1
|
Vega-Zuniga T, Trost D, Schicker K, Bogner EM, Luksch H. The Medial Ventrothalamic Circuitry: Cells Implicated in a Bimodal Network. Front Neural Circuits 2018; 12:9. [PMID: 29479309 PMCID: PMC5812298 DOI: 10.3389/fncir.2018.00009] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Accepted: 01/19/2018] [Indexed: 01/20/2023] Open
Abstract
Previous avian thalamic studies have shown that the medial ventral thalamus is composed of several nuclei located close to the lateral wall of the third ventricle. Although the general connectivity is known, detailed morphology and connectivity pattern in some regions are still elusive. Here, using the intracellular filling technique in the chicken, we focused on two neural structures, namely, the retinorecipient neuropil of the n. geniculatus lateralis pars ventralis (GLv), and the adjacent n. intercalatus thalami (ICT). We found that the GLv-ne cells showed two different neuronal types: projection cells and horizontal interneurons. The projection cells showed variable morphologies and dendritic arborizations with axons that targeted the n. lentiformis mesencephali (LM), griseum tectale (GT), ICT, n. principalis precommissuralis (PPC), and optic tectum (TeO). The horizontal cells showed a widespread mediolateral neural process throughout the retinorecipient GLv-ne. The ICT cells, on the other hand, had multipolar somata with wide dendritic fields that extended toward the lamina interna of the GLv, and a projection pattern that targeted the n. laminaris precommissuralis (LPC). Together, these results elucidate the rich complexity of the connectivity pattern so far described between the GLv, ICT, pretectum, and tectum. Interestingly, the implication of some of these neural structures in visuomotor and somatosensory roles strongly suggests that the GLv and ICT are part of a bimodal circuit that may be involved in the generation/modulation of saccades, gaze control, and space perception.
Collapse
Affiliation(s)
- Tomas Vega-Zuniga
- Lehrstuhl für Zoologie, Technische Universität München, Freising-Weihenstephan, Germany
| | - Dominik Trost
- Lehrstuhl für Zoologie, Technische Universität München, Freising-Weihenstephan, Germany
| | - Katrin Schicker
- Lehrstuhl für Zoologie, Technische Universität München, Freising-Weihenstephan, Germany
| | - Eva M Bogner
- Lehrstuhl für Zoologie, Technische Universität München, Freising-Weihenstephan, Germany
| | - Harald Luksch
- Lehrstuhl für Zoologie, Technische Universität München, Freising-Weihenstephan, Germany
| |
Collapse
|
2
|
Vega-Zuniga T, Mpodozis J, Karten HJ, Marín G, Hain S, Luksch H. Morphology, projection pattern, and neurochemical identity of Cajal's "centrifugal neurons": the cells of origin of the tectoventrogeniculate pathway in pigeon (Columba livia) and chicken (Gallus gallus). J Comp Neurol 2014; 522:2377-96. [PMID: 24435811 DOI: 10.1002/cne.23539] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2013] [Revised: 01/13/2014] [Accepted: 01/13/2014] [Indexed: 01/13/2023]
Abstract
The nucleus geniculatus lateralis pars ventralis (GLv) is a prominent retinal target in all amniotes. In birds, it is in receipt of a dense and topographically organized retinal projection. The GLv is also the target of substantial and topographically organized projections from the optic tectum and the visual wulst (hyperpallium). Tectal and retinal afferents terminate homotopically within the external GLv-neuropil. Efferents from the GLv follow a descending course through the tegmentum and can be traced into the medial pontine nucleus. At present, the cells of origin of the Tecto-GLv projection are only partially described. Here we characterized the laminar location, morphology, projection pattern, and neurochemical identity of these cells by means of neural tracer injections and intracellular fillings in slice preparations and extracellular tracer injections in vivo. The Tecto-GLv projection arises from a distinct subset of layer 10 bipolar neurons, whose apical dendrites show a complex transverse arborization at the level of layer 7. Axons of these bipolar cells arise from the apical dendrites and follow a course through the optic tract to finally form very fine and restricted terminal endings inside the GLv-neuropil. Double-label experiments showed that these bipolar cells were choline acetyltransferase (ChAT)-immunoreactive. Our results strongly suggest that Tecto-GLv neurons form a pathway by which integrated tectal activity rapidly feeds back to the GLv and exerts a focal cholinergic modulation of incoming retinal inputs.
