Life Sciences, Northwest University, Xi'an, China.,Key Laboratory of Resource Biology and Biotechnology in Western China Ministry of Education, Xi'an, China.,Provincial Key Laboratory of Biotechnology of Shaanxi, Xi'an, China
| |
Collapse
|
42
|
Schulz MA, Tian W, Mao Y, Van Coillie J, Sun L, Larsen JS, Chen YH, Kristensen C, Vakhrushev SY, Clausen H, Yang Z. Glycoengineering design options for IgG1 in CHO cells using precise gene editing. Glycobiology 2018; 28:542-549. [PMID: 29596681 DOI: 10.1093/glycob/cwy022] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Accepted: 03/26/2018] [Indexed: 12/11/2022] Open
Abstract
Precise gene editing technologies are providing new opportunities to stably engineer host cells for recombinant production of therapeutic glycoproteins with different glycan structures. The glycosylation of recombinant therapeutics has long been a focus for both quality and consistency of products and for optimizing and improving pharmacokinetic properties as well as bioactivity. Structures of glycans on therapeutic glycoproteins are important for circulation, biodistribution and bioactivity. In particular, the latter has been demonstrated for therapeutic IgG1 antibodies where the core α1,6Fucose on the conserved N-glycan at Asn297 have remarkable dampening effects on antibody effector functions. We previously explored precise gene engineering and design options for N-glycosylation in CHO cells, and here we focus on engineering options possible for N-glycans on human IgG1. We demonstrate stable precise gene engineering of rather homogenous biantennary N-glycans with and without galactose (G0F, G2F) as well as the α2,6-linked monosialylated (G2FS1) glycoform. We were unable to introduce substantial disialylated glycoforms. Instead we engineered a novel monoantennary homogeneous N-glycan design with complete α2,6-linked sialic acid capping. All N-glycoforms may be engineered with and without core α1,6Fucose. The stably engineered design options enable production of human IgG antibodies with an array of distinct glycoforms for testing and selection of optimal design for different therapeutic applications.
Collapse
Affiliation(s)
- Morten A Schulz
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3, Copenhagen N, Denmark
| | - Weihua Tian
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3, Copenhagen N, Denmark
| | - Yang Mao
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3, Copenhagen N, Denmark
| | - Julie Van Coillie
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3, Copenhagen N, Denmark
| | - Lingbo Sun
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3, Copenhagen N, Denmark
| | - Joachim S Larsen
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3, Copenhagen N, Denmark
| | - Yen-Hsi Chen
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3, Copenhagen N, Denmark
| | - Claus Kristensen
- GlycoDisplay ApS, Blegdamsvej 3, Building 07-10-85, Copenhagen N, Denmark
| | - Sergey Y Vakhrushev
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3, Copenhagen N, Denmark
| | - Henrik Clausen
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3, Copenhagen N, Denmark
| | - Zhang Yang
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3, Copenhagen N, Denmark.,GlycoDisplay ApS, Blegdamsvej 3, Building 07-10-85, Copenhagen N, Denmark
| |
Collapse
|
43
|
Prabhu A, Gadgil M. Nickel and cobalt affect galactosylation of recombinant IgG expressed in CHO cells. Biometals 2018; 32:11-19. [PMID: 30327978 DOI: 10.1007/s10534-018-0152-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Accepted: 09/28/2018] [Indexed: 11/27/2022]
Abstract
Glycosylation is an important product quality attribute of antibody biopharmaceuticals. It involves enzymatic addition of oligosaccharides on proteins by sequential action of glycosyltransferases and glycosidases in the endoplasmic reticulum and golgi. Some of these enzymes like galactosyltransferase and N-acetylglucosaminyltransferase-I require trace metal cofactors. Variations in trace metal availability during production can thus affect glycosylation of recombinant glycoproteins such as monoclonal antibodies. Variability in trace metal concentrations can be introduced at multiple stages during production such as due to impurities in raw materials for culture medium and leachables from bioreactors. Knowledge of the effect of various trace metals on glycosylation can help in root-cause analysis of unintended variability in glycosylation. In this study, we investigated the effect of nickel and cobalt on glycosylation of recombinant IgG expressed in Chinese hamster ovary cells. Nickel concentrations below 500 µM did not affect glycosylation, but above 500 µM it significantly decreases galactosylation of IgG. Cobalt at 50 µM concentration causes slight increase in G1F glycans (mono galactosylated) as previously reported. However, higher concentrations result in a small increase in G0F (non galactosylated) glycans. This effect of nickel and cobalt on galactosylation of recombinant IgG can be reversed by supplementation of uridine and galactose which are precursors to UDP-Galactose, a substrate for the enzymatic galactosylation reaction.
