1
|
Pagliusi M, Gomes FV. The Role of The Rostral Ventromedial Medulla in Stress Responses. Brain Sci 2023; 13:brainsci13050776. [PMID: 37239248 DOI: 10.3390/brainsci13050776] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 04/30/2023] [Accepted: 05/05/2023] [Indexed: 05/28/2023] Open
Abstract
The rostral ventromedial medulla (RVM) is a brainstem structure critical for the descending pain modulation system involved in both pain facilitation and inhibition through its projection to the spinal cord. Since the RVM is well connected with pain- and stress-engaged brain structures, such as the anterior cingulate cortex, nucleus accumbens, and amygdala, its involvement in stress responses has become a matter of great interest. While chronic stress has been proposed as a trigger of pain chronification and related psychiatric comorbidities due to maladaptive stress responses, acute stress triggers analgesia and other adaptative responses. Here we reviewed and highlighted the critical role of the RVM in stress responses, mainly in acute stress-induced analgesia (SIA) and chronic stress-induced hyperalgesia (SIH), providing insights into pain chronification processes and comorbidity between chronic pain and psychiatric disorders.
Collapse
Affiliation(s)
- Marco Pagliusi
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto 14015-069, SP, Brazil
| | - Felipe V Gomes
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto 14015-069, SP, Brazil
| |
Collapse
|
2
|
Zhang D, Liu J, Zhu T, Zhou C. Identifying c-fos Expression as a Strategy to Investigate the Actions of General Anesthetics on the Central Nervous System. Curr Neuropharmacol 2021; 20:55-71. [PMID: 34503426 PMCID: PMC9199548 DOI: 10.2174/1570159x19666210909150200] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 09/05/2021] [Accepted: 09/09/2021] [Indexed: 02/08/2023] Open
Abstract
Although general anesthetics have been used in the clinic for more than 170 years, the ways in which they induce amnesia, unconsciousness, analgesia, and immobility remain elusive. Modulations of various neural nuclei and circuits are involved in the actions of general anesthetics. The expression of the immediate-early gene c-fos and its nuclear product, c-fos protein, can be induced by neuronal depolarization; therefore, c-fos staining is commonly used to identify the activated neurons during sleep and/or wakefulness, as well as in various physiological conditions in the central nervous system. Identifying c-fos expression is also a direct and convenient method to explore the effects of general anesthetics on the activity of neural nuclei and circuits. Using c-fos staining, general anesthetics have been found to interact with sleep- and wakefulness-promoting systems throughout the brain, which may explain their ability to induce unconsciousness and emergence from general anesthesia. This review summarizes the actions of general anesthetics on neural nuclei and circuits based on a c-fos expression.
Collapse
Affiliation(s)
- Donghang Zhang
- Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Centre of Translational Medicine of Anesthesiology, West China Hospital of Sichuan University, Chengdu, 610041. China
| | - Jin Liu
- Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Centre of Translational Medicine of Anesthesiology, West China Hospital of Sichuan University, Chengdu, 610041. China
| | - Tao Zhu
- Department of Anesthesiology, West China Hospital of Sichuan University, Chengdu, 610041. China
| | - Cheng Zhou
- Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Centre of Translational Medicine of Anesthesiology, West China Hospital of Sichuan University, Chengdu, 610041. China
| |
Collapse
|
3
|
Rossi GC, Bodnar RJ. Interactive Mechanisms of Supraspinal Sites of Opioid Analgesic Action: A Festschrift to Dr. Gavril W. Pasternak. Cell Mol Neurobiol 2021; 41:863-897. [PMID: 32970288 PMCID: PMC11448623 DOI: 10.1007/s10571-020-00961-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 09/03/2020] [Indexed: 12/30/2022]
Abstract
Almost a half century of research has elaborated the discoveries of the central mechanisms governing the analgesic responses of opiates, including their receptors, endogenous peptides, genes and their putative spinal and supraspinal sites of action. One of the central tenets of "gate-control theories of pain" was the activation of descending supraspinal sites by opiate drugs and opioid peptides thereby controlling further noxious input. This review in the Special Issue dedicated to the research of Dr. Gavril Pasternak indicates his contributions to the understanding of supraspinal mediation of opioid analgesic action within the context of the large body of work over this period. This review will examine (a) the relevant supraspinal sites mediating opioid analgesia, (b) the opioid receptor subtypes and opioid peptides involved, (c) supraspinal site analgesic interactions and their underlying neurophysiology, (d) molecular (particularly AS) tools identifying opioid receptor actions, and (e) relevant physiological variables affecting site-specific opioid analgesia. This review will build on classic initial studies, specify the contributions that Gavril Pasternak and his colleagues did in this specific area, and follow through with studies up to the present.
Collapse
Affiliation(s)
- Grace C Rossi
- Department of Psychology, C.W. Post College, Long Island University, Post Campus, Brookville, NY, USA.
| | - Richard J Bodnar
- Department of Psychology, Queens College of the City University of New York, Flushing, NY, USA
- CUNY Neuroscience Collaborative, Graduate Center, CUNY, New York, NY, USA
| |
Collapse
|
4
|
Manzella C, Singhal M, Ackerman M, Alrefai WA, Saksena S, Dudeja PK, Gill RK. Serotonin transporter untranslated regions influence mRNA abundance and protein expression. GENE REPORTS 2020; 18. [PMID: 34113740 DOI: 10.1016/j.genrep.2019.100513] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The serotonin transporter (SERT, SLC6A4) is a Na+-dependent transporter that regulates the availability of serotonin (5-HT, 5-hydroxytryptamine), a key neurotransmitter and hormone in the brain and the intestine. The human SERT gene consists of two alternate promoters that drive expression of an identical SERT protein. However, there are different mRNA transcript variants derived from these two promoters that differ in their 5' untranslated region (5'UTR), which is the region of the mRNA upstream from the protein-coding region. Two of these transcripts contain exon-1a and are abundant in neuronal tissue, whereas the third transcript contains exon-1c and is abundant in the intestine. The 3'UTR is nearly identical among the transcripts. Current studies tested the hypothesis that the UTRs of SERT influence its expression in intestinal epithelial cells (IECs) by controlling mRNA or protein levels. The SERT UTRs were cloned into luciferase reporter plasmids and luciferase mRNA and activity were measured following transient transfection of the UTR constructs into the model IEC Caco-2. Luciferase activity and mRNA abundance were higher than the empty vector for two of the three 5'UTR variants. Calculation of translation index (luciferase activity divided by the relative luciferase mRNA level) revealed that the exon-1a containing 5'UTRs had enhanced translation when compared to the exon-1c containing 5'UTR which exhibited a low translation efficiency. Compared to the empty vector, the SERT 3'UTR markedly decreased luciferase activity. In silico analysis of the SERT 3'UTR revealed many conserved potential miRNA binding sites that may be responsible for this decrease. In conclusion, we have shown that the UTRs of SERT regulate mRNA abundance and protein expression. Delineating the molecular basis by which the UTRs of SERT influence its expression will lead to an increased understanding of post-transcriptional regulation of SERT in GI disorders associated with altered 5-HT availability.
Collapse
Affiliation(s)
- Christopher Manzella
- Department of Physiology & Biophysics, University of Illinois at Chicago, Chicago, IL, United States of America
| | - Megha Singhal
- Division of Gastroenterology & Hepatology, University of Illinois at Chicago, Chicago, IL, United States of America
| | - Max Ackerman
- University of Illinois at Chicago, College of Liberal Arts and Sciences, United States of America
| | - Waddah A Alrefai
- Division of Gastroenterology & Hepatology, University of Illinois at Chicago, Chicago, IL, United States of America.,Jesse Brown VA Medical Center, Chicago, IL, United States of America
| | - Seema Saksena
- Division of Gastroenterology & Hepatology, University of Illinois at Chicago, Chicago, IL, United States of America.,Jesse Brown VA Medical Center, Chicago, IL, United States of America
| | - Pradeep K Dudeja
- Division of Gastroenterology & Hepatology, University of Illinois at Chicago, Chicago, IL, United States of America.,Jesse Brown VA Medical Center, Chicago, IL, United States of America
| | - Ravinder K Gill
- Division of Gastroenterology & Hepatology, University of Illinois at Chicago, Chicago, IL, United States of America.,Jesse Brown VA Medical Center, Chicago, IL, United States of America
| |
Collapse
|
5
|
Benedetti F, Frisaldi E, Barbiani D, Camerone E, Shaibani A. Nocebo and the contribution of psychosocial factors to the generation of pain. J Neural Transm (Vienna) 2019; 127:687-696. [DOI: 10.1007/s00702-019-02104-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Accepted: 11/12/2019] [Indexed: 12/17/2022]
|
6
|
Jiang M, Bo J, Lei Y, Hu F, Xia Z, Liu Y, Lu C, Sun Y, Hou B, Ni K, Ma Z, Gu X. Anxiety-induced hyperalgesia in female rats is mediated by cholecystokinin 2 receptor in rostral ventromedial medulla and spinal 5-hydroxytryptamine 2B receptor. J Pain Res 2019; 12:2009-2026. [PMID: 31308730 PMCID: PMC6613357 DOI: 10.2147/jpr.s187715] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2018] [Accepted: 05/29/2019] [Indexed: 12/18/2022] Open
Abstract
Background Preoperative anxiety is associated with postoperative hyperalgesia; however, few studies have investigated the mechanism underlying this association in female surgical patients. Research has suggested that ON cells in the rostral ventromedial medulla (RVM) receive nerve impulses via cholecystokinin 2 (CCK2) receptors, facilitating hyperalgesia. Additionally, the downstream serotonergic projection system from the RVM to the spinal cord has a dual regulating effect on pain responses, and the 5-hydoxytryptophan 2B (5-HT2B) receptor in spinal dorsal horn neurons is critically involved in mechanical allodynia. Methods Ovariectomized rats were treated with estrogen replacement, single prolonged stress (SPS), and plantar incision. Various receptor agonists and antagonists were then administered into the RVM and spinal cord to study the mechanism underlying postoperative hyperalgesia caused by preoperative anxiety in female rats. Results Behavioral testing revealed that preoperative SPS induced postoperative hyperalgesia, as well as the expression of the CCK2 receptor in the RVM and the expression of the 5-HT2B receptor, protein kinase Cγ (PKCγ), and phosphorylation of the N-methyl-d-aspartate receptor1 (p-NR1) in the spinal cord increased confirmed by Western blot. RVM microinjection of the CCK2 receptor agonist CCK-8 and intrathecal injection of the 5-HT2B receptor agonist BW723C86 both produced hyperalgesia in female rats after plantar incision, whereas the CCK2 receptor antagonist YM022, the 5-HT2B receptor antagonist RS127445, and the PKCγ inhibitor C37H65N9O13 decreased the rats’ sensitivity to the same stimulus. Additionally, electrophysiological analysis suggested that activation of the 5-HT2B receptor increased the whole-cell current (IBa) in superficial dorsal horn neurons through the PKCγ pathway. Conclusion Our study demonstrated that preoperative anxiety-induced postoperative hyperalgesia in female rats is associated with descending pain pathways. The CCK2 receptor in the RVM and spinal 5-HT2B receptor may play a role in this hyperalgesic effect.
