1
|
Shi Y, Fang YY, Wei YP, Jiang Q, Zeng P, Tang N, Lu Y, Tian Q. Melatonin in Synaptic Impairments of Alzheimer's Disease. J Alzheimers Dis 2019; 63:911-926. [PMID: 29710712 DOI: 10.3233/jad-171178] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Alzheimer's disease (AD) underlies dementia for millions of people worldwide with no effective treatment. The dementia of AD is thought stem from the impairments of the synapses because of their critical roles in cognition. Melatonin is a neurohormone mainly released by the pineal gland in a circadian manner and it regulates brain functions in various manners. It is reported that both the melatonin deficit and synaptic impairments are present in the very early stage of AD and strongly contribute to the progress of AD. In the mammalian brains, the effects of melatonin are mainly relayed by two of its receptors, melatonin receptor type 1a (MT1) and 1b (MT2). To have a clear idea on the roles of melatonin in synaptic impairments of AD, this review discussed the actions of melatonin and its receptors in the stabilization of synapses, modulation of long-term potentiation, as well as their contributions in the transmissions of glutamatergic, GABAergic and dopaminergic synapses, which are the three main types of synapses relevant to the synaptic strength. The synaptic protective roles of melatonin in AD treatment were also summarized. Regarding its protective roles against amyloid-β neurotoxicity, tau hyperphosphorylation, oxygenation, inflammation as well as synaptic dysfunctions, melatonin may be an ideal therapeutic agent against AD at early stage.
Collapse
Affiliation(s)
- Yan Shi
- Department of Pathology and Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Key Laboratory of Neurological Disease of National Education Ministry and Hubei Province, Institute for Brain Research, Huazhong University of Science and Technology, Wuhan, China
| | - Ying-Yan Fang
- Department of Pathology and Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Key Laboratory of Neurological Disease of National Education Ministry and Hubei Province, Institute for Brain Research, Huazhong University of Science and Technology, Wuhan, China
| | - Yu-Ping Wei
- Department of Pathology and Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Key Laboratory of Neurological Disease of National Education Ministry and Hubei Province, Institute for Brain Research, Huazhong University of Science and Technology, Wuhan, China
| | - Qian Jiang
- Integrated TCM and Western Medicine Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Peng Zeng
- Department of Pathology and Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Key Laboratory of Neurological Disease of National Education Ministry and Hubei Province, Institute for Brain Research, Huazhong University of Science and Technology, Wuhan, China
| | - Na Tang
- Department of Pathology and Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Key Laboratory of Neurological Disease of National Education Ministry and Hubei Province, Institute for Brain Research, Huazhong University of Science and Technology, Wuhan, China
| | - Youming Lu
- Department of Pathology and Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Key Laboratory of Neurological Disease of National Education Ministry and Hubei Province, Institute for Brain Research, Huazhong University of Science and Technology, Wuhan, China
| | - Qing Tian
- Department of Pathology and Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Key Laboratory of Neurological Disease of National Education Ministry and Hubei Province, Institute for Brain Research, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
2
|
Anadón R, Rodríguez-Moldes I, Adrio F. Glycine-immunoreactive neurons in the brain of a shark (Scyliorhinus caniculaL.). J Comp Neurol 2013; 521:3057-82. [DOI: 10.1002/cne.23332] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2012] [Revised: 03/07/2013] [Accepted: 03/13/2013] [Indexed: 01/12/2023]
Affiliation(s)
- Ramón Anadón
- Department of Cell Biology and Ecology; University of Santiago de Compostela; 15782 Santiago de; Compostela; Spain
| | - Isabel Rodríguez-Moldes
- Department of Cell Biology and Ecology; University of Santiago de Compostela; 15782 Santiago de; Compostela; Spain
| | - Fátima Adrio
- Department of Cell Biology and Ecology; University of Santiago de Compostela; 15782 Santiago de; Compostela; Spain
| |
Collapse
|
3
|
Carr JA, Zhang B, Li W, Gao M, Garcia C, Lustgarten J, Wages M, Smith EE. An intrinsic CRF signaling system within the optic tectum. Gen Comp Endocrinol 2013; 188:204-11. [PMID: 23583471 DOI: 10.1016/j.ygcen.2013.03.020] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2013] [Revised: 03/12/2013] [Accepted: 03/16/2013] [Indexed: 10/27/2022]
