1
|
Mota-Rojas D, Bienboire-Frosini C, Orihuela A, Domínguez-Oliva A, Villanueva García D, Mora-Medina P, Cuibus A, Napolitano F, Grandin T. Mother-Offspring Bonding after Calving in Water Buffalo and Other Ruminants: Sensory Pathways and Neuroendocrine Aspects. Animals (Basel) 2024; 14:2696. [PMID: 39335285 PMCID: PMC11428873 DOI: 10.3390/ani14182696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 09/08/2024] [Accepted: 09/11/2024] [Indexed: 09/30/2024] Open
Abstract
The cow-calf bonding is a process that must be developed within the first six hours after calving. Both the buffalo dam and the newborn calf receive a series of sensory cues during calving, including olfactory, tactile, auditory, and visual stimuli. These inputs are processed in the brain to develop an exclusive bond where the dam provides selective care to the filial newborn. The limbic system, sensory cortices, and maternal-related hormones such as oxytocin mediate this process. Due to the complex integration of the maternal response towards the newborn, this paper aims to review the development of the cow-calf bonding process in water buffalo (Bubalus bubalis) via the olfactory, tactile, auditory, and visual stimuli. It will also discuss the neuroendocrine factors motivating buffalo cows to care for the calf using examples in other ruminant species where dam-newborn bonding has been extensively studied.
Collapse
Affiliation(s)
- Daniel Mota-Rojas
- Neurophysiology, Behavior and Animal Welfare Assessment, Department of Animal Production and Agriculture, Universidad Autónoma Metropolitana, Xochimilco Campus, Mexico City 04960, Mexico
| | - Cécile Bienboire-Frosini
- Department of Molecular Biology and Chemical Communication, Research Institute in Semiochemistry and Applied Ethology (IRSEA), 84400 Apt, France
| | - Agustín Orihuela
- Facultad de Ciencias Agropecuarias, Universidad Autónoma del Estado de Morelos, Cuernavaca 62209, Mexico
| | - Adriana Domínguez-Oliva
- Neurophysiology, Behavior and Animal Welfare Assessment, Department of Animal Production and Agriculture, Universidad Autónoma Metropolitana, Xochimilco Campus, Mexico City 04960, Mexico
| | - Dina Villanueva García
- Division of Neonatology, Hospital Infantil de México Federico Gómez, Mexico City 06720, Mexico
| | - Patricia Mora-Medina
- Facultad de Estudios Superiores Cuautitlán, Universidad Nacional Autónoma de México (UNAM), Cuautitlán Izcalli 54714, Mexico
| | - Alex Cuibus
- Faculty of Animal Science and Biotechnologies. University of Agricultural Sciences and Veterinary Medicine of Cluj-Napoca, 400372 Cluj-Napoca, Romania
| | - Fabio Napolitano
- Scuola di Scienze Agrarie, Forestali, Alimentari ed Ambientali, Università degli Studi della Basilicata, 85100 Potenza, Italy
| | - Temple Grandin
- Department of Animal Science, Colorado State University, Fort Collins, CO 80526, USA
| |
Collapse
|
2
|
Gutiérrez-Ibáñez C, Wylie DR. Investigation of central pattern generators in the spinal cord of chicken embryos. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2024; 210:801-814. [PMID: 38521869 PMCID: PMC11384640 DOI: 10.1007/s00359-024-01694-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 01/29/2024] [Accepted: 02/01/2024] [Indexed: 03/25/2024]
Abstract
For most quadrupeds, locomotion involves alternating movements of the fore- and hindlimbs. In birds, however, while walking generally involves alternating movements of the legs, to generate lift and thrust, the wings are moved synchronously with each other. Neural circuits in the spinal cord, referred to as central pattern generators (CPGs), are the source of the basic locomotor rhythms and patterns. Given the differences in the patterns of movement of the wings and legs, it is likely that the neuronal components and connectivity of the CPG that coordinates wing movements differ from those that coordinate leg movements. In this study, we used in vitro preparations of embryonic chicken spinal cords (E11-E14) to compare the neural responses of spinal CPGs that control and coordinate wing flapping with those that control alternating leg movements. We found that in response to N-methyl-D-aspartate (NMDA) or a combination of NMDA and serotonin (5-HT), the intact chicken spinal cord produced rhythmic outputs that were synchronous both bilaterally and between the wing and leg segments. Despite this, we found that this rhythmic output was disrupted by an antagonist of glycine receptors in the lumbosacral (legs), but not the brachial (wing) segments. Thus, our results provide evidence of differences between CPGs that control the wings and legs in the spinal cord of birds.
Collapse
Affiliation(s)
- Cristián Gutiérrez-Ibáñez
- Department of Biological Sciences, University of Alberta, Edmonton, AB, T6G 2E0, Canada.