Collapse
Affiliation(s)
- Ming Jiang
- Department of Anesthesiology, Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing 210008, Jiangsu Province, People's Republic of China
| | - Jinhua Bo
- Department of Anesthesiology, Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing 210008, Jiangsu Province, People's Republic of China
| | - Yishan Lei
- Department of Anesthesiology, Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing 210008, Jiangsu Province, People's Republic of China
| | - Fan Hu
- Department of Basic Medicine, Analytical & Testing Center, Nanjing Medical University, Nanjing, Jiangsu Province, People's Republic of China
| | - Zhengrong Xia
- Department of Basic Medicine, Analytical & Testing Center, Nanjing Medical University, Nanjing, Jiangsu Province, People's Republic of China
| | - Yue Liu
- Department of Anesthesiology, Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing 210008, Jiangsu Province, People's Republic of China
| | - Cui'e Lu
- Department of Anesthesiology, Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing 210008, Jiangsu Province, People's Republic of China
| | - Yu'e Sun
- Department of Anesthesiology, Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing 210008, Jiangsu Province, People's Republic of China
| | - Bailing Hou
- Department of Anesthesiology, Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing 210008, Jiangsu Province, People's Republic of China
| | - Kun Ni
- Department of Anesthesiology, Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing 210008, Jiangsu Province, People's Republic of China
| | - Zhengliang Ma
- Department of Anesthesiology, Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing 210008, Jiangsu Province, People's Republic of China
| | - Xiaoping Gu
- Department of Anesthesiology, Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing 210008, Jiangsu Province, People's Republic of China
| |
Collapse
|
7
|
Ferdousi M, Finn DP. Stress-induced modulation of pain: Role of the endogenous opioid system. PROGRESS IN BRAIN RESEARCH 2018; 239:121-177. [DOI: 10.1016/bs.pbr.2018.07.002] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
8
|
El Bitar N, Pollin B, Karroum E, Pincedé I, Le Bars D. Entanglement between thermoregulation and nociception in the rat: the case of morphine. J Neurophysiol 2016; 116:2473-2496. [PMID: 27605533 PMCID: PMC5133307 DOI: 10.1152/jn.00482.2016] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Accepted: 09/03/2016] [Indexed: 11/22/2022] Open
Abstract
In thermoneutral conditions, rats display cyclic variations of the vasomotion of the tail and paws, the most widely used target organs in current acute or chronic animal models of pain. Systemic morphine elicits their vasoconstriction followed by hyperthermia in a naloxone-reversible and dose-dependent fashion. The dose-response curves were steep with ED50 in the 0.5-1 mg/kg range. Given the pivotal functional role of the rostral ventromedial medulla (RVM) in nociception and the rostral medullary raphe (rMR) in thermoregulation, two largely overlapping brain regions, the RVM/rMR was blocked by muscimol: it suppressed the effects of morphine. "On-" and "off-" neurons recorded in the RVM/rMR are activated and inhibited by thermal nociceptive stimuli, respectively. They are also implicated in regulating the cyclic variations of the vasomotion of the tail and paws seen in thermoneutral conditions. Morphine elicited abrupt inhibition and activation of the firing of on- and off-cells recorded in the RVM/rMR. By using a model that takes into account the power of the radiant heat source, initial skin temperature, core body temperature, and peripheral nerve conduction distance, one can argue that the morphine-induced increase of reaction time is mainly related to the morphine-induced vasoconstriction. This statement was confirmed by analyzing in psychophysical terms the tail-flick response to random variations of noxious radiant heat. Although the increase of a reaction time to radiant heat is generally interpreted in terms of analgesia, the present data question the validity of using such an approach to build a pain index.
Collapse
Affiliation(s)
- Nabil El Bitar
- Sorbonne Universités, Université Pierre et Marie Curie, Faculté de Médecine, Paris, France; and
- Neurosciences Paris-Seine, Institut National de la Santé et de la Recherche Médicale UMRS-1130, Centre National de la Recherche Scientifique UMR-8246, Paris, France
| | - Bernard Pollin
- Sorbonne Universités, Université Pierre et Marie Curie, Faculté de Médecine, Paris, France; and
- Neurosciences Paris-Seine, Institut National de la Santé et de la Recherche Médicale UMRS-1130, Centre National de la Recherche Scientifique UMR-8246, Paris, France
| | - Elias Karroum
- Sorbonne Universités, Université Pierre et Marie Curie, Faculté de Médecine, Paris, France; and
- Neurosciences Paris-Seine, Institut National de la Santé et de la Recherche Médicale UMRS-1130, Centre National de la Recherche Scientifique UMR-8246, Paris, France
| | - Ivanne Pincedé
- Sorbonne Universités, Université Pierre et Marie Curie, Faculté de Médecine, Paris, France; and
- Neurosciences Paris-Seine, Institut National de la Santé et de la Recherche Médicale UMRS-1130, Centre National de la Recherche Scientifique UMR-8246, Paris, France
| | - Daniel Le Bars
- Sorbonne Universités, Université Pierre et Marie Curie, Faculté de Médecine, Paris, France; and
- Neurosciences Paris-Seine, Institut National de la Santé et de la Recherche Médicale UMRS-1130, Centre National de la Recherche Scientifique UMR-8246, Paris, France
| |
Collapse
|
9
|
Hitomi S, Kross K, Kurose M, Porreca F, Meng ID. Activation of dura-sensitive trigeminal neurons and increased c-Fos protein induced by morphine withdrawal in the rostral ventromedial medulla. Cephalalgia 2016; 37:407-417. [DOI: 10.1177/0333102416648655] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Aims Overuse of medications used to treat migraine headache can increase the frequency of headaches. Sudden abstinence from migraine medication can also lead to a period of withdrawal-induced headaches. The aim of this study was to examine the effect of morphine withdrawal localized to the rostral ventromedial medulla (RVM) on the activity of dura-sensitive spinal trigeminal nucleus caudalis (Vc) neurons. Methods Rats were implanted with either morphine or placebo pellets for six to seven days before the microinjection of naloxone methiodide or phosphate-buffered saline into the RVM in urethane-anesthetized animals. Dura-sensitive neurons were recorded in the Vc and the production of c-Fos-like immunoreactivity was quantified. Results In chronic morphine-treated animals, naloxone methiodide microinjections produced a significant increase both in ongoing and facial heat-evoked activity and an increase in Fos-positive neurons in the Vc and in the nucleus reticularis dorsalis, a brainstem region involved in diffuse noxious inhibitory controls. Conclusions These results indicate that activation of pronociceptive neurons in the RVM under conditions of morphine withdrawal can increase the activity of neurons that transmit headache pain. Modulation of the subnucleus reticularis dorsalis by the RVM may explain the attenuation of conditioned pain modulation in patients with chronic headache.
Collapse
Affiliation(s)
- Suzuro Hitomi
- Division of Physiology, Kyushu Dental University, Japan
| | - Konrad Kross
- Center for Excellence in the Neurosciences, University of New England, USA
| | - Masayuki Kurose
- Division of Oral Physiology, Department of Oral Biological Sciences, Niigata University, Graduate School of Medical and Dental Sciences, Japan
| | - Frank Porreca
- Department of Pharmacology, College of Medicine, University of Arizona, Health Sciences Center, USA
| | - Ian D Meng
- Center for Excellence in the Neurosciences, University of New England, USA
- Department of Biomedical Sciences, College of Osteopathic Medicine, University of New England, USA
| |
Collapse
|
10
|
Maire JJ, Close LN, Heinricher MM, Selden NR. Distinct pathways for norepinephrine- and opioid-triggered antinociception from the amygdala. Eur J Pain 2016; 20:206-14. [PMID: 25847835 PMCID: PMC4593714 DOI: 10.1002/ejp.708] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/09/2015] [Indexed: 12/13/2022]
Abstract
BACKGROUND The amygdala has an important role in pain and pain modulation. We showed previously in animal studies that α2 -adrenoreceptor activation in the central nucleus of the amygdala (CeA) mediates hypoalgesia produced by restraint stress, and that direct application of an α2 -agonist in this region produces analgesia. AIMS In the present animal experiments, we investigated the pathways through which α2 -sensitive systems in the CeA produce behavioural analgesia. The CeA has dense connections to a descending pain modulatory network, centred in the midbrain periaqueductal grey (PAG) and the rostral ventromedial medulla (RVM), which is implicated in various forms of stress-related hypoalgesia and which mediates the antinociceptive effect of morphine applied in the basolateral amygdala. We investigated whether this circuit mediates the hypoalgesic effects of α2 -adrenergic agonist administration into the CeA as well as the contribution of endogenous opioids and cannabinoids. We also tested the possibility that activation of α2 -receptors in the CeA produces antinociception by recruitment of noradrenergic pathways projecting to the spinal cord. RESULTS Hypoalgesia resulting from bilateral application of the α2 -adrenergic agonist clonidine in the CeA was not reversed by chemical inactivation of the RVM or by systemic injections of naloxone (μ-opioid antagonist) or rimonabant (CB1 antagonist). By contrast, spinal α2 -receptor blockade (intrathecal idazoxan) completely prevented the hypoalgesic effect of clonidine in the CeA, and unmasked a small but significant hyperalgesia. CONCLUSION In rats, adrenergic actions in the CeA mediating hypoalgesia require spinal adrenergic neurotransmission but not the PAG-RVM pain modulatory network, or opiate or cannabinoid systems.
Collapse
Affiliation(s)
- J J Maire
- Department of Neurological Surgery, Oregon Health & Science University, Portland, USA
| | - L N Close
- Department of Neurological Surgery, Oregon Health & Science University, Portland, USA
| | - M M Heinricher
- Department of Neurological Surgery, Oregon Health & Science University, Portland, USA
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, USA
| | - N R Selden
- Department of Neurological Surgery, Oregon Health & Science University, Portland, USA
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, USA
| |
Collapse
|
11
|
Pronociceptive and Antinociceptive Effects of Buprenorphine in the Spinal Cord Dorsal Horn Cover a Dose Range of Four Orders of Magnitude. J Neurosci 2015; 35:9580-94. [PMID: 26134641 DOI: 10.1523/jneurosci.0731-14.2015] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Due to its distinct pharmacological profile and lower incidence of adverse events compared with other opioids, buprenorphine is considered a safe option for pain and substitution therapy. However, despite its wide clinical use, little is known about the synaptic effects of buprenorphine in nociceptive pathways. Here, we demonstrate dose-dependent, bimodal effects of buprenorphine on transmission at C-fiber synapses in rat spinal cord dorsal horn in vivo. At an analgesically active dose of 1500 μg·kg(-1), buprenorphine reduced the strength of spinal C-fiber synapses. This depression required activation of spinal opioid receptors, putatively μ1-opioid receptors, as indicated by its sensitivity to spinal naloxone and to the selective μ1-opioid receptor antagonist naloxonazine. In contrast, a 15,000-fold lower dose of buprenorphine (0.1 μg·kg(-1)), which caused thermal and mechanical hyperalgesia in behaving animals, induced an enhancement of transmission at spinal C-fiber synapses. The ultra-low-dose buprenorphine-induced synaptic facilitation was mediated by supraspinal naloxonazine-insensitive, but CTOP-sensitive μ-opioid receptors, descending serotonergic pathways, and activation of spinal glial cells. Selective inhibition of spinal 5-hydroxytryptamine-2 receptors (5-HT2Rs), putatively located on spinal astrocytes, abolished both the induction of synaptic facilitation and the hyperalgesia elicited by ultra-low-dose buprenorphine. Our study revealed that buprenorphine mediates its modulatory effects on transmission at spinal C-fiber synapses by dose dependently acting on distinct μ-opioid receptor subtypes located at different levels of the neuraxis.
