1
|
Kitchigina V, Shubina L. Oscillations in the dentate gyrus as a tool for the performance of the hippocampal functions: Healthy and epileptic brain. Prog Neuropsychopharmacol Biol Psychiatry 2023; 125:110759. [PMID: 37003419 DOI: 10.1016/j.pnpbp.2023.110759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 03/17/2023] [Accepted: 03/28/2023] [Indexed: 04/03/2023]
Abstract
The dentate gyrus (DG) is part of the hippocampal formation and is essential for important cognitive processes such as navigation and memory. The oscillatory activity of the DG network is believed to play a critical role in cognition. DG circuits generate theta, beta, and gamma rhythms, which participate in the specific information processing performed by DG neurons. In the temporal lobe epilepsy (TLE), cognitive abilities are impaired, which may be due to drastic alterations in the DG structure and network activity during epileptogenesis. The theta rhythm and theta coherence are especially vulnerable in dentate circuits; disturbances in DG theta oscillations and their coherence may be responsible for general cognitive impairments observed during epileptogenesis. Some researchers suggested that the vulnerability of DG mossy cells is a key factor in the genesis of TLE, but others did not support this hypothesis. The aim of the review is not only to present the current state of the art in this field of research but to help pave the way for future investigations by highlighting the gaps in our knowledge to completely appreciate the role of DG rhythms in brain functions. Disturbances in oscillatory activity of the DG during TLE development may be a diagnostic marker in the treatment of this disease.
Collapse
Affiliation(s)
- Valentina Kitchigina
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino, Moscow region 142290, Russia.
| | - Liubov Shubina
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino, Moscow region 142290, Russia
| |
Collapse
|
2
|
Interneuronal dynamics facilitate the initiation of spike block in cortical microcircuits. J Comput Neurosci 2022; 50:275-298. [PMID: 35441302 DOI: 10.1007/s10827-022-00815-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 02/09/2022] [Accepted: 03/09/2022] [Indexed: 10/18/2022]
Abstract
Pyramidal cell spike block is a common occurrence in migraine with aura and epileptic seizures. In both cases, pyramidal cells experience hyperexcitation with rapidly increasing firing rates, major changes in electrochemistry, and ultimately spike block that temporarily terminates neuronal activity. In cortical spreading depression (CSD), spike block propagates as a slowly traveling wave of inactivity through cortical pyramidal cells, which is thought to precede migraine attacks with aura. In seizures, highly synchronized cortical activity can be interspersed with, or terminated by, spike block. While the identifying characteristic of CSD and seizures is the pyramidal cell hyperexcitation, it is currently unknown how the dynamics of the cortical microcircuits and inhibitory interneurons affect the initiation of hyperexcitation and subsequent spike block.We tested the contribution of cortical inhibitory interneurons to the initiation of spike block using a cortical microcircuit model that takes into account changes in ion concentrations that result from neuronal firing. Our results show that interneuronal inhibition provides a wider dynamic range to the circuit and generally improves stability against spike block. Despite these beneficial effects, strong interneuronal firing contributed to rapidly changing extracellular ion concentrations, which facilitated hyperexcitation and led to spike block first in the interneuron and then in the pyramidal cell. In all cases, a loss of interneuronal firing triggered pyramidal cell spike block. However, preventing interneuronal spike block was insufficient to rescue the pyramidal cell from spike block. Our data thus demonstrate that while the role of interneurons in cortical microcircuits is complex, they are critical to the initiation of pyramidal cell spike block. We discuss the implications that localized effects on cortical interneurons have beyond the isolated microcircuit and their contribution to CSD and epileptic seizures.
Collapse
|
3
|
The Effects of GABAergic System under Cerebral Ischemia: Spotlight on Cognitive Function. Neural Plast 2020; 2020:8856722. [PMID: 33061952 PMCID: PMC7539123 DOI: 10.1155/2020/8856722] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 09/23/2020] [Indexed: 12/31/2022] Open
Abstract
In this review, we present evidence about the changes of the GABAergic system on the hippocampus under the ischemic environment, which may be an underlying mechanism to the ischemia-induced cognitive deficit. GABAergic system, in contrast to the glutamatergic system, is considered to play an inhibitory effect on the central nervous system over the past several decades. It has received widespread attention in the area of schizophrenia and epilepsy. The GABAergic system has a significant effect in promoting neural development and formation of local neural circuits of the brain, which is the structural basis of cognitive function. There have been a number of reviews describing changes in the GABAergic system in cerebral ischemia in recent years. However, no study has investigated the changes in the system in the hippocampus during cerebral ischemic injury, which results in cognitive impairment, particularly at the chronic ischemic stage and the late phase of ischemia. We present a review of the changes of the GABAergic system in the hippocampus under ischemia, including GABA interneurons, extracellular GABA neurotransmitter, and GABA receptors. Several studies are also listed correlating amelioration of cognitive impairment by regulating the GABAergic system in the hippocampus damaged under ischemia. Furthermore, exogenous cell transplantation, which improves cognition by modulating the GABAergic system, will also be described in this review to bring new insight and strategy on solving cognitive deficits caused by cerebral ischemia.
Collapse
|
4
|
Povysheva N, Nigam A, Brisbin AK, Johnson JW, Barrionuevo G. Oxygen-Glucose Deprivation Differentially Affects Neocortical Pyramidal Neurons and Parvalbumin-Positive Interneurons. Neuroscience 2019; 412:72-82. [PMID: 31152933 DOI: 10.1016/j.neuroscience.2019.05.042] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Revised: 05/02/2019] [Accepted: 05/21/2019] [Indexed: 11/28/2022]
Abstract
Stroke is a devastating brain disorder. The pathophysiology of stroke is associated with an impaired excitation-inhibition balance in the area that surrounds the infarct core after the insult, the peri-infarct zone. Here we exposed slices from adult mouse prefrontal cortex to oxygen-glucose deprivation and reoxygenation (OGD-RO) to study ischemia-induced changes in the activity of excitatory pyramidal neurons and inhibitory parvalbumin (PV)-positive interneurons. We found that during current-clamp recordings, PV-positive interneurons were more vulnerable to OGD-RO than pyramidal neurons as indicated by the lower percentage of recovery of PV-positive interneurons. However, neither the amplitude of OGD-induced depolarization observed in current-clamp mode nor the OGD-associated current observed in voltage-clamp mode differed between the two cell types. Large amplitude, presumably action-potential dependent, spontaneous postsynaptic inhibitory currents recorded from pyramidal neurons were less frequent after OGD-RO than in control condition. Disynaptic inhibitory postsynaptic currents (dIPSCs) in pyramidal neurons produced predominantly by PV-positive interneurons were reduced by OGD-RO. Following OGD-RO, dendrites of PV-positive interneurons exhibited more pathological beading than those of pyramidal neurons. Our data support the hypothesis that the differential vulnerability to ischemia-like conditions of excitatory and inhibitory neurons leads to the altered excitation-inhibition balance associated with stroke pathophysiology.
Collapse
Affiliation(s)
- Nadya Povysheva
- Department of Neuroscience and Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA, 15260, USA.
| | - Aparna Nigam
- Department of Neuroscience and Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA, 15260, USA
| | - Alyssa K Brisbin
- Department of Neuroscience and Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA, 15260, USA
| | - Jon W Johnson
- Department of Neuroscience and Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA, 15260, USA; Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Germán Barrionuevo
- Department of Neuroscience and Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA, 15260, USA; Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| |
Collapse
|
5
|
Tecuatl C, Herrrera-López G, Martín-Ávila A, Yin B, Weber S, Barrionuevo G, Galván EJ. TrkB-mediated activation of the phosphatidylinositol-3-kinase/Akt cascade reduces the damage inflicted by oxygen-glucose deprivation in area CA3 of the rat hippocampus. Eur J Neurosci 2018; 47:1096-1109. [PMID: 29480936 PMCID: PMC5938095 DOI: 10.1111/ejn.13880] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Revised: 02/17/2018] [Accepted: 02/20/2018] [Indexed: 12/31/2022]
Abstract
The selective vulnerability of hippocampal area CA1 to ischemia-induced injury is a well-known phenomenon. However, the cellular mechanisms that confer resistance to area CA3 against ischemic damage remain elusive. Here, we show that oxygen-glucose deprivation-reperfusion (OGD-RP), an in vitro model that mimic the pathological conditions of the ischemic stroke, increases the phosphorylation level of tropomyosin receptor kinase B (TrkB) in area CA3. Slices preincubated with brain-derived neurotrophic factor (BDNF) or 7,8-dihydroxyflavone (7,8-DHF) exhibited reduced depression of the electrical activity triggered by OGD-RP. Consistently, blockade of TrkB suppressed the resistance of area CA3 to OGD-RP. The protective effect of TrkB activation was limited to area CA3, as OGD-RP caused permanent suppression of CA1 responses. At the cellular level, TrkB activation leads to phosphorylation of the accessory proteins SHC and Gab as well as the serine/threonine kinase Akt, members of the phosphoinositide 3-kinase/Akt (PI-3-K/Akt) pathway, a cascade involved in cell survival. Hence, acute slices pretreated with the Akt antagonist MK2206 in combination with BDNF lost the capability to resist the damage inflicted with OGD-RP. Consistently, with these results, CA3 pyramidal cells exhibited reduced propidium iodide uptake and caspase-3 activity in slices pretreated with BDNF and exposed to OGD-RP. We propose that PI-3-K/Akt downstream activation mediated by TrkB represents an endogenous mechanism responsible for the resistance of area CA3 to ischemic damage.