Abstract
Previous work indicates that CRF administration inhibits visually guided feeding in amphibians. We used the African clawed frog Xenopus laevis to examine the hypothesis that CRF acts as a neurotransmitter in the optic tectum, the major brain area integrating the visual and premotor pathways regulating visually guided feeding in anurans. Reverse transcriptase PCR revealed that cells in the optic tectum express mRNA for CRF and the CRF R1 receptor but not the CRF R2 receptor. Radioligand binding studies indicated that specific binding of [(125)I]-Tyr-oCRF to tectal cell membranes can be displaced by the CRF R1 antagonists antalarmin or NBI-27914. CRF increased the expression of mRNA encoding regulator of G-protein signaling 2 (rgs2) in tectal explants and this effect was blocked by antalarmin. CRF had no effect on basal glutamate or gamma-aminobutyric acid (GABA) secretion but inhibited secretion of norepinephrine from tectal explants, an effect that completely blocked by antalarmin. Using a homologous radioimmunoassay we determined that CRF release from tectal explants in vitro was potassium- and calcium-dependent. Basal and depolarization-induced CRF secretion was greater from optic tectum than hypothalamus/thalamus, telencephalon, or brainstem. We concluded that the optic tectum possesses a CRF signaling system that may be involved in modulating communication between sensory and motor pathways involved in food intake.
Collapse
Affiliation(s)
- James A Carr
- Department of Biological Sciences, Texas Tech University, Lubbock, TX 79409, USA.
| | | | | | | | | | | | | | | |
Collapse
|
4
|
Caudill MS, Eggebrecht AT, Gruberg ER, Wessel R. Electrophysiological properties of isthmic neurons in frogs revealed by in vitro and in vivo studies. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2010; 196:249-62. [PMID: 20179943 PMCID: PMC2860605 DOI: 10.1007/s00359-010-0511-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2009] [Revised: 02/03/2010] [Accepted: 02/04/2010] [Indexed: 11/26/2022]
Abstract
The frog nucleus isthmi (parabigeminal nucleus in mammals) is a visually responsive, cholinergic and anatomically well-defined group of neurons in the midbrain. It shares reciprocal topographic projections with the ipsilateral optic tectum (superior colliculus in mammals) and strongly influences visual processing. Anatomical and biochemical information indicates the existence of distinct neural populations within the frog nucleus isthmi, which raises the question: are there electrophysiological distinctions between neurons that are putatively classified by their anatomical and biochemical properties? To address this question, we measured frog nucleus isthmi neuron cellular properties in vitro and visual response properties in vivo. No evidence for distinct electrophysiological classes of neurons was found. We thus conclude that, despite the anatomical and biochemical differences, the cells of the frog nucleus isthmi respond homogeneously to both current injections and simple visual stimuli.
Collapse
Affiliation(s)
- Matthew S Caudill
- Department of Physics, Washington University in St. Louis, St. Louis, MO 63130-4899, USA.
| | | | | | | |
Collapse
|
5
|
Wu GY, Wang SR. Postsynaptic potentials and axonal projections of tegmental neurons responding to electrical stimulation of the toad striatum. Neurosci Lett 2007; 429:111-4. [PMID: 17996369 DOI: 10.1016/j.neulet.2007.09.071] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2007] [Revised: 09/27/2007] [Accepted: 09/30/2007] [Indexed: 10/22/2022]
Abstract
The amphibian telencephalic striatum as a major component of the basal ganglia receives multisensory information and projects to the tegmentum and other structures. However, how striatal neurons modulate tegmental activity remains unknown. Here, we show by using intracellular recording and staining in toads that electrical stimulation of the ipsilateral striatum evoked an inhibitory postsynaptic potential (IPSP) in presumably binocular tegmental neurons. Seventy-one neurons were intracellularly stained with Lucifer yellow or horseradish peroxidase. They were located in the anterodorsal tegmental nucleus, anteroventral tegmental nucleus, nucleus profundus mesencephali, and superficial isthmal reticular nucleus, with axons projecting to the tectum, nucleus isthmi, and spinal cord. It appears that the striatum can control visually guided behaviors through the striato-tegmento-spinal pathway and the tegmento-spinal pathway mediated by the tectum and nucleus isthmi.
