1
|
Vila-Merkle H, González-Martínez A, Campos-Jiménez R, Martínez-Ricós J, Teruel-Martí V, Lloret A, Blasco-Serra A, Cervera-Ferri A. Sex differences in amygdalohippocampal oscillations and neuronal activation in a rodent anxiety model and in response to infralimbic deep brain stimulation. Front Behav Neurosci 2023; 17:1122163. [PMID: 36910127 PMCID: PMC9995972 DOI: 10.3389/fnbeh.2023.1122163] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 02/09/2023] [Indexed: 02/25/2023] Open
Abstract
Introduction Depression and anxiety are highly comorbid mental disorders with marked sex differences. Both disorders show altered activity in the amygdala, hippocampus, and prefrontal cortex. Infralimbic deep brain stimulation (DBS-IL) has anxiolytic and antidepressant effects, but the underlying mechanisms remain unclear. We aimed to contribute to understanding sex differences in the neurobiology of these disorders. Methods In male and female rats, we recorded neural oscillations along the dorsoventral axis of the hippocampus and the amygdala in response to an anxiogenic drug, FG-7142. Following this, we applied DBS-IL. Results Surprisingly, in females, the anxiogenic drug failed to induce most of the changes observed in males. We found sex differences in slow, delta, theta, and beta oscillations, and the amygdalo-hippocampal communication in response to FG-7142, with modest changes in females. Females had a more prominent basal gamma, and the drug altered this band only in males. We also analyzed c-Fos expression in both sexes in stress-related structures in response to FG-7142, DBS-IL, and combined interventions. With the anxiogenic drug, females showed reduced expression in the nucleus incertus, amygdala, septohippocampal network, and neocortical levels. In both experiments, the DBS-IL reversed FG-7142-induced effects, with a more substantial effect in males than females. Discussion Here, we show a reduced response in female rats which contrasts with the higher prevalence of anxiety in women but is consistent with other studies in rodents. Our results open compelling questions about sex differences in the neurobiology of anxiety and depression and their study in animal models.
Collapse
Affiliation(s)
- Hanna Vila-Merkle
- Neuronal Circuits Laboratory, Department of Human Anatomy and Embryology, Faculty of Medicine, University of Valencia, Valencia, Spain
| | - Alicia González-Martínez
- Neuronal Circuits Laboratory, Department of Human Anatomy and Embryology, Faculty of Medicine, University of Valencia, Valencia, Spain
| | - Rut Campos-Jiménez
- Neuronal Circuits Laboratory, Department of Human Anatomy and Embryology, Faculty of Medicine, University of Valencia, Valencia, Spain
| | - Joana Martínez-Ricós
- Neuronal Circuits Laboratory, Department of Human Anatomy and Embryology, Faculty of Medicine, University of Valencia, Valencia, Spain
| | - Vicent Teruel-Martí
- Neuronal Circuits Laboratory, Department of Human Anatomy and Embryology, Faculty of Medicine, University of Valencia, Valencia, Spain
| | - Ana Lloret
- Department of Physiology, Faculty of Medicine, Health Research Institute INCLIVA, CIBERFES, University of Valencia, Valencia, Spain
| | - Arantxa Blasco-Serra
- Study Group for the Anatomical Substrate of Pain and Analgesia (GESADA) Laboratory, Department of Human Anatomy and Embryology, Faculty of Medicine and Odontology, University of Valencia, Valencia, Spain
| | - Ana Cervera-Ferri
- Neuronal Circuits Laboratory, Department of Human Anatomy and Embryology, Faculty of Medicine, University of Valencia, Valencia, Spain
| |
Collapse
|
2
|
Mysin I, Shubina L. Hippocampal non-theta state: The "Janus face" of information processing. Front Neural Circuits 2023; 17:1134705. [PMID: 36960401 PMCID: PMC10027749 DOI: 10.3389/fncir.2023.1134705] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 02/14/2023] [Indexed: 03/09/2023] Open
Abstract
The vast majority of studies on hippocampal rhythms have been conducted on animals or humans in situations where their attention was focused on external stimuli or solving cognitive tasks. These studies formed the basis for the idea that rhythmical activity coordinates the work of neurons during information processing. However, at rest, when attention is not directed to external stimuli, brain rhythms do not disappear, although the parameters of oscillatory activity change. What is the functional load of rhythmical activity at rest? Hippocampal oscillatory activity during rest is called the non-theta state, as opposed to the theta state, a characteristic activity during active behavior. We dedicate our review to discussing the present state of the art in the research of the non-theta state. The key provisions of the review are as follows: (1) the non-theta state has its own characteristics of oscillatory and neuronal activity; (2) hippocampal non-theta state is possibly caused and maintained by change of rhythmicity of medial septal input under the influence of raphe nuclei; (3) there is no consensus in the literature about cognitive functions of the non-theta-non-ripple state; and (4) the antagonistic relationship between theta and delta rhythms observed in rodents is not always observed in humans. Most attention is paid to the non-theta-non-ripple state, since this aspect of hippocampal activity has not been investigated properly and discussed in reviews.
Collapse
|
3
|
Cunha-Reis D, Caulino-Rocha A, Correia-de-Sá P. VIPergic neuroprotection in epileptogenesis: challenges and opportunities. Pharmacol Res 2021; 164:105356. [DOI: 10.1016/j.phrs.2020.105356] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 11/28/2020] [Accepted: 11/29/2020] [Indexed: 12/19/2022]
|
4
|
Cunha-Reis D, Caulino-Rocha A. VIP Modulation of Hippocampal Synaptic Plasticity: A Role for VIP Receptors as Therapeutic Targets in Cognitive Decline and Mesial Temporal Lobe Epilepsy. Front Cell Neurosci 2020; 14:153. [PMID: 32595454 PMCID: PMC7303298 DOI: 10.3389/fncel.2020.00153] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 05/11/2020] [Indexed: 12/19/2022] Open
Abstract
Vasoactive intestinal peptide (VIP) is an important modulatory peptide throughout the CNS acting as a neurotransmitter, neurotrophic or neuroprotective factor. In the hippocampus, a brain area implicated in learning and memory processes, VIP has a crucial role in the control of GABAergic transmission and pyramidal cell activity in response to specific network activity by either VIP-containing basket cells or interneuron-selective (IS) interneurons and this appears to have a differential impact in hippocampal-dependent cognition. At the cellular level, VIP regulates synaptic transmission by either promoting disinhibition, through activation of VPAC1 receptors, or enhancing pyramidal cell excitability, through activation of VPAC2 receptors. These actions also control several important synaptic plasticity phenomena such as long-term potentiation (LTP) and long-term depression (LTD). This paper reviews the current knowledge on the activation and multiple functions of VIP expressing cells in the hippocampus and their role in controlling synaptic transmission, synaptic plasticity and learning and memory processes, discussing also the role of VPAC1 and VPAC2 VIP receptors in the regulation of these different processes. Furthermore, we address the current knowledge regarding changes in VIP mediated neurotransmission in epileptogenesis and mesial temporal lobe epilepsy with hippocampal sclerosis (MTLE-HS), and discuss the therapeutic opportunities of using selective VIP receptor ligands to prevent epileptogenesis and cognitive decline in MTLE-HS.