Collapse
|
12
|
Abstract
Opiates are among the oldest medications available to manage a number of medical problems. Although pain is the current focus, early use initially focused upon the treatment of dysentery. Opium contains high concentrations of both morphine and codeine, along with thebaine, which is used in the synthesis of a number of semisynthetic opioid analgesics. Thus, it is not surprising that new agents were initially based upon the morphine scaffold. The concept of multiple opioid receptors was first suggested almost 50 years ago (Martin, 1967), opening the possibility of new classes of drugs, but the morphine-like agents have remained the mainstay in the medical management of pain. Termed mu, our understanding of these morphine-like agents and their receptors has undergone an evolution in thinking over the past 35 years. Early pharmacological studies identified three major classes of receptors, helped by the discovery of endogenous opioid peptides and receptor subtypes-primarily through the synthesis of novel agents. These chemical biologic approaches were then eclipsed by the molecular biology revolution, which now reveals a complexity of the morphine-like agents and their receptors that had not been previously appreciated.
Collapse
Affiliation(s)
- Gavril W Pasternak
- Memorial Sloan-Kettering Cancer Center, 1275 York Ave, New York, NY 10065.
| | | |
Collapse
|
13
|
Conroy JL, Nalwalk JW, Phillips JG, Hough LB. CC12, a P450/epoxygenase inhibitor, acts in the rat rostral, ventromedial medulla to attenuate morphine antinociception. Brain Res 2013; 1499:1-11. [PMID: 23298831 DOI: 10.1016/j.brainres.2012.12.030] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2012] [Revised: 11/13/2012] [Accepted: 12/20/2012] [Indexed: 02/05/2023]
Abstract
Brain cytochrome P450 epoxygenases were recently shown to play an essential role in mediating the pain-relieving properties of morphine. To identify the CNS sites containing the morphine-relevant P450s, the effects of intracerebral (ic) microinjections of the P450 inhibitor CC12 were determined on morphine antinociception in rats. CC12 inhibited morphine antinociception when both drugs were injected into the rostral ventromedial medulla (RVM), but not following co-injections into the periaqueductal gray (PAG) or into the spinal subarachnoid space. In addition, intra-RVM CC12 pretreatment nearly completely blocked the effects of morphine following intracerebroventricular (icv) administration. Although morphine is thought to act in both the PAG and RVM by pre-synaptic inhibition of inhibitory GABAergic transmission, the present findings show that 1) the mechanism of morphine action differs between these two brainstem areas, and 2) P450 activity within the RVM is important for supraspinal morphine antinociception. Characterization of morphine-P450 interactions within RVM circuits will further enhance the understanding of the biochemistry of pain relief.
Collapse
Affiliation(s)
- Jennie L Conroy
- Center for Neuropharmacology and Neuroscience, Albany Medical College, Albany, NY 12208, USA
| | | | | | | |
Collapse
|
14
|
Jeong HJ, Mitchell VA, Vaughan CW. Role of 5-HT(1) receptor subtypes in the modulation of pain and synaptic transmission in rat spinal superficial dorsal horn. Br J Pharmacol 2012; 165:1956-1965. [PMID: 21950560 DOI: 10.1111/j.1476-5381.2011.01685.x] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND AND PURPOSE 5-HT receptor agonists have variable nociceptive effects within the spinal cord. While there is some evidence for 5-HT(1A) spinally-mediated analgesia, the role of other 5-HT(1) receptor subtypes remains unclear. In the present study, we examined the spinal actions of a range of 5-HT(1) agonists, including sumatriptan, on acute pain, plus their effect on afferent-evoked synaptic transmission onto superficial dorsal horn neurons. EXPERIMENTAL APPROACH For in vivo experiments, 5-HT agonists were injected via chronically implanted spinal catheters to examine their effects in acute mechanical and thermal pain assays using a paw pressure analgesymeter and a Hargreave's device. For in vitro experiments, whole-cell patch-clamp recordings of primary afferent-evoked glutamatergic EPSC were made from lamina II neurons in rat lumbar spinal slices. KEY RESULTS Intrathecal (i.t.) delivery of the 5-HT(1A) agonist R ± 8-OH-DPAT (30-300 nmol) produced a dose-dependent thermal, but not mechanical, analgesia. Sumatriptan and the 5-HT(1B), 5-HT(1D), 5-HT(1F) agonists CP93129, PNU109291 and LY344864 (100 nmol) had no effect on either acute pain assay. R ± 8-OH-DPAT (1 µM) and sumatriptan (3 µM) both reduced the amplitude of the evoked EPSC. In contrast, CP93129, PNU109291 and LY344864 (0.3-3 µM) had no effect on the evoked EPSC. The actions of both R ± 8-OH-DPAT and sumatriptan were abolished by the 5-HT(1A) antagonist WAY100635 (3 µM). CONCLUSIONS AND IMPLICATIONS These findings indicate that the 5-HT(1A) receptor subtype predominantly mediates the acute antinociceptive and cellular actions of 5-HT(1) ligands within the rat superficial dorsal horn.
Collapse
Affiliation(s)
- Hyo-Jin Jeong
- Pain Management Research Institute, Kolling Institute of Medical Research, Northern Clinical School, University of Sydney at Royal North Shore Hospital, NSW, Australia
| | - Vanessa A Mitchell
- Pain Management Research Institute, Kolling Institute of Medical Research, Northern Clinical School, University of Sydney at Royal North Shore Hospital, NSW, Australia
| | - Christopher W Vaughan
- Pain Management Research Institute, Kolling Institute of Medical Research, Northern Clinical School, University of Sydney at Royal North Shore Hospital, NSW, Australia
| |
Collapse
|
15
|
Wen YR, Yeh GC, Shyu BC, Ling QD, Wang KC, Chen TL, Sun WZ. A minimal stress model for the assessment of electroacupuncture analgesia in rats under halothane. Eur J Pain 2012; 11:733-42. [PMID: 17218131 DOI: 10.1016/j.ejpain.2006.11.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2006] [Revised: 11/14/2006] [Indexed: 10/23/2022]
Abstract
The use of anesthetics in acupuncture analgesia is controversial. We evaluate a steady-state light anesthesia model to test whether minimal stress manipulation and reliable measurement of analgesia could be simultaneously achieved during electroacupuncture (EA) in animals. A series of experiments were performed. Firstly, EA compliance and tail-flick latencies (TFL) were compared in rats under 0.1%, 0.3%, 0.5%, 0.7%, or 1.1% halothane for 120min. Under 0.5% halothane, TFL were then measured in groups receiving EA at intensity of 3, 10 or 20 volt (V), 1 or 2mg/kg morphine, 20V EA plus naloxone, or control. Subsequently, the effect of EA on formalin-induced hyperalgesia was tested and c-fos expression in the spinal dorsal horn was analyzed. Rats exhibited profound irritable behaviors and highly variable TFL under 0.1% or 0.3% halothane, as well as a time-dependent increase of TFL under 0.7% or 1.1% halothane. TFL remained constant at 0.5% halothane, and needle insertion and electrical stimulation were well tolerated. Under 0.5% halothane, EA increased TFL and suppressed formalin-induced hyperalgesia in an intensity-dependent and naloxone-reversible manner. EA of 20V prolonged TFL by 74%, suppressed formalin-induced hyperalgesia by 32.6% and decreased c-fos expression by 29.7% at the superficial and deep dorsal horn with statistically significant difference. In conclusion, 0.5% halothane provides a steady-state anesthetic level which enables the humane application of EA stimulus with the least interference on analgesic assessment. This condition serves as a minimal stress EA model in animals devoid of stress-induced analgesia while maintaining physiological and biochemical response in the experiment.
Collapse
Affiliation(s)
- Yeong-Ray Wen
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | | | | | | | | | | | | |
Collapse
|
16
|
Benedetti F, Carlino E, Pollo A. How placebos change the patient's brain. Neuropsychopharmacology 2011; 36:339-54. [PMID: 20592717 PMCID: PMC3055515 DOI: 10.1038/npp.2010.81] [Citation(s) in RCA: 253] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2010] [Revised: 04/25/2010] [Accepted: 05/09/2010] [Indexed: 12/19/2022]
Abstract
Although placebos have long been considered a nuisance in clinical research, today they represent an active and productive field of research and, because of the involvement of many mechanisms, the study of the placebo effect can actually be viewed as a melting pot of concepts and ideas for neuroscience. Indeed, there exists not a single but many placebo effects, with different mechanisms and in different systems, medical conditions, and therapeutic interventions. For example, brain mechanisms of expectation, anxiety, and reward are all involved, as well as a variety of learning phenomena, such as Pavlovian conditioning, cognitive, and social learning. There is also some experimental evidence of different genetic variants in placebo responsiveness. The most productive models to better understand the neurobiology of the placebo effect are pain and Parkinson's disease. In these medical conditions, the neural networks that are involved have been identified: that is, the opioidergic-cholecystokinergic-dopaminergic modulatory network in pain and part of the basal ganglia circuitry in Parkinson's disease. Important clinical implications emerge from these recent advances in placebo research. First, as the placebo effect is basically a psychosocial context effect, these data indicate that different social stimuli, such as words and rituals of the therapeutic act, may change the chemistry and circuitry of the patient's brain. Second, the mechanisms that are activated by placebos are the same as those activated by drugs, which suggests a cognitive/affective interference with drug action. Third, if prefrontal functioning is impaired, placebo responses are reduced or totally lacking, as occurs in dementia of the Alzheimer's type.