Collapse
Affiliation(s)
- Gang-Yi Wu
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA.
| | | |
Collapse
|
6
|
Xiao J. A new coordinate system for rodent brain and variability in the brain weights and dimensions of different ages in the naked mole-rat. J Neurosci Methods 2007; 162:162-70. [PMID: 17320969 DOI: 10.1016/j.jneumeth.2007.01.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2006] [Revised: 01/03/2007] [Accepted: 01/08/2007] [Indexed: 11/29/2022]
Abstract
Traditionally, the skull landmarks, i.e., bregma, lambda, and the interaural line, are the origins of the coordinate system for almost all rodent brain atlases. The disadvantages of using a skull landmark as an origin are: (i) there are differences among individuals in the alignment between the skull and the brain; (ii) the shapes of sutures, on which a skull landmark is determined, are different for different animals; (iii) the skull landmark is not clear for some animals. Recently, the extreme point of the entire brain (the tip of the olfactory bulb) has also been used as the origin for an atlas coordinate system. The accuracy of stereotaxically locating a brain structure depends on the relative distance between the structure and the reference point of the coordinate. The disadvantages of using the brain extreme as an origin are that it is located far from most brain structures and is not readily exposed during most in vivo procedures. To overcome these disadvantages, this paper introduces a new coordinate system for the brain of the naked mole-rat. The origin of this new coordinate system is a landmark directly on the brain: the intersection point of the posterior edges of the two cerebral hemispheres. This new coordinate system is readily applicable to other rodent species and is statistically better than using bragma and lambda as reference points. It is found that the body weight of old naked mole-rats is significantly bigger than that of young animals. However, the old naked mole-rat brain is not significantly heavier than that of young animal. Both brain weight and brain length vary little among animals of different weights. The disadvantages of current definition of "significant" are briefly discussed and a new expression that describes more objectively the result of statistical test is brought up and used.
Collapse
Affiliation(s)
- Jun Xiao
- Biology Department, The City College of New York, 138th Street & Convent Avenue, New York, NY 10031, USA.
| |
Collapse
|
7
|
Ewert JP, Schwippert WW. Modulation of visual perception and action by forebrain structures and their interactions in amphibians. EXS 2006; 98:99-136. [PMID: 17019885 DOI: 10.1007/978-3-7643-7772-4_6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Jiörg-Peter Ewert
- Department of Neurobiology, Faculty of Natural Sciences, University of Kassel, 34132 Kassel, Germany.
| | | |
Collapse
|
8
|
Cao P, Yang Y, Yang Y, Wang SR. Differential modulation of thalamic neurons by optokinetic nuclei in the pigeon. Brain Res 2006; 1069:159-65. [PMID: 16405870 DOI: 10.1016/j.brainres.2005.11.063] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2005] [Revised: 11/08/2005] [Accepted: 11/11/2005] [Indexed: 11/30/2022]
Abstract
The visual system in the pigeon is composed of the tectofugal, thalamofugal and accessory optic pathways. Though their anatomy and physiology have been extensively studied, the functional interactions between these pathways are largely unknown. The present study shows by using multiple electrophysiological techniques that firing activity in the nucleus opticus principalis thalami (OPT) of the thalamofugal pathway is differentially modulated by the pretectal nucleus lentiformis mesencephali (nLM) and the nucleus of the basal optic root (nBOR) of the accessory optic system, two optokinetic nuclei responsible for generating eye movements to stabilize the image on the retina. Reversible inactivation, electrical stimulation, microiontophoresis and receptive field mapping experiments all consistently indicate that the nBOR-OPT pathway is inhibitory and mediated by GABA as a transmitter and its GABAA receptors, whereas the nLM-OPT pathway is excitatory and mediated by glutamate as a transmitter and its NMDA receptors. They also differentially modulate the size and/or responsiveness of receptive fields in OPT cells as well. Numerous electrode tip sites were histologically confirmed in the neural structures under study. The results suggest that these optokinetic nuclei may dually modulate the transfer of visual information from the retina to the telencephalon at the thalamic level during eye movements.