Collapse
Affiliation(s)
- Tomas Vega-Zuniga
- Lehrstuhl für Zoologie, Technische Universität München, Freising-Weihenstephan, Germany
| | | | | | | | | | | |
Collapse
|
3
|
Presynaptic nicotinic α7 and non-α7 receptors stimulate endogenous GABA release from rat hippocampal synaptosomes through two mechanisms of action. PLoS One 2011; 6:e16911. [PMID: 21346795 PMCID: PMC3034729 DOI: 10.1371/journal.pone.0016911] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2010] [Accepted: 01/17/2011] [Indexed: 11/19/2022] Open
Abstract
Background Although converging evidence has suggested that nicotinic acetylcholine receptors (nAChR) play a role in the modulation of GABA release in rat hippocampus, the specific involvement of different nAChR subtypes at presynaptic level is still a matter of debate. In the present work we investigated, using selective α7 and α4β2 nAChR agonists, the presence of different nAChR subtypes on hippocampal GABA nerve endings to assess to what extent and through which mechanisms they stimulate endogenous GABA release. Methodology/Findings All agonists elicited GABA overflow. Choline (Ch)-evoked GABA overflow was dependent to external Ca2+, but unaltered in the presence of Cd2+, tetrodotoxin (TTX), dihydro-β-erythroidine (DHβE) and 1-(4,4-Diphenyl-3-butenyl)-3-piperidinecarboxylic acid hydrochloride SKF 89976A. The effect of Ch was blocked by methyllycaconitine (MLA), α-bungarotoxin (α-BTX), dantrolene, thapsigargin and xestospongin C, suggesting that GABA release might be triggered by Ca2+ entry into synaptosomes through the α7 nAChR channel with the involvement of calcium from intracellular stores. Additionally, 5-Iodo-A-85380 dihydrochloride (5IA85380) elicited GABA overflow, which was Ca2+ dependent, blocked by Cd2+, and significantly inhibited by TTX and DHβE, but unaffected by MLA, SKF 89976A, thapsigargin and xestospongin C and dantrolene. These findings confirm the involvement of α4β2 nAChR in 5IA85380-induced GABA release that seems to occur following membrane depolarization and opening calcium channels. Conclusions/Significance Rat hippocampal synaptosomes possess both α7 and α4β2 nAChR subtypes, which can modulate GABA release via two distinct mechanisms of action. The finding that GABA release evoked by the mixture of sub-maximal concentration of 5IA85380 plus sub-threshold concentrations of Ch was significantly larger than that elicited by the sum of the effects of the two agonists is compatible with the possibility that they coexist on the same nerve terminals. These findings would provide the basis for possible selective pharmacological strategies to treat neuronal disorders that involve the dysfunction of hippocampal cholinergic system.