Collapse
Affiliation(s)
- Fabrizio Benedetti
- Department of Neuroscience, University of Turin Medical School, Turin, Italy.
| | | | | |
Collapse
|
17
|
Imbe H, Okamoto K, Donishi T, Senba E, Kimura A. Involvement of descending facilitation from the rostral ventromedial medulla in the enhancement of formalin-evoked nocifensive behavior following repeated forced swim stress. Brain Res 2010; 1329:103-12. [PMID: 20226771 DOI: 10.1016/j.brainres.2010.03.006] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2009] [Revised: 02/16/2010] [Accepted: 03/03/2010] [Indexed: 01/20/2023]
Abstract
In the present study we examined whether the descending facilitation from the rostral ventromedial medulla (RVM) is required for the enhancement of formalin-evoked nocifensive behavior following repeated forced swim stress. Rats were subjected to forced or sham swim stress for 3days. Withdrawal latency to noxious thermal stimuli and mechanical withdrawal threshold to von Frey filaments did not change significantly in both groups at 24h after the last stress session. The forced swim stress showed significantly enhanced nocifensive behavior to the subcutaneous administration of formalin at 2days after the last stress session (1330.1+/-62.8s), compared to the sham swim (1076+/-102.4s, p<0.05) and naive groups (825.9+/-83.2s, p<0.01). The destruction of the RVM with ibotenic acid led to prevent the enhancement of formalin-evoked nocifensive behavior in the forced swim group. These findings suggest that the descending facilitation from the RVM may be involved in the enhancement of formalin-evoked nocifensive behavior following the forced swim stress.
Collapse
Affiliation(s)
- Hiroki Imbe
- Department of Physiology, Wakayama Medical University, Kimiidera 811-1, Wakayama City, 641-8509, Japan.
| | | | | | | | | |
Collapse
|
18
|
Kambur O, Männistö PT, Viljakka K, Reenilä I, Lemberg K, Kontinen VK, Karayiorgou M, Gogos JA, Kalso E. Stress-Induced Analgesia and Morphine Responses Are Changed in Catechol-O-methyltransferase-Deficient Male Mice. Basic Clin Pharmacol Toxicol 2008; 103:367-73. [DOI: 10.1111/j.1742-7843.2008.00289.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
19
|
Lu J, Nelson LE, Franks N, Maze M, Chamberlin NL, Saper CB. Role of endogenous sleep-wake and analgesic systems in anesthesia. J Comp Neurol 2008; 508:648-62. [PMID: 18383504 PMCID: PMC4924624 DOI: 10.1002/cne.21685] [Citation(s) in RCA: 170] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Classical anesthetics of the gamma-aminobutyric acid type A receptor (GABA(A))-enhancing class (e.g., pentobarbital, chloral hydrate, muscimol, and ethanol) produce analgesia and unconsciousness (sedation). Dissociative anesthetics that antagonize the N-methyl-D-aspartate (NMDA) receptor (e.g., ketamine, MK-801, dextromethorphan, and phencyclidine) produce analgesia but do not induce complete loss of consciousness. To understand the mechanisms underlying loss of consciousness and analgesia induced by general anesthetics, we examined the patterns of expression of c-Fos protein in the brain and correlated these with physiological effects of systemically administering GABAergic agents and ketamine at dosages used clinically for anesthesia in rats. We found that GABAergic agents produced predominantly delta activity in the electroencephalogram (EEG) and sedation. In contrast, anesthetic doses of ketamine induced sedation, followed by active arousal behaviors, and produced a faster EEG in the theta range. Consistent with its behavioral effects, ketamine induced Fos expression in cholinergic, monoaminergic, and orexinergic arousal systems and completely suppressed Fos immunoreactivity in the sleep-promoting ventrolateral preoptic nucleus (VLPO). In contrast, GABAergic agents suppressed Fos in the same arousal-promoting systems but increased the number of Fos-immunoreactive neurons in the VLPO compared with waking control animals. All anesthetics tested induced Fos in the spinally projecting noradrenergic A5-7 groups. 6-hydroxydopamine lesions of the A5-7 groups or ibotenic acid lesions of the ventrolateral periaqueductal gray matter (vlPAG) attenuated antinociceptive responses to noxious thermal stimulation (tail-flick test) by both types of anesthetics. We hypothesize that neural substrates of sleep-wake behavior are engaged by low-dose sedative anesthetics and that the mesopontine descending noradrenergic cell groups contribute to the analgesic effects of both NMDA receptor antagonists and GABA(A) receptor-enhancing anesthetics.
Collapse
Affiliation(s)
- Jun Lu
- Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts 02115, USA.
| | | | | | | | | | | |
Collapse
|
20
|
Abstract
The placebo effect has evolved from being thought of as a nuisance in clinical and pharmacological research to a biological phenomenon worthy of scientific investigation in its own right. It is now clear that the term placebo effect is too restrictive and, in fact, many placebo-related effects have recently been investigated. A placebo effect differs from a placebo-like effect in that the former follows the administration of a placebo, whereas in the latter no placebo is administered. However, in both cases, the psychosocial context around the treatment plays a key role. In recent years, placebo and placebo-related effects have been analyzed with sophisticated biological tools that have uncovered specific mechanisms at both the biochemical and cellular level. This recent research has revealed that these psychosocial-induced biochemical changes in a patient's brain and body in turn may affect the course of a disease and the response to a therapy.
Collapse
Affiliation(s)
- Fabrizio Benedetti
- Department of Neuroscience, University of Turin Medical School, and National Institute of Neuroscience, Turin, Italy.
| |
Collapse
|
21
|
Abstract
PURPOSE OF REVIEW Nocebo hyperalgesia is a phenomenon that is opposite to placebo analgesia and whereby expectation of pain increase plays a crucial role. In recent times, both the neuroanatomical and the neurochemical bases of the nocebo effect and of nocebo-related effects have begun to be explored. Here, we highlight recent advances in our understanding of the neurobiology of the nocebo hyperalgesic effect. RECENT FINDINGS A typical nocebo hyperalgesic response occurs following the administration of an inert substance which the subject believes to be a hyperalgesic agent (negative placebo or nocebo). It has been shown that the subject's negative expectations of pain worsening induce anticipatory anxiety about the impending pain increase and this triggers the activation of cholecystokinin that, in turn, facilitates pain transmission. Accordingly, cholecystokinin antagonists have been found to prevent this anxiety-induced hyperalgesia. Brain-imaging studies have shown that the perceived intensity of a painful stimulus following negative expectations of pain increase is higher than in the absence of negative expectations and this is associated with changes in activation of specific brain regions. SUMMARY Since pain appears to be amplified by anxiety through the activation of cholecystokininergic systems, new therapeutic strategies, such as new cholecystokinin antagonists, can be envisaged whenever pain has an important anxiety component.
Collapse
Affiliation(s)
- Luana Colloca
- Department of Neuroscience, University of Turin Medical School and National Institute of Neuroscience, Corso Raffaello 30, 10125 Turin, Italy
| | | |
Collapse
|
22
|
Hellman KM, Brink TS, Mason P. Activity of murine raphe magnus cells predicts tachypnea and on-going nociceptive responsiveness. J Neurophysiol 2007; 98:3121-33. [PMID: 17913977 PMCID: PMC3759357 DOI: 10.1152/jn.00904.2007] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
In rats, opioids produce analgesia in large part by their effects on two cell populations in the medullary raphe magnus (RM). To extend our mechanistic understanding of opioid analgesia to the genetically tractable mouse, we characterized behavioral reactions and RM neural responses to opioid administration. d-Ala(2), N-Me-Phe(4)-Gly(5)ol-enkephalin, a mu-opioid receptor agonist, microinjected into the murine RM produced cardiorespiratory depression and reduced slow wave electroencephalographic activity as well as increased the noxious heat-evoked withdrawal latencies. As in rat, RM cell types that were excited and inhibited by noxious stimuli, termed on and off cells, respectively, were observed in mice. However, in contrast to findings in rat, opioid doses that suppressed withdrawals did not alter the background discharge rate of murine on and off cells, suggesting that the cellular mechanisms by which the murine RM generates opioid analgesia are substantially different from those in rats. Murine on cell discharge did not predict the latency or magnitude of an ensuing withdrawal but did correlate to the magnitude and latency of concurrent withdrawals. Although opioids failed to alter the background discharge of on and off cells, they reduced the responses of RM neurons to noxious stimulation, further evidence that RM modulates on-going withdrawals. In characterizing the role of RM in respiratory modulation, we found that on cells burst and off cells paused during tachypneic events. The effects of opioids in the murine RM on homeostasis and the association of on and off cell discharge with tachypnea corroborate roles for opioid signaling in RM beyond analgesia.
Collapse
Affiliation(s)
- Kevin M. Hellman
- Department of Neurobiology, University of Chicago, MC 0928, 947 East 58th St., Chicago, IL 60637
| | - Thaddeus S. Brink
- Committee on Neurobiology, University of Chicago, MC 0928, 947 East 58th St., Chicago, IL 60637
| | - Peggy Mason
- Department of Neurobiology, University of Chicago, MC 0928, 947 East 58th St., Chicago, IL 60637
- Committee on Neurobiology, University of Chicago, MC 0928, 947 East 58th St., Chicago, IL 60637
| |
Collapse
|
23
|
Activation of ERK in the rostral ventromedial medulla is involved in hyperalgesia during peripheral inflammation. Brain Res 2007; 1187:103-10. [PMID: 18037394 DOI: 10.1016/j.brainres.2007.10.075] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2007] [Revised: 10/25/2007] [Accepted: 10/25/2007] [Indexed: 01/19/2023]
Abstract
We have previously shown that the extracellular signal-regulated kinase (ERK) is activated in the rostral ventromedial medulla (RVM) during peripheral inflammation. In the present study, the relationship between ERK signaling in the RVM and pain hypersensitivity was investigated in the rat. Microinjection of U0126, a mitogen-activated protein kinase kinase inhibitor, into the RVM decreased phosphorylated ERK at 7 h after complete Freund's adjuvant (CFA) injection into the hindpaw. The U0126 microinjection also attenuated thermal hyperalgesia in the ipsilateral hindpaw at 24 h after CFA injection. The ipsilateral paw withdrawal latency in the U0126 group (67.9%+/-5.3% vs. baseline, n=7) was significantly longer than that in the control group (52.0%+/-3.6% vs. baseline, n=8). These findings suggest that activation of ERK in the RVM contributes to thermal hyperalgesia during peripheral inflammation.
Collapse
|
24
|
Benedetti F, Lanotte M, Lopiano L, Colloca L. When words are painful: Unraveling the mechanisms of the nocebo effect. Neuroscience 2007; 147:260-71. [PMID: 17379417 DOI: 10.1016/j.neuroscience.2007.02.020] [Citation(s) in RCA: 343] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2007] [Revised: 02/12/2007] [Accepted: 02/13/2007] [Indexed: 11/26/2022]
Abstract
The nocebo effect is a phenomenon that is opposite to the placebo effect, whereby expectation of a negative outcome may lead to the worsening of a symptom. Thus far, its study has been limited by ethical constraints, particularly in patients, as a nocebo procedure is per se stressful and anxiogenic. It basically consists in delivering verbal suggestions of negative outcomes so that the subject expects clinical worsening. Although some natural nocebo situations do exist, such as the impact of negative diagnoses upon the patient and the patient's distrust in a therapy, the neurobiological mechanisms have been understood in the experimental setting under strictly controlled conditions. As for the placebo counterpart, the study of pain has been fruitful in recent years to understand both the neuroanatomical and the neurochemical bases of the nocebo effect. Recent experimental evidence indicates that negative verbal suggestions induce anticipatory anxiety about the impending pain increase, and this verbally-induced anxiety triggers the activation of cholecystokinin (CCK) which, in turn, facilitates pain transmission. CCK-antagonists have been found to block this anxiety-induced hyperalgesia, thus opening up the possibility of new therapeutic strategies whenever pain has an important anxiety component. Other conditions, such as Parkinson's disease, although less studied, have been found to be affected by nocebo suggestions as well. All these findings underscore the important role of cognition in the therapeutic outcome, and suggest that nocebo and nocebo-related effects might represent a point of vulnerability both in the course of a disease and in the response to a therapy.