Collapse
Affiliation(s)
- Carolina Tecuatl
- Departamento de Farmacobiología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Calzada de los Tenorios No. 235, México City, 14330, México
| | - Gabriel Herrrera-López
- Departamento de Farmacobiología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Calzada de los Tenorios No. 235, México City, 14330, México
| | - Alejandro Martín-Ávila
- Departamento de Farmacobiología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Calzada de los Tenorios No. 235, México City, 14330, México
| | - Bocheng Yin
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Stephen Weber
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Germán Barrionuevo
- Department of Neuroscience, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Emilio J. Galván
- Departamento de Farmacobiología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Calzada de los Tenorios No. 235, México City, 14330, México
| |
Collapse
|
6
|
Carron SF, Alwis DS, Rajan R. Traumatic Brain Injury and Neuronal Functionality Changes in Sensory Cortex. Front Syst Neurosci 2016; 10:47. [PMID: 27313514 PMCID: PMC4889613 DOI: 10.3389/fnsys.2016.00047] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Accepted: 05/19/2016] [Indexed: 01/21/2023] Open
Abstract
Traumatic brain injury (TBI), caused by direct blows to the head or inertial forces during relative head-brain movement, can result in long-lasting cognitive and motor deficits which can be particularly consequential when they occur in young people with a long life ahead. Much is known of the molecular and anatomical changes produced in TBI but much less is known of the consequences of these changes to neuronal functionality, especially in the cortex. Given that much of our interior and exterior lives are dependent on responsiveness to information from and about the world around us, we have hypothesized that a significant contributor to the cognitive and motor deficits seen after TBI could be changes in sensory processing. To explore this hypothesis, and to develop a model test system of the changes in neuronal functionality caused by TBI, we have examined neuronal encoding of simple and complex sensory input in the rat’s exploratory and discriminative tactile system, the large face macrovibrissae, which feeds to the so-called “barrel cortex” of somatosensory cortex. In this review we describe the short-term and long-term changes in the barrel cortex encoding of whisker motion modeling naturalistic whisker movement undertaken by rats engaged in a variety of tasks. We demonstrate that the most common form of TBI results in persistent neuronal hyperexcitation specifically in the upper cortical layers, likely due to changes in inhibition. We describe the types of cortical inhibitory neurons and their roles and how selective effects on some of these could produce the particular forms of neuronal encoding changes described in TBI, and then generalize to compare the effects on inhibition seen in other forms of brain injury. From these findings we make specific predictions as to how non-invasive extra-cranial electrophysiology can be used to provide the high-precision information needed to monitor and understand the temporal evolution of changes in neuronal functionality in humans suffering TBI. Such detailed understanding of the specific changes in an individual patient’s cortex can allow for treatment to be tailored to the neuronal changes in that particular patient’s brain in TBI, a precision that is currently unavailable with any technique.
Collapse
Affiliation(s)
- Simone F Carron
- Neuroscience Research Program, Biomedicine Discovery Institute, Department of Physiology, Monash University Monash, VIC, Australia
| | - Dasuni S Alwis
- Neuroscience Research Program, Biomedicine Discovery Institute, Department of Physiology, Monash University Monash, VIC, Australia
| | - Ramesh Rajan
- Neuroscience Research Program, Biomedicine Discovery Institute, Department of Physiology, Monash UniversityMonash, VIC, Australia; Ear Sciences Institute of AustraliaPerth, WA, Australia
| |
Collapse
|
7
|
Reduced expression of IA channels is associated with post-ischemic seizures. Epilepsy Res 2016; 124:40-8. [PMID: 27259067 DOI: 10.1016/j.eplepsyres.2016.05.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Revised: 12/09/2015] [Accepted: 05/17/2016] [Indexed: 01/04/2023]
Abstract
PURPOSE Post-stroke seizures are considered as a major cause of epilepsy in adults. The pathophysiologic mechanisms resulting in post-stroke seizures are not fully understood. The present study attempted to reveal a new mechanism underlying neuronal hyperexcitability responsible to the seizure development after ischemic stroke. METHODS Transient global ischemia was produced in adult Wistar rats using the 4-vessel occlusion (4-VO) method. The spontaneous behavioral seizures were defined by the Racine scale III-V. The neuronal death in the brain was determined by hematoxylin-eosin staining. The expression levels of A-type potassium channels were analyzed by immunohistochemical staining and western blotting. RESULTS We found that the incidence of spontaneous behavioral seizures increased according to the severity of ischemia with 0% after 15-min ischemia and ∼50% after 25-min ischemia. All behavioral seizures occurred with 48h after ischemia. Morphological analysis indicated that brain damage was not correlated with behavioral seizures. Immunohistochemical staining showed that the expression levels of the A-type potassium channel subunit Kv4.2 was significantly reduced in ischemic brains with behavioral seizures, but not in ischemic brains without seizures. In addition, rats failing to develop spontaneous behavioral seizures within 2days after ischemia were more sensitive to bicuculline-induced seizures at 2 months after ischemia than control rats. Meanwhile, Kv4.2 expression was decreased in brain at 2 months after ischemia. CONCLUSION Our results demonstrated the reduction of Kv4.2 expression might contribute to the development of post-ischemic seizures and long-term increased seizure susceptibility after ischemia. The mechanisms underlying post-stroke seizures and epilepsy is unknown so far. The down-regulation of IA channels may explained the abnormal neuronal hyperexcitability responsible for the seizure development after ischemic stroke.
Collapse
|
8
|
Schmidt-Kastner R. Genomic approach to selective vulnerability of the hippocampus in brain ischemia–hypoxia. Neuroscience 2015; 309:259-79. [DOI: 10.1016/j.neuroscience.2015.08.034] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2015] [Revised: 08/12/2015] [Accepted: 08/17/2015] [Indexed: 01/06/2023]
|
9
|
Kang SK, Johnston MV, Kadam SD. Acute TrkB inhibition rescues phenobarbital-resistant seizures in a mouse model of neonatal ischemia. Eur J Neurosci 2015; 42:2792-804. [PMID: 26452067 PMCID: PMC4715496 DOI: 10.1111/ejn.13094] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Revised: 09/17/2015] [Accepted: 09/29/2015] [Indexed: 02/04/2023]
Abstract
Neonatal seizures are commonly associated with hypoxic-ischemic encephalopathy. Phenobarbital (PB) resistance is common and poses a serious challenge in clinical management. Using a newly characterized neonatal mouse model of ischemic seizures, this study investigated a novel strategy for rescuing PB resistance. A small-molecule TrkB antagonist, ANA12, used to selectively and transiently block post-ischemic BDNF-TrkB signaling in vivo, determined whether rescuing TrkB-mediated post-ischemic degradation of the K(+)-Cl(-) co-transporter (KCC2) rescued PB-resistant seizures. The anti-seizure efficacy of ANA12 + PB was quantified by (i) electrographic seizure burden using acute continuous video-electroencephalograms and (ii) post-treatment expression levels of KCC2 and NKCC1 using Western blot analysis in postnatal day (P)7 and P10 CD1 pups with unilateral carotid ligation. ANA12 significantly rescued PB-resistant seizures at P7 and improved PB efficacy at P10. A single dose of ANA12 + PB prevented the post-ischemic degradation of KCC2 for up to 24 h. As anticipated, ANA12 by itself had no anti-seizure properties and was unable to prevent KCC2 degradation at 24 h without follow-on PB. This indicates that unsubdued seizures can independently lead to KCC2 degradation via non-TrkB-dependent pathways. This study, for the first time as a proof-of-concept, reports the potential therapeutic value of KCC2 modulation for the management of PB-resistant seizures in neonates. Future investigations are required to establish the mechanistic link between ANA12 and the prevention of KCC2 degradation.
Collapse
Affiliation(s)
- S K Kang
- Neuroscience Laboratory, Hugo Moser Research Institute at Kennedy Krieger, 716 North Broadway, Baltimore, MD, 21205, USA
| | - M V Johnston
- Neuroscience Laboratory, Hugo Moser Research Institute at Kennedy Krieger, 716 North Broadway, Baltimore, MD, 21205, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - S D Kadam
- Neuroscience Laboratory, Hugo Moser Research Institute at Kennedy Krieger, 716 North Broadway, Baltimore, MD, 21205, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| |
Collapse
|
10
|
Silva CG, Métin C, Fazeli W, Machado NJ, Darmopil S, Launay PS, Ghestem A, Nesa MP, Bassot E, Szabó E, Baqi Y, Müller CE, Tomé AR, Ivanov A, Isbrandt D, Zilberter Y, Cunha RA, Esclapez M, Bernard C. Adenosine receptor antagonists including caffeine alter fetal brain development in mice. Sci Transl Med 2014; 5:197ra104. [PMID: 23926202 DOI: 10.1126/scitranslmed.3006258] [Citation(s) in RCA: 130] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Consumption of certain substances during pregnancy can interfere with brain development, leading to deleterious long-term neurological and cognitive impairments in offspring. To test whether modulators of adenosine receptors affect neural development, we exposed mouse dams to a subtype-selective adenosine type 2A receptor (A2AR) antagonist or to caffeine, a naturally occurring adenosine receptor antagonist, during pregnancy and lactation. We observed delayed migration and insertion of γ-aminobutyric acid (GABA) neurons into the hippocampal circuitry during the first postnatal week in offspring of dams treated with the A2AR antagonist or caffeine. This was associated with increased neuronal network excitability and increased susceptibility to seizures in response to a seizure-inducing agent. Adult offspring of mouse dams exposed to A2AR antagonists during pregnancy and lactation displayed loss of hippocampal GABA neurons and some cognitive deficits. These results demonstrate that exposure to A2AR antagonists including caffeine during pregnancy and lactation in rodents may have adverse effects on the neural development of their offspring.
Collapse
Affiliation(s)
- Carla G Silva
- Aix Marseille Université, INS, 13005 Marseille, France.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Neddens J, Buonanno A. Expression of the neuregulin receptor ErbB4 in the brain of the rhesus monkey (Macaca mulatta). PLoS One 2011; 6:e27337. [PMID: 22087295 PMCID: PMC3210802 DOI: 10.1371/journal.pone.0027337] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2011] [Accepted: 10/14/2011] [Indexed: 02/03/2023] Open
Abstract
We demonstrated recently that frontal cortical expression of the Neuregulin (NRG) receptor ErbB4 is restricted to interneurons in rodents, macaques, and humans. However, little is known about protein expression patterns in other areas of the brain. In situ hybridization studies have shown high ErbB4 mRNA levels in various subcortical areas, suggesting that ErbB4 is also expressed in cell types other than cortical interneurons. Here, using highly-specific monoclonal antibodies, we provide the first extensive report of ErbB4 protein expression throughout the cerebrum of primates. We show that ErbB4 immunoreactivity is high in association cortices, intermediate in sensory cortices, and relatively low in motor cortices. The overall immunoreactivity in the hippocampal formation is intermediate, but is high in a subset of interneurons. We detected the highest overall immunoreactivity in distinct locations of the ventral hypothalamus, medial habenula, intercalated nuclei of the amygdala and structures of the ventral forebrain, such as the islands of Calleja, olfactory tubercle and ventral pallidum, and medium expression in the reticular thalamic nucleus. While this pattern is generally consistent with ErbB4 mRNA expression data, further investigations are needed to identify the exact cellular and subcellular sources of mRNA and protein expression in these areas. In contrast to in situ hybridization in rodents, we detected only low levels of ErbB4-immunoreactivity in mesencephalic dopaminergic nuclei but a diffuse pattern of immunofluorescence that was medium in the dorsal striatum and high in the ventral forebrain, suggesting that most ErbB4 protein in dopaminergic neurons could be transported to axons. We conclude that the NRG-ErbB4 signaling pathway can potentially influence many functional systems throughout the brain of primates, and suggest that major sites of action are areas of the “corticolimbic” network. This interpretation is functionally consistent with the genetic association of NRG1 and ERBB4 with schizophrenia.