Collapse
Affiliation(s)
- Anuja Prabhu
- Chemical Engineering and Process Development Division, CSIR-National Chemical Laboratory, Pune, 411008, India
| | - Mugdha Gadgil
- Chemical Engineering and Process Development Division, CSIR-National Chemical Laboratory, Pune, 411008, India.
| |
Collapse
|
44
|
West CA, Wang M, Herrera H, Liang H, Black A, Angel PM, Drake RR, Mehta AS. N-Linked Glycan Branching and Fucosylation Are Increased Directly in Hcc Tissue As Determined through in Situ Glycan Imaging. J Proteome Res 2018; 17:3454-3462. [PMID: 30110170 DOI: 10.1021/acs.jproteome.8b00323] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Hepatocellular carcinoma (HCC) remains as the fifth most common cancer in the world and accounts for more than 700,000 deaths annually. Changes in serum glycosylation have long been associated with this cancer but the source of that material is unknown and direct glycan analysis of HCC tissues has been limited. Our laboratory previously developed a method of in situ tissue based N-linked glycan imaging that bypasses the need for microdissection and solubilization of tissue prior to analysis. We used this methodology in the analysis of 138 HCC tissue samples and compared the N-linked glycans in cancer tissue with either adjacent untransformed or tissue from patients with liver cirrhosis but no cancer. Ten glycans were found significantly elevated in HCC tissues as compared to cirrhotic or adjacent tissue. These glycans fell into two major classes, those with increased levels of fucosylation and those with increased levels of branching with or without any fucose modifications. In addition, increased levels of fucosylated glycoforms were associated with a reduction in survival time. This work supports the hypothesis that the increased levels of fucosylated N-linked glycans in HCC serum are produced directly from the cancer tissue.
Collapse
Affiliation(s)
- Connor A West
- Medical University of South Carolina , Department of Cell and Molecular Pharmacology , 173 Ashley Avenue BSB 358 , Charleston , South Carolina 29425 , United States
| | - Mengjun Wang
- Medical University of South Carolina , Department of Cell and Molecular Pharmacology , 173 Ashley Avenue BSB 358 , Charleston , South Carolina 29425 , United States
| | - Harmin Herrera
- Graduate School of Biomedical Sciences and Professional Studies, Drexel University College of Medicine , Department of Microbiology and Immunology , 2900 Queen Lane , Philadelphia , Pennsylvania 19129 , United States
| | - Hongyan Liang
- Medical University of South Carolina , Department of Cell and Molecular Pharmacology , 173 Ashley Avenue BSB 358 , Charleston , South Carolina 29425 , United States
| | - Alyson Black
- Medical University of South Carolina , Department of Cell and Molecular Pharmacology , 173 Ashley Avenue BSB 358 , Charleston , South Carolina 29425 , United States
| | - Peggi M Angel
- Medical University of South Carolina , Department of Cell and Molecular Pharmacology , 173 Ashley Avenue BSB 358 , Charleston , South Carolina 29425 , United States
| | - Richard R Drake
- Medical University of South Carolina , Department of Cell and Molecular Pharmacology , 173 Ashley Avenue BSB 358 , Charleston , South Carolina 29425 , United States
| | - Anand S Mehta
- Medical University of South Carolina , Department of Cell and Molecular Pharmacology , 173 Ashley Avenue BSB 358 , Charleston , South Carolina 29425 , United States
| |
Collapse
|
45
|
Marsico G, Russo L, Quondamatteo F, Pandit A. Glycosylation and Integrin Regulation in Cancer. Trends Cancer 2018; 4:537-552. [PMID: 30064662 DOI: 10.1016/j.trecan.2018.05.009] [Citation(s) in RCA: 135] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Revised: 05/21/2018] [Accepted: 05/24/2018] [Indexed: 12/20/2022]
Abstract
Integrins are transmembrane receptors that coordinate extracellular matrix (ECM)-cell and cell-cell interactions, signal transmission, gene expression, and cell function. The aberration of integrin function is one of the well-recognized mechanisms of cancer. The activity of integrins is strongly influenced by glycans through glycosylation events and the establishment of glycan-mediated interactions. Glycans represent a class of ubiquitous biomolecules that display an extraordinary complexity and diversity in both structure and function. Widely expressed both in the ECM and on the cell surface, they play a crucial role in mediating cell proliferation, survival, and metastasis during cancer. The purpose of this review is to provide an overview of how both glycosylation of integrins and integrin interaction with the cancer glyco-microenvironment can regulate cancer progression.