Collapse
|
4
|
Strang CE, Renna JM, Amthor FR, Keyser KT. Muscarinic acetylcholine receptor localization and activation effects on ganglion response properties. Invest Ophthalmol Vis Sci 2009; 51:2778-89. [PMID: 20042645 DOI: 10.1167/iovs.09-4771] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
PURPOSE The activation and blockade of muscarinic acetylcholine receptors (mAChRs) affects retinal ganglion cell light responses and firing rates. This study was undertaken to identify the full complement of mAChRs expressed in the rabbit retina and to assess mAChR distribution and the functional effects of mAChR activation and blockade on retinal response properties. METHODS RT-PCR, Western blot analysis, and immunohistochemistry were used to identify the complement and distribution of mAChRs in the rabbit retina. Extracellular electrophysiology was used to determine the effects of the activation or blockade of mAChRs on ganglion cell response properties. RESULTS RT-PCR of whole neural retina resulted in the amplification of mRNA transcripts for the m1 to m5 mAChR subtypes. Western blot and immunohistochemical analyses confirmed that all five mAChR subtypes were expressed by subpopulations of bipolar, amacrine, and ganglion cells in the rabbit retina, including subsets of cells in cholinergic and glycinergic circuits. Nonspecific muscarinic activation and blockade resulted in the class-specific modulation of maintained ganglion cell firing rates and light responses. CONCLUSIONS The expression of mAChR subtypes on subsets of bipolar, amacrine, and ganglion cells provides a substrate for both enhancement and suppression of retinal responses via activation by cholinergic agents. Thus, the muscarinic cholinergic system in the retina may contribute to the modulation of complex stimuli. Understanding the distribution and function of mAChRs in the retina has the potential to provide important insights into the visual changes that are caused by decreased ACh in the retinas of Alzheimer's patients and the potential visual effects of anticholinergic treatments for ocular diseases.
Collapse
Affiliation(s)
- Christianne E Strang
- Department of Vision Sciences, University of Alabama at Birmingham, Birmingham, AL 35294, USA.
| | | | | | | |
Collapse
|
5
|
Guo JZ, Sorenson EM, Chiappinelli VA. Cholinergic modulation of non-N-methyl-D-aspartic acid glutamatergic transmission in the chick ventral lateral geniculate nucleus. Neuroscience 2009; 166:604-14. [PMID: 20035842 DOI: 10.1016/j.neuroscience.2009.12.046] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2009] [Revised: 12/15/2009] [Accepted: 12/17/2009] [Indexed: 10/20/2022]
Abstract
Neurotransmission between glutamatergic terminals of retinal ganglion cells and principal neurons of the ventral lateral geniculate nucleus (LGNv) was examined with patch clamp recordings in chick brain slices during electrical stimulation of the optic tract. Since muscarinic and nicotinic receptors are present in high densities in LGNv, the present study examined possible roles of both receptors in modulating retinogeniculate transmission. During whole-cell recordings from LGNv neurons, acetylcholine (ACh, 100 microM) caused an initial increase in amplitudes of optic tract-evoked non-N-methyl-D-aspartic acid (NMDA) glutamatergic postsynaptic currents (PSCs). This increase was unchanged when 1 microM atropine was present, indicating that this initial enhancement of PSCs was due entirely to activation of nicotinic receptors. However, during washout of ACh the amplitudes of evoked PSCs became significantly decreased by 40.4+/-5.0% for several minutes before recovering to their original amplitudes, an effect blocked by 1 microM atropine. Exogenously applied muscarine (10 microM) markedly depressed optic tract-evoked PSCs, and this decrease in amplitude was blocked by atropine. In a second set of experiments, we examined effects of releasing endogenous ACh prior to optic tract stimulation. This was accomplished by stimulation of the lateral portion of LGNv via a separate conditioning electrode. Following a brief train of low intensity conditioning stimuli, non-NMDA glutamatergic PSCs evoked by optic tract stimulation were potentiated. However, at higher conditioning stimulus intensities the PSCs were markedly decreased compared with control, and this decrease was partially blocked by atropine (1 microM). Neither ACh nor muscarine altered amplitudes of PSCs elicited by exogenously applied glutamate. Muscarine significantly reduced the frequency but not the amplitudes of miniature PSCs, consistent with a presynaptic location for muscarinic receptors mediating these effects. Thus while activation of nicotinic receptors potentiates retinogeniculate transmission, activation of muscarinic receptors mediates depression of transmission, demonstrating a complex cholinergic modulation of sensory information in LGNv.