Collapse
Affiliation(s)
- Jörg Neddens
- Section on Molecular Neurobiology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, United States of America.
| | | |
Collapse
|
12
|
Zhao H, Cai Y, Yang Z, He D, Shen B. Acidosis leads to neurological disorders through overexciting cortical pyramidal neurons. Biochem Biophys Res Commun 2011; 415:224-8. [DOI: 10.1016/j.bbrc.2011.08.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2011] [Accepted: 08/04/2011] [Indexed: 01/30/2023]
|
13
|
Abstract
One million mossy fibers in the rat provide individually sparse but functionally important synaptic connections between the dentate gyrus and hippocampus. Although the majority of mossy fiber targets are GABAergic cells, the functional organization of the feedforward GABAergic machinery modulating the interactions of granule cells and CA3 pyramidal cells are not yet understood. We used mossy fiber bouton to GABA neuron paired recordings in the CA3 to demonstrate that mossy fibers provide cell type-specific innervation to distinct GABAergic neurons with specialized intra- and extrahippocampal outputs. Our results show that mossy fibers contact the perisomatically projecting fast-spiking and regular-spiking basket cells, in addition to the dendritically projecting ivy cells, and the septum-projecting spiny stratum lucidum cells. Monosynaptic mossy fiber inputs to fast-spiking basket cells and spiny stratum lucidum cells were found to be numerous, but they were small in amplitude and displayed low transmission probabilities. In contrast, regular-spiking basket cells and ivy cells were less likely to be innervated by mossy fibers, but the amplitudes of mossy fiber EPSCs were large and the transmission probabilities were high. The dependence of the numbers and strengths of the mossy fiber inputs to CA3 GABAergic cells on the postsynaptic cell type was correlated with the frequency of the background synaptic events, so that cells with weak but numerous mossy fiber inputs received high rates of spontaneous synaptic events. Together, these results reveal the diverse components and high degree of functional specificity of the GABAergic cellular machinery underlying the dentate gyrus-CA3 interface.
Collapse
|
14
|
Takács VT, Freund TF, Gulyás AI. Types and synaptic connections of hippocampal inhibitory neurons reciprocally connected with the medial septum. Eur J Neurosci 2008; 28:148-64. [PMID: 18662340 DOI: 10.1111/j.1460-9568.2008.06319.x] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The morphological properties and connectivity of gamma-aminobutyric acid (GABA)ergic hippocampal cells projecting to the medial septum (HS cells) were examined in the rat. Two types of HS cells are located in different layers of the hippocampus: sparsely-spiny cells are in CA1-3 str. oriens and CA3 str. radiatum, where recurrent axons of pyramidal cells arborize. Densely-spiny HS cells with spiny somata are located in the termination zone of granule cell axons. In the hilus, intermediate morphologies can also be found. HS cells receive GABAergic medial septal afferents in all layers where they occur, thus the connectivity of the septum and the hippocampus is reciprocal at cell level. HS cells receive extremely dense innervation, sparsely-spiny cells are innervated by approximately 19,000 excitatory inputs, while densely-spiny cells get an even larger number (approximately 37,000). While 14% of the inputs are inhibitory for the sparsely-spiny cells, it is only 2.3% in the case of densely-spiny cells. Because a high proportion (up to 54.5% on somata and 27.5% on dendrites) of their GABAergic inputs derived from labelled septal terminals, their predominant inhibitory input probably arises from the medial septum. CA1 area HS cells possessed myelinated projecting axons, as well as local collaterals, which targeted mostly pyramidal cell dendrites and spines in str. oriens and radiatum. The synaptic organization suggests that by sampling the activity of large populations of principal cells HS cells can reliably broadcast hippocampal activity level to the medial septum.
Collapse
Affiliation(s)
- Virág T Takács
- Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, PO Box 67, H-1450 Hungary
| | | | | |
Collapse
|
15
|
Roberge MC, Messier C, Staines WA, Plamondon H. Food restriction induces long-lasting recovery of spatial memory deficits following global ischemia in delayed matching and non-matching-to-sample radial arm maze tasks. Neuroscience 2008; 156:11-29. [PMID: 18672030 DOI: 10.1016/j.neuroscience.2008.05.062] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2007] [Revised: 05/30/2008] [Accepted: 05/30/2008] [Indexed: 12/29/2022]
Abstract
Food restriction has been shown to be beneficial for a number of brain processes. In the current study, we characterized the impact of food restriction on hippocampal damage 70 days following ischemia. We assessed memory and cognitive flexibility of ad libitum fed (AL) and food-restricted (FR) animals using complex delayed non-matching- and matching-to-sample tasks in the radial arm maze. Our findings demonstrate that food restriction led to significant improvement of ischemia-induced memory impairments. FR ischemic animals rapidly reached comparable performance as both AL and FR sham animals in delayed-non-matching (win-shift) and matching (win-stay) radial arm maze tasks. They also made considerably fewer microchoices in the retention trials than AL ischemic animals. In contrast, AL ischemic rats showed persistent spatial memory impairments in the same paradigms. Assessment of basal and stress-induced corticosterone (CORT) secretion revealed no significant differences in baseline levels in AL and FR rats prior to or following global ischemia. However, FR animals showed a more pronounced attenuation of CORT secretion 45 min following restraint. Both FR and AL ischemic rats had comparable cell loss within CA1 and CA3 subfields of Ammon's horn (CA1 and CA3) at 70 days following reperfusion, although a trend toward increased CA3 cell survival was observed in FR ischemic rats. The functional sparing in the FR ischemic animals in the face of equivalent hippocampal cell loss suggests that food restriction somehow enhanced the efficacy of remaining hippocampal or extrahippocampal neurons following ischemia. In the current study, this phenomenon was not associated with diet- and or ischemia-related alterations of vesicular glutamate transporter 1 expression in various hippocampal regions although lower vesicular GABA transporter immunostaining was present in the CA1 stratum oriens and the CA3 stratum radiatum in FR sham and ischemic rats.
Collapse
Affiliation(s)
- M-C Roberge
- University of Ottawa, School of Psychology, 11, Marie Curie, Vanier Building Room 204, Ottawa, ON, Canada K1N 9A4
| | | | | | | |
Collapse
|
16
|
Relationship between neuronal vulnerability and potassium-chloride cotransporter 2 immunoreactivity in hippocampus following transient forebrain ischemia. Neuroscience 2008; 154:677-89. [DOI: 10.1016/j.neuroscience.2008.03.072] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2007] [Revised: 03/25/2008] [Accepted: 03/25/2008] [Indexed: 01/05/2023]
|
17
|
Zhao Y, Xiao J, Ueda M, Wang Y, Hines M, Nowak TS, LeDoux MS. Glial elements contribute to stress-induced torsinA expression in the CNS and peripheral nervous system. Neuroscience 2008; 155:439-53. [PMID: 18538941 DOI: 10.1016/j.neuroscience.2008.04.053] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2008] [Revised: 04/22/2008] [Accepted: 04/25/2008] [Indexed: 12/31/2022]
Abstract
DYT1 dystonia is caused by a single GAG deletion in exon 5 of TOR1A, the gene encoding torsinA, a putative chaperone protein. In this study, central and peripheral nervous system perturbations (transient forebrain ischemia and sciatic nerve transection, respectively) were used to examine the systems biology of torsinA in rats. After forebrain ischemia, quantitative real-time reverse transcriptase-polymerase chain reaction identified increased torsinA transcript levels in hippocampus, cerebral cortex, thalamus, striatum, and cerebellum at 24 h and 7 days. Expression declined toward sham values by 14 days in striatum, thalamus and cortex, and by 21 days in cerebellum and hippocampus. TorsinA transcripts were localized to dentate granule cells and pyramidal neurons in control hippocampus and were moderately elevated in these cell populations at 24 h after ischemia, after which CA1 expression was reduced, consistent with the loss of this vulnerable neuronal population. Increased in situ hybridization signal in CA1 stratum radiatum, stratum lacunosum-moleculare, and stratum oriens at 7 days after ischemia was correlated with the detection of torsinA immunoreactivity in interneurons and reactive astrocytes at 7 and 14 days. Sciatic nerve transection increased torsinA transcript levels between 24 h and 7 days in both ipsilateral and contralateral dorsal root ganglia (DRG). However, increased torsinA immunoreactivity was localized to both ganglion cells and satellite cells in ipsilateral DRG but was restricted to satellite cells contralaterally. These results suggest that torsinA participates in the response of neural tissue to central and peripheral insults and its sustained up-regulation indicates that torsinA may contribute to remodeling of neuronal circuitry. The striking induction of torsinA in astrocytes and satellite cells points to the potential involvement of glial elements in the pathobiology of DYT1 dystonia.
Collapse
Affiliation(s)
- Y Zhao
- University of Tennessee Health Science Center, Departments of Neurology and Anatomy and Neurobiology, 855 Monroe Avenue, Suite 415, Memphis, TN 38163, USA
| | | | | | | | | | | | | |
Collapse
|
18
|
Williams PA, Dudek FE. A chronic histopathological and electrophysiological analysis of a rodent hypoxic-ischemic brain injury model and its use as a model of epilepsy. Neuroscience 2007; 149:943-61. [PMID: 17935893 PMCID: PMC2897748 DOI: 10.1016/j.neuroscience.2007.07.067] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2007] [Revised: 07/24/2007] [Accepted: 08/15/2007] [Indexed: 11/24/2022]
Abstract
Ischemic brain injury is one of the leading causes of epilepsy in the elderly, and there are currently no adult rodent models of global ischemia, unilateral hemispheric ischemia, or focal ischemia that report the occurrence of spontaneous motor seizures following ischemic brain injury. The rodent hypoxic-ischemic (H-I) model of brain injury in adult rats is a model of unilateral hemispheric ischemic injury. Recent studies have shown that an H-I injury in perinatal rats causes hippocampal mossy fiber sprouting and epilepsy. These experiments aimed to test the hypothesis that a unilateral H-I injury leading to severe neuronal loss in young-adult rats also causes mossy fiber sprouting and spontaneous motor seizures many months after the injury, and that the mossy fiber sprouting induced by the H-I injury forms new functional recurrent excitatory synapses. The right common carotid artery of 30-day old rats was permanently ligated, and the rats were placed into a chamber with 8% oxygen for 30 min. A quantitative stereologic analysis revealed that the ipsilateral hippocampus had significant hilar and CA1 pyramidal neuronal loss compared with the contralateral and sham-control hippocampi. The septal region from the ipsilateral and contralateral hippocampus had small but significantly increased amounts of Timm staining in the inner molecular layer compared with the sham-control hippocampi. Three of 20 lesioned animals (15%) were observed to have at least one spontaneous motor seizure 6-12 months after treatment. Approximately 50% of the ipsilateral and contralateral hippocampal slices displayed abnormal electrophysiological responses in the dentate gyrus, manifest as all-or-none bursts to hilar stimulation. This study suggests that H-I injury is associated with synaptic reorganization in the lesioned region of the hippocampus, and that new recurrent excitatory circuits can predispose the hippocampus to abnormal electrophysiological activity and spontaneous motor seizures.