Collapse
Affiliation(s)
- Peng Cao
- Laboratory for Visual Information Processing, State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Beijing 100101, PR China
| | | | | | | |
Collapse
|
9
|
Prada C, Udin SB, Wiechmann AF, Zhdanova IV. Stimulation of Melatonin Receptors Decreases Calcium Levels in Xenopus Tectal Cells by Activating GABAC Receptors. J Neurophysiol 2005; 94:968-78. [PMID: 15817645 DOI: 10.1152/jn.01286.2004] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
To investigate the physiological effects of melatonin receptors in the Xenopus tectum, we have used the fluorescent indicator Fluo-4 AM to monitor calcium dynamics of cells in tectal slices. Bath application of KCl elicited fluorescence increases that were reduced by melatonin. This effect was stronger at the end of the light period than at the end of the dark period. Melatonin increased γ-aminobutyric acid-C (GABAC)–receptor activity, as demonstrated by the ability of the GABAC-receptor antagonists, picrotoxin and TPMPA, to abolish the effects of melatonin. In contrast, neither the GABAA-receptor antagonist bicuculline nor the GABAB-receptor antagonist CGP 35348 diminished the effects of melatonin. RT-PCR analyses revealed expression of the 3 known melatonin receptors, MT1 (Mel1a), MT2 (Mel1b), and Mel1c. Because the effect of melatonin on tectal calcium increases was antagonized by an MT2-selective antagonist, 4-P-PDOT, we performed Western blot analyses with an antibody to the MT2 receptor; the data indicate that the MT2 receptor is expressed primarily as a dimeric complex and is glycosylated. The receptor is present in higher amounts at the end of the light period than at the end of the dark period, in a pattern complementary to the changes in melatonin levels, which are higher during the night than during the day. These results imply that melatonin, acting by MT2 receptors, modulates GABAC receptor activity in the optic tectum and that this effect is influenced by the light–dark cycle.
Collapse
MESH Headings
- Aniline Compounds/metabolism
- Animals
- Bicuculline/pharmacology
- Blotting, Northern/methods
- Blotting, Western/methods
- Brain Chemistry/drug effects
- Calcium/metabolism
- Circadian Rhythm/drug effects
- Circadian Rhythm/physiology
- Diagnostic Imaging/methods
- Dose-Response Relationship, Drug
- Drug Interactions
- GABA Agonists/pharmacology
- GABA Antagonists/pharmacology
- In Vitro Techniques
- Melatonin/metabolism
- Melatonin/pharmacology
- Models, Neurological
- Neurons/drug effects
- Neurons/metabolism
- Neurons/radiation effects
- Pertussis Toxin/pharmacology
- Potassium Chloride/pharmacology
- RNA, Messenger/biosynthesis
- Radioimmunoassay/methods
- Receptors, GABA-A/physiology
- Receptors, Melatonin/agonists
- Receptors, Melatonin/antagonists & inhibitors
- Receptors, Melatonin/genetics
- Receptors, Melatonin/physiology
- Reverse Transcriptase Polymerase Chain Reaction/methods
- Tectum Mesencephali/cytology
- Tetrahydronaphthalenes/pharmacology
- Xanthenes/metabolism
- Xenopus laevis
Collapse
Affiliation(s)
- Claudia Prada
- Neuroscience Program, State University of New York at Buffalo, Buffalo, NY 14214, USA
| | | | | | | |
Collapse
|
10
|
Xiao J, Levitt JB. A new chamber method for mounting tissue sections. J Neurosci Methods 2005; 144:235-40. [PMID: 15910983 DOI: 10.1016/j.jneumeth.2004.11.018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2004] [Revised: 11/11/2004] [Accepted: 11/11/2004] [Indexed: 10/26/2022]
Abstract
We describe a method for mounting tissue sections onto slides that is faster and especially useful for those sections too thin or too large to be mounted easily by conventional methods. We have devised a chamber system for mounting tissue sections onto slides under buffer solution. Because of the buoyancy of sections in the buffer solution and the elimination of fluid surface tension, it is easy to move, turn, unfold, and spread even quite large or thin tissue sections. In-solution-mounting in this chamber also greatly reduces the force of the brush tip used to maneuver sections onto the slide, thus resulting in less damage to the tissue sections. This chamber greatly facilitates mounting multiple tissue sections onto a single slide. The new method is applicable to protocols that stain tissue sections either before (e.g. cytochrome oxidase) or after (e.g. cresyl violet) section mounting.