Collapse
Affiliation(s)
- J-Z Guo
- Department of Pharmacology and Physiology, School of Medicine and Health Sciences, the George Washington University, 2300 Eye Street Northwest Washington, DC 20037, USA
| | | | | |
Collapse
|
6
|
Govindaiah G, Cox CL. Distinct roles of metabotropic glutamate receptor activation on inhibitory signaling in the ventral lateral geniculate nucleus. J Neurophysiol 2009; 101:1761-73. [PMID: 19176605 DOI: 10.1152/jn.91107.2008] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The ventral lateral geniculate nucleus (vLGN) has been implicated in numerous functions including circadian rhythms, brightness discrimination, pupillary light reflex, and other visuomotor functions. The contribution of inhibitory mechanisms in the regulation of vLGN neuron excitability remains unexplored. We examined the actions of metabotropic glutamate receptor (mGluR) activation on the intrinsic excitability and inhibitory synaptic transmission in different lamina of vLGN. Activation of mGluRs exerts distinct pre- and postsynaptic actions in vLGN neurons. In the lateral magnocellular subdivision of vLGN (vLGNl), the general mGluR agonist (1S,3R)-1-aminocyclopentane-1,3-dicarboxylic acid (ACPD) enhanced the frequency of GABA(A) receptor-mediated spontaneous inhibitory postsynaptic currents (sIPSC) that persisted in the presence of sodium channel blocker tetrodotoxin (TTX) in a subpopulation of neurons (TTX insensitive). This increase is attributed to the increased output of dendritic GABA release from vLGN interneurons. In contrast, in the medial subdivision of vLGN (vLGNm), the mGluR agonist-mediated increase in sIPSC frequency was completely blocked by TTX. The selective Group I mGluR agonist (RS)-3,5-dihydroxyphenylglycine (DHPG) increased sIPSC frequency, whereas the selective Group II mGluR agonist (2R, 4R)-4-aminopyrrolidine-2,4-dicarboxylate (APDC) significantly decreased sIPSC frequency in vLGNl neurons. Optic tract stimulation also produced an mGluR-dependent increase in sIPSC frequency in vLGNl neurons. In contrast, we were unable to synaptically evoke alterations in sIPSC activity in vLGNm neurons. In addition to these presynaptic actions, DHPG depolarized both vLGNl and vLGNm neurons. In vLGN interneurons, mGluR activation produced opposing actions: APDC hyperpolarized the membrane potential, whereas DHPG produced a membrane depolarization. The present findings demonstrate diverse actions of mGluRs on vLGN neurons localized within different vLGN lamina. Considering these different lamina are coupled with distinct functional roles, thus these diverse actions may be involved in distinctive forms of visual and visuomotor information processing.
Collapse
Affiliation(s)
- G Govindaiah
- Dept. of Pharmacology and Physiology, University of Illinois, 2357 Beckman Institute, 405 N. Mathews Ave., Urbana, IL 61801, USA
| | | |
Collapse
|
7
|
Pekala D, Blasiak A, Lewandowski MH. The influence of carbachol on glutamate-induced activity of the intergeniculate leaflet neurons—In vitro studies. Brain Res 2007; 1186:95-101. [DOI: 10.1016/j.brainres.2007.10.028] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2007] [Revised: 10/11/2007] [Accepted: 10/13/2007] [Indexed: 11/16/2022]
|
8
|
Guo JZ, Liu Y, Sorenson EM, Chiappinelli VA. Synaptically Released and Exogenous ACh Activates Different Nicotinic Receptors to Enhance Evoked Glutamatergic Transmission in the Lateral Geniculate Nucleus. J Neurophysiol 2005; 94:2549-60. [PMID: 15972832 DOI: 10.1152/jn.00339.2005] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The effects of activation of nicotinic acetylcholine receptors (nAChRs) on glutamatergic transmission in the ventral lateral geniculate nucleus (LGNv) were examined in chick brain slices. Whole cell recordings showed that monosynaptic postsynaptic currents (PSCs) evoked in LGNv neurons by optic tract stimulation were blocked by glutamate receptor antagonists. Exogenously applied nicotine (0.5 μM), choline (1 mM), or acetylcholine (ACh, 100 μM) markedly increased (>3-fold) these evoked PSCs. Potentiation by ACh was dose-dependent and did not desensitize during a 5-min application. In a second set of experiments, the effect of releasing endogenous ACh by stimulating the lateral portion of the LGNv through a separate conditioning electrode before optic tract stimulation was examined. Conditioning stimulation trains increased PSCs by an average of 5.2-fold, an effect dependent on both the intensity and number of conditioning pulses. This increase in PSC amplitude was most likely caused by released ACh activating α6- and/or α3-containing nAChRs because it was blocked by 100 nM α-conotoxin MII, 100 nM dihydro-β-erythroidine (DHβE), and 0.1–1.0 μM methyllycaconitine (MLA). In contrast, exogenously applied ACh increased PSC amplitude by activating a pharmacologically different population of nAChRs because this effect was inhibited by 100 nM α-bungarotoxin, 50 nM MLA, and a high concentration (30 μM) of DHβE, indicating that α7- and/or α8-containing receptors were involved. The results are consistent with a model whereby α6- and/or α3-containing nAChRs on retinal ganglion cell nerve terminals are located preferentially at cholinergic synapses, whereas α7- and/or α8-containing receptors are primarily extrasynaptic.