Collapse
|
19
|
Epsztein J, Ben-Ari Y, Represa A, Crépel V. Late-onset epileptogenesis and seizure genesis: lessons from models of cerebral ischemia. Neuroscientist 2007; 14:78-90. [PMID: 17914086 DOI: 10.1177/1073858407301681] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Patients surviving ischemic stroke often express delayed epileptic syndromes. Late poststroke seizures occur after a latency period lasting from several months to years after the insult. These seizures might result from ischemia-induced neuronal death and associated morphological and physiological changes that are only partly elucidated. This review summarizes the long-term morphofunctional alterations observed in animal models of both focal and global ischemia that could explain late-onset seizures and epileptogenesis. In particular, this review emphasizes the change in GABAergic and glutamatergic signaling leading to hyperexcitability and seizure genesis.
Collapse
Affiliation(s)
- Jérôme Epsztein
- Institut de Neurobiologie de la Méditerranée, Institut National de la Santé et de la Recherche Médicale Unité 29, and Université de La Méditerranée, Marseille Cedex, France
| | | | | | | |
Collapse
|
20
|
Acsády L, Káli S. Models, structure, function: the transformation of cortical signals in the dentate gyrus. PROGRESS IN BRAIN RESEARCH 2007; 163:577-99. [PMID: 17765739 DOI: 10.1016/s0079-6123(07)63031-3] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
Our central question is why the hippocampal CA3 region is the only cortical area capable of forming interference-free representations of complex environmental events (episodes), given that apparently all cortical regions have recurrent excitatory circuits with modifiable synapses, the basic substrate for autoassociative memory networks. We review evidence for the radical (but classic) view that a unique transformation of incoming cortical signals by the dentate gyrus and the subsequent faithful transfer of the resulting code by the mossy fibers are absolutely critical for the appropriate association of memory items by CA3 and, in general, for hippocampal function. In particular, at the gate of the hippocampal formation, the dentate gyrus possesses a set of unusual properties, which selectively evolved for the task of code transformation between cortical afferents and the hippocampus. These evolutionarily conserved anatomical features enable the dentate gyrus to translate the noisy signal of the upstream cortical areas into the sparse and specific code of hippocampal formation, which is indispensable for the efficient storage and recall of multiple, multidimensional memory items. To achieve this goal the mossy fiber pathway maximally utilizes the opportunity to differentially regulate its postsynaptic partners. Selective innervation of CA3 pyramidal cells and interneurons by distinct terminal types creates a favorable condition to differentially regulate the short-term and long-term plasticity and the motility of various mossy terminal types. The utility of this highly dynamic system appears to be the frequency-dependent fine-tuning the excitation and inhibition evoked by the large and the small mossy terminals respectively. This will determine exactly which CA3 cell population is active and induces permanent modification in the autoassociational network of the CA3 region.
Collapse
Affiliation(s)
- László Acsády
- Institute of Experimental Medicine, Hungarian Academy of Sciences, PO Box 67, 1450 Budapest, Hungary.
| | | |
Collapse
|
21
|
Wittner L, Henze DA, Záborszky L, Buzsáki G. Hippocampal CA3 pyramidal cells selectively innervate aspiny interneurons. Eur J Neurosci 2006; 24:1286-98. [PMID: 16987216 DOI: 10.1111/j.1460-9568.2006.04992.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The specific connectivity among principal cells and interneurons determines the flow of activity in neuronal networks. To elucidate the connections between hippocampal principal cells and various classes of interneurons, CA3 pyramidal cells were intracellularly labelled with biocytin in anaesthetized rats and the three-dimensional distribution of their axon collaterals was reconstructed. The sections were double-stained for substance P receptor (SPR)- or metabotropic glutamate receptor 1alpha (mGluR-1alpha)-immunoreactivity to investigate interneuron targets of the CA3 pyramidal cells. SPR-containing interneurons represent a large portion of the GABAergic population, including spiny and aspiny classes. Axon terminals of CA3 pyramidal cells contacted SPR-positive interneuron dendrites in the hilus and in all hippocampal strata in both CA3 and CA1 regions (7.16% of all boutons). The majority of axons formed single contacts (87.5%), but multiple contacts (up to six) on single target neurons were also found. CA3 pyramidal cell axon collaterals innervated several types of morphologically different aspiny SPR-positive interneurons. In contrast, spiny SPR-interneurons or mGluR-1alpha-positive interneurons in the hilus, CA3 and CA1 regions were rarely contacted by the filled pyramidal cells. These findings indicate a strong target selection of CA3 pyramidal cells favouring the activation of aspiny classes of interneurons.
Collapse
Affiliation(s)
- Lucia Wittner
- Center for Molecular and Behavioural Neuroscience, Rutgers, The State University of New Jersey, 197 University Ave., Newark, 07102, USA
| | | | | | | |
Collapse
|
22
|
DeLorenzo RJ, Sun DA, Deshpande LS. Erratum to "Cellular mechanisms underlying acquired epilepsy: the calcium hypothesis of the induction and maintenance of epilepsy." [Pharmacol. Ther. 105(3) (2005) 229-266]. Pharmacol Ther 2006; 111:288-325. [PMID: 16832874 DOI: 10.1016/j.pharmthera.2004.10.015] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Epilepsy is one of the most common neurological disorders. Although epilepsy can be idiopathic, it is estimated that up to 50% of all epilepsy cases are initiated by neurological insults and are called acquired epilepsy (AE). AE develops in 3 phases: (1) the injury [central nervous system (CNS) insult]. (2) epileptogenesis (latency), and (3) the chronic epileptic (spontaneous recurrent seizure) phases. Status epilepticus (SE), stroke, and traumatic brain injury (TBI) are 3 major examples of common brain injuries that can lead to the development of AE. It is especially important to understand the molecular mechanisms that cause AE because it may lead to innovative strategies to prevent or cure this common condition. Recent studies have offered new insights into the cause of AE and indicate that injury-induced alterations in intracellular calcium concentration levels ([Ca(2+)](i)) and calcium homeostatic mechanisms play a role in the development and maintenance of AE. The injuries that cause AE are different, but the share a common molecular mechanism for producing brain damage--an increase in extracellular glutamate and are exposed to increased [Ca(2+)](i) are the cellular substrates to develop epilepsy because dead cells do not seize. The neurons that survive injury sustain permanent long-term plasticity changes in [Ca(2+)](i) and calcium homeostatic mechanisms that are permanent and are a prominent feature of the epileptic phenotype. In the last several years, evidence has accumulated indicating that the prolonged alteration in neuronal calcium dynamics plays an important role in the induction and maintenance of the prolonged neuroplasticity changes underlying the epileptic phenotype. Understanding the role of calcium as a second messenger in the induction and maintenance of epilepsy may provide novel insights into therapeutic advances that will prevent and even cure AE.
Collapse
Affiliation(s)
- Robert J DeLorenzo
- Department of Neurology, Virginia Commonwealth University, School of Medicine, Richmond, 23298-0599, USA.
| | | | | |
Collapse
|
23
|
Jinno S, Kosaka T. Cellular architecture of the mouse hippocampus: A quantitative aspect of chemically defined GABAergic neurons with stereology. Neurosci Res 2006; 56:229-45. [DOI: 10.1016/j.neures.2006.07.007] [Citation(s) in RCA: 94] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2006] [Revised: 06/27/2006] [Accepted: 07/19/2006] [Indexed: 12/29/2022]
|
24
|
Epsztein J, Milh M, Id Bihi R, Jorquera I, Ben-Ari Y, Represa A, Crépel V. Ongoing epileptiform activity in the post-ischemic hippocampus is associated with a permanent shift of the excitatory-inhibitory synaptic balance in CA3 pyramidal neurons. J Neurosci 2006; 26:7082-92. [PMID: 16807337 PMCID: PMC6673908 DOI: 10.1523/jneurosci.1666-06.2006] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Ischemic strokes are often associated with late-onset epilepsy, but the underlying mechanisms are poorly understood. In the hippocampus, which is one of the regions most sensitive to ischemic challenge, global ischemia induces a complete loss of CA1 pyramidal neurons, whereas the resistant CA3 pyramidal neurons display a long-term hyperexcitability several months after the insult. The mechanisms of this long-term hyperexcitability remain unknown despite its clinical implication. Using chronic in vivo EEG recordings and in vitro field recordings in slices, we now report spontaneous interictal epileptiform discharges in the CA3 area of the hippocampus from post-ischemic rats several months after the insult. Whole-cell recordings from CA3 pyramidal neurons, revealed a permanent reduction in the frequency of spontaneous and miniature GABAergic IPSCs and a parallel increase in the frequency of spontaneous and miniature glutamatergic postsynaptic currents. Global ischemia also induced a dramatic loss of GABAergic interneurons and terminals together with an increase in glutamatergic terminals in the CA3 area of the hippocampus. Altogether, our results show a morpho-functional reorganization in the CA3 network several months after global ischemia, resulting in a net shift in the excitatory-inhibitory balance toward excitation that may constitute a substrate for the generation of epileptiform discharges in the post-ischemic hippocampus.