Collapse
Affiliation(s)
- Jun Xiao
- Department of Biology J526, The City College of the City University of New York, 138th Street and Convent Avenue, New York, NY 10031, USA.
| | | |
Collapse
|
11
|
Hollis DM, Boyd SK. Distribution of GABA-Like Immunoreactive Cell Bodies in the Brains of Two Amphibians, Rana catesbeiana and Xenopus laevis. BRAIN, BEHAVIOR AND EVOLUTION 2005; 65:127-42. [PMID: 15627724 DOI: 10.1159/000082981] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2003] [Accepted: 07/12/2004] [Indexed: 11/19/2022]
Abstract
The distribution of the neurotransmitter gamma-aminobutyric acid (GABA) is not well understood for non-mammalian vertebrates. We thus used immunocytochemistry to locate putative GABAergic cells in the brains of male bullfrogs (Rana catesbeiana) and South African clawed frogs (Xenopus laevis). GABA-immunoreactive cell bodies were broadly distributed throughout the brains of both species with similar general patterns. In both, the greatest numbers of GABA-positive cells were found in the olfactory bulb, thalamus, and optic tectum, but virtually no major brain region lacked GABAergic cells. Species differences were also apparent. The density of GABA-immunoreactive cells was substantially higher in many areas of the bullfrog brain, compared to Xenopus. Bullfrogs possessed extensive cell populations in the medial pallium, preoptic area, optic tectum, torus semicircularis and tegmentum but cells were fewer in these locations in Xenopus. In the bullfrog hindbrain, GABA-immunoreactive cell bodies were restricted to very narrow and distinct populations. In Xenopus, however, cells in a similar position were fewer and spread more extensively. The distribution of GABA cells in the brain of these two species supports the hypotheses that GABA is involved in control of olfaction, audition, vision and vocalization. However, differences in the distribution of GABA between the bullfrog and Xenopus suggest that the extent of the GABAergic influence might vary between species.
Collapse
Affiliation(s)
- David M Hollis
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556, USA
| | | |
Collapse
|
12
|
Wang SR. The nucleus isthmi and dual modulation of the receptive field of tectal neurons in non-mammals. BRAIN RESEARCH. BRAIN RESEARCH REVIEWS 2003; 41:13-25. [PMID: 12505645 DOI: 10.1016/s0165-0173(02)00217-5] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The nucleus isthmi in the dorsolateral tegmentum had been one of the most obscure structures in the nonmammalian midbrain for eight decades. Recent studies have shown that this nucleus and its mammalian homologue, the parabigeminal nucleus, are all visual centers, which receive information from the ipsilateral tectum and project back either ipsilaterally or bilaterally depending on species, but not an auditory center as suggested before. On the other hand, the isthmotectal pathways exert dual, both excitatory and inhibitory, actions on tectal cells in amphibians and reptiles. In birds, the magnocellular and parvocellular subdivisions of this nucleus produce excitatory and inhibitory effects on tectal cells, respectively. The excitatory pathway is mediated by glutamatergic synapses with AMPA and NMDA receptors and/or cholinergic synapses with muscarinic receptors, whereas the inhibitory pathway is mediated by GABAergic synapses via GABA(A) receptors. Further studies have shown that the magnocellular and parvocellular subdivisions can differentially modulate the excitatory and inhibitory regions of the receptive field of tectal neurons, respectively. Both the positive and the negative feedback pathways may work together in a winner-take-all manner, so that the animal could attend to only one of several competing visual targets simultaneously present in the visual field. Some behavioral tests seem to be consistent with this hypothesis. The present review indicates that the tecto-isthmic system in birds is an excellent model for further studying tectal modulation and possibly winner-take-all mechanisms.