Collapse
Affiliation(s)
- Diana Cunha-Reis
- BioISI - Biosystems and Integrative Sciences Institute, Faculdade de Ciências, Universidade de Lisboa, Lisbon, Portugal.,Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, Lisbon, Portugal
| | - Ana Caulino-Rocha
- BioISI - Biosystems and Integrative Sciences Institute, Faculdade de Ciências, Universidade de Lisboa, Lisbon, Portugal.,Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, Lisbon, Portugal
| |
Collapse
|
5
|
Pascovich C, Lagos P, Urbanavicius J, Devera A, Rivas M, Costa A, López Hill X, Falconi A, Scorza C, Torterolo P. Melanin-concentrating hormone (MCH) in the median raphe nucleus: Fibers, receptors and cellular effects. Peptides 2020; 126:170249. [PMID: 31911169 DOI: 10.1016/j.peptides.2019.170249] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 11/11/2019] [Accepted: 12/26/2019] [Indexed: 11/20/2022]
Abstract
Serotonergic neurons of the median raphe nucleus (MnR) and hypothalamic melanin-concentrating hormone (MCH)-containing neurons, have been involved in the control of REM sleep and mood. In the present study, we examined in rats and cats the anatomical relationship between MCH-containing fibers and MnR neurons, as well as the presence of MCHergic receptors in these neurons. In addition, by means of in vivo unit recording in urethane anesthetized rats, we determined the effects of MCH in MnR neuronal firing. Our results showed that MCH-containing fibers were present in the central and paracentral regions of the MnR. MCHergic fibers were in close apposition to serotonergic and non-serotonergic neurons. By means of an indirect approach, we also analyzed the presence of MCHergic receptors within the MnR. Accordingly, we microinjected MCH conjugated with the fluorophore rhodamine (R-MCH) into the lateral ventricle. R-MCH was internalized into serotonergic and non-serotonergic MnR neurons; some of these neurons were GABAergic. Furthermore, we determined that intracerebroventricular administration of MCH induced a significant decrease in the firing rate of 53 % of MnR neurons, while the juxtacellular administration of MCH reduced the frequency of discharge in 67 % of these neurons. Finally, the juxtacellular administration of the MCH-receptor antagonist ATC-0175 produced an increase in the firing rate in 78 % of MnR neurons. Hence, MCH produces a strong regulation of MnR neuronal activity. We hypothesize that MCHergic modulation of the MnR neuronal activity may be involved in the promotion of REM sleep and in the pathophysiology of depressive disorders.
Collapse
Affiliation(s)
- Claudia Pascovich
- Departamento de Fisiología, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Patricia Lagos
- Departamento de Fisiología, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Jessika Urbanavicius
- Departamento de Neurofarmacología Experimental, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, Uruguay
| | - Andrea Devera
- Departamento de Fisiología, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Mayda Rivas
- Departamento de Fisiología, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Alicia Costa
- Departamento de Fisiología, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Ximena López Hill
- Departamento de Neurofarmacología Experimental, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, Uruguay
| | - Atilio Falconi
- Departamento de Fisiología, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Cecilia Scorza
- Departamento de Neurofarmacología Experimental, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, Uruguay
| | - Pablo Torterolo
- Departamento de Fisiología, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay.
| |
Collapse
|
6
|
Khatami L, Safari V, Motamedi F. Temporary inactivation of interpeduncular nucleus impairs long but not short term plasticity in the perforant-path dentate gyrus synapses in rats. Behav Brain Res 2020; 377:112212. [PMID: 31505188 DOI: 10.1016/j.bbr.2019.112212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 08/30/2019] [Accepted: 09/04/2019] [Indexed: 10/26/2022]
Abstract
The interconnectivity of the hippocampus, interpeduncular nucleus (IPN) and several brain structures which are involved in modulating hippocampal theta rhythm activity makes a complicated dynamic network of interconnected regions and highlights the role of IPN in the hippocampal dependent learning and memory. In the present study we aimed to address whether IPN is involved in the perforant path-dentate gyrus (PPDG) short term and long term synaptic plasticity in rats. To silent IPN transiently, lidocaine was injected through the implanted cannula above the IPN. To evaluate short term plasticity, paired pulses stimulation of PPDG synapses were used upon IPN temporary inactivation. Furthermore, long term plasticity was investigated by measuring the induction and maintenance of PPDG synapses long term potentiation (LTP) after high frequency stimulation (HFS) of the mentioned pathway following to IPN inactivation. The results showed that IPN reversible inactivation had no effect on short term plasticity of PPDG synapses. However, IPN inactivation before the PPDG high frequency stimulation could significantly suppress both the population spike (PS) and fEPSP-LTP induction compared to the saline group. Conversely, IPN inactivation had no significant effect on maintenance of both PS-LTP and fEPSP-LTP. All together our study suggests the contribution of IPN in the PPDG synaptic plasticity and excitability of DG granule cells which could be through direct and/or indirect pathways from IPN to the hippocampus.
Collapse
Affiliation(s)
- Leila Khatami
- Neuroscience Research Center, Shahid Beheshti University of Medical sciences, P.O. Box 19615-1178, Tehran, Iran; School of Cognitive Sciences, Institute for Research in Fundamental Sciences (IPM), P.O. Box 1954851167, Tehran, Iran.
| | - Vajihe Safari
- Neuroscience Research Center, Shahid Beheshti University of Medical sciences, P.O. Box 19615-1178, Tehran, Iran; School of Cognitive Sciences, Institute for Research in Fundamental Sciences (IPM), P.O. Box 1954851167, Tehran, Iran.
| | - Fereshteh Motamedi
- Neuroscience Research Center, Shahid Beheshti University of Medical sciences, P.O. Box 19615-1178, Tehran, Iran; School of Cognitive Sciences, Institute for Research in Fundamental Sciences (IPM), P.O. Box 1954851167, Tehran, Iran.
| |
Collapse
|
7
|
Korotkova T, Ponomarenko A, Monaghan CK, Poulter SL, Cacucci F, Wills T, Hasselmo ME, Lever C. Reconciling the different faces of hippocampal theta: The role of theta oscillations in cognitive, emotional and innate behaviors. Neurosci Biobehav Rev 2018; 85:65-80. [DOI: 10.1016/j.neubiorev.2017.09.004] [Citation(s) in RCA: 96] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2017] [Revised: 08/22/2017] [Accepted: 09/02/2017] [Indexed: 12/30/2022]
|
8
|
Gutiérrez-Guzmán BE, Hernández-Pérez JJ, Olvera-Cortés ME. Serotonergic modulation of septo-hippocampal and septo-mammillary theta activity during spatial learning, in the rat. Behav Brain Res 2017; 319:73-86. [DOI: 10.1016/j.bbr.2016.11.017] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Revised: 11/08/2016] [Accepted: 11/08/2016] [Indexed: 11/16/2022]
|
9
|
Vertes RP, Hoover WB, Viana Di Prisco G. Theta Rhythm of the Hippocampus: Subcortical Control and Functional Significance. ACTA ACUST UNITED AC 2016; 3:173-200. [PMID: 15653814 DOI: 10.1177/1534582304273594] [Citation(s) in RCA: 154] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The theta rhythm is the largest extracellular synchronous signal that can be recorded from the mammalian brain and has been strongly implicated in mnemonic processes of the hippocampus. We describe (a) ascending brain stem–forebrain systems involved in controlling theta and nontheta (desynchronization) states of the hippocampal electroencephalogram; (b) theta rhythmically discharging cells in several structures of Papez's circuit and their possible functional significance, specifically with respect to head direction cells in this same circuit; and (c) the role of nucleus reuniens of the thalamus as a major interface between the medial prefrontal cortex and hippocampus and as a prominent source of afferent limbic information to the hippocampus. We suggest that the hippocampus receives two main types of input: theta rhythm from ascending brain stem– diencephaloseptal systems and information bearing mainly from thalamocortical/cortical systems. The temporal convergence of activity of these two systems results in the encoding of information in the hippocampus, primarily reaching it from the entorhinal cortex and nucleus reuniens.