Collapse
Affiliation(s)
- F Benedetti
- Department of Neuroscience, University of Turin Medical School, Corso Raffaello 30, 10125 Turin, Italy.
| | | | | | | |
Collapse
|
25
|
Meng ID, Harasawa I. Chronic morphine exposure increases the proportion of on-cells in the rostral ventromedial medulla in rats. Life Sci 2007; 80:1915-20. [PMID: 17400254 PMCID: PMC2736558 DOI: 10.1016/j.lfs.2007.02.022] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2006] [Revised: 02/05/2007] [Accepted: 02/19/2007] [Indexed: 12/30/2022]
Abstract
Chronic opiate exposure produces tolerance and hypersensitivity to mechanical and thermal stimulation that involves increased pain facilitation from the rostral ventromedial medulla (RVM). The aim of the present study was to determine the effect of sustained systemic morphine exposure on RVM neurons. Three cell types in the RVM have been described: on-cells, off-cells and neutral cells. The activity of on-cells increases in response to noxious stimulation, whereas the activity of off-cells decreases following noxious stimulation. Neutral cells remain relatively unaffected. In lightly anesthetized rats, systematic exploration throughout the RVM using single-unit extracellular recordings was used to examine both the relative proportion and the neuronal properties of the different cell classes in chronic morphine and placebo treated animals. Seven days after implanting either morphine (150 mg, s.c.) or placebo pellets a total of four electrode penetrations through the RVM were made in each animal at identical coordinates along midline. Neuronal responses related to radiant heat-evoked paw withdrawals were recorded. When compared to placebo treated rats, chronic morphine increased the number of on-cells and decreased the number of neutral cells, while the number of off-cells remained unchanged. Chronic morphine exposure had no effect on the spontaneous or heat-evoked discharges in on-, off-, or neutral cells. These results indicate that chronic morphine may sensitize a subpopulation of RVM neurons to noxious stimulation, which would be expected to increase descending facilitation and promote tolerance and chronic morphine-induced paradoxical pain.
Collapse
Affiliation(s)
- Ian D Meng
- Department of Physiology, College of Osteopathic Medicine, University of New England, 11 Hills Beach Rd. Biddeford, ME 04005, USA.
| | | |
Collapse
|
26
|
Imbe H, Murakami S, Okamoto K, Iwai-Liao Y, Senba E. The effects of acute and chronic restraint stress on activation of ERK in the rostral ventromedial medulla and locus coeruleus. Pain 2005; 112:361-371. [PMID: 15561392 DOI: 10.1016/j.pain.2004.09.015] [Citation(s) in RCA: 99] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2004] [Revised: 08/18/2004] [Accepted: 09/14/2004] [Indexed: 12/20/2022]
Abstract
Extracellular signal-regulated kinase (ERK) is a key molecule in numerous cellular and physiological processes in the CNS. Exposure to stressors causes substantial effects on the perception and response to pain. The rostral ventromedial medulla (RVM) and the locus coeruleus (LC) play crucial roles in descending pain modulation system. In the present study, the activation of ERK in the RVM and the LC in rats following acute and chronic restraint stress was examined in order to characterize the mechanisms underlying stress induced analgesic and hyperalgesic responses. Rats were stressed by restraint 6h daily for 3 weeks. The acute and chronic restraint stresses produced analgesic and hyperalgesic reactions, respectively, to thermal stimuli applied to the tail. The phospho-ERK-immunoreactive (p-ERK-IR) neurons were observed in the nucleus raphe magnus (NRM), nucleus reticularis gigantocellularis pars alpha (GiA) and LC. In the RVM, the number of p-ERK-IR neurons per section in the 3-week restraint rats (14.3+/-1.2) was significantly higher than that in the control rats (8.9+/-0.7) [P<0.01]. About 75% of p-ERK-IR neurons in the RVM in the 3-week restraint rats were serotonergic neurons. Protein levels of tryptophan hydroxylase were significantly increased in the RVM region in the 3-week restraint rats. On the other hand, the chronic restraint stress significantly decreased p-ERK-IR in the LC [P<0.05]. These findings suggest that chronic restraint stress-induced activation of ERK in the RVM and the suppression in the LC may be involved in the modulation of the pain threshold by chronic stress.
Collapse
Affiliation(s)
- Hiroki Imbe
- Department of Anatomy and Neurobiology, Wakayama Medical University, Kimiidera 811-1, Wakayama City 641-8509, Japan Department of Oral Anatomy, Osaka Dental University, Kuzuhahanazono-cho 8-1, Hirakata City 573-1121, Japan
| | | | | | | | | |
Collapse
|
27
|
Nalwalk JW, Svokos K, Taraschenko O, Leurs R, Timmerman H, Hough LB. Activation of brain stem nuclei by improgan, a non-opioid analgesic. Brain Res 2004; 1021:248-55. [PMID: 15342273 DOI: 10.1016/j.brainres.2004.06.066] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/28/2004] [Indexed: 11/25/2022]
Abstract
Improgan is a compound developed from histamine antagonists which shows the pre-clinical profile of a highly effective, non-opioid analgesic when administered into the rodent CNS. Pharmacological studies suggest that improgan activates descending pain-relieving circuits, but the brain and spinal sites of action of this drug have not been previously studied. Presently, the effects of intracerebral and intrathecal microinjections of improgan were evaluated on thermal nociceptive responses in rats. Improgan produced large, dose- and time-related reductions in nociceptive responses following administration into the ventrolateral periaqueductal gray (PAG), the dorsal PAG, and the rostral ventromedial medulla (RVM). The drug had no measurable effects after injections into the caudate nucleus, basolateral amygdala, hippocampus, ventromedial hypothalamus, superior colliculi, ventrolateral medulla, or the spinal subarachnoid space. Inactivation of the RVM by muscimol microinjections completely attenuated antincociceptive responses produced by intraventricular improgan. These findings, taken with earlier results, show that, like opioids and cannabinoids, improgan acts in the PAG and RVM to activate descending analgesic systems. Unlike these other analgesics, improgan does not act in the spinal cord or in CNS areas outside of the brain stem.
Collapse
Affiliation(s)
- J W Nalwalk
- Center of Neuropharmacology and Neuroscience MC-136, Albany Medical College, 47 New Scotland Avenue, Albany, NY 12208, USA
| | | | | | | | | | | |
Collapse
|
28
|
Heinricher MM, Neubert MJ. Neural Basis for the Hyperalgesic Action of Cholecystokinin in the Rostral Ventromedial Medulla. J Neurophysiol 2004; 92:1982-9. [PMID: 15152023 DOI: 10.1152/jn.00411.2004] [Citation(s) in RCA: 117] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The analgesic actions of opioids can be modified by endogenous “anti-opioid” peptides, among them cholecystokinin (CCK). CCK is now thought to have a broader, pronociceptive role, and contributes to hyperalgesia in inflammatory and neuropathic pain states. The aim of this study was to determine whether anti-opioid and pronociceptive actions of CCK have a common underlying mechanism. We showed previously that a low dose of CCK microinjected into the rostral ventromedial medulla (RVM) blocked the analgesic effect of systemically administered morphine by preventing activation of off-cells, which are the antinociceptive output of this well characterized pain-modulating region. At this anti-opioid dose, CCK had no effect on the spontaneous activity of these neurons or on the activity of on-cells (hypothesized to facilitate nociception) or “neutral cells” (which have no known role in pain modulation). In this study, we used microinjection of a higher dose of CCK into the RVM to test whether activation of on-cells could explain the pronociceptive action of this peptide. Paw withdrawal latencies to noxious heat and the activity of a characterized RVM neuron were recorded in rats lightly anesthetized with methohexital. CCK (30 ng/200 nl) activated on-cells selectively and produced behavioral hyperalgesia. Firing of off-cells and neutral cells was unaffected. These data show that direct, selective activation of RVM on-cells by CCK is sufficient to produce thermal hyperalgesia and indicate that the anti-opioid and pronociceptive effects of this peptide are mediated by actions on different RVM cell classes.
Collapse
Affiliation(s)
- Mary M Heinricher
- Dept. Neurological Surgery, L-472, Oregon Health and Science Univ., Portland, OR 97239, USA.
| | | |
Collapse
|
29
|
Abstract
The raphe nuclei are distributed near the midline of the brainstem along its entire rostro-caudal extension. The serotonergic neurons are their main neuronal components, although a proportion of them lie in subdivisions of the lateral reticular formation. They develop from mesopontine and medullary primordia, and the resulting grouping into rostral and caudal clusters is maintained into adulthood, and is reflected in the connectivity. Thus, the mesencephalon and rostral pons, neurons within the rostral raphe complex (caudal linear, dorsal raphe, and median raphe nuclei) project primarily to the forebrain. By contrast, in the caudal pons and medulla oblongata, neurons within the caudal raphe complex (raphe magnus, raphe obscurus, raphe pallidus nuclei and parts of the adjacent lateral reticular formation) project to the brainstem nuclei and to the spinal cord. The median raphe and dorsal raphe nuclei provide parallel and overlapping projections to many forebrain structures with axon fibers exhibiting distinct structural and functional characteristics. The caudal group of the serotonergic system projects to the brainstem, and, by three parallel projections, to the dorsal, intermediate and ventral columns in the spinal cord. The serotonergic axons arborize over large areas comprising functionally diverse targets. Some projections form classical chemical synapses while many do not, thus contributing to the so-called paracrine or volume transmission. The serotonergic projections participate in the regulation of different functional (motor, somatosensory, limbic) systems; and have been associated with a wide range of neuropsychiatric and neurological disorders. Finally, recent experimental data support the role of serotonin in modulating brain development, such that a dysfunction in serotonergic transmission during early life could lead to long lasting structural and functional alterations.