Collapse
|
25
|
Frahm C, Siegel G, Grass S, Witte OW. Stable expression of the vesicular GABA transporter following photothrombotic infarct in rat brain. Neuroscience 2006; 140:865-77. [PMID: 16616431 DOI: 10.1016/j.neuroscience.2006.02.045] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2005] [Revised: 02/22/2006] [Accepted: 02/22/2006] [Indexed: 11/20/2022]
Abstract
Before exocytotic release of the inhibitory neurotransmitter GABA, this amino acid has to be stored in synaptic vesicles. Accumulation of GABA in vesicles is achieved by a specific membrane-integrated transporter termed vesicular GABA transporter. This vesicular protein is mainly located at presynaptic terminals of GABAergic interneurons. In the present study we investigated the effects of focal ischemia on the expression of the vesicular GABA transporter. Vesicular GABA transporter mRNA and protein expression was examined after photothrombosis in different cortical and hippocampal brain regions of Wistar rats. In situ hybridization and quantitative real-time RT-PCR were performed to analyze vesicular GABA transporter mRNA. Both vesicular GABA transporter mRNA-stained perikarya and mRNA expression levels remained unaffected. Vesicular GABA transporter protein-containing synaptic terminals and somata were visualized by immunohistochemistry. The pattern of vesicular GABA transporter immunoreactivity as well as the protein expression level revealed by semiquantitative image analysis and by Western blot remained stable after stroke. The steady expression of vesicular GABA transporter mRNA and protein after photothrombosis indicates that the exocytotic release mechanism of GABA is not affected by ischemia.
Collapse
Affiliation(s)
- C Frahm
- Department of Neurology, Friedrich-Schiller-University, Erlanger Allee 101, 07747 Jena, Germany.
| | | | | | | |
Collapse
|
26
|
Zhan RZ, Nadler JV, Schwartz-Bloom RD. Depressed responses to applied and synaptically-released GABA in CA1 pyramidal cells, but not in CA1 interneurons, after transient forebrain ischemia. J Cereb Blood Flow Metab 2006; 26:112-24. [PMID: 15959457 DOI: 10.1038/sj.jcbfm.9600171] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Transient cerebral ischemia kills CA1 pyramidal cells of the hippocampus, whereas most CA1 interneurons survive. It has been proposed that calcium-binding proteins, neurotrophins, and/or inhibitory neuropeptides protect interneurons from ischemia. However, different synaptic responses early after reperfusion could also underlie the relative vulnerabilities to ischemia of pyramidal cells and interneurons. In this study, we used gramicidin perforated patch recording in ex vivo slices to investigate gamma-aminobutyric acid (GABA) synaptic function in CA1 pyramidal cells and interneurons 4 h after a bilateral carotid occlusion accompanied by hypovolemic hypotension. At this survival time, the amplitudes of both miniature inhibitory postsynaptic currents (mIPSCs) and GABA-evoked currents were reduced in CA1 pyramidal cells, but not in CA1 interneurons. In addition, the mean rise time of mIPSCs was reduced in pyramidal cells. The reversal potential for the GABA current (E(GABA)) did not shift toward depolarizing values in either cell type, indicating that the driving force for chloride was unchanged at this survival time. We conclude that early during reperfusion GABAergic neurotransmission is attenuated exclusively in pyramidal neurons. This is likely explained by reduced GABAA receptor sensitivity or clustering and possibly also reduced GABA release, rather than by an elevation of intracellular chloride. Impaired GABA function may contribute to ischemic neuronal death by enhancing the excitability of CA1 pyramidal cells and facilitating N-methyl-D-aspartic acid channel opening. Therefore, normalizing GABAergic function might be a useful pharmacological approach to counter excessive, and potentially excitotoxic, glutamatergic activity during the postischemic period.
Collapse
Affiliation(s)
- Ren-Zhi Zhan
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, North Carolina 27710, USA
| | | | | |
Collapse
|
27
|
Hwang IK, Kim DW, Jung JY, Yoo KY, Cho JH, Kwon OS, Kang TC, Choi SY, Kim YS, Won MH. Age-dependent changes of pyridoxal phosphate synthesizing enzymes immunoreactivities and activities in the gerbil hippocampal CA1 region. Mech Ageing Dev 2005; 126:1322-30. [PMID: 16207494 DOI: 10.1016/j.mad.2005.08.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/10/2005] [Indexed: 10/25/2022]
Abstract
In the present study, age-related changes of pyridoxal 5'-phosphate (PLP) synthesizing enzymes, pyridoxal kinase (PLK) and pyridoxine 5'-phosphate oxidase (PNPO), their protein contents and activities were examined in the gerbil hippocampus proper. Significant age-dependent changes in PLK and PNPO immunoreactivities were found in the CA1 region, but not in the CA2/3 region. In the postnatal month 1 (PM 1) group, PLK and PNPO immunoreactivities were detected mainly in the stratum pyramidale of the CA1 region. PLK and PNPO immunoreactivities and their protein contents were highest in the PM 6 group, showing that many CA1 pyramidal cells had strong PLK and PNPO immunoreactivities. Thereafter, PLK and PNPO immunoreactivities started to decrease and were very low at PM 24. Alterations in the change patterns in protein contents and total activities of PLK and PNPO corresponded to the immunohistochemical data, but their specific activities were not altered in any experimental group. Based on double immunofluorescence study, PLK and PNPO immunoreactive cells in the strata oriens and radiatum were identified as GABAergic cells. Therefore, decreases of PLK and PNPO in the hippocampal CA1 region of aged brains may be involved in aging processes related with gamma-aminobutyric acid (GABA) function.
Collapse
Affiliation(s)
- In Koo Hwang
- Department of Anatomy, College of Medicine, Hallym University, Chunchon 200-702, South Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Palczewska M, Batta G, Groves P, Linse S, Kuznicki J. Characterization of calretinin I-II as an EF-hand, Ca2+, H+-sensing domain. Protein Sci 2005; 14:1879-87. [PMID: 15937279 PMCID: PMC2253342 DOI: 10.1110/ps.051369805] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Calretinin, a neuronal protein with well-defined calcium-binding properties, has a poorly defined function. The pH dependent properties of calretinin (CR), the N-terminal (CR I-II), and C-terminal (CR III-VI) domains were investigated. A drop in pH within the intracellular range (from pH 7.5 to pH 6.5) leads to an increased hydrophobicity of calcium-bound CR and its domains as reported by fluorescence spectroscopy with the hydrophobic probe 2-(p-toluidino)-6-naphthalenesulfonic acid (TNS). The TNS data for the N- and C-terminal domains of CR are additive, providing further support for their independence within the full-length protein. Our work concentrated on CR I-II, which was found to have hydrophobic properties similar to calmodulin at lower pH. The elution of CR I-II from a phenyl-Sepharose column was consistent with the TNS data. The pH-dependent structural changes were further localized to residues 13-28 and 44-51 using nuclear magnetic resonance spectroscopy chemical shift analysis, and there appear to be no large changes in secondary structure. Protonation of His 12 and/or His 27 side chains, coupled with calcium chelation, appears to lead to the organization of a hydrophobic pocket in the N-terminal domain. CR may sense and respond to calcium, proton, and other signals, contributing to conflicting data on the proteins role as a calcium sensor or calcium buffer.
Collapse
Affiliation(s)
- Malgorzata Palczewska
- Department of Molecular and Cellular Neurobiology, Nencki Institute of Experimental Biology, Warsaw, Poland
| | | | | | | | | |
Collapse
|
29
|
Wu CP, Cheung G, Rakhshani N, Parvardeh S, Asl MN, Huang HL, Zhang L. Ca3 neuronal activities of dorsal and ventral hippocampus are differentially altered in rats after prolonged post-ischemic survival. Neuroscience 2005; 130:527-39. [PMID: 15664709 DOI: 10.1016/j.neuroscience.2004.09.041] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/23/2004] [Indexed: 10/26/2022]
Abstract
The aim of the present study is to explore the potential hyper-excitability of hippocampal CA3 neurons in rats after prolonged post-ischemic survival. We conducted 15-min four-vessel-occlusion ischemic episodes in rats, allowed these animals to survive for approximately 8 months and then examined the basic morphological features and population synaptic activities of CA3 neurons. In fixed tissue sections obtained from dorsal hippocampi of post-ischemic rats, we observed a complete loss of the CA1 neurons together with a shrunken CA1 sector. Extracellular recordings in slices revealed that the overall synaptic activities of dorsal hippocampal CA3 neurons were decreased in post-ischemic rats compared with sham-operated controls. Both sham control and post-ischemic ventral hippocampal neurons were capable of exhibiting intermittent spontaneous field potentials in slices. These spontaneous field potentials spread from the CA3 to the CA1 area and their generation relied on the activity of glutamate alpha-amino-3-hydroxy-5-methyl-4 isoxazole proprionic acid (AMPA) receptors. The propensity for displaying these spontaneous field potentials appeared to be greater in post-ischemic slices than sham control slices. Our data suggest that the hyper-excitability of the post-ischemic hippocampus, if it occurs, may preferentially take place in the ventral CA3 circuitry.
Collapse
Affiliation(s)
- C P Wu
- Toronto Western Research Institute, University Health Network, Room 13-411, Toronto Western Hospital, 399 Bathurst Street, Toronto, Ontario, Canada M5T 2S8
| | | | | | | | | | | | | |
Collapse
|
30
|
Delorenzo RJ, Sun DA, Deshpande LS. Cellular mechanisms underlying acquired epilepsy: the calcium hypothesis of the induction and maintainance of epilepsy. Pharmacol Ther 2005; 105:229-66. [PMID: 15737406 PMCID: PMC2819430 DOI: 10.1016/j.pharmthera.2004.10.004] [Citation(s) in RCA: 203] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2004] [Accepted: 10/12/2004] [Indexed: 01/22/2023]
Abstract
Epilepsy is one of the most common neurological disorders. Although epilepsy can be idiopathic, it is estimated that up to 50% of all epilepsy cases are initiated by neurological insults and are called acquired epilepsy (AE). AE develops in 3 phases: (1) the injury (central nervous system [CNS] insult), (2) epileptogenesis (latency), and (3) the chronic epileptic (spontaneous recurrent seizure) phases. Status epilepticus (SE), stroke, and traumatic brain injury (TBI) are 3 major examples of common brain injuries that can lead to the development of AE. It is especially important to understand the molecular mechanisms that cause AE because it may lead to innovative strategies to prevent or cure this common condition. Recent studies have offered new insights into the cause of AE and indicate that injury-induced alterations in intracellular calcium concentration levels [Ca(2+)](i) and calcium homeostatic mechanisms play a role in the development and maintenance of AE. The injuries that cause AE are different, but they share a common molecular mechanism for producing brain damage-an increase in extracellular glutamate concentration that causes increased intracellular neuronal calcium, leading to neuronal injury and/or death. Neurons that survive the injury induced by glutamate and are exposed to increased [Ca(2+)](i) are the cellular substrates to develop epilepsy because dead cells do not seize. The neurons that survive injury sustain permanent long-term plasticity changes in [Ca(2+)](i) and calcium homeostatic mechanisms that are permanent and are a prominent feature of the epileptic phenotype. In the last several years, evidence has accumulated indicating that the prolonged alteration in neuronal calcium dynamics plays an important role in the induction and maintenance of the prolonged neuroplasticity changes underlying the epileptic phenotype. Understanding the role of calcium as a second messenger in the induction and maintenance of epilepsy may provide novel insights into therapeutic advances that will prevent and even cure AE.