Collapse
Affiliation(s)
- Grazia Marsico
- CÚRAM, Centre for Research in Medical Devices, National University of Ireland, Galway, Ireland
| | - Laura Russo
- Dipartimento di Biotecnologie e Bioscienze, Università degli studi di Milano-Bicocca, Milan, Italy
| | - Fabio Quondamatteo
- Anatomy Facility, School of Life Science, University of Glasgow, Glasgow, Scotland
| | - Abhay Pandit
- CÚRAM, Centre for Research in Medical Devices, National University of Ireland, Galway, Ireland.
| |
Collapse
|
46
|
Nadeem T, Khan MA, Ijaz B, Ahmed N, Rahman ZU, Latif MS, Ali Q, Rana MA. Glycosylation of Recombinant Anticancer Therapeutics in Different Expression Systems with Emerging Technologies. Cancer Res 2018; 78:2787-2798. [DOI: 10.1158/0008-5472.can-18-0032] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Revised: 03/22/2018] [Accepted: 04/03/2018] [Indexed: 11/16/2022]
|
47
|
Wang Q, Chung CY, Chough S, Betenbaugh MJ. Antibody glycoengineering strategies in mammalian cells. Biotechnol Bioeng 2018; 115:1378-1393. [DOI: 10.1002/bit.26567] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Revised: 02/11/2018] [Accepted: 02/13/2018] [Indexed: 12/18/2022]
Affiliation(s)
- Qiong Wang
- Department of Chemical and Biomolecular Engineering; Johns Hopkins University; Baltimore Maryland
| | - Cheng-Yu Chung
- Department of Chemical and Biomolecular Engineering; Johns Hopkins University; Baltimore Maryland
| | - Sandra Chough
- Department of Chemical and Biomolecular Engineering; Johns Hopkins University; Baltimore Maryland
| | - Michael J. Betenbaugh
- Department of Chemical and Biomolecular Engineering; Johns Hopkins University; Baltimore Maryland
| |
Collapse
|
48
|
Veillon L, Fakih C, Abou-El-Hassan H, Kobeissy F, Mechref Y. Glycosylation Changes in Brain Cancer. ACS Chem Neurosci 2018; 9:51-72. [PMID: 28982002 DOI: 10.1021/acschemneuro.7b00271] [Citation(s) in RCA: 97] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Protein glycosylation is a posttranslational modification that affects more than half of all known proteins. Glycans covalently bound to biomolecules modulate their functions by both direct interactions, such as the recognition of glycan structures by binding partners, and indirect mechanisms that contribute to the control of protein conformation, stability, and turnover. The focus of this Review is the discussion of aberrant glycosylation related to brain cancer. Altered sialylation and fucosylation of N- and O-glycans play a role in the development and progression of brain cancer. Additionally, aberrant O-glycan expression has been implicated in brain cancer. This Review also addresses the clinical potential and applications of aberrant glycosylation for the detection and treatment of brain cancer. The viable roles glycans may play in the development of brain cancer therapeutics are addressed as well as cancer-glycoproteomics and personalized medicine. Glycoprotein alterations are considered as a hallmark of cancer while high expression in body fluids represents an opportunity for cancer assessment.
Collapse
Affiliation(s)
- Lucas Veillon
- Department
of Chemistry and Biochemistry, Texas Tech University, Lubbock Texas 79409, United States
| | - Christina Fakih
- Department
of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Hadi Abou-El-Hassan
- Department
of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Firas Kobeissy
- Department
of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Yehia Mechref
- Department
of Chemistry and Biochemistry, Texas Tech University, Lubbock Texas 79409, United States
| |
Collapse
|
49
|
Wang Q, Chung CY, Rosenberg JN, Yu G, Betenbaugh MJ. Application of the CRISPR/Cas9 Gene Editing Method for Modulating Antibody Fucosylation in CHO Cells. Methods Mol Biol 2018; 1850:237-257. [PMID: 30242691 DOI: 10.1007/978-1-4939-8730-6_16] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Genetic engineering plays an essential role in the development of cell lines for biopharmaceutical manufacturing. Advanced gene editing tools can improve both the productivity of recombinant cell lines as well as the quality of therapeutic antibodies. Antibody glycosylation is a critical quality attribute for therapeutic biologics because the glycan patterns on the antibody fragment crystallizable (Fc) region can alter its clinical efficacy and safety as a therapeutic drug. As an example, recombinant antibodies derived from Chinese hamster ovary (CHO) cells are generally highly fucosylated; the absence of fucose significantly enhances antibody dependent cell-mediated cytotoxicity (ADCC) against cancer cells. This chapter describes a protocol applying clustered regularly interspaced short palindromic repeats (CRISPR) and CRISPR-associated protein 9 (Cas9) to disrupt the α-1,6-fucosyltranferase (FUT8) gene and subsequently inhibit α-1,6-fucosylation on antibodies expressed in CHO cells.