Collapse
|
10
|
Kazmierska P, Konopacki J. Development of theta rhythm in hippocampal formation slices perfused with 5-HT1A antagonist, (S)WAY 100135. Brain Res 2015; 1625:142-50. [DOI: 10.1016/j.brainres.2015.08.041] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Revised: 07/28/2015] [Accepted: 08/28/2015] [Indexed: 12/01/2022]
|
11
|
Bland BH, Bland CE, MacIver MB. Median raphe stimulation-induced motor inhibition concurrent with suppression of type 1 and type 2 hippocampal theta. Hippocampus 2015; 26:289-300. [PMID: 26314691 DOI: 10.1002/hipo.22521] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Revised: 08/24/2015] [Accepted: 08/24/2015] [Indexed: 11/10/2022]
Abstract
This study investigated behavioral, anatomical and electrophysiological effects produced by electrical stimulation of posterior hypothalamic (PH) or median raphe (MR) nuclei, independently and during combined stimulation of both PH and MR. These three stimulation conditions were applied during spontaneous behavior in an open field and during PH stimulation-induced wheel running, while simultaneously recording hippocampal (HPC) field activity. An additional objective was to determine the effects of MR stimulation on Type 1 movement related theta and Type 2 sensory processing related theta. To achieve the latter, when behavioral studies were completed we studied the same rats under urethane anesthesia and then during urethane anesthesia with the addition of atropine sulfate (ATSO4). Here we demonstrated that electrical stimulation of a localized region of the MR nucleus resulted in a profound inhibition of both spontaneously occurring theta related motor behaviors and the theta related motor behaviors induced by electrical stimulation of the PH nucleus. Furthermore, this motor inhibition occurred concurrently with strong suppression of hippocampal theta field oscillations in the freely moving rat, a condition where the theta recorded is Type 2 sensory processing theta occurring coincidently with Type 1 movement related theta (Bland, 1986). Our results indicate that motor inhibition resulted from stimulation of neurons located in the mid central region of the MR, while stimulation in adjacent regions produced variable responses, including movements and theta activity. The present study provided evidence that the pharmacological basis of the suppression of Type 2 sensory processing HPC theta was cholinergic. However, MR inhibition of PH-induced wheel running was not affected by cholinergic blockade, which blocks Type 2 theta, indicating that MR stimulation-induced motor inhibition also requires the suppression of Type 1 theta.
Collapse
Affiliation(s)
- Brian H Bland
- Department of Psychology, Behavioral Neuroscience Research Group, the University of Calgary, Calgary, Alberta, Canada.,Hotchkiss Brain Institute, Faculty of Medicine, the University of Calgary, Calgary, Alberta, Canada
| | - Cheryl E Bland
- Department of Psychology, Behavioral Neuroscience Research Group, the University of Calgary, Calgary, Alberta, Canada
| | - M Bruce MacIver
- Neuropharmacology Laboratory, Stanford School of Medicine, Stanford, California
| |
Collapse
|
12
|
Anxious and nonanxious mice show similar hippocampal sensory evoked oscillations under urethane anesthesia: difference in the effect of buspirone. Neural Plast 2015; 2015:186323. [PMID: 25949829 PMCID: PMC4408632 DOI: 10.1155/2015/186323] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2014] [Revised: 03/17/2015] [Accepted: 03/17/2015] [Indexed: 11/18/2022] Open
Abstract
Hippocampal oscillations recorded under urethane anesthesia are proposed to be modulated by anxiolytics. All classes of clinically effective anxiolytics were reported to decrease the frequency of urethane theta; however, recent findings raise concerns about the direct correlation of anxiolysis and the frequency of hippocampal theta. Here, we took advantage of our two inbred mouse strains displaying extremes of anxiety (anxious (AX) and nonanxious (nAX)) to compare the properties of hippocampal activity and to test the effect of an anxiolytic drugs. No difference was observed in the peak frequency or in the peak power between AX and nAX strains. Buspirone (Bus) applied in 2.5 mg/kg decreased anxiety of AX but did not have any effect on nAX as was tested by elevated plus maze and open field. Interestingly, Bus treatment increased hippocampal oscillatory frequency in the AX but left it unaltered in nAX mice. Saline injection did not have any effect on the oscillation. Paired-pulse facilitation was enhanced by Bus in the nAX, but not in the AX strain. Collectively, these results do not support the hypothesis that hippocampal activity under urethane may serve as a marker for potential anxiolytic drugs. Moreover, we could not confirm the decrease of frequency after anxiolytic treatment.
Collapse
|
13
|
Cunha-Reis D, Aidil-Carvalho MDF, Ribeiro JA. Endogenous inhibition of hippocampal LTD and depotentiation by vasoactive intestinal peptide VPAC1 receptors. Hippocampus 2014; 24:1353-63. [PMID: 24935659 DOI: 10.1002/hipo.22316] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/09/2014] [Indexed: 11/08/2022]
Abstract
Vasoactive intestinal peptide (VIP), an important modulator of hippocampal synaptic transmission, influences exploration and hippocampal-dependent learning in rodents. Homosynaptic long-term depression (LTD) and depotentiation are two plasticity phenomena implicated in learning of behavior flexibility and spatial novelty detection. In this study, we investigated the influence of endogenous VIP on LTD and depotentiation induced by low-frequency stimulation (1 Hz, 900 pulses) of the hippocampal CA1 area in vitro in juvenile and young adult rats, respectively. LTD and depotentiation were enhanced by the VIP receptor antagonist Ac-Tyr(1) , D-Phe(2) GRF (1-29), and the selective VPAC1 receptor antagonist, PG 97-269, but not the selective VPAC2 receptor antagonist, PG 99-465. This action was mimicked by an anti-VIP antibody, suggesting that VIP, and not pituitary adenylate cyclase-activating polypeptide (PACAP), is the endogenous mediator of these effects. Selective inhibition of PAC1 receptors with PACAP (6-38) enhanced depotentiation, but not LTD. VPAC1 receptor blockade also revealed LTD in young adult rats, an effect abolished by the GABAA antagonist bicuculline, evidencing an involvement of GABAergic transmission. We conclude that inhibition of LTD and depotentiation by endogenous VIP occurs through VPAC1 receptor-mediated mechanisms and suggest that disinhibition of pyramidal cell dendrites is the most likely physiological mechanism underlying this effect. As such, VPAC1 receptor ligands may be considered promising pharmacological targets for treatment of cognitive dysfunction in diseases involving altered GABAergic circuits and pathological saturation of LTP/LTD like Down's syndrome and temporal lobe epilepsy.
Collapse
Affiliation(s)
- Diana Cunha-Reis
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina e Unidade de Neurociências, Instituto de Medicina Molecular, Universidade de Lisboa, Lisbon, Portugal
| | | | | |
Collapse
|
14
|
López-Vázquez MÁ, López-Loeza E, Lajud Ávila N, Gutiérrez-Guzmán BE, Hernández-Pérez JJ, Reyes YE, Olvera-Cortés ME. Septal serotonin depletion in rats facilitates working memory in the radial arm maze and increases hippocampal high-frequency theta activity. Eur J Pharmacol 2014; 734:105-13. [PMID: 24742376 DOI: 10.1016/j.ejphar.2014.04.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2013] [Revised: 04/01/2014] [Accepted: 04/03/2014] [Indexed: 11/27/2022]
Abstract
Hippocampal theta activity, which is strongly modulated by the septal medial/Broca׳s diagonal band neurons, has been linked to information processing of the hippocampus. Serotonin from the medial raphe nuclei desynchronises hippocampal theta activity, whereas inactivation or a lesion of this nucleus induces continuous and persistent theta activity in the hippocampus. Hippocampal serotonin depletion produces an increased expression of high-frequency theta activity concurrent with the facilitation of place learning in the Morris maze. The medial septum-diagonal band of Broca complex (MS/DBB) has been proposed as a key structure in the serotonin modulation of theta activity. We addressed whether serotonin depletion of the MS/DBB induces changes in the characteristics of hippocampal theta activity and whether the depletion is associated with learning in a working memory spatial task in the radial arm maze. Sprague Dawley rats were depleted of 5HT with the infusion of 5,7-dihydroxytriptamine (5,7-DHT) in MS/DBB and were subsequently trained in the standard test (win-shift) in the radial arm, while the CA1 EEG activity was simultaneously recorded through telemetry. The MS/DBB serotonin depletion induced a low level of expression of low-frequency (4.5-6.5Hz) and a higher expression of high-frequency (6.5-9.5Hz) theta activity concomitant to a minor number of errors committed by rats on the working memory test. Thus, the depletion of serotonin in the MS/DBB caused a facilitator effect on working memory and a predominance of high-frequency theta activity.