Collapse
Affiliation(s)
- Jean-Pierre Hornung
- Institut de biologie cellulaire et de morphologie, University of Lausanne, Rue du Bugnon 9, 1005, Lausanne, Switzerland.
| |
Collapse
|
30
|
Taylor BK, Basbaum AI. Systemic morphine-induced release of serotonin in the rostroventral medulla is not mimicked by morphine microinjection into the periaqueductal gray. J Neurochem 2003; 86:1129-41. [PMID: 12911621 DOI: 10.1046/j.1471-4159.2003.01907.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We used in vivo microdialysis in awake rats to test the hypothesis that intravenous morphine increases serotonin (5-HT) release within the rostral ventromedial medulla (RVM). We also injected morphine into various sites along the rostrocaudal extent of the periaqueductal gray (PAG), and examined the extent of its diffusion to the RVM. Intravenous morphine (3.0 mg/kg) produced thermal antinociception and increased RVM dialysate 5-HT, 5-hydroxyindole acetic acid (5-HIAA), and homovanillic acid (HVA) in a naloxone-reversible manner. As neither PAG microinjection of morphine (5 micro g/0.5 micro L) nor RVM administration of fentanyl or d-Ala(2),NMePhe(4),Gly-ol(5)]enkephalin (DAMGO) increased RVM 5-HT, we were unable to determine the precise site of action of morphine. Surprisingly, peak morphine levels in the RVM were higher after microinjection into the caudal PAG as compared to either intravenous injection or microinjection into more rostral sites within the PAG. Naloxone-precipitated withdrawal in morphine-tolerant rats not only increased extracellular 5-HT in the RVM, but also dopamine (DA) and HVA. We conclude that substantial amounts of morphine diffuse from the PAG to the RVM, and speculate that opioid receptor interactions at multiple brain sites mediate the analgesic effects of PAG morphine. Further studies will be required to elucidate the contribution of 5-HT and DA release in the RVM to opioid analgesia and opioid withdrawal.
Collapse
Affiliation(s)
- Bradley K Taylor
- Department of Pharmacology SL83, Health Sciences Center, Tulane University School of Medicine, 1430 Tulane Avenue, New Orleans, LA 70118, USA.
| | | |
Collapse
|
31
|
Friedrich AE, Gebhart GF. Modulation of visceral hyperalgesia by morphine and cholecystokinin from the rat rostroventral medial medulla. Pain 2003; 104:93-101. [PMID: 12855318 DOI: 10.1016/s0304-3959(02)00469-4] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Using a model of visceral nociception, we examined whether cholecystokinin (CCK) acts as an anti-opioid peptide in the rat rostral ventromedial medulla (RVM). Because such interaction may be affected by inflammation, rats with and without inflamed colons were studied. The visceromotor response to noxious colorectal distension (CRD), quantified electromyographically, was recorded before and after intra-RVM administration of CCK, CCK receptor antagonists, and morphine. Either 50% ethanol/saline (vehicle) or 2,4,6-trinitrobenzenesulfonic acid (TNBS), which inflames the colon, was instilled into the colon 5 days before experiments. Intra-RVM morphine dose-dependently attenuated responses to CRD in intracolonic vehicle-treated rats. In TNBS-treated rats with inflamed colons, responses to CRD were significantly increased and 0.3, 3.0 and 6.0 microg doses of intra-RVM morphine reduced responses to control (i.e. were anti-hyperalgesic); the greatest dose tested (30 microg) further reduced responses to 40% control. In intracolonic vehicle-treated rats, intra-RVM pre-treatment with a selective CCK(B) (but not CCK(A)) receptor antagonist dose-dependently and significantly enhanced the effect of a low dose of morphine. Intra-RVM CCK-8 peptide enhanced responses to CRD in intracolonic vehicle-treated, but not TNBS-treated rats. Intra-RVM naloxone was without effect in intracolonic vehicle-or TNBS-treated rats, suggesting an absence of tonic opioid activity in RVM. These results document a CCK-opioid interaction in RVM, suggesting that colon inflammation leads to tonic activity at CCK(B) receptors in RVM.
Collapse
Affiliation(s)
- Ann E Friedrich
- Department of Pharmacology, College of Medicine, Bowen Science Building, The University of Iowa, Iowa City, IA 52242, USA
| | | |
Collapse
|
32
|
Pertovaara A, Wei H. A dissociative change in the efficacy of supraspinal versus spinal morphine in the neuropathic rat. Pain 2003; 101:237-250. [PMID: 12583866 DOI: 10.1016/s0304-3959(02)00320-2] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The efficacy of spinally versus supraspinally administered morphine was studied in rats with a spinal nerve ligation-induced neuropathy. Behavioural assessment indicated that the effect of intrathecally administered morphine on pain-related responses was attenuated when compared with unoperated controls. The decreased efficacy of spinal morphine was associated with neuropathic symptoms, since sham ligation or nerve ligation without accompanying tactile allodynia did not lead to spinal inefficacy of morphine. In contrast, the pain attenuating effect of morphine in the periaqueductal gray (PAG) was enhanced in neuropathic animals. The effect of systemically administered morphine on pain-related behavior of neuropathic rats was in the same range as in controls or decreased, depending on the test. Coadministration of lidocaine or MK-801, a N-methyl-D-aspartate (NMDA) receptor antagonist, into the rostroventromedial medulla enhanced the tactile antiallodynic but not the thermal antinociceptive effect of intrathecally administered morphine in neuropathic animals. Supraspinal administration of MK-801 or lidocaine did not influence efficacy of spinal morphine in sham-operated animals. Electrophysiological recordings of nociceptive wide-dynamic range (WDR) neurons in the deep spinal dorsal horn of pentobarbitone-anesthetized animals corresponded to a large extent with behavioral results. The inhibitory effect of spinally and systemically administered morphine on WDR neuron responses was attenuated whereas that induced by morphine in the PAG was enhanced in neuropathic animals. The results indicate that in spinal nerve ligation-induced neuropathy the efficacy of spinal morphine is decreased whereas that of supraspinal morphine is increased. Descending influence from brainstem-spinal pathways, involving NMDA receptors in the rostroventromedial medulla, may contribute to the selective reduction in tactile antiallodynic efficacy of spinal morphine.
Collapse
Affiliation(s)
- Antti Pertovaara
- Department of Physiology, Institute of Biomedicine, University of Turku, Kiinamyllynkatu 10, FIN-20520 Turku, Finland Department of Physiology, Institute of Biomedicine, University of Helsinki, P.O. Box 63, FIN-00014 Helsinki, Finland
| | | |
Collapse
|
33
|
Abstract
Basic research concerning drug tolerance and withdrawal may inform clinical practice, and vice versa. Three areas that integrate the work of the laboratory and the clinic are discussed: (a) drug overdose, (b) cue exposure treatment of addiction, and (c) pharmacological treatment of withdrawal symptoms. The areas are related in that they indicate the contribution of drug-paired cues to the effects of addictive drugs and the role of Pavlovian conditioning of drug effects in drug tolerance and withdrawal symptoms.
Collapse
Affiliation(s)
- Shepard Siegel
- Department of Psychology, McMaster University, Hamilton, Ontario, Canada.
| | | |
Collapse
|
34
|
Pertovaara A, Keski-Vakkuri U, Kalmari J, Wei H, Panula P. Response properties of neurons in the rostroventromedial medulla of neuropathic rats: attempted modulation of responses by [1DMe]NPYF, a neuropeptide FF analogue. Neuroscience 2002; 105:457-68. [PMID: 11672611 DOI: 10.1016/s0306-4522(01)00187-7] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We determined whether chronic neuropathy changes response properties of neurons in the rostroventromedial medulla of rats, and whether (d-Tyr)L(Me-Phe)QPQRF-amide, a neuropeptide FF analogue, in the periaqueductal gray produces changes in responses of rostroventromedial medullary neurons that might underlie its antiallodynic effect described earlier. Single unit recordings of medullary neurons were performed in lightly anesthetized neuropathic and control animals. Spontaneous activity and the responses to noxious thermal and mechanical stimulation of the hind paw were determined with and without administration of (d-Tyr)L(Me-Phe)QPQRF-amide. The neurons were classified into three groups: ON-neurons increased, OFF-neurons decreased, and NEUTRAL-neurons did not change their discharge rate prior to a limb withdrawal induced by noxious stimulation of the skin. Spontaneous activity and heat-evoked responses of ON-neurons were not different between neuropathic and control animals, whereas their mechanically evoked responses were reduced in neuropathy. Response properties of OFF-neurons were not different between neuropathic and control animals. Spontaneous activity of NEUTRAL-neurons was not different between neuropathic and control animals. (d-Tyr)L(Me-Phe)QPQRF-amide in the periaqueductal gray had no significant effect on evoked responses or spontaneous activity of ON- or OFF-neurons, independent of the experimental group. However, (d-Tyr)L(Me-Phe)QPQRF-amide produced a significant attenuation of spontaneous activity of NEUTRAL-neurons in neuropathic animals. In a behavioral study performed in unanesthetized animals it was found that intrathecal administration of methysergide, a serotonin antagonist, selectively attenuated neuropathic symptoms. Also, light pentobarbitone anesthesia markedly attenuated, but did not abolish, behaviorally determined neuropathic symptoms. From these results we suggest that NEUTRAL-neurons of the rostroventromedial medulla may have a role in neuropathy and they may be involved in attenuation of mechanical hypersensitivity by (d-Tyr)L(Me-Phe)QPQRF-amide in the periaqueductal gray. It is proposed that in neuropathy the synaptic effects of descending impulses from medullary NEUTRAL-neurons on their axonal targets in the spinal cord are changed so that this contributes to mechanical hypersensitivity, due to mechanisms that are at least partly serotoninergic.
Collapse
Affiliation(s)
- A Pertovaara
- Department of Physiology, Institute of Biomedicine, University of Helsinki, Finland.
| | | | | | | | | |
Collapse
|
35
|
Jiang M, Behbehani MM. Physiological characteristics of the projection pathway from the medial preoptic to the nucleus raphe magnus of the rat and its modulation by the periaqueductal gray. Pain 2001; 94:139-147. [PMID: 11690727 DOI: 10.1016/s0304-3959(01)00348-7] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Anatomical studies have shown a strong projection from the medial preoptic nucleus of the hypothalamus (MPO) to both the periaqueductal gray (PAG) and nucleus raphe magnus (NRM). In this study, we examined the physiological characteristics of MPO to NRM connections and examined how blockade of neuronal transmission and of the glutamatergic system within the PAG modifies this pathway. In deeply anesthetized rats, recordings were made from NRM neurons that were identified by their response to peripheral mechanical stimulation and designated as "E", "I", or "N" if they were excited, inhibited, or not activated by noxious stimulation. In addition, cells were identified as spinally projecting if they could be antidromically activated by stimulation of the dorsolateral funiculus at the thoracic level. The responses of 204 NRM neurons to electrical and 87 cells to both chemical and electrical stimulation of MPO were recorded. The response of NRM neurons to MPO stimulation was highly dependent on the sensory class of these cells. Chemical stimulation of MPO inhibited 50% (16/32) and excited 16% (5/32) of the I-cells. In contrast, 23% (9/39) of the E-cells were inhibited and 49% (19/39) were excited by chemical stimulation of MPO. Electrical stimulation at intensities below 80 microA at 100Hz had similar effects on the two classes of cells; 62% (24/39) of the E-cells and 31% (10/32) of the I cells were excited, and 31% (12/39) of the E-cells and 59% (19/32) of the I-cells were inhibited. The excitatory response to chemical stimulation lasted for an average of 136.8+/-73.2s and inhibitory response lasted for an average of 143.8+/-102.1s. Electrical stimulation of MPO at 1Hz excited 27%, inhibited 3%, and had no effect on 70% of NRM cells. The mean latency to peak excitation was 9.6+/-6.6ms. Antidromic activation of MPO neurons by NRM stimulation showed an average latency of 6.3+/-3.4ms. Blocking the glutamatergic transmission within the PAG (by injecting kynurenic acid (KYN) into the PAG) blocked the inhibitory response of 40% (6/15) of the I-cells and inhibitory response of 43% (3/7) of the E-cells. The excitatory response of 27% (3/11) of the I-cells and the excitatory response of 14% (1/7) of the E-cells were blocked by kynurenic injection into the PAG. It is concluded that: (1) in response to chemical stimulation of MPO, the number of I-cells that were inhibited was more than three times the number of I-cells that were excited; in contrast, the number of E-cells that were excited was more than twice the number of E-cells that were inhibited. (2) The interaction between MPO and NRM can be modulated by blockade of the neuronal transmission or blockade of the glutamatergic system in the PAG. (3) Simultaneous activity of many synapses is required for activation of the MPO-NRM pathway. (4) MPO to NRM interaction is mediated by fibers with a conduction velocity of less than 1m/s.