Collapse
Affiliation(s)
- Robert J Delorenzo
- Department of Neurology, Virginia Commonwealth University, School of Medicine, Richmond, VA 23298-0599, USA.
| | | | | |
Collapse
|
31
|
Neigh GN, Glasper ER, Kofler J, Traystman RJ, Mervis RF, Bachstetter A, DeVries AC. Cardiac arrest with cardiopulmonary resuscitation reduces dendritic spine density in CA1 pyramidal cells and selectively alters acquisition of spatial memory. Eur J Neurosci 2004; 20:1865-72. [PMID: 15380008 DOI: 10.1111/j.1460-9568.2004.03649.x] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The hippocampus is highly sensitive to ischemia and is one of the most extensively damaged regions of brain during cardiac arrest. Damage to hippocampus can subsequently lead to learning and memory deficits. The current study used the Morris water maze to characterize spatial learning and memory deficits elicited by 8 min of cardiac arrest with cardiopulmonary resuscitation (CA/CPR) in mice, which is associated with a 25-50% decrease in CA1 neurons. Mice were trained to navigate the water maze prior to CA/CPR or sham surgery (SHAM). They were retested in the water maze on days 7 and 8 postsurgery; both CA/CPR and SHAM groups were able to perform the task at presurgical levels. However, when the hidden platform was moved to a new location, the SHAM mice were able to adapt more quickly to the change and swam a shorter distance in search of the platform than did CA/CPR mice. Thus, CA/CPR did not affect the ability of mice to retain a previously learned platform location, but it did affect their ability to learn a new platform location. This behavioural impairment was correlated with dendritic spine density in the CA1 region of the hippocampus. Data presented here suggest that morphological changes, such as spine density, that occur in neurons that survive CA/CPR may be associated with cognitive impairments.
Collapse
Affiliation(s)
- Gretchen N Neigh
- Department of Psychology, Townshend Hall, 1885 Neil Avenue Mall, The Ohio State University, Columbus, OH 43210, USA
| | | | | | | | | | | | | |
Collapse
|
32
|
Frahm C, Haupt C, Weinandy F, Siegel G, Bruehl C, Witte OW. Regulation of GABA transporter mRNA and protein after photothrombotic infarct in rat brain. J Comp Neurol 2004; 478:176-88. [PMID: 15349978 DOI: 10.1002/cne.20282] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Animal models of focal ischemic infarcts reveal an impaired GABAergic (gamma-aminobutyric acid) neurotransmission. GABA, the main inhibitory neurotransmitter, is primarily taken up by specific sodium-dependent transporters. As these transporters play a crucial role in maintaining levels of GABA concentration, they may be functionally involved in ischemic processes. We investigated whether the mRNA and protein expression of GAT-1, the dominant neuronal GABA transporter, is altered after cortical infarct induced by photothrombosis in Wistar rats. In situ hybridization was performed to analyze GAT-1 mRNA-positive cells in cortical brain regions and the hippocampus. The lesion dramatically raised the number of GABA transporter mRNA-expressing cells in all investigated cortical regions. Double-labeling studies with a general neuronal marker and a marker for astrocytes revealed that cells expressing GAT-1 mRNA after photothrombosis are neurons. The mRNA expression pattern of all hippocampal subfields remained unchanged. In contrast, cortical GAT-1 protein density was only slightly affected and surprisingly in the opposite way. In the primary and secondary somatosensory cortex, density values were significantly reduced. Immunoreactivity was not altered in all investigated hippocampal areas. We found a marked discordance between the increased number of cells expressing GAT-1 mRNA in the cortex and the reduced tissue GAT-1 protein content. Focal brain ischemia obviously triggers mechanisms that interfere with GAT-1 transcriptional regulation and protein synthesis or turnover.
Collapse
Affiliation(s)
- Christiane Frahm
- Department of Neurology, Friedrich-Schiller-University, 07745 Jena, Germany.
| | | | | | | | | | | |
Collapse
|
33
|
Hwang IK, Kim DW, Yoo KY, Kim DS, Kim KS, Kang JH, Choi SY, Kim YS, Kang TC, Won MH. Age-related changes of γ-aminobutyric acid transaminase immunoreactivity in the hippocampus and dentate gyrus of the Mongolian gerbil. Brain Res 2004; 1017:77-84. [PMID: 15261102 DOI: 10.1016/j.brainres.2004.05.022] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/10/2004] [Indexed: 11/16/2022]
Abstract
We investigated the age-related changes of gamma-aminobutyric acid transaminase (GABA-T, a GABA degradation enzyme) in the hippocampus and dentate gyrus of the gerbil at postnatal month 1 (PM 1), PM 3, PM 6, PM 12, and PM 24. Age-related changes of GABA-T immunoreactivity were distinct in the hippocampal CA1 region and in the dentate gyrus. GABA-T immunoreactivity was weak at PM 1, but at PM 3, it had increased significantly, and then increased further. Between PM 6 and PM 12, strong GABA-T immunoreactivity was found in nonpyramidal cells (GABAergic) in the stratum pyramidale of the CA1 region, and at PM 6, strong GABA-T immunoreactivity was found in neurons of the dentate gyrus subgranular zone. At PM 24, CA1 pyramidal cells showed strong GABA-T immunoreactivity. Western blot analysis showed a pattern of GABA-T expression similar to that shown by immunohistochemistry at various ages. In conclusion, our results suggest that the age-related changes of GABA-T provide important information about the aged brain with GABA dysfunction.
Collapse
Affiliation(s)
- In Koo Hwang
- Department of Anatomy, College of Medicine, Hallym University, Chunchon 200-702, South Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Ratzliff ADH, Howard AL, Santhakumar V, Osapay I, Soltesz I. Rapid deletion of mossy cells does not result in a hyperexcitable dentate gyrus: implications for epileptogenesis. J Neurosci 2004; 24:2259-69. [PMID: 14999076 PMCID: PMC6730423 DOI: 10.1523/jneurosci.5191-03.2004] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Loss of cells from the hilus of the dentate gyrus is a major histological hallmark of human temporal lobe epilepsy. Hilar mossy cells, in particular, are thought to show dramatic numerical reductions in pathological conditions, and one prominent theory of epileptogenesis is based on the assumption that mossy cell loss directly results in granule cell hyperexcitability. However, whether it is the disappearance of hilar mossy cells from the dentate gyrus circuitry after various insults or the subsequent synaptic-cellular alterations (e.g., reactive axonal sprouting) that lead to dentate hyperexcitability has not been rigorously tested, because of the lack of available techniques to rapidly remove specific classes of nonprincipal cells from neuronal networks. We developed a fast, cell-specific ablation technique that allowed the targeted lesioning of either mossy cells or GABAergic interneurons in horizontal as well as axial (longitudinal) slices of the hippocampus. The results demonstrate that mossy cell deletion consistently decreased the excitability of granule cells to perforant path stimulation both within and outside of the lamella where the mossy cell ablation took place. In contrast, ablation of interneurons caused the expected increase in excitability, and control aspirations of the hilar neuropil or of interneurons in the presence of GABA receptor blockers caused no alteration in granule cell excitability. These data do not support the hypothesis that loss of mossy cells from the dentate hilus after seizures or traumatic brain injury directly results in hyperexcitability.
Collapse
Affiliation(s)
- Anna d H Ratzliff
- Department of Anatomy and Neurobiology, University of California, Irvine, California 92697, USA
| | | | | | | | | |
Collapse
|
35
|
Abstract
Focal cerebral lesions in rat brain induced by photothrombosis lead to an impaired inhibitory neurotransmission. A reduced gamma-aminobutyric acid (GABA)-mediated inhibition has been revealed by electrophysiological recordings associated with a diminished immunostaining of GABA handling proteins. Changes were found in ipsi- as well as in contralateral brain areas. Inhibition is mediated by interneurons using GABA as neurotransmitter. These cells use GAD (glutamate decarboxylase) to synthesize GABA. To analyze the vulnerability of GABAergic neurons in rats with a lesioned hindlimb area, cells expressing GAD65/67 mRNA were labeled using in situ hybridization. Positive somata were counted 7 and 30 days after focal ischemia in different cortical (hindlimb cortex, frontal cortex, primary and secondary somatosensory cortex) and hippocampal subsectors (pyramidal cell layer, stratum oriens and stratum radiatum/lacunosum-moleculare). The lesioned hemispheres were compared with the intact brain sides and with control brains. GABAergic interneurons survived the injury for up to 30 days in all investigated brain regions. Therefore it is unlikely that a loss of GABAergic neurons contributes to the reduced inhibition.
Collapse
Affiliation(s)
- C Frahm
- Department of Neurology, Friedrich-Schiller-University, Erlanger Allee 101, 07745 Jena, Germany.
| | | | | |
Collapse
|
36
|
Lawrence JJ, McBain CJ. Interneuron diversity series: containing the detonation--feedforward inhibition in the CA3 hippocampus. Trends Neurosci 2003; 26:631-40. [PMID: 14585604 DOI: 10.1016/j.tins.2003.09.007] [Citation(s) in RCA: 164] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Feedforward inhibitory circuits are involved both in the suppression of excitability and timing of action potential generation in principal cells. In the CA3 hippocampus, a single mossy fiber from a dentate gyrus granule cell forms giant boutons with multiple release sites, which are capable of detonating CA3 principal cells. By contrast, mossy fiber terminals form a larger number of Lilliputian-sized synapses with few release sites onto local circuit interneurons, with distinct presynaptic and postsynaptic properties. This dichotomy between the two synapse types endows the circuit with exquisite control over pyramidal cell discharge. Under pathological conditions where feedforward inhibition is compromised, focal excitation is no longer contained, rendering the circuit susceptible to hyperexcitability.