Collapse
Affiliation(s)
- Miguel Ángel López-Vázquez
- Laboratorio de Neuroplasticidad de los Procesos Cognitivos, Centro de Investigación Biomédica de Michoacán, Instituto Mexicano del Seguro Social, Mexico; Laboratorio de Biofísica, Instituto de Física y Matemáticas, Universidad Michoacana de San Nicolás de Hidalgo, Mexico
| | - Elisa López-Loeza
- Laboratorio de Biofísica, Instituto de Física y Matemáticas, Universidad Michoacana de San Nicolás de Hidalgo, Mexico
| | - Naima Lajud Ávila
- Laboratorio de Neuroendocrinología, Centro de Investigación Biomédica de Michoacán, Instituto Mexicano del Seguro Social, Mexico
| | - Blanca Erika Gutiérrez-Guzmán
- Laboratorio de Neurofisiología Experimental, Centro de Investigación Biomédica de Michoacán, Instituto Mexicano del Seguro Social, Camino de la arboleda 300, Exhacienda de san José de la Huerta, Morelia, Mich C.P. 58341, Mexico
| | - J Jesús Hernández-Pérez
- Laboratorio de Neurofisiología Experimental, Centro de Investigación Biomédica de Michoacán, Instituto Mexicano del Seguro Social, Camino de la arboleda 300, Exhacienda de san José de la Huerta, Morelia, Mich C.P. 58341, Mexico
| | - Yoana Estrada Reyes
- Laboratorio de Neuroplasticidad de los Procesos Cognitivos, Centro de Investigación Biomédica de Michoacán, Instituto Mexicano del Seguro Social, Mexico
| | - María Esther Olvera-Cortés
- Laboratorio de Neurofisiología Experimental, Centro de Investigación Biomédica de Michoacán, Instituto Mexicano del Seguro Social, Camino de la arboleda 300, Exhacienda de san José de la Huerta, Morelia, Mich C.P. 58341, Mexico
| |
Collapse
|
15
|
Li LB, Han LN, Zhang QJ, Sun YN, Wang Y, Feng J, Zhang L, Wang T, Chen L, Liu J. The theta-related firing activity of parvalbumin-positive neurons in the medial septum-diagonal band of Broca complex and their response to 5-HT1A receptor stimulation in a rat model of Parkinson's disease. Hippocampus 2013; 24:326-40. [PMID: 24174292 DOI: 10.1002/hipo.22226] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/22/2013] [Indexed: 11/10/2022]
Abstract
The parvalbumin (PV)-positive neurons in the medial septum-diagonal band of Broca complex (MS-DB) play an important role in the generation of hippocampal theta rhythm involved in cognitive functions. These neurons in this region express a high density of 5-HT1A receptors which regulate the neuronal activity and consequently affect the theta rhythm. In this study, we examined changes in the theta-related firing activity of PV-positive neurons in the MS-DB, their response to 5-HT1A receptor stimulation and the corresponding hippocampal theta rhythm, and the density of PV-positive neurons and their co-localization with 5-HT1A receptors in rats with 6-hydroxydopamine lesions of the substantia nigra pars compacta (SNc). The lesion of the SNc decreased the rhythmically bursting activity of PV-positive neurons and the peak frequency of hippocampal theta rhythm. Systemic administration of 5-HT1A receptor agonist 8-OH-DPAT (0.5-128 µg/kg, i.v.) inhibited the firing rate of PV-positive neurons and disrupted rhythmically bursting activity of the neurons and the theta rhythm in sham-operated and the lesioned rats, respectively. The cumulative doses producing inhibition and disruption in the lesioned rats were higher than that of sham-operated rats. Furthermore, local application of 8-OH-DPAT (0.005 μg) in the MS-DB also inhibited the firing rate of PV-positive neurons and disrupted their rhythmically bursting activity in sham-operated rats, while having no effect on PV-positive neurons in the lesioned rats. The lesion of the SNc decreased the density of PV-positive neurons in the MS-DB, and percentage of PV-positive neurons expressing 5-HT1A receptors. These results indicate that the lesion of the SNc leads to suppression of PV-positive neurons in the MS-DB and hippocampal theta rhythm. Furthermore, the lesion decreases the response of these neurons to 5-HT1A receptor stimulation, which attributes to dysfunction and/or down-regulation of 5-HT1A receptor expression on these neurons. These changes may be involved in cognitive impairments of Parkinson's disease.
Collapse
Affiliation(s)
- Li-Bo Li
- Department of Physiology and Pathophysiology, School of Medicine, Xi'an Jiaotong University, Xi'an, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Cui Z, Gerfen CR, Young WS. Hypothalamic and other connections with dorsal CA2 area of the mouse hippocampus. J Comp Neurol 2013; 521:1844-66. [PMID: 23172108 DOI: 10.1002/cne.23263] [Citation(s) in RCA: 144] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2012] [Revised: 06/22/2012] [Accepted: 11/06/2012] [Indexed: 11/08/2022]
Abstract
The CA2 area is an important, although relatively unexplored, component of the hippocampus. We used various tracers to provide a comprehensive analysis of CA2 connections in C57BL/6J mice. Using various adeno-associated viruses that express fluorescent proteins, we found a vasopressinergic projection from the paraventricular nuclei of the hypothalamus (PVN) to the CA2 as well as a projection from pyramidal neurons of the CA2 to the supramammillary nuclei. These projections were confirmed by retrograde tracing. As expected, we observed CA2 afferent projections from neurons in ipsilateral entorhinal cortical layer II as well as from bilateral dorsal CA2 and CA3 using retrograde tracers. Additionally, we saw CA2 neuronal input from bilateral medial septal nuclei, vertical and horizontal limbs of the nucleus of diagonal band of Broca, supramammillary nuclei (SUM), and median raphe nucleus. Dorsal CA2 injections of adeno-associated virus expressing green fluorescent protein revealed axonal projections primarily to dorsal CA1, CA2, and CA3 bilaterally. No projection was detected to the entorhinal cortex from the dorsal CA2. These results are consistent with recent observations that the dorsal CA2 forms disynaptic connections with the entorhinal cortex to influence dynamic memory processing. Mouse dorsal CA2 neurons send bilateral projections to the medial and lateral septal nuclei, vertical and horizontal limbs of the diagonal band of Broca, and SUM. Novel connections from the PVN and to the SUM suggest important regulatory roles for CA2 in mediating social and emotional input for memory processing.
Collapse
Affiliation(s)
- Zhenzhong Cui
- Section on Neural Gene Expression, National Institute of Mental Health, National Institutes of Health, Department of Health and Human Services, Bethesda, Maryland 20892, USA
| | | | | |
Collapse
|
17
|
Olvera-Cortés ME, Gutiérrez-Guzmán BE, López-Loeza E, Hernández-Pérez JJ, López-Vázquez MÁ. Serotonergic modulation of hippocampal theta activity in relation to hippocampal information processing. Exp Brain Res 2013; 230:407-26. [DOI: 10.1007/s00221-013-3679-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2013] [Accepted: 08/07/2013] [Indexed: 10/26/2022]
|
18
|
Olucha-Bordonau FE, Otero-García M, Sánchez-Pérez AM, Núñez A, Ma S, Gundlach AL. Distribution and targets of the relaxin-3 innervation of the septal area in the rat. J Comp Neurol 2012; 520:1903-39. [PMID: 22134882 DOI: 10.1002/cne.23018] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Neural tracing studies have revealed that the rat medial and lateral septum are targeted by ascending projections from the nucleus incertus, a population of tegmental GABA neurons. These neurons express the relaxin-family peptide, relaxin-3, and pharmacological modulation of relaxin-3 receptors in medial septum alters hippocampal theta rhythm and spatial memory. In an effort to better understand the basis of these interactions, we have characterized the distribution of relaxin-3 fibers/terminals in relation to different septal neuron populations identified using established protein markers. Dense relaxin-3 fiber plexuses were observed in regions of medial septum containing hippocampal-projecting choline acetyltransferase (ChAT)-, neuronal nitric oxide synthase (nNOS)-, and parvalbumin (PV)-positive neurons. In lateral septum (LS), relaxin-3 fibers were concentrated in the ventrolateral nucleus of rostral LS and the ventral nucleus of caudal LS, with sparse labeling in the dorsolateral and medial nuclei of rostral LS, dorsal nucleus of caudal LS, and ventral portion nuclei. Relaxin-3 fibers were also observed in the septofimbrial and triangular septal nuclei. In the medial septum, we observed relaxin-3-immunoreactive contacts with ChAT-, PV-, and glutamate decarboxylase-67-positive neurons that projected to hippocampus, and contacts between relaxin-3 terminals and calbindin- and calretinin-positive neurons. Relaxin-3 colocalized with synaptophysin in nerve terminals in all septal areas, and ultrastructural analysis revealed these terminals were symmetrical and contacted spines, somata, dendritic shafts, and occasionally other axonal terminals. These data predict that this GABA/peptidergic projection modulates septohippocampal activity and hippocampal theta rhythm related to exploratory navigation, defensive and ingestive behaviors, and responses to neurogenic stressors.