Collapse
Affiliation(s)
- Jian-Zhong Guo
- Department of Pharmacology and Physiology, George Washington University, School of Medicine and Health Sciences, DC 20037, USA.
| | | | | | | |
Collapse
|
9
|
Strang CE, Andison ME, Amthor FR, Keyser KT. Rabbit retinal ganglion cells express functional alpha7 nicotinic acetylcholine receptors. Am J Physiol Cell Physiol 2005; 289:C644-55. [PMID: 15872006 DOI: 10.1152/ajpcell.00633.2004] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
It is well known that cholinergic agents affect ganglion cell (GC) firing rates and light responses in the retinas of many species, but the specific receptor subtypes involved in mediating these effects have been only partially characterized. We sought to determine whether functional alpha(7) nicotinic acetylcholine receptors (nAChRs) contribute to the responses of specific retinal GC classes in rabbit retina. We used electrophysiology, pharmacology, immunohistochemistry, and reverse transcriptase-polymerase chain reaction to determine the pharmacological properties and expression of nAChR subtypes by specific rabbit retinal GC classes. Choline was used as an alpha(7) nAChR agonist. Methyllycaconitine (MLA) was used as a competitive alpha(7) nAChR antagonist. The application of choline before synaptic blockade resulted in changes in retinal GC activity, including increases or decreases in maintained firing and/or enhancement or suppression of light responses. Many physiologically identified GC types, including sustained off, sustained on, transient off, and transient on cells, demonstrated responses to choline application while under synaptic blockade. The choline-induced responses could be blocked with MLA, confirming alpha(7) nAChR activation. Individual choline-responsive GCs displayed mRNA transcripts consistent with the expression of functional alpha(7) nAChRs. Other GCs demonstrated physiological responses and mRNA expression consistent with the expression of both alpha(7) and non-alpha(7) nAChRs. Thus mRNA is present for multiple nAChR subunits in whole retina extracts, and functional alpha(7) nAChRs are capable of modulating the responses of GCs in adult rabbit retina. We also demonstrate through physiological responses that subsets of GCs express more than one nAChR subtype.
Collapse
Affiliation(s)
- Christianne E Strang
- Department of Vision Science, University of Alabama, Birmingham, AL 35294-4390, USA
| | | | | | | |
Collapse
|
10
|
Butt CM, King NM, Hutton SR, Collins AC, Stitzel JA. Modulation of nicotine but not ethanol preference by the mouse Chrna4 A529T polymorphism. Behav Neurosci 2005; 119:26-37. [PMID: 15727510 DOI: 10.1037/0735-7044.119.1.26] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Available evidence indicates that common genes influence alcohol and tobacco abuse in humans. The studies reported here used mouse models to evaluate the hypothesis that genetically determined variability in the alpha4beta2* nicotinic receptor modulates genetically determined variability in the intake of both nicotine and alcohol. Data obtained with inbred mouse strains suggested an association between a polymorphism in the mouse alpha4 nAChR subunit gene, Chrna4, and variability in nicotine and ethanol preference. These associations were assessed in F2 animals derived by crossing C57BL/6-super(beta2-/-) mice and A/J mice. The results obtained by the authors indicate that the polymorphism in Chrna4 plays an important role in modulating variability in oral nicotine intake but is linked to a gene that regulates alcohol intake.