Collapse
Affiliation(s)
- Shu-Rong Wang
- Laboratory for Visual Information Processing, Institute of Biophysics, Chinese Academy of Sciences, 100101, Beijing, China.
| |
Collapse
|
13
|
Yu CJ, Debski EA. The effects of nicotinic and muscarinic receptor activation on patch-clamped cells in the optic tectum of Rana pipiens. Neuroscience 2003; 118:135-44. [PMID: 12676145 PMCID: PMC2265077 DOI: 10.1016/s0306-4522(02)00768-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Both nicotinic and muscarinic cholinergic receptors are present in the optic tectum. To begin to understand how the activation of these receptors affects visual activity patterns, we have determined the types of physiological responses induced by their activation. Using tectal brain slices from the leopard frog, we found that application of nicotine (100 microM) evoked long-lasting responses in 60% of patch-clamped tectal cells. Thirty percent of these responses consisted of an increase in spontaneous postsynaptic currents (sPSCs) and had both a glutamatergic and GABAergic component as determined by the use of 6-cyano-7-nitroquinoxaline-2,3-dione (50 microM) and bicuculline (25 microM), respectively. Remaining response types consisted of an inward membrane current (16%) and an increase in sPSCs combined with an inward membrane current (14%). All responses could be elicited in the presence of tetrodotoxin (0.5 microM). Muscarinic receptor-mediated responses, induced by carbachol (100 microM) application after nicotinic receptor desensitization, produced responses in 70% of tectal cells. In contrast to responses elicited by nicotine, carbachol-induced responses could be evoked multiple times without significant decrement. Responses consisted of either an outward current (57%), a decrease in sPSCs (5%) or an increase in sPSCs, with (almost 6%) or without (almost 3%) an outward current. The response elicited by carbachol was not predicted by the response of the cell to nicotine. Our results suggest that nicotinic receptors are found predominantly at presynaptic locations in the optic tectum while muscarinic receptors are most often present at postsynaptic sites. We conclude that both of these receptor types could substantially modulate visual activity by changing either the input to tectal neurons or the level of their response to that input.
Collapse
Affiliation(s)
| | - E. A. Debski
- Corresponding author: Tel: +1-859-323-9537; fax: +1-859-257-1717. E-mail address: (E. A. Debski)
| |
Collapse
|
14
|
Abstract
Vision is the most important sensory modality to anurans and a great deal of work in terms of hodological, physiological, and behavioral studies has been devoted to the visual system. The aim of this account is to survey data about the distribution of peptides in primary (lateral geniculate complex, pretectum, tectum) and secondary (striatum, anterodorsal and anteroventral tegmental nuclei, isthmic nucleus) visual relay centers. The emphasis is on general traits but interspecies variations are also noted. The smallest amount of peptide-containing neuronal elements was found in the lateral geniculate complex, where primarily nerve fibers showed immunostaining. All peptides found in the lateral geniculate complex, except two, occurred in the pretectum together with four other peptides. A large number of neurons showing intense neuropeptide thyrosine-like immunoreactivity was characteristic here. The mesencephalic tectum was the richest in peptide-like immunoreactive neuronal elements. Almost all peptides investigated were present mainly in fibers, but 9 peptides were found also in cells. The immunoreactive fibers show a complicated overlapping laminar arrangement. Cholecystokinin octapeptide, enkephalins, neuropeptide tyrosine, and substance P (not discussed here) gave the most prominent immunoreactivity. Several peptides also occur in the tectum of fishes, reptiles, birds, and mammals. Peptides in various combinations were found in the striatum, the anterodorsal- and anteroventral tegmental nucleus, and the isthmic nucleus that receive projections from the primary visual centers. The functional significance of peptides in visual information processing is not known. The only exception is neuropeptide tyrosine, which was found to be inhibitory on retinotectal synapses.