Collapse
Affiliation(s)
- Francisco E Olucha-Bordonau
- Departamento de Anatomía y Embriología Humana, Facultad de Medicina, Universidad de Valencia, 46010 Valencia, Spain.
| | | | | | | | | | | |
Collapse
|
19
|
Gutiérrez-Guzmán BE, Hernández-Pérez JJ, López-Vázquez MÁ, Fregozo CS, Guevara MÁ, Olvera-Cortés ME. Serotonin depletion of supramammillary/posterior hypothalamus nuclei produces place learning deficiencies and alters the concomitant hippocampal theta activity in rats. Eur J Pharmacol 2012; 682:99-109. [PMID: 22387092 DOI: 10.1016/j.ejphar.2012.02.024] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2011] [Revised: 02/10/2012] [Accepted: 02/15/2012] [Indexed: 11/25/2022]
Abstract
Hippocampal theta activity is important for the acquisition of spatial information and is strongly influenced and regulated by extra-hippocampal inputs from the synchronising ascending system (SAS), which includes the supramammillary nucleus (SUMn) and the posterior hypothalamic nucleus (PHn). Together these nuclei play an important role in controlling the frequency encoding of theta activity and are innervated by serotonin synapses, which also regulate theta activity and learning abilities. The participation of the SUMn in place learning and modulation of hippocampal theta activity were recently shown; thus, we questioned whether serotonin acting on SUMn/PHn could modulate place learning ability and concurrent hippocampal theta activity. The serotonergic terminals of the SUMn/PHn in rats were lesioned through 5,7-dihydroxytryptamine (5,7-DHT) infusion, and hippocampal theta activity during the Morris water maze test was recorded. Rats in the vehicle group learned the task efficiently and showed learning-related theta changes in the CA1 and dentate gyrus regions throughout the training. The 5-HT-depleted rats were deficient in the Morris water maze task and showed theta activity in the CA1 and dentate gyrus that were unrelated to the processing of learning. We conclude that serotonin can regulate the hippocampal theta activity acting on the SUMn/PHn relay of the SAS and that the influence of 5-HT in these nuclei is required for the learning-related changes in hippocampal theta activity that underlie the successful resolution of the Morris water maze task.
Collapse
Affiliation(s)
- Blanca Erika Gutiérrez-Guzmán
- Laboratorio de Neurofisiología Experimental, Centro de Investigación Biomédica de Michoacán, Instituto Mexicano del Seguro Social, Camino de la Arboleda # 300, Ex-hacienda de San José de la Huerta, C.P. 58341, Morelia, Mich., México.
| | | | | | | | | | | |
Collapse
|
20
|
Crooks R, Jackson J, Bland BH. Dissociable pathways facilitate theta and non-theta states in the median raphe-Septohippocampal circuit. Hippocampus 2011; 22:1567-76. [DOI: 10.1002/hipo.20999] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/03/2011] [Indexed: 11/05/2022]
|
21
|
Hippocampal serotonin depletion facilitates place learning concurrent with an increase in CA1 high frequency theta activity expression in the rat. Eur J Pharmacol 2011; 652:73-81. [DOI: 10.1016/j.ejphar.2010.11.014] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2010] [Revised: 11/09/2010] [Accepted: 11/15/2010] [Indexed: 11/20/2022]
|
22
|
Vertes RP. Serotonergic Regulation of Rhythmical Activity of the Brain, Concentrating on the Hippocampus. HANDBOOK OF BEHAVIORAL NEUROSCIENCE 2010. [DOI: 10.1016/s1569-7339(10)70084-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
23
|
Bergado JA, Scherf T, Almaguer-Melian W, Frey S, López J, Frey JU. Stimulation of the nucleus raphe medialis modifies basal synaptic transmission at the dentate gyrus, but not long-term potentiation or its reinforcement by stimulation of the basolateral amygdala. Neurosci Lett 2009; 464:179-83. [DOI: 10.1016/j.neulet.2009.08.034] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2009] [Revised: 08/12/2009] [Accepted: 08/14/2009] [Indexed: 10/20/2022]
|
24
|
Jackson J, Bland BH, Antle MC. Nonserotonergic projection neurons in the midbrain raphe nuclei contain the vesicular glutamate transporter VGLUT3. Synapse 2009; 63:31-41. [PMID: 18925658 DOI: 10.1002/syn.20581] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The brainstem raphe nuclei are typically assigned a role in serotonergic brain function. However, numerous studies have reported that a large proportion of raphe projection cells are nonserotonergic. The identity of these projection cells is unknown. Recent studies have reported that the vesicular glutamate transporter VGLUT3 is found in both serotonergic and nonserotonergic neurons in both the median raphe (MR) and dorsal raphe (DR) nuclei. We injected the retrograde tracer cholera toxin subunit B into either the dorsal hippocampus or the medial septum (MS) and used triple labeled immunofluorescence to determine if nonserotonergic raphe cells projecting to these structures contained VGLUT3. Consistent with previous studies, only about half of retrogradely labeled MR neurons projecting to the hippocampus contained serotonin, whereas a majority of the retrogradely labeled nonserotonergic cells contained VGLUT3. Similar patterns were observed for MR cells projecting to the MS. About half of retrogradely labeled nonserotonergic neurons in the DR contained VGLUT3. Additionally, a large number of retrogradely labeled cells in the caudal linear and interpeduncular nuclei projecting to the MS were found to contain VGLUT3. These data suggest the enigmatic nonserotonergic projection from the MR to forebrain regions may be glutamatergic. In addition, these results demonstrate a dissociation between glutamatergic and serotonergic MR afferent inputs to the MS and hippocampus suggesting divergent and/or complementary roles of these pathways in modulating cellular activity within the septohippocampal network.