Collapse
Affiliation(s)
- Christopher M Butt
- Institute for Behavioral Genetics, University of Colorado, Boulder, CO 80309-0447, USA
| | | | | | | | | |
Collapse
|
11
|
|
12
|
Severance EG, Cuevas J. Distribution and synaptic localization of nicotinic acetylcholine receptors containing a novel α7 subunit isoform in embryonic rat cortical neurons. Neurosci Lett 2004; 372:104-9. [PMID: 15531097 DOI: 10.1016/j.neulet.2004.09.020] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2004] [Revised: 08/27/2004] [Accepted: 09/09/2004] [Indexed: 10/26/2022]
Abstract
Neuronal nicotinic acetylcholine receptors (nAChRs) containing the alpha7 subunit isoform, alpha7-2 (alpha7-2-nAChRs), have previously been found to form functional homopentameric channels that desensitize slowly and bind alpha-bungarotoxin (alphaBgt) in a rapidly reversible manner. This isoform incorporates a novel cassette exon in the extracellular, ligand binding domain of the native receptor. Although this alpha7 subunit isoform has been detected in peripheral ganglia as well as in the central nervous system, little is known about the cellular function of alpha7-2-nAChRs. Co-localization immunocytochemical studies were conducted in an embryonic rat cultured cortical neuron model using a polyclonal antibody (Ab 87) raised against the amino acid sequence of the cassette exon, in combination with (1) an antibody that recognizes all known alpha7-nAChRs, (2) alphaBgt, and (3) antibodies directed against multiple cellular markers. The pattern of alpha7-2-nAChR expression was consistent with alpha7 staining in general, based on co-distribution of mAb319 and alphaBgt signals. However, alpha7-2-nAChRs clearly represent a distinct subset of alpha7 receptors. The alpha7-2-nAChR subtype was found throughout the cell-soma surface and was localized to a subpopulation of dendrites. Punctate staining characteristic of synaptic alpha7-2 targeting was observed at post-synaptic densities and intermittently at pre-synaptic locations. The alpha7-2 subunit was expressed on both GABAergic and non-GABAergic neurons. These studies reveal that receptors containing the alpha7-2 subunit constitute a subpopulation of alpha7-nAChRs and likely participate in cell-to-cell signaling in developing synapses of central neurons.
Collapse
Affiliation(s)
- Emily G Severance
- Department of Pharmacology and Therapeutics, University of South Florida College of Medicine, MDC 9, 12901 Bruce B. Downs Blvd. Tampa, FL 33612-4799, USA
| | | |
Collapse
|
13
|
Roshan-Milani S, Ferrigan L, Khoshnood MJ, Davies CH, Cobb SR. Regulation of epileptiform activity in hippocampus by nicotinic acetylcholine receptor activation. Epilepsy Res 2004; 56:51-65. [PMID: 14529953 DOI: 10.1016/j.eplepsyres.2003.08.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Nicotinic acetylcholine receptors (nAChRs) regulate neuronal excitability within the CNS. To assess the possible modulatory influence of nAChRs on epileptiform activity, a range of nAChR ligands were applied during experimentally induced epileptiform activity in rat hippocampal slices. Bath application of the potassium channel blocker 4-aminopyridine (4AP; 10-50 microM) resulted in the development of spontaneous epileptiform bursting activity in area CA3 that consisted of short duration (257+/-15 ms) field events occurring regularly at a frequency of 0.4+/-0.02 Hz. Subsequent co-application of the selective nAChR agonists 1,1-dimethyl-4-phenyl-piperazinium iodide (DMPP; 0.3-300 microM), choline (0.01-3mM) and lobeline (3-30 microM) produced sustained and concentration-dependent increases in burst frequency with maximal frequency potentiation of 37+/-5%, 27+/-5% and 24+/-11%, respectively. DMPP (10-30 microM; n=31) also potentiated epileptiform bursting induced by reducing GABA(A) receptor-mediated synaptic transmission using 20 microM bicuculline or enhancing NMDA receptor-mediated excitation by lowering extracellular Mg(2+). Irrespective of the epileptiform model studied all nAChR agonist induced frequency potentiation was reversed upon washout of the agonist or co-application of one of the selective nAChR antagonists dihydro-beta-erythroidine (10-30 microM), mecamylamine (50-200 microM) or alpha-bungarotoxin (100 nM). These results provide compelling evidence that activation of nAChRs exacerbate epileptiform activity in the rat hippocampus.