Collapse
Affiliation(s)
- G Lázár
- University of Pécs, Faculty of Medicine, Department of Human Anatomy, 7643 Pécs, Szigeti út 12, Hungary.
| |
Collapse
|
15
|
Abstract
The colocalization of GABA, enkephalin and neuropeptide Y immunoreactivity in neurons in the pretectal area and in the mesencephalic tectum of the green frog (Rana esculenta) was studied. Several Met-enkephalin immunoreactive perikarya were found in layer 6 of the tectum and every third of these neurons showed GABA-ir as well. Colocalization of GABA and NPY could also be shown in half of the neuropeptide Y immunopositive cells in the 6th layer of the tectum, but only a few cells were double stained in layers 9 and 4. In the pretectal area no colocalization of the investigated peptides and GABA was found.
Collapse
Affiliation(s)
- T Kozicz
- Pécs University, Medical Faculty, Department of Human Anatomy, H-7635, Pécs, Szigeti út 12, Hungary.
| | | |
Collapse
|
16
|
Hu J, Li S, Xiao Q, Wang SR. Tecto-isthmo-optic transmission in pigeons is mediated by glutamate and nitric oxide. Brain Res Bull 2001; 54:399-403. [PMID: 11306192 DOI: 10.1016/s0361-9230(00)00461-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The isthmo-optic nucleus of the centrifugal system in birds receives primarily input from the ipsilateral tectum and projects to the contralateral retina. The present study using brain slices and microiontophoresis shows that synaptic transmission from the tectum to the centrifugal nucleus in pigeons is excitatory. About 75% of tecto-isthmo-optic fibers are glutamatergic, mediated by alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid but not N-methyl-D-aspartate-receptors, and 25% of others may use nitric oxide as a transmitter or modulator. On the other hand, about 60% of isthmo-optic cells receive glutamatergic afferents, 20% receive nitric oxidergic afferents, and 20% of others receive both glutamatergic and nitric oxidergic afferents from the tectum. In the last group, it is more likely that both glutamate and nitric oxide may co-release from the same tecto-isthmo-optic terminals. All the isthmo-optic cells examined in the present study also receive gamma-aminobutyric acid (GABA)ergic afferents via GABA(A) and GABA(B) receptors probably from some extratectal structures.
Collapse
Affiliation(s)
- J Hu
- Laboratory for Visual Information Processing, Institute of Biophysics, Chinese Academy of Sciences, Beijing, PR China
| | | | | | | |
Collapse
|
17
|
Pollák E, Lázár G, Gábriel R, Wang SR. Localization and source of gamma aminobutyric acid immunoreactivity in the isthmic nucleus of the frog Rana esculenta. Brain Res Bull 1999; 48:343-50. [PMID: 10229344 DOI: 10.1016/s0361-9230(99)00006-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The distribution of gamma-aminobutyric acid (GABA)-containing neurons and nerve fibers was studied in the isthmic nucleus of the frog Rana esculenta using light and electron microscopical immunohistochemical techniques. Approximately 0.5% of isthmic cells showed GABA immunopositivity, and the majority of these cells was found in the anterior one-third of the nucleus. A meshwork of GABA-immunostained fine beaded axons filled the entire isthmic nucleus. The GABA-immunoreactive terminals formed pericellular basket-like structures around a few cells both in the medulla and the cortex of the isthmic nucleus. To determine the source of GABA-positive fibers in the isthmic nucleus lesion experiments were carried out. After unilateral tectal ablation no change was observed in GABA immunoreactivity. Hemisectioning the tegmentum close to the anterior border of the isthmic nucleus, transection of the caudal tectal commissure and decussatio veli, or electrical lesioning of the anterodorsal tegmental nucleus all resulted in a moderate decrease in the density of GABA-positive fibers. Our results suggest that the majority of GABA-positive fibers derives from local GABA-positive cells, but some GABAergic afferents seem to arise in the tegmentum.
Collapse
Affiliation(s)
- E Pollák
- Department of General Zoology and Neurobiology, Janus Pannonius University, Ifjúság, Hungary
| | | | | | | |
Collapse
|