Collapse
Affiliation(s)
- Jesse Jackson
- Behavioral Neuroscience Research Group, Department of Psychology, University of Calgary, Calgary, Alberta, Canada
| | | | | |
Collapse
|
25
|
Teruel-Martí V, Cervera-Ferri A, Nuñez A, Valverde-Navarro AA, Olucha-Bordonau FE, Ruiz-Torner A. Anatomical evidence for a ponto-septal pathway via the nucleus incertus in the rat. Brain Res 2008; 1218:87-96. [DOI: 10.1016/j.brainres.2008.04.022] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2008] [Revised: 04/03/2008] [Accepted: 04/04/2008] [Indexed: 11/24/2022]
|
26
|
Jackson J, Dickson CT, Bland BH. Median Raphe Stimulation Disrupts Hippocampal Theta Via Rapid Inhibition and State-Dependent Phase Reset of Theta-Related Neural Circuitry. J Neurophysiol 2008; 99:3009-26. [DOI: 10.1152/jn.00065.2008] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Evidence has accumulated suggesting that the median raphe (MR) mediates hippocampal theta desynchronization. However, few studies have evaluated theta-related neural circuitry during MR manipulation. In urethane-anesthetized rats, we investigated the effects of MR stimulation on hippocampal field and cell activity using high-frequency (100 Hz), theta burst (TBS), and slow-frequency electrical stimulation (0.5 Hz). We demonstrated that high-frequency stimulation of the MR did not elicit deactivated patterns in the forebrain, but rather elicited low-voltage activity in the neocortex and small-amplitude irregular activity (SIA) in the hippocampus. Both hippocampal phasic theta-on and -off cells were inhibited by high-frequency MR stimulation, although MR stimulation failed to affect cells that had neither state or phase relationships with theta field activity. TBS of the MR-induced theta field activity phase locked to the stimulation. Slow-frequency stimulation elicited a state-dependent reset of theta phase through a short-latency inhibition (5 ms) in phasic theta-on cells. Subpopulations of phasic theta-on cells responded in either oscillatory or nonoscillatory patterns to MR pulses, depending on their intraburst interval. off cells exhibited a state-dependent modulation of cell firing occurring preferentially during nontheta. The magnitude of MR-induced reset varied as a function of the phase of the theta oscillation when the pulse was administered. Therefore high-frequency stimulation of the MR appears to disrupt hippocampal theta through a state-dependent, short-latency inhibition of rhythmic cell populations in the hippocampus functioning to switch theta oscillations to an activated SIA field state.
Collapse
|
27
|
Vertes RP, Linley SB. Comparison of projections of the dorsal and median raphe nuclei, with some functional considerations. ACTA ACUST UNITED AC 2007. [DOI: 10.1016/j.ics.2007.07.046] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
28
|
Lemos JC, Pan YZ, Ma X, Lamy C, Akanwa AC, Beck SG. Selective 5-HT receptor inhibition of glutamatergic and GABAergic synaptic activity in the rat dorsal and median raphe. Eur J Neurosci 2006; 24:3415-30. [PMID: 17229091 PMCID: PMC2837807 DOI: 10.1111/j.1460-9568.2006.05222.x] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The dorsal (DR) and median (MR) raphe nuclei contain 5-hydroxytryptamine (5-HT) cell bodies that give rise to the majority of the ascending 5-HT projections to the forebrain. The DR and MR have differential roles in mediating stress, anxiety and depression. Glutamate and GABA activity sculpt putative 5-HT neuronal firing and 5-HT release in a seemingly differential manner in the MR and DR, yet isolated glutamate and GABA activity within the DR and MR has not been systematically characterized. Visualized whole-cell voltage-clamp techniques were used to record excitatory and inhibitory postsynaptic currents (EPSC and IPSC) in 5-HT-containing neurons. There was a regional variation in action potential-dependent (spontaneous) and basal [miniature (m)] glutamate and GABAergic activity. mEPSC activity was greater than mIPSC activity in the DR, whereas in the MR the mIPSC activity was greater. These differences in EPSC and IPSC frequency indicate that glutamatergic and GABAergic input have distinct cytoarchitectures in the DR and MR. 5-HT(1B) receptor activation decreased mEPSC frequency in the DR and the MR, but selectively inhibited mIPSC activity only in the MR. This finding, in concert with its previously described function as an autoreceptor, suggests that 5-HT(1B) receptors influence the ascending 5-HT system through multiple mechanisms. The disparity in organization and integration of glutamatergic and GABAergic input to DR and MR neurons and their regulation by 5-HT(1B) receptors may contribute to the distinction in MR and DR regulation of forebrain regions and their differential function in the aetiology and pharmacological treatment of psychiatric disease states.
Collapse
Affiliation(s)
- Julia C. Lemos
- Department of Anaesthesiology, Children’s Hospital of Philadelphia and University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Yu-Zhen Pan
- Department of Pediatrics, 4 North ARC, room 402 A, Children’s Hospital of Philadelphia and University of Pennsylvania, 3615 Civic Center Boulevard, Philadelphia, PA 19104–4318, USA
| | - Xiaohong Ma
- Department of Pediatrics, 4 North ARC, room 402 A, Children’s Hospital of Philadelphia and University of Pennsylvania, 3615 Civic Center Boulevard, Philadelphia, PA 19104–4318, USA
| | - Christophe Lamy
- Department of Pediatrics, 4 North ARC, room 402 A, Children’s Hospital of Philadelphia and University of Pennsylvania, 3615 Civic Center Boulevard, Philadelphia, PA 19104–4318, USA
| | - Adaure C. Akanwa
- Department of Pediatrics, 4 North ARC, room 402 A, Children’s Hospital of Philadelphia and University of Pennsylvania, 3615 Civic Center Boulevard, Philadelphia, PA 19104–4318, USA
| | - Sheryl G. Beck
- Department of Pediatrics, 4 North ARC, room 402 A, Children’s Hospital of Philadelphia and University of Pennsylvania, 3615 Civic Center Boulevard, Philadelphia, PA 19104–4318, USA
- Department of Anaesthesiology, Children’s Hospital of Philadelphia and University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
29
|
Gordon JA, Lacefield CO, Kentros CG, Hen R. State-dependent alterations in hippocampal oscillations in serotonin 1A receptor-deficient mice. J Neurosci 2006; 25:6509-19. [PMID: 16014712 PMCID: PMC6725436 DOI: 10.1523/jneurosci.1211-05.2005] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Mice lacking the serotonin 1A receptor (5-HT(1A)R) show increased levels of anxiety-related behavior across multiple tests and background strains. Tissue-specific rescue experiments, lesion studies, and neurophysiological findings all point toward the hippocampus as a potential mediator of the phenotype. Serotonin, acting through 5-HT(1A)Rs, can suppress hippocampal theta-frequency oscillations, suggesting that theta oscillations might be increased in the knock-outs. To test this hypothesis, local field potential recordings were obtained from the hippocampus of awake, behaving knock-outs and wild-type littermates. The magnitude of theta oscillations was increased in the knock-outs, specifically in the anxiety-provoking elevated plus maze and not in a familiar environment or during rapid eye movement sleep. Theta power correlated with the fraction of time spent in the open arms, an anxiety-related behavioral variable. These results suggest a possible role for the hippocampus, and theta oscillations in particular, in the expression of anxiety in 5-HT(1A)R-deficient mice.
Collapse
Affiliation(s)
- Joshua A Gordon
- Center for Neurobiology and Behavior, Department of Psychiatry, Columbia University, New York, New York 10032, USA.
| | | | | | | |
Collapse
|
30
|
Abstract
The theta rhythm is the largest extracellular synchronous signal that can be recorded from the mammalian brain, and has been strongly implicated in mnemonic functions of the hippocampus. We advance the proposal that the theta rhythm represents a "tag" for short-term memory processing in the hippocampus. We propose that the hippocampus receives two main types of input, theta from ascending brainstem-diencephalo-septal systems and "information bearing" mainly from thalamocortical and cortical systems. The temporal convergence of activity of these two systems results in the encoding of information in the hippocampus, primarily reaching it via cortical routes. By analogy to processes associated with long-term potentiation (LTP), we suggest that theta represents a strong depolarizing influence on NMDA receptor-containing cells of the hippocampus. The temporal coupling of a theta-induced depolarization and the release of glutamate to these cells from intra- and extrahippocampal sources activates them. This, in turn, initiates processes leading to a (short-term) strengthening of connections between presynaptic ("information bearing") and postsynaptic neurons of the hippocampus. Theta is selectively present in the rat during active exploratory movements. During exploration, a rat continually gathers and updates information about its environment. If this information is temporally coupled to theta (as with the case of locomotion), it becomes temporarily stored in the hippocampus by mechanisms similar to the early phase of LTP (E-LTP). If the exploratory behavior of the rat goes unreinforced, these relatively short-lasting traces (1-3 h) gradually weaken and eventually fade-to be reupdated. On the other hand, if the explorations of the rat lead to rewards (or punishments), additional modulatory inputs to the hippocampus become activated and convert the short-term, theta-dependent memory, into long-term stores.