Collapse
Affiliation(s)
- S Roshan-Milani
- Division of Neuroscience and Biomedical Systems, IBLS, University of Glasgow, Glasgow G12 8QQ, UK
| | | | | | | | | |
Collapse
|
14
|
Butt CM, King NM, Stitzel JA, Collins AC. Interaction of the nicotinic cholinergic system with ethanol withdrawal. J Pharmacol Exp Ther 2004; 308:591-9. [PMID: 14610221 DOI: 10.1124/jpet.103.059758] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The observation that alcohol and nicotine are commonly abused together suggests that the two drugs have common sites of action. In vitro studies indicate that nicotinic acetylcholine receptor (nAChR) function is enhanced by ethanol. Furthermore, some ethanol-related behaviors are associated with a region of mouse chromosome 2 that contains the gene encoding the alpha4 subunit of the nAChR (Chrna4). We have identified a polymorphism in Chrna4 that results in an alanine (A) or threonine (T) residue at position 529 in the second intracellular loop of the protein. Nicotinic receptors expressing the A variant have greater responses to nicotine and ethanol than receptors with the T variant when measured in vitro, but the possible effects of the polymorphism on the severity of ethanol withdrawal have not been assessed. The handling-induced convulsion (HIC) assay is an established method for studying drug withdrawal in vivo. We monitored the HIC responses of mice for 8 h after an injection of ethanol (4 g/kg). A survey of 16 mouse strains, as well as previously published data, indicated an association of the A/T polymorphism with ethanol withdrawal. This association was also found in wild-type animals from an F2 intercross of the A/J (A529-genotype) strain with C57BL/6J (T529-genotype) mice that also lack expression of the beta2 nAChR subunit. Beta2 -/- animals, which do not express alpha4beta2 nAChRs in the brain, exhibited significantly lower HIC responses and no effect of the polymorphism. These results suggest that the nicotinic cholinergic system and the A/T polymorphism modulate ethanol withdrawal.
Collapse
Affiliation(s)
- Christopher M Butt
- Institute for Behavioral Genetics, University of Colorado, Boulder, CO 80309-0447, USA
| | | | | | | |
Collapse
|
15
|
Abstract
Presynaptic synthesis of acetylcholine (ACh) requires a steady supply of choline, acquired by a plasma membrane, hemicholinium-3-sensitive (HC-3) choline transporter (CHT). A significant fraction of synaptic choline is recovered from ACh hydrolyzed by acetylcholinesterase (AChE) after vesicular release. Although antecedent neuronal activity is known to dictate presynaptic CHT activity, the mechanisms supporting this regulation are unknown. We observe an exclusive localization of CHT to cholinergic neurons and demonstrate that the majority of CHTs reside on small vesicles within cholinergic presynaptic terminals in the rat and mouse brain. Furthermore, immunoisolation of presynaptic vesicles with multiple antibodies reveals that CHT-positive vesicles carry the vesicular acetylcholine transporter (VAChT) and synaptic vesicle markers such as synaptophysin and Rab3A and also contain acetylcholine. Depolarization of synaptosomes evokes a Ca2+-dependent botulinum neurotoxin C-sensitive increase in the Vmax for HC-3-sensitive choline uptake that is accompanied by an increase in the density of CHTs in the synaptic plasma membrane. Our study leads to the novel hypothesis that CHTs reside on a subpopulation of synaptic vesicles in cholinergic terminals that can transit to the plasma membrane in response to neuronal activity to couple levels of choline re-uptake to the rate of ACh release.