Collapse
Affiliation(s)
- J Josh Lawrence
- Laboratory on Cellular and Synaptic Physiology, Building 49, Room 5A72, NICHD-LCSN, Bethesda, MD 20892, USA
| | | |
Collapse
|
37
|
Maccaferri G, Lacaille JC. Interneuron Diversity series: Hippocampal interneuron classifications--making things as simple as possible, not simpler. Trends Neurosci 2003; 26:564-71. [PMID: 14522150 DOI: 10.1016/j.tins.2003.08.002] [Citation(s) in RCA: 131] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The nervous system is made up of many specific types of neuron intricately intertwined to form complex networks. Identifying and defining the characteristic features of the many different neuronal types is essential for achieving a cellular understanding of complex activity from perception to cognition. So far, cortical GABAergic interneurons have represented the epitome of cellular diversity in the CNS. Despite the desperate need for effective classification criteria allowing a common language among neuroscientists, interneurons still evoke memories of Babel. Several approaches are now available to overcome the challenges and problems associated with the various classification systems used so far.
Collapse
Affiliation(s)
- Gianmaria Maccaferri
- Feinberg School of Medicine, Department of Physiology, Northwestern University, Chicago, IL 60611, USA.
| | | |
Collapse
|
38
|
Functional NMDA receptor subtype 2B is expressed in astrocytes after ischemia in vivo and anoxia in vitro. J Neurosci 2003. [PMID: 12716944 DOI: 10.1523/jneurosci.23-08-03364.2003] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
NMDA-type glutamate receptors play a critical role in neuronal synaptogenesis, plasticity, and excitotoxic death. Recent studies indicate that functional NMDA receptors are also expressed in certain glial populations in the normal brain. Using immunohistochemical methods, we detected the presence of the NMDA receptor 2B (NR2B) subunit of the NMDA receptor in neurons but not astrocytes in the CA1 and subicular regions of the rat hippocampus. However, after ischemia-induced neuronal death in these regions, double immunohistochemical labeling revealed that NR2B subunits colocalized with the astrocyte marker glial fibrillary acid protein and with NR1 subunits that are required for functional NMDA receptors. NR2B expression was first observed 3 d after ischemia and reached a peak at 28 d. At 56 d, only a few NR2B-expressing astrocytes were still present. In vitro, when postnatal hippocampal cultures were subjected to 5 min of anoxia, it resulted in NR2B expression on astrocytes in the glial feed layer. Imaging of intracellular calcium with postanoxic cultures and astrocytes isolated acutely from the ischemic hippocampus revealed a rise in intracellular [Ca2+] after stimulation with the specific agonist NMDA. The response could be blocked reversibly with the competitive antagonist 2-amino-5-phosphonovalerate and attenuated by the NR2B-selective antagonist ifenprodil. Control astrocytes were not responsive to NMDA but responded to glutamate. An understanding of the role of astrocytes that express functional NMDA receptors in response to ischemia may guide development of novel stroke therapies.
Collapse
|
39
|
Aaron GB, Wilcox KS, Dichter MA. Different patterns of synaptic transmission revealed between hippocampal CA3 stratum oriens and stratum lucidum interneurons and their pyramidal cell targets. Neuroscience 2003; 117:169-81. [PMID: 12605903 DOI: 10.1016/s0306-4522(02)00832-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Stratum lucidum (SL) interneurons likely mediate feedforward inhibition between the dentate gyrus mossy fibers and CA3 pyramidal cells, while stratum oriens (SO) interneurons likely provide both feedforward and feedback inhibition within the CA3 commissural/associational network. Using dual whole-cell patch-clamp recordings between interneurons and CA3 pyramidal cells, we have examined SL and SO interneurons and their synapses within organotypic hippocampal slice cultures. Biocytin staining revealed different morphologies between these interneuron groups, both being very similar to those found previously in acute slices. The kinetics of IPSCs were similar between the two groups, but the reliability of synaptic transmission of SL interneuron (SL-INT) IPSCs was significantly lower than the virtually 100% reliability (non-existent failure rates) of SO-INT IPSCs. The SL-INT IPSCs also had a lower quantal content than the SO-INT IPSCs. In addition, SL-INTs were less likely than SO-INTs to innervate or to be innervated by nearby CA3 pyramidal cells. Paired-pulse stimulation at 100 ms interstimulus intervals produced similar paired-pulse depression in both interneuron synapses, despite the significantly higher failure rate of IPSCs produced by the SL-INTs compared with SO-INTs. CV analysis supported the hypothesis that paired-pulse depression was presynaptic. During repetitive, high frequency stimulation (>10 Hz for 500 ms) the two different synapses exhibited distinctly different forms of short-term plasticity: all SL interneurons displayed significant short-term facilitation (mean 113% facilitation, n=4), while, by contrast, SO interneuron synapses displayed either short-term depression (mean 42% depression, n=5 of 8) or no net facilitation or depression (n=3 of 8). These results indicate that the synaptic properties of interneurons can be quite different for interneurons in different hippocampal circuits.
Collapse
Affiliation(s)
- G B Aaron
- Department Biological Sciences, Columbia University, 1002 Fairchild Bldg, 1212 Amsterdam Avenue, MC 2436, New York, NY 10027, USA.
| | | | | |
Collapse
|
40
|
Muthuswamy J, Kimura T, Ding MC, Geocadin R, Hanley DF, Thakor NV. Vulnerability of the thalamic somatosensory pathway after prolonged global hypoxic-ischemic injury. Neuroscience 2003; 115:917-29. [PMID: 12435429 DOI: 10.1016/s0306-4522(02)00369-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The aim of this study was to test the hypothesis that under prolonged global ischemic injury, the somatosensory thalamus and the cortex would manifest differential susceptibility leading to varying degrees of thalamo-cortical dissociation. The thalamic electrical responses displayed increasing suppression with longer durations of ischemia leading to a significant thalamo-cortical electrical dissociation. The data also point to a selective vulnerability of the network oscillations involving the thalamic relay and reticular thalamic neurons. An adult rat model of asphyxial cardiac arrest involving three cohorts with 3 min (G1, n=5), 5 min (G2, n=5) and 7 min (G3, n=5) of asphyxia respectively was used. The cortical evoked response, as quantified by the peak amplitude at 20 ms in the cortical evoked potential, recovers to more than 60% of baseline in all the cases. The multi-unit responses to the somatosensory stimuli recorded from the thalamic ventral posterior lateral (VPL) nuclei consists typically of three components: (1). the ON response (<30 ms after stimulus), (2). the OFF response (period of inhibition, from 30 ms to 100 ms after stimulus) and (3). rhythmic spindles (beyond 100 ms after stimulus). Asphyxia has a significant effect on the VPL ON response at 30 min (P<0.025), 60 min (P<0.05) and 90 min (P<0.05) after asphyxia. Only animals in G3 show a significant suppression (P<0.05) of the VPL ON response when compared to the sham group at 30 min, 60 min and 90 min after asphyxia. There was no significant reduction in somatosensory cortical N20 (negative peak in the cortical response at 20 ms after stimulus) amplitude in any of the three groups with asphyxia indicating a thalamo-cortical dissociation in G3. Further, rhythmic spindle oscillations in the thalamic VPL nuclei that normally accompany the ON response recover either slowly after the recovery of ON response (in the case of G1 and G2) or do not recover at all (in the case of G3).We conclude that there is strong evidence for selective vulnerability of thalamic relay neurons and its network interactions with the inhibitory interneurons in the somatosensory pathway leading to a thalamo-cortical dissociation after prolonged durations of global ischemia.
Collapse
Affiliation(s)
- J Muthuswamy
- Department of Bioengineering, PO Box 879709, College of Engineering and Applied Sciences, Arizona State University, Tempe, AZ 85287-9709, USA.
| | | | | | | | | | | |
Collapse
|
41
|
Arabadzisz D, Ylinen A, Emri Z. Increased inter-spike intervals and fast after-hyperpolarization of action potentials in rat hippocampal pyramidal cells accompanied with altered calbindin immunoreactivity 10-12 months after global forebrain ischemia. Neurosci Lett 2002; 331:103-6. [PMID: 12361851 DOI: 10.1016/s0304-3940(02)00864-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
In vivo electrophysiological recordings of CA1/CA2 pyramidal cells were performed 10-12 months after global forebrain ischemia (four-vessel occlusion, 15 mm) and were compared to levels of calbindin expression. Ischemic animals were subdivided in non-sclerotic ischemic (NSI) and sclerotic ischemic (SI) groups depending on the absence or presence of hippocampal sclerosis. A decreased excitability was observed in neurons from both groups, as shown by significant prolongation of inter-spike intervals (ISI) of evoked action potentials and by increased amplitude of fast after-hyperpolarization (fAHP). The ratio of calbindin-positive CA1/CA2 pyramidal cells decreased from 59% in control to 33% and 8% in NSI and SI animals, respectively. These results suggest that decreased excitability of CA1/CA2 pyramidal cells represents a protective mechanism against ischemia-induced neurodegeneration and might be related to decreased calbindin expression.
Collapse
Affiliation(s)
- Dimitrula Arabadzisz
- Department of Neurochemistry, Institute of Chemistry, Chemical Research Center, Hungarian Academy of Sciences, Pusztaszeri cit 59-67. H 1025, Budapest, Hungary
| | | | | |
Collapse
|
42
|
Bhagat YA, Obenaus A, Richardson JS, Kendall EJ. Evolution of beta-amyloid induced neuropathology: magnetic resonance imaging and anatomical comparisons in the rodent hippocampus. MAGMA (NEW YORK, N.Y.) 2002; 14:223-32. [PMID: 12098565 DOI: 10.1007/bf02668216] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Alzheimer's disease (AD) is characterized by the anatomical appearance of beta-amyloid (betaA) plaques and neurofibrillary tangles. These changes are also associated with cyclical inflammation, oxidative damage and, as inferred from the autopsied brains of patients, progressive injury to neurons. Here, we report the short-term effects of an intrahippocampal injection of the toxic betaA peptide fragment 25-35 in rats using quantitative magnetic resonance imaging (MRI) methods. Physiological changes within the cornu ammonis 1 (CA1) region of the hippocampus were monitored using a 1.5 T scanner at time points of 0.25, 1 and 24 h, and 7 and 14 days post injection. Spin echo T2-weighted (T2W) and diffusion weighted (DW) images were sequentially acquired. Apparent diffusion coefficients (ADC) were calculated and compared with histological alterations. A significant elevation in mean ADC values (17%) was observed in the ipsilateral CA1 at 14 days. The ADC changes were associated with disrupted pyramidal cells and nuclear lysis observed in histological sections. The contralateral CA1 exhibited a significant decrease in mean ADC of 15% at 14 days post treatment. Histological changes in the contralateral hippocampus suggested decreased neuronal density. T2W maps revealed no significant differences between the active betaA 25-35 fragment and its non-active analog, betaA 35-25. In conclusion, these results, based on changes in hippocampal ADC, demonstrate that the betaA 25-35 treatment induced pathology consistent with edema and cellular necrosis. This is the first report describing the evolution of AD-like pathology in an animal model using DW imaging.