Collapse
Affiliation(s)
- Robert P Vertes
- Center for Complex Systems and Brain Sciences, Florida Atlantic University, Boca Raton, 33431, USA.
| |
Collapse
|
31
|
Li S, Varga V, Sik A, Kocsis B. GABAergic control of the ascending input from the median raphe nucleus to the limbic system. J Neurophysiol 2005; 94:2561-74. [PMID: 15944232 PMCID: PMC1224729 DOI: 10.1152/jn.00379.2005] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The median raphe nucleus (MRN) is the primary source of serotonergic afferents to the limbic system that are generally considered to suppress hippocampal theta oscillations. GABA receptors are expressed in the MRN by serotonergic and nonserotonergic cells, including GABAergic and glutamatergic neurons. This study investigated the mechanisms by which the fluctuating GABA tone in the MRN leads to induction or suppression of hippocampal theta rhythm. We found that MRN application of the GABA(A) agonist muscimol (0.05-1.0 mM) or GABA(B) agonist baclofen (0.2 mM) by reverse microdialysis had strong theta promoting effects. The GABA(A) antagonist bicuculline infused in low concentrations (0.1, 0.2 mM) eliminated theta rhythm. A short period of theta activity of higher than normal frequency preceded hippocampal desynchronization in 46% of rats. Bicuculline in larger concentrations (0.5, 1.0, 2.0 mM) resulted in a biphasic response of an initial short (<10 min) hippocampal desynchronization followed by stable theta rhythm that lasted as long as the infusion continued. The frequency and amplitude of theta waves were higher than in control recordings and the oscillations showed a conspicuous intermittent character. Hippocampal theta rhythm elicited by MRN administration of bicuculline could be completely (0.5 mM bicuculline) or partially (1.0 mM bicuculline) blocked by simultaneous infusion of the GABA(B) antagonist CGP35348. Our findings suggest that the GABAergic network may have two opposing functions in the MRN: relieving the theta-generators from serotonergic inhibition and regulating the activity of a theta-promoting circuitry by the fluctuating GABA tone. The two mechanisms may be involved in different functions.
Collapse
Affiliation(s)
- Shaomin Li
- Laboratory of Neurophysiology, Departments of Psychiatry at Massachusetts Mental Health Center and Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, USA
| | - Viktor Varga
- Laboratory of Neurophysiology, Departments of Psychiatry at Massachusetts Mental Health Center and Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, USA
- National Institute of Neurosurgery, Budapest Hungary
| | | | - Bernat Kocsis
- Laboratory of Neurophysiology, Departments of Psychiatry at Massachusetts Mental Health Center and Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, USA
- National Institute of Neurosurgery, Budapest Hungary
| |
Collapse
|
32
|
Cunha-Reis D, Sebastião AM, Wirkner K, Illes P, Ribeiro JA. VIP enhances both pre- and postsynaptic GABAergic transmission to hippocampal interneurones leading to increased excitatory synaptic transmission to CA1 pyramidal cells. Br J Pharmacol 2004; 143:733-44. [PMID: 15504757 PMCID: PMC1575932 DOI: 10.1038/sj.bjp.0705989] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2004] [Revised: 08/03/2004] [Accepted: 08/26/2004] [Indexed: 11/08/2022] Open
Abstract
Vasoactive intestinal peptide (VIP) is present in the hippocampus in three subtypes of GABAergic interneurones, two of which innervate preferentially other interneurones, responsible for pyramidal cell inhibition. We investigated how pre- and postsynaptic modulation of GABAergic transmission (to both pyramidal cells and interneurones) by VIP could influence excitatory synaptic transmission in the CA1 area of the hippocampus. VIP (0.1-100 nM) increased [(3)H]GABA release from hippocampal synaptosomes (maximum effect at 1 nM VIP; 63.8 +/- 4.0%) but did not change [(3)H]glutamate release. VIP (0.3-30 nM) enhanced synaptic transmission in hippocampal slices (maximum effect at 1 nM VIP; field excitatory postsynaptic potentials (epsp) slope: 23.7 +/- 1.1%; population spike amplitude: 20.3 +/- 1.7%). The action on field epsp slope was fully dependent on GABAergic transmission since it was absent in the presence of picrotoxin (50 microM) plus CGP55845 (1 microM). VIP (1 nM) did not change paired-pulse facilitation but increased paired-pulse inhibition in CA1 pyramidal cells (16.0 +/- 0.9%), reinforcing the involvement of GABAergic transmission in the action of VIP. VIP (1 nM) increased muscimol-evoked inhibitory currents by 36.4 +/- 8.7% in eight out of ten CA1 interneurones in the stratum radiatum. This suggests that VIP promotes increased inhibition of interneurones that control pyramidal cells, leading to disinhibition of synaptic transmission to pyramidal cell dendrites. In conclusion, concerted pre- and postsynaptic actions of VIP lead to disinhibition of pyramidal cell dendrites causing an enhancement of synaptic transmission.
Collapse
Affiliation(s)
- Diana Cunha-Reis
- Institute of Pharmacology and Neurosciences, Faculty of Medicine and Institute of Molecular Medicine University of Lisbon, Av. Prof. Egas Moniz, 1649-028 Lisbon, Portugal.
| | | | | | | | | |
Collapse
|
33
|
Prange-Kiel J, Rune GM, Leranth C. Median raphe mediates estrogenic effects to the hippocampus in female rats. Eur J Neurosci 2004; 19:309-17. [PMID: 14725625 DOI: 10.1111/j.0953-816x.2003.03124.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Subcortical regions such as the medial septum-diagonal band of Broca and supramammillary area have been shown to mediate indirect oestrogenic effects on hippocampal morphology and function. Here, the role of the median raphe (MR), a serotonergic subcortical structure, is studied. To this end, 17beta-estradiol-filled 30-gauge cannulae were implanted into the MR of female ovariectomized rats; cholesterol-filled cannulae served as controls. After seven days, using unbiased electron microscopic stereological calculations and semiquantitative analysis, the spine synapse density and surface density of glial fibrillary acidic protein-positive astrocyte processes, respectively, were determined in the stratum radiatum of the CA1 region of the hippocampus. Changes in the serotonergic innervation of the hippocampal CA1 region were determined by immunohistochemistry and subsequent morphometric analysis. In the stratum radiatum of the CA1 region, local estradiol application into the MR resulted in a 47% increase in spine synapse density. Simultaneously, the density of glial fibrillary acidic protein-positive fibers decreased by 16%. The density of serotonin (5-HT) innervation of the strata lacunosum moleculare and radiatum of the CA1 region of the hippocampus was reduced in response to estradiol, as shown by a decrease in the length of fibers (27.6 and 48.3% decrease, respectively) and the number of large varicosities (32.5 and 38.8% decrease, respectively). These observations suggest a major role of the MR in mediating oestrogenic effects on the hippocampus and an involvement of the serotonergic system.