Collapse
Affiliation(s)
- Qiong Wang
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Cheng-Yu Chung
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Julian N Rosenberg
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Geng Yu
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Michael J Betenbaugh
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, USA.
| |
Collapse
|
50
|
Tu CF, Wu MY, Lin YC, Kannagi R, Yang RB. FUT8 promotes breast cancer cell invasiveness by remodeling TGF-β receptor core fucosylation. Breast Cancer Res 2017; 19:111. [PMID: 28982386 PMCID: PMC5629780 DOI: 10.1186/s13058-017-0904-8] [Citation(s) in RCA: 154] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Accepted: 09/22/2017] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Core fucosylation (addition of fucose in α-1,6-linkage to core N-acetylglucosamine of N-glycans) catalyzed by fucosyltransferase 8 (FUT8) is critical for signaling receptors involved in many physiological and pathological processes such as cell growth, adhesion, and tumor metastasis. Transforming growth factor-β (TGF-β)-induced epithelial-mesenchymal transition (EMT) regulates the invasion and metastasis of breast tumors. However, whether receptor core fucosylation affects TGF-β signaling during breast cancer progression remains largely unknown. METHOD In this study, gene expression profiling and western blot were used to validate the EMT-associated expression of FUT8. Lentivirus-mediated gain-of-function study, short hairpin RNA (shRNA) or CRISPR/Cas9-mediated loss-of-function studies and pharmacological inhibition of FUT8 were used to elucidate the molecular function of FUT8 during TGF-β-induced EMT in breast carcinoma cells. In addition, lectin blot, luciferase assay, and in vitro ligand binding assay were employed to demonstrate the involvement of FUT8 in the TGF-β1 signaling pathway. The role of FUT8 in breast cancer migration, invasion, and metastasis was confirmed using an in vitro transwell assay and mammary fat pad xenograft in vivo tumor model. RESULTS Gene expression profiling analysis revealed that FUT8 is upregulated in TGF-β-induced EMT; the process was associated with the migratory and invasive abilities of several breast carcinoma cell lines. Gain-of-function and loss-of-function studies demonstrated that FUT8 overexpression stimulated the EMT process, whereas FUT8 knockdown suppressed the invasiveness of highly aggressive breast carcinoma cells. Furthermore, TGF-β receptor complexes might be core fucosylated by FUT8 to facilitate TGF-β binding and enhance downstream signaling. Importantly, FUT8 inhibition suppressed the invasive ability of highly metastatic breast cancer cells and impaired their lung metastasis. CONCLUSIONS Our results reveal a positive feedback mechanism of FUT8-mediated receptor core fucosylation that promotes TGF-β signaling and EMT, thus stimulating breast cancer cell invasion and metastasis.
Collapse
Affiliation(s)
- Cheng-Fen Tu
- Institute of Biomedical Sciences, Academia Sinica, Taipei, 11529, Taiwan
| | - Meng-Ying Wu
- Institute of Biomedical Sciences, Academia Sinica, Taipei, 11529, Taiwan
| | - Yuh-Charn Lin
- Institute of Biomedical Sciences, Academia Sinica, Taipei, 11529, Taiwan
| | - Reiji Kannagi
- Institute of Biomedical Sciences, Academia Sinica, Taipei, 11529, Taiwan
| | - Ruey-Bing Yang
- Institute of Biomedical Sciences, Academia Sinica, Taipei, 11529, Taiwan. .,Institute of Pharmacology, National Yang-Ming University, Taipei, 11221, Taiwan. .,Ph.D. Program in Biotechnology Research and Development, College of Pharmacy, Taipei Medical University, Taipei, 11031, Taiwan.
| |
Collapse
|