Collapse
Affiliation(s)
- Maorong Jiang
- Department of Molecular and Cellular Physiology, University of Cincinnati, 231 Bethesda Avenue, P.O. Box 670576, Cincinnati, OH 45267-0576, USA Department of Anesthesia, University of Cincinnati, Cincinnati, OH, USA
| | | |
Collapse
|
36
|
Kim JA, Siegel S. The role of cholecystokinin in conditional compensatory responding and morphine tolerance in rats. Behav Neurosci 2001; 115:704-9. [PMID: 11439459 DOI: 10.1037/0735-7044.115.3.704] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
As elaborated in the conditioning analysis of tolerance, cues present at the time of drug administration become associated with the drug effect. A particularly salient cue that may become associated with the drug effect is the pharmacological drug-onset cue inherent to drug administration. Drug-associated cues contribute to tolerance by eliciting a conditional compensatory response that attenuates the drug effect. For example, the early drug effect, having been paired with the subsequent larger drug effect, may elicit the release of antiopioid peptides that counter opioid effects. The role of a putative antiopioid peptide, cholecystokinin-8 (CCK), in the associative mechanisms of opiate tolerance was evaluated. The results of these experiments suggest that a CCK2 receptor antagonist attenuates both the expression of opiate tolerance and the conditional compensatory response hypothesized to mediate such tolerance.
Collapse
Affiliation(s)
- J A Kim
- Department of Psychology, McMaster University, Hamilton, Ontario, Canada
| | | |
Collapse
|
37
|
Hirakawa N, Tershner SA, Fields HL, Manning BH. Bi-directional changes in affective state elicited by manipulation of medullary pain-modulatory circuitry. Neuroscience 2001; 100:861-71. [PMID: 11036220 DOI: 10.1016/s0306-4522(00)00329-8] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The rostral ventromedial medulla contains three physiologically defined classes of pain-modulating neuron that project to the spinal and trigeminal dorsal horns. OFF cells contribute to anti-nociceptive processes, ON cells contribute to pro-nociceptive processes (i.e. hyperalgesia) and neutral cells tonically modulate spinal nociceptive responsiveness. In the setting of noxious peripheral input, the different cell classes in this region permit bi-directional modulation of pain perception (analgesia vs hyperalgesia). It is unclear, however, whether changes in the activity of these neurons are relevant to the behaving animal in the absence of a painful stimulus. Here, we pharmacologically manipulated neurons in the rostral ventromedial medulla and used the place-conditioning paradigm to assess changes in the affective state of the animal. Local microinjection of the alpha(1)-adrenoceptor agonist methoxamine (50.0 microg in 0.5 microl; to activate ON cells, primarily), combined with local microinjection of the kappa-opioid receptor agonist U69,593 (0.178 microg in 0.5 microl; to inhibit OFF cells), produced an increase in spinal nociceptive reactivity (i.e. hyperalgesia on the tail flick assay) and a negative affective state (as inferred from the production of conditioned place avoidance) in the conscious, freely moving rat. Additional microinjection experiments using various concentrations of methoxamine alone or U69, 593 alone revealed that the rostral ventromedial medulla is capable of eliciting a range of affective changes resulting in conditioned place avoidance, no place-conditioning effect or conditioned place preference (reflecting production of a positive affective state). Overall, however, there was no consistent relationship between place-conditioning effects and changes in spinal nociceptive reactivity. This is the first report of bi-directional changes in affective state (i.e. reward or aversion production) associated with pharmacological manipulation of a brain region traditionally associated with bi-directional pain modulation. We conclude that, in addition to its well-described pain-modulating effects, the rostral ventromedial medulla is capable of modifying animal behavior in the absence of a painful stimulus by bi-directionally influencing the animal's affective state.
Collapse
Affiliation(s)
- N Hirakawa
- Departments of Neurology and Physiology, and the W. M. Keck Foundation Center for Integrative Neuroscience, University of California at San Francisco, 94143-0453, USA
| | | | | | | |
Collapse
|
38
|
Pertovaara A, Wei H, Kalmari J, Ruotsalainen M. Pain behavior and response properties of spinal dorsal horn neurons following experimental diabetic neuropathy in the rat: modulation by nitecapone, a COMT inhibitor with antioxidant properties. Exp Neurol 2001; 167:425-34. [PMID: 11161631 DOI: 10.1006/exnr.2000.7574] [Citation(s) in RCA: 93] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
We attempted to characterize a spinal neuronal correlate of painful neuropathy induced by diabetes mellitus (DM). Pain behavior and response properties of spinal dorsal horn neurons were determined in rats with a streptozocin-induced DM. A catechol-O-methyltransferase inhibitor with potent antioxidant properties, nitecapone, was used in an attempt to attenuate neuropathic symptoms. Behaviorally DM induced mechanical hypersensitivity that was markedly attenuated by oral treatment with nitecapone. The antihyperalgesic effect of nitecapone was not reversed by naloxone, an opioid antagonist, or atipamezole, an alpha-2-adrenoceptor antagonist. Electrophysiological recordings performed in pentobarbitone-anesthetized animals revealed that the most distinct abnormality in response properties of spinal dorsal horn wide-dynamic range (WDR) neurons was the increase in their spontaneous activity observed in untreated but not in nitecapone-treated DM rats. Conditioning electrical stimulation and a lidocaine block of the rostroventromedial medulla (RVM) had a similar modulatory effect on evoked responses of spinal dorsal horn WDR neurons in all experimental groups. The response properties of spinal dorsal horn nociceptive-specific or low-threshold mechanoreceptive neurons were not markedly different between the experimental groups. The results indicate that increased spontaneous activity in spinal dorsal horn WDR neurons may be causally related to behaviorally observed mechanical hypersensitivity in DM. Attenuation of the increased spontaneous activity in WDR neurons may explain the antihyperalgesic effect by nitecapone, due to naloxone- and alpha-2-adrenoceptor-insensitive mechanisms. DM or nitecapone treatment did not produce significant changes in phasic or tonic descending pain regulation originating in the RVM.
Collapse
Affiliation(s)
- A Pertovaara
- Department of Physiology, Institute of Biomedicine, University of Helsinki, FIN-00014 Helsinki, Finland
| | | | | | | |
Collapse
|
39
|
Boyle TJ, Masuda T, Cunningham ST. Effects of a kappa agonist, spiradoline mesylate (U62,066E), on activation and vaginocervical-stimulation produced analgesia in rats. Brain Res Bull 2001; 54:213-8. [PMID: 11275411 DOI: 10.1016/s0361-9230(00)00453-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Previous research has demonstrated increased pain threshold during copulation, gestation, and parturition in animals. In the laboratory, mechanostimulation of the vaginocervical region in many animals, as well as humans, can increase responsiveness to noxious but not to innocuous stimuli. This increased pain inhibition to vaginocervical stimulation, which mimics natural parturition, is mediated by spinal and supraspinal neuropeptides, including the opiates. The present research was designed to ascertain the possible effects of a kappa opioid agonist on vaginocervical-stimulated analgesia in rats. Initially, the novel kappa-selective agonist, spiradoline mesylate (U62,066E; 0, 0.1, 1.0, 10.0 mg/kg, i.p.), was injected intraperitoneally and general behavioral arousal in an open field apparatus was recorded. Results from this experiment indicate that stimulation with the kappa-selective drug caused significant decreases in behavioral activity at the high dose as compared to saline and the medium and low doses. Next, the effects of U62,066E (0, 0.1, 1.0, 10.0 mg/kg, i.p.) on the analgesia associated with vaginocervical stimulation were determined in a tail flick apparatus. The kappa drug significantly increased antinociceptive thresholds prior to and during vaginocervical stimulation at the 0.1 and 1.0 mg/kg doses. By contrast, the high dose (10.0 mg/kg) of U62,066E decreased vaginocervical stimulation-produced analgesia. Results are discussed in terms of the potential of nonaddictive kappa-selective opioid compounds being utilized in reproductive pain.
Collapse
Affiliation(s)
- T J Boyle
- Department of Psychology, University of Massachusetts Boston, MA, USA
| | | | | |
Collapse
|
40
|
Heinricher MM, McGaraughty S, Tortorici V. Circuitry underlying antiopioid actions of cholecystokinin within the rostral ventromedial medulla. J Neurophysiol 2001; 85:280-6. [PMID: 11152727 DOI: 10.1152/jn.2001.85.1.280] [Citation(s) in RCA: 92] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
It is now well established that the analgesic actions of opioids can be modified by "anti-analgesic" or "antiopioid" peptides, among them cholecystokinin (CCK). Although the focus of much recent work concerned with CCK-opioid interactions has been at the level of the spinal cord, CCK also acts within the brain to modify opioid analgesia. The aim of the present study was to characterize the actions of CCK in a brain region in which the circuitry mediating the analgesic actions of opioids is relatively well understood, the rostral ventromedial medulla (RVM). Single-cell recording was combined with local infusion of CCK in the RVM and systemic administration of morphine in lightly anesthetized rats. The tail-flick reflex was used as a behavioral index of nociceptive responsiveness. Two classes of RVM neurons with distinct responses to opioids have been identified. OFF cells are activated, indirectly, by morphine and mu-opioid agonists, and there is strong evidence that this activation is crucial to opioid antinociception. ON cells, thought to facilitate nociception, are directly inhibited by opioids. Cells of a third class, NEUTRAL cells, do not respond to opioids, and whether they have any role in nociceptive modulation is unknown. CCK microinjected into the RVM by itself had no effect on tail flick latency or the firing of any cell class but significantly attenuated opioid activation of OFF cells and inhibition of the tail flick. Opioid suppression of ON-cell firing was not significantly altered by CCK. Thus CCK acting within the RVM attenuates the analgesic effect of systemically administered morphine by preventing activation of the putative pain inhibiting output neurons of the RVM, the OFF cells. CCK thus differs from another antiopioid peptide, orphanin FQ/nociceptin, which interferes with opioid analgesia by potently suppressing all OFF-cell firing.