Collapse
Affiliation(s)
- Janine Prange-Kiel
- Department of Obstetrics and Gynecology, Yale University, School of Medicine, 333 Cedar Street, FMB 312, New Haven, CT 06520, USA
| | | | | |
Collapse
|
34
|
Kitchigina VF, Kutyreva EV, Brazhnik ES. Modulation of theta rhythmicity in the medial septal neurons and the hippocampal electroencephalogram in the awake rabbit via actions at noradrenergic alpha2-receptors. Neuroscience 2003; 120:509-21. [PMID: 12890520 DOI: 10.1016/s0306-4522(03)00331-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The modulation of the firing discharge of medial septal neurons and of the hippocampal electroencephalogram (EEG) mediated by actions on alpha2-adrenoreceptors (ARs) was investigated in awake rabbits. Bilateral i.c.v. infusion of a relatively low dose (0.5 microg) of the alpha2-AR agonist clonidine produced a reduction in the theta rhythmicity of both medial septal neurons and the hippocampal EEG. In contrast, a high dose of clonidine (5 microg) increased the percentage and degree of rhythmicity of theta bursting medial septal neurons as well as the theta power of the hippocampal EEG. On the other hand, administration of alpha2-AR antagonist idazoxan produced the opposite dose-dependent effect. While a low dose of the antagonist (20 microg) produced an increase in both the theta rhythmicity of medial septal neurons and the theta power of the hippocampal EEG, a high dose (100 microg) caused a reduction of theta rhythmicity in both the medial septum and hippocampus. These results suggest that low doses of alpha2-ARs agents may act at autoreceptors regulating the synaptic release of noradrenaline, while high doses of alpha2-ARs drugs may have a predominant postsynaptic action. Similar results were observed after local injection of the alpha2-AR drugs into the medial septum suggesting that the effects induced by the i.c.v. infusion were primarily mediated at the medial septal level. We suggest that noradrenergic transmission via the postsynaptic alpha2-ARs produces fast and strong activation of the septohippocampal system in situations that require urgent selective attention to functionally significant information (alert, aware), whereas the action via the presynaptic alpha2-ARs allows a quick return of the activity to the initial level.
Collapse
Affiliation(s)
- V F Kitchigina
- Institute of Theoretical and Experimental Biophysics, Puschino, Moscow District 142290, Russia.
| | | | | |
Collapse
|
35
|
Varga V, Sik A, Freund TF, Kocsis B. GABA(B) receptors in the median raphe nucleus: distribution and role in the serotonergic control of hippocampal activity. Neuroscience 2002; 109:119-32. [PMID: 11784704 DOI: 10.1016/s0306-4522(01)00448-1] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Previous studies have shown that serotonergic neurons of the median raphe nucleus have a suppressive effect on theta synchronization in the hippocampus. Median raphe lesion, suppression of 5-HT neuronal activity by administration of GABA(A) receptor antagonist or by glutamate blockade or depletion produced long-lasting non-interrupted hippocampal theta in freely behaving rats independent of behavior and in rats anesthetized with urethane. Serotonergic neurons show a characteristic sleep-wake pattern of activity and there is evidence that GABAergic mechanisms play an important role in their regulation. In this study we analyzed the distribution and subcellular localization of GABA(B) receptors in the midbrain raphe complex using combined 5-HT/GABA(B) receptor immunohistochemistry at the light and electron microscopic levels and studied the effects of their pharmacological manipulation on hippocampal electroencephalographic activity in urethane-anesthetized rats. We found that sustained infusion of the GABA(B) receptor agonist baclofen into the median raphe nucleus, using the microdialysis technique, elicited lasting theta activity in the hippocampus. The effect was antagonized by selective GABA(B) receptor antagonists. The predominant localization of GABA(B) receptors in the median, as well as in dorsal raphe was found on serotonergic neurons which strongly indicates that the increase in theta occurrence after baclofen injection resulted from suppression of the serotonergic output originating from the median raphe. On the electron microscopic level, we found GABA(B) receptors located extrasynaptically indicating that these receptors are preferentially activated by strong inputs, i.e. when GABA released from the synaptic terminals is sufficient to spill over from the synaptic cleft. Such conditions might be satisfied during rapid eye movement sleep when GABAergic neurons in the raphe are firing at their highest rate and in rhythmic synchronized bursts. Our data indicate that midbrain raphe GABA(B) mechanisms play an important role in behavioral state control and in hippocampal activity, in particular.
Collapse
Affiliation(s)
- V Varga
- National Institute of Neurosurgery, Budapest, Hungary
| | | | | | | |
Collapse
|
36
|
McKenna JT, Vertes RP. Collateral projections from the median raphe nucleus to the medial septum and hippocampus. Brain Res Bull 2001; 54:619-30. [PMID: 11403988 DOI: 10.1016/s0361-9230(01)00465-8] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
It has previously been shown that the median raphe nucleus (MR) is a source of pronounced projections to the septum and hippocampus. The present study examined collateral projections from MR to the medial septum (MS) and to various regions of the hippocampus. The fluorescent retrograde tracers, Fluororuby and Fluorogold, were injected into the septum and hippocampus, respectively, and the median raphe nucleus was examined for the presence of single- and double-labeled neurons. The dorsal raphe nucleus (DR) was also examined for the presence of single- and double-labeled cells and comparisons were made with the MR. The main findings were: (1) pronounced numbers of retrogradely labeled cells (approximately 50 cells/section) were present in MR with injections in the MS or in various regions of the hippocampus; (2) approximately 8-12% of MR cells were double-labeled following paired injections in the MS-CA1, MS-CA3, and MS-dentate gyrus of the dorsal hippocampus, the lateral MS-dentate gyrus, and the MS-ventral hippocampus; (3) single- and double-labeled cells were intermingled throughout MR and present in greater numbers in the rostral than caudal MR; and (4) significantly more single- and double-labeled cells were present in MR than in DR with all combinations of injections. These findings demonstrate that MR projects strongly to the MS and hippocampus, and that a significant population of MR neurons (8-12%) sends collateral projections to both sites. It is well established that the MR nucleus serves a direct role in the desynchronization of the electroencephalographic (EEG) activity of the hippocampus-or the blockade of the hippocampal theta rhythm. The MR neurons that we have identified with collateral projections to the septum and hippocampus may be critically involved in the modulation/control of the hippocampal EEG. A role for the MR in memory associated functions of the hippocampus is discussed.
Collapse
Affiliation(s)
- J T McKenna
- Center for Complex Systems and Brain Sciences, Florida Atlantic University, Boca Raton, FL 33431, USA
| | | |
Collapse
|
37
|
Vinogradova OS, Kitchigina VF, Kudina TA, Zenchenko KI. Spontaneous activity and sensory responses of hippocampal neurons during persistent theta-rhythm evoked by median raphe nucleus blockade in rabbit. Neuroscience 1999; 94:745-53. [PMID: 10579565 DOI: 10.1016/s0306-4522(99)00253-5] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Spontaneous activity and responses to sensory stimuli were analysed in the hippocampal CA1 neurons of chronic unanesthetized rabbits before and after reversible functional blockade of the median raphe nucleus and medial septal area by local microinjections of anesthetic lidocaine. This evoked, correspondingly, persistent theta rhythm and its complete blockade for about 30 min. The results were compared to the neuronal data obtained earlier in the experiments with cholinergic drugs modulating expression of theta rhythm. Intra-median raphe nucleus injection of lidocaine evoked uniform increase of discharge rate in the hippocampal neurons with low and high spontaneous activity. Theta modulation of neuronal activity had increased regularity and frequency (by 0.5-2.0 Hz) and appeared in additional group of the neurons simultaneously with expression of persistent theta in the hippocampal electroencephalogram. Sensory responsiveness of the hippocampal neurons was drastically decreased (45% of the responses preserved). Reactions of all types were blocked, diminished, or inverted, but inhibitory responses were the most severely affected. Injection of lidocaine into medial septal area also blocked all brain stem afferents ascending to the hippocampus via medial septal area, thus, totally depriving hippocampus of brainstem-septal input. However, besides the total absence of theta modulation, spontaneous activity in majority of neurons was not significantly changed. Responsiveness to sensory stimuli also remained relatively high (77% of the responses preserved); on-effects were especially resistant to medial septal area blockade. Comparison of spontaneous and evoked activity in two theta states (physostigmine and median raphe nucleus blockade) revealed striking similarity of all characteristics, which suggested that theta-suppressing influences of median raphe nucleus (presumably serotonergic) are realized primarily through the control of cholinergic septo-hippocampal theta-generating mechanism. However, as the frequency of theta rhythm does not depend on it, an additional effect of disinhibition of activating reticular formation by the median raphe nucleus suppression is suggested. The data confirm that theta rhythm may be regarded as active filter in the information processing by the hippocampal neurons.
Collapse
Affiliation(s)
- O S Vinogradova
- Institute of Theoretical and Experimental Biophysics, Puschino, Russia
| | | | | | | |
Collapse
|