Collapse
Affiliation(s)
- Yusuf A Bhagat
- Department of Medical Imaging, College of Medicine, Royal University Hospital, University of Saskatchewan, 103 Hospital Drive, Saskatoon, Sask., Canada S7N 0W8
| | | | | | | |
Collapse
|
43
|
Ratzliff ADH, Santhakumar V, Howard A, Soltesz I. Mossy cells in epilepsy: rigor mortis or vigor mortis? Trends Neurosci 2002; 25:140-4. [PMID: 11852145 DOI: 10.1016/s0166-2236(00)02122-6] [Citation(s) in RCA: 113] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Mossy cells are bi-directionally connected through a positive feedback loop to granule cells, the principal cells of the dentate gyrus. This recurrent circuit is strategically placed between the entorhinal cortex and the hippocampal CA3 region. In spite of their potentially pro-convulsive arrangement with granule cells, mossy cells have not been seriously considered to promote seizures, because mossy cells, allegedly one of the most vulnerable cell types in the entire mammalian brain, have long been 'known' to die en masse in epilepsy. However, new data suggest that rumors of the rapid demise of the mossy cells might have been greatly exaggerated.
Collapse
Affiliation(s)
- Annad d H Ratzliff
- Dept of Anatomy and Neurobiology, University of California, Irvine 92697-1280, USA
| | | | | | | |
Collapse
|
44
|
Lahtinen H, Autere AM, Paalasmaa P, Lauri SE, Kaila K. Post-insult activity is a major cause of delayed neuronal death in organotypic hippocampal slices exposed to glutamate. Neuroscience 2001; 105:131-7. [PMID: 11483307 DOI: 10.1016/s0306-4522(01)00168-3] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
We investigated the pathophysiological mechanisms of glutamate-induced delayed neuronal damage in rat hippocampal slice cultures [Stoppini et al. (1991) J. Neurosci. Methods 37, 173-182], with propidium iodide as a marker of cell death. Exposure of the cultures to growth medium containing 10 mM glutamate for 30 min resulted in a slowly developing degeneration of hippocampal principal cells, starting from the medial end of the CA1 region and reaching the dentate gyrus by 48 h. By 24 h, most pyramidal cells in CA1 were damaged. An acute phase of degeneration preceded the delayed damage at 2-6 h, affecting cells in a spatially diffuse manner. When tetrodotoxin (0.5 microM) was present during the glutamate insult, a marked protection (mean 57%, P<0.001) of the CA1 damage was observed. Rather strikingly, when tetrodotoxin was applied immediately following or even with a delay of 30 min after the insult, a similar amount of protection was achieved. In field recordings carried out after the insult, the glutamate-treated slices exhibited spontaneously occurring negative shifts with a duration of 1-10 s and an amplitude of up to 400 microV in the CA3 region, whereas the control slices were always quiescent. Taken together, the results suggest that post-insult neuronal network activity, rather than the direct action of exogenous glutamate, is a major cause of delayed CA1 pyramidal cell death in the organotypic slices. These observations may have implications in the design of neuroprotective strategies for the treatment of brain traumas which are accompanied by delayed and/or distal neuronal damage.
Collapse
Affiliation(s)
- H Lahtinen
- Department of Biosciences, University of Helsinki, FIN-00014, Helsinki, Finland.
| | | | | | | | | |
Collapse
|
45
|
Azimi-Zonooz A, Kawa CB, Dowell CD, Olivera BM. Autoradiographic localization of N-type VGCCs in gerbil hippocampus and failure of omega-conotoxin MVIIA to attenuate neuronal injury after transient cerebral ischemia. Brain Res 2001; 907:61-70. [PMID: 11430886 DOI: 10.1016/s0006-8993(01)02471-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In the mammalian central nervous system, transient global ischemia of specific duration causes selective degeneration of CA1 pyramidal neurons in hippocampus. Many of the ischemia-induced pathophysiologic cascades that destroy the neurons are triggered by pre- and postsynaptic calcium entry. Consistent with this, many calcium channel blockers have been shown to be neuroprotective in global models of ischemia. omega-Conotoxin MVIIA, a selective N-type VGCC blocker isolated from the venom of Conus magus, protects CA1 neurons in the rat model of global ischemia, albeit transiently. The mechanism by which this peptide renders neuroprotection is unknown. We performed high-resolution receptor autoradiography with the radiolabeled peptide and observed highest binding in stratum lucidum of CA3 subfield, known to contain inhibitory neurons potentially important in the pathogenesis of delayed neuronal death. This finding suggested that the survival of stratum lucidum inhibitory neurons might be the primary event, leading to CA1 neuroprotection after ischemia. Testing of this hypothesis required the reproduction of its neuroprotective effects in the gerbil model of global ischemia. Surprisingly, we found that omega-MVIIA did not attenuate CA1 hippocampal injury after 5 min of cerebral ischemia in gerbil. Possible reasons are discussed. Lastly, we show that the peptide can be used as a synaptic marker in assessing short and long-term changes that occur in hippocampus after ischemic injury.
Collapse
Affiliation(s)
- A Azimi-Zonooz
- Department of Pediatrics, Oregon Health Sciences University, Portland, OR 97201, USA.
| | | | | | | |
Collapse
|
46
|
Abstract
In this review, we present evidence for the role of gamma-aminobutyric acid (GABA) neurotransmission in cerebral ischemia-induced neuronal death. While glutamate neurotransmission has received widespread attention in this area of study, relatively few investigators have focused on the ischemia-induced alterations in inhibitory neurotransmission. We present a review of the effects of cerebral ischemia on pre and postsynaptic targets within the GABAergic synapse. Both in vitro and in vivo models of ischemia have been used to measure changes in GABA synthesis, release, reuptake, GABA(A) receptor expression and activity. Cellular events generated by ischemia that have been shown to alter GABA neurotransmission include changes in the Cl(-) gradient, reduction in ATP, increase in intracellular Ca(2+), generation of reactive oxygen species, and accumulation of arachidonic acid and eicosanoids. Neuroprotective strategies to increase GABA neurotransmission target both sides of the synapse as well, by preventing GABA reuptake and metabolism and increasing GABA(A) receptor activity with agonists and allosteric modulators. Some of these strategies are quite efficacious in animal models of cerebral ischemia, with sedation as the only unwanted side-effect. Based on promising animal data, clinical trials with GABAergic drugs are in progress for specific types of stroke. This review attempts to provide an understanding of the mechanisms by which GABA neurotransmission is sensitive to cerebral ischemia. Furthermore, we discuss how dysfunction of GABA neurotransmission may contribute to neuronal death and how neuronal death can be prevented by GABAergic drugs.
Collapse
Affiliation(s)
- R D Schwartz-Bloom
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, North Carolina, USA.
| | | |
Collapse
|
47
|
Fox GB, Kjøller C, Murphy KJ, Regan CM. The modulations of NCAM polysialylation state that follow transient global ischemia are brief on neurons but enduring on glia. J Neuropathol Exp Neurol 2001; 60:132-40. [PMID: 11273001 DOI: 10.1093/jnen/60.2.132] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
To investigate the role of polysialylated neural cell adhesion molecule (NCAM PSA)-mediated plasticity after injury, we examined the temporal and spatial expression of NCAM PSA immunoreactivity in the medial temporal lobe following global ischemia. Male Mongolian gerbils were subjected to bilateral common carotid artery occlusion for 5 min and killed at increasing times post-occlusion. The well-characterized delayed CAl pyramidal cell death was observed 5-7 days post-occlusion. At post-occlusion days 1-2 there was a small but significant increase of NCAM PSA-positive hippocampal granule cells followed by an equally significant decrease at post-occlusion day 5. In contrast, a substantial increase in glial PSA expression was observed in all hippocampal regions at 1-7 days post-occlusion that was associated generally with stellate astroglia and specifically with the radial processes of glia traversing the granule cell layer of the dentate gyrus. Administration of the glutamate antagonist 2,3-dihydroxy-6-nitro-7-sulfamoyl-ben-zo(F)quinoxaline significantly blocked the ischemia-induced modulation of neuronal and glial NCAM PSA expression. Astroglial NCAM polysialylation became attenuated by 35 days post-occlusion except in the CAI area of cell death. The temporal and regional pattern of polysialylated NCAM expression in the ischemic gerbil hippocampus implicates this neuroplastic marker in mechanisms of neurotrophic-dependent repair/remodeling that ensue following transient interruption of blood flow.
Collapse
Affiliation(s)
- G B Fox
- Department of Pharmacology, Conway Institute, National University of Ireland, Dublin
| | | | | | | |
Collapse
|
48
|
Silva JG, Mello LE. The role of mossy cell death and activation of protein synthesis in the sprouting of dentate mossy fibers: evidence from calretinin and neo-timm staining in pilocarpine-epileptic mice. Epilepsia 2000; 41 Suppl 6:S18-23. [PMID: 10999514 DOI: 10.1111/j.1528-1157.2000.tb01551.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Mossy fiber sprouting is a major anatomical reorganization seen in patients with temporal lobe epilepsy and animal models of epilepsy. The final outcome of this reorganization is viewed by many as epileptogenic. Yet, important and relevant data from both human and animal models of epilepsy challenge this prevailing view. Regardless of the outcome of this debate, understanding of the mechanisms that underlie mossy fiber sprouting (MFS) might contribute to our understanding of both the adaptive and maladaptive changes that take place in the nervous system after injury. Available evidence suggests that two events might be crucial for mossy fibers to sprout in epilepsy: the death of mossy cells and the synthesis of trophic factors. The availability of means that prevent MFS, which is normally triggered after induction of status epilepticus, allow for the testing of hypotheses regarding the need for and the sufficiency of specific events for mossy fibers to sprout. We present data on a specific marker for mossy cells, calretinin, in the pilocarpine model of epilepsy in mice. Our data suggest that in the presence of a protein synthesis inhibitor status epilepticus-induced death of mossy cells is not sufficient to trigger mossy fiber sprouting. We suggest that both events, mossy cell death and synthesis of trophic factors, might be necessary for robust MFS to ensue.
Collapse
Affiliation(s)
- J G Silva
- Department of Physiology, Universidade Federal de São Paulo, Brazil
| | | |
Collapse
|