Collapse
|
16
|
Tsuneki H, Salas R, Dani JA. Mouse muscle denervation increases expression of an alpha7 nicotinic receptor with unusual pharmacology. J Physiol 2003; 547:169-79. [PMID: 12562921 PMCID: PMC2342616 DOI: 10.1113/jphysiol.2002.036368] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Neuronal nicotinic alpha7 subunits have been found in chick and rat skeletal muscle during development and denervation. In the present study, reverse transcriptase-polymerase chain reaction was used to detect alpha7 subunit mRNA in denervated mouse muscle. To determine whether the alpha7 subunit forms functional nicotinic acetylcholine receptors (nAChRs) in muscle, choline was used to induce a membrane depolarization because choline has been considered a specific agonist of alpha7-containing (alpha7*) nAChRs. We found, however, that choline (3-10 mM) also weakly activates muscle nAChRs. After inhibiting muscle nAChRs with a specific muscle nAChR inhibitor, alpha-conotoxin GI (alphaCTxGI), choline was used to activate the alpha7* nAChRs on muscle selectively. Four weeks after denervation, rapid application of choline (10 mM) elicited a substantial depolarization in the presence of alphaCTxGI (0.1 microM). This component of the depolarization was never present in denervated muscles obtained from mutant mice lacking the alpha7 subunit (i.e. alpha7-null mice). The depolarization component that is resistant to alphaCTxGI was antagonized by pancuronium (3-10 microM) and by a 4-oxystilbene derivative (F3, 0.1-0.5 microM) at concentrations considered highly specific for alpha7* nAChRs. Another selective alpha7 antagonist, methyllycaconitine (0.05-5 microM), did not strongly inhibit this choline-induced depolarization. Furthermore, the choline-sensitive nAChRs showed little desensitization over 10 s of application with choline (10-30 mM). These results indicate that functional alpha7* nAChRs are significantly present on denervated muscle, and that these receptors display unusual functional and pharmacological characteristics.
Collapse
Affiliation(s)
- Hiroshi Tsuneki
- Division of Neuroscience, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030-3498, USA
| | | | | |
Collapse
|
17
|
Butt CM, Hutton SR, Marks MJ, Collins AC. Bovine serum albumin enhances nicotinic acetylcholine receptor function in mouse thalamic synaptosomes. J Neurochem 2002; 83:48-56. [PMID: 12358728 DOI: 10.1046/j.1471-4159.2002.01135.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Bovine serum albumin (BSA) enhances nicotinic agonist-induced (86)Rb+ efflux from synaptosomal fractions of the mouse thalamus, but how it does so is not understood. The experiments reported here indicated that BSA enhancement of nicotinic acetylcholine receptor function was rapid, reversible, depended on BSA concentration, and occurred at all points of the nicotinic agonist concentration-response curve. We hypothesized that BSA-extractable compounds, such as long-chain fatty acids, were responsible for inhibiting nicotinic responses in the absence of BSA. The hypothesis was tested by applying arachidonic, linolenic, or oleic acids in the absence of BSA after an initial prewash with BSA. All three fatty acids exhibited a rapid, concentration-dependent inhibition of nicotinic-agonist stimulated ion flux. Concentration-response curves produced after 30 s of pre-treatment with arachidonic acid were similar to those seen when BSA was completely absent. The effects of pre-treatment were reversed immediately by the introduction of BSA. Furthermore, no effects of fatty acids were observed when preparations were continuously exposed to BSA or when BSA was continuously absent. These results suggest that the removal of endogenous, inhibitory compounds is largely responsible for the rapid, potentiating action of BSA at nicotinic acetylcholine receptors expressed in the mouse thalamus.
Collapse
Affiliation(s)
- Christopher M Butt
- Institute for Behavioral Genetics, University of Colorado, Boulder Campus Box 447, Boulder, CO 80309, USA.
| | | | | | | |
Collapse
|