Collapse
Affiliation(s)
- M M Heinricher
- Department of Neurological Surgery, Oregon Health Sciences University, Portland, Oregon 97201, USA.
| | | | | |
Collapse
|
41
|
Meng ID, Hu JW, Bereiter DA. Parabrachial area and nucleus raphe magnus inhibition of corneal units in rostral and caudal portions of trigeminal subnucleus caudalis in the rat. Pain 2000; 87:241-251. [PMID: 10963904 DOI: 10.1016/s0304-3959(00)00289-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The cornea has been used extensively as a means to selectively stimulate trigeminal nociceptive neurons. The aim of this study was to determine the effects of descending modulatory control pathways on corneal unit activity by comparing the effects of conditioning stimulation of the pontine parabrachial area (PBA CS) and nucleus raphe magnus (NRM CS). Electrical stimulation of the cornea at A- and C-fiber intensities was used to activate neurons in two regions of the trigeminal spinal nucleus, the subnucleus interpolaris/caudalis transition (Vi/Vc, 'rostral units') and laminae I-II at the subnucleus caudalis/cervical cord transition (Vc/C1, 'caudal units'), in chloralose-anesthetized rats. Corneal units were further classified according to convergent cutaneous receptive field properties and PBA projection status. None of 48 rostral and 23/28 caudal units projected to the ipsilateral or contralateral PBA. PBA CS inhibited the cornea-evoked responses (<75% change from control) of approximately 65% of rostral and caudal units regardless of neuronal class. For rostral corneal units, PBA CS inhibited A- and C-fiber input equally (15+/-3 and 18+/-14% of control, respectively), whereas among caudal units, A-fiber input was inhibited more than C-fiber input (26+/-5 and 64+/-12% of control, respectively, P<0.01). The magnitude of NRM CS inhibition on cornea-evoked activity of both rostral and caudal units was not different from that seen after PBA CS. Glutamate microinjections into PBA also inhibited rostral and caudal corneal units (6/9 tested). These results indicate that corneal input to rostral and caudal units is modified by activation of descending controls from the PBA and NRM. The significance for processing corneal sensory information is discussed in terms of functional differences between rostral and caudal neurons.
Collapse
Affiliation(s)
- Ian D Meng
- Department of Neuroscience, Brown University/Rhode Island Hospital, Providence, RI 02903, USA Faculty of Dentistry, University of Toronto, Toronto, Ontario M5G 1G6, Canada Department of Surgery, Neuroendocrine Laboratory, Brown University/Rhode Island Hospital, Providence, RI 02903-4970, USA
| | | | | |
Collapse
|
42
|
Hough LB, Nalwalk JW, Barnes WG, Leurs R, Menge WM, Timmerman H, Wentland M. A third life for burimamide. Discovery and characterization of a novel class of non-opioid analgesics derived from histamine antagonists. Ann N Y Acad Sci 2000; 909:25-40. [PMID: 10911922 DOI: 10.1111/j.1749-6632.2000.tb06674.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Burimamide, a histamine (HA) derivative with both H2- and H3-blocking properties, induces antinociception when injected into the rodent CNS. Several related compounds share this property, and structure-activity studies have shown that this new class of analgesics is distinct from known HA antagonists. The prototype, named improgan, shows a preclinical profile of a highly effective analgesic, with activity against thermal, mechanical and inflammatory nociception after doses that do not alter motor balance or locomotor activity. Improgen analgesia is not blocked by opioid antagonists and is observed in opioid receptor knock-out mice. Unlike morphine, improgan does not induce tolerance after daily dosing. Extensive in vitro pharmacology studies have excluded known histaminergic, opioid, serotonergic, GABAergic and adrenergic receptor mechanisms, as well as 50 other sites of action. The improgan-like analgesic activity of some HA congeners suggests an analgesic action on a novel HA receptor, but further studies are required to substantiate this. Studies in progress are characterizing the sites and mechanisms of action of improgan, and developing brain-penetrating derivatives that could be useful for clinical pain.
Collapse
Affiliation(s)
- L B Hough
- Department of Pharmacology and Neuroscience, Albany Medical College, New York 12208, USA.
| | | | | | | | | | | | | |
Collapse
|
43
|
Calejesan AA, Kim SJ, Zhuo M. Descending facilitatory modulation of a behavioral nociceptive response by stimulation in the adult rat anterior cingulate cortex. Eur J Pain 2000; 4:83-96. [PMID: 10833558 DOI: 10.1053/eujp.1999.0158] [Citation(s) in RCA: 206] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
It is well documented that the descending endogenous analgesia system, including the periaqueductal gray (PAG) and the rostral ventral medulla (RVM), play an important role in modulation of nociceptive transmission and morphine- and cannabinoid-produced analgesia. Neurons in the PAG receive inputs from different nuclei of higher structures, including the anterior cingulate cortex (ACC). However, it is unclear if stimulation of neurons in the ACC modulates spinal nociceptive transmission. The present study has examined the effects of electrical stimulation and chemical activation of metabotropic glutamate receptors (mGluRs) in the ACC on a spinal nociceptive tail-flick (TF) reflex induced by noxious heating. Activation of the ACC at high intensities (up to 500 microA) of electrical stimulation did not produce any antinociceptive effect. Instead, at most sites within the ACC (n = 36 of 41 sites), electrical stimulation produced significant facilitation of the TF reflex (i.e. decreases in TF latency). Chemical activation of mGluRs within the ACC also produced a facilitatory effect. Descending facilitation from the ACC apparently relays at the RVM. Electrical stimulation in the RVM produces a biphasic modulatory effect, showing facilitation at low intensities and inhibition at higher intensities. The present study provides evidence that activation of mGluRs within the ACC can facilitate spinal nociception.
Collapse
Affiliation(s)
- A A Calejesan
- Department of Anesthesiology, Washington University Medical Center, Washington University in St. Louis, St. Louis, MO, 63110, USA
| | | | | |
Collapse
|
44
|
Bodnar RJ. Supraspinal circuitry mediating opioid antinociception: antagonist and synergy studies in multiple sites. J Biomed Sci 2000; 7:181-94. [PMID: 10810236 DOI: 10.1007/bf02255465] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Supraspinal opioid antinociception is mediated by sensitive brain sites capable of supporting this response following microinjection of opioid agonists. These sites include the ventrolateral periaqueductal gray (vIPAG), the rostral ventromedial medulla (RVM), the locus coeruleus and the amygdala. Each of these sites comprise an interconnected anatomical and physiologically relevant system mediating antinociceptive responses through regional interactions. Such interactions have been identified using two pharmacological approaches: (1) the ability of selective antagonists delivered to one site to block antinociception elicited by opioid agonists in a second site, and (2) the presence of synergistic antinociceptive interactions following simultaneous administration of subthreshold doses of opioid agonists into pairs of sites. Thus, the RVM has essential serotonergic, opioid, cholinergic and NMDA synapses that are necessary for the full expression of morphine antinociception elicited from the vIPAG, and the vIPAG has essential opioid synapses that are necessary for the full expression of opioid antinociception elicited from the amygdala. Further, the vIPAG, RVM, locus coeruleus and amygdala interact with each other in synergistically supporting opioid antinociception.
Collapse
Affiliation(s)
- R J Bodnar
- Department of Psychology and Neuropsychology Doctoral Subprogram, Queens College, City University of New York, Flushing, NY 11367, USA.
| |
Collapse
|
45
|
Harasawa I, Fields HL, Meng ID. Delta opioid receptor mediated actions in the rostral ventromedial medulla on tail flick latency and nociceptive modulatory neurons. Pain 2000; 85:255-62. [PMID: 10692626 DOI: 10.1016/s0304-3959(99)00280-8] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Abstract
The rostral ventromedial medulla (RVM) is critical for the modulation of dorsal horn nociceptive transmission. Three classes of RVM neurons (ON, OFF, and NEUTRAL) have been described that have distinct responses to noxious stimuli and mu opioid receptor (MOR) agonists. The present study in barbiturate anesthetized rats investigated the effects of the delta 2 opioid receptor (DOR2) agonist, [D-Ala2]deltorphin II (DELT), microinfused into the RVM on the tail flick reflex and activity of RVM neurons. Tail flick latencies increased dose-dependently after administration of DELT (0.6 nmol and 1.2 nmol). Furthermore, DELT inhibited the tail flick related increase in ON cell activity and shortened the tail flick related pause in OFF cell activity. The activity of NEUTRAL cells was not affected. The antinociceptive effects and corresponding changes in ON and OFF cell activity produced by DELT were antagonized by the DOR2 antagonist, naltriben methanesulfonate, administered at the same site. These DOR2 mediated effects on noxious stimulation-evoked changes in RVM neuronal activity are similar to those reported for MOR agonists and suggest that both DOR2 and MOR produce analgesia through activation of OFF cells.
Collapse
Affiliation(s)
- I Harasawa
- Department of Neurology and the W.M. Keck Foundation Center for Integrative Neuroscience, University of California, San Francisco, USA
| | | | | |
Collapse
|
46
|
Abstract
Bulbospinal serotonergic neurons and two physiological classes of bulbospinal nonserotonergic cells interact to modulate pain transmission. Recent studies have begun to elaborate targets of descending pain modulation other than the well-studied flexion withdrawal pathways. Site-specific, naloxone-sensitive placebo analgesia, which is hard to reconcile with current models of descending pain modulation, presents an exciting challenge to the field.
Collapse
Affiliation(s)
- P Mason
- Department of Neurobiology, Pharmacology and Physiology, Committee on Neurobiology, The University of Chicago, 947 East 58th Street, Chicago, Illinois 60637, USA.
| |
Collapse
|
47
|
Abstract
Although many anecdotal reports indicate that marijuana and its active constituent, delta-9-tetrahydrocannabinol (delta-9-THC), may reduce pain sensation, studies of humans have produced inconsistent results. In animal studies, the apparent pain-suppressing effects of delta-9-THC and other cannabinoid drugs are confounded by motor deficits. Here we show that a brainstem circuit that contributes to the pain-suppressing effects of morphine is also required for the analgesic effects of cannabinoids. Inactivation of the rostral ventromedial medulla (RVM) prevents the analgesia but not the motor deficits produced by systemically administered cannabinoids. Furthermore, cannabinoids produce analgesia by modulating RVM neuronal activity in a manner similar to, but pharmacologically dissociable from, that of morphine. We also show that endogenous cannabinoids tonically regulate pain thresholds in part through the modulation of RVM neuronal activity. These results show that analgesia produced by cannabinoids and opioids involves similar brainstem circuitry and that cannabinoids are indeed centrally acting analgesics with a new mechanism of action.
Collapse
Affiliation(s)
- I D Meng
- Department of Neurology, W. M. Keck Foundation Center for Integrative Neuroscience, University of California, San Francisco 94143-0114, USA.
| | | | | | | |
Collapse
|