- Grass Laboratory, Marine Biological Laboratory, Woods Hole, MA, USA.
| | - Douglas R Wylie
- Department of Biological Sciences, University of Alberta, Edmonton, AB, T6G 2E0, Canada
| |
Collapse
|
3
|
Johny A, Janczak AM, Nordgreen J, Toscano MJ, Stratmann A. Mind the ramp: Association between early life ramp use and spatial cognition in laying hen pullets. PLoS One 2024; 19:e0302454. [PMID: 38669289 PMCID: PMC11051627 DOI: 10.1371/journal.pone.0302454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 04/03/2024] [Indexed: 04/28/2024] Open
Abstract
Ramps facilitate earlier access to complex environments and increase early life voluntary exercise, which may positively affect the cognitive development of chickens. This study focused on quantifying individual differences in ramp use and its impact on spatial cognition of laying hen pullets. Sixteen identical pens were housed with Lohmann Selected Leghorn (LSL) chicks of which eight chicks from each pen were colour marked from one day of age (DoA) to serve as focal birds. We quantified overall ramp use (walk/run, wing-assisted incline running, and jump/fly to and from ramps) by scan sampling recorded videos for 6, 10, 12, 20, 27, 41, and 55 DoA for all focal birds. From 56 to 95 DoA, long and short-term spatial memory of three focal birds per pen were assessed in a holeboard test in three consecutive phases: cued, uncued and reversal. Mixed model analysis showed that the spatial cognitive abilities of the birds were linked to differences in ramp use frequency averaged across all observation days. Birds with higher ramp use made fewer reference (Estimate ± Confidence Interval = 0.94 [0.88, 0.99], p = 0.08) and working memory errors (Est ± CI = 0.77 [0.59, 1.00], p = 0.06) in the cued phase than birds with lower ramp use. In contrast, birds with higher ramp use made more reference memory errors (Est ± CI = 1.10 [1.01, 1.20], p = 0.05) in the reversal phase. Birds with higher ramp use also made more reference memory errors compared to birds with lower ramp use as the phases changed from cued to uncued (p = 0.001). Our results indicate that there might be a relationship between early life ramp use and spatial cognition of laying hens.
Collapse
Affiliation(s)
- Alex Johny
- VPHI Institute, Centre for Proper Housing of Poultry and Rabbits, University of Bern, Zollikofen, Switzerland
- Graduate school of Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | - Andrew M. Janczak
- Faculty of Veterinary Medicine, Department of Production Animal Clinical Science, Norwegian University of Life Sciences (NMBU), Ås, Norway
| | - Janicke Nordgreen
- Faculty of Veterinary Medicine, Department of Paraclinical Sciences, Norwegian University of Life Sciences, Ås, Norway
| | - Michael J. Toscano
- VPHI Institute, Centre for Proper Housing of Poultry and Rabbits, University of Bern, Zollikofen, Switzerland
| | - Ariane Stratmann
- VPHI Institute, Centre for Proper Housing of Poultry and Rabbits, University of Bern, Zollikofen, Switzerland
| |
Collapse
|
4
|
Cole WG, Adolph KE. Learning to Move in a Changing Body in a Changing World. Integr Comp Biol 2023; 63:653-663. [PMID: 37355781 PMCID: PMC10503469 DOI: 10.1093/icb/icad083] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 06/13/2023] [Accepted: 06/13/2023] [Indexed: 06/26/2023] Open
Abstract
Infants of all species learn to move in the midst of tremendous variability and rapid developmental change. Traditionally, researchers consider variability to be a problem for development and skill acquisition. Here, we argue for a reconsideration of variability in early life, taking a developmental, ecological, systems approach. Using the development of walking in human infants as an example, we argue that the rich, variable experiences of infancy form the foundation for flexible, adaptive behavior in adulthood. From their first steps, infants must cope with changes in their bodies, skills, and environments. Rapid growth spurts and a continually expanding environment of surfaces, elevations, and obstacles alter the biomechanical constraints on balance and locomotion from day to day and moment to moment. Moreover, infants spontaneously generate a variable practice regimen for learning to walk. Self-initiated locomotion during everyday activity consists of immense amounts of variable, time-distributed, error-filled practice. From infants' first steps and continuing unabated over the next year, infants walk in short bursts of activity (not continual steps), follow curved (not straight) paths, and take steps in every direction (not only forward)-all the while, accompanied by frequent falls as infants push their limits (rather than a steady decrease in errors) and explore their environments. Thus, development ensures tremendous variability-some imposed by physical growth, caregivers, and a changing environment outside infants' control, and some self-generated by infants' spontaneous behavior. The end result of such massive variability is a perceptual-motor system adept at change. Thus, infants do not learn fixed facts about their bodies or environments or their level of walking skill. Instead, they learn how to learn-how to gauge possibilities for action, modify ongoing movements, and generate new movements on the fly from step to step. Simply put, variability in early development is a feature, not a bug. It provides a natural training regimen for successfully navigating complex, ever-changing environments throughout the lifespan. Moreover, observations of infants' natural behavior in natural, cluttered environments-rather than eliciting adult-like behaviors under artificial, controlled conditions-yield very different pictures of what infants of any species do and learn. Over-reliance on traditional tasks that artificially constrain variability therefore risks distorting researchers' understanding of the origins of adaptive behavior.
Collapse
Affiliation(s)
- Whitney G Cole
- Department of Psychology, New York University, 4 Washington Place, NY 10003, USA
| | - Karen E Adolph
- Department of Psychology, New York University, 4 Washington Place, NY 10003, USA
| |
Collapse
|
5
|
Magrini SH, Mossor AM, German RZ, Young JW. Developmental factors influencing bone strength in precocial mammals: An infant pig model. J Anat 2023; 243:174-181. [PMID: 36815568 PMCID: PMC10273336 DOI: 10.1111/joa.13848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 01/17/2023] [Accepted: 02/01/2023] [Indexed: 02/24/2023] Open
Abstract
Most vertebrates are precocial in locomotion, able to walk and run soon after birth. Precociality requires a bony skeleton of sufficient strength to resist mechanical loading during early locomotor efforts. The aim of this study was to use an animal model-the preterm infant pig-to investigate some of the proximate factors that might determine variation in bone strength in precocial animals. Based on the prior literature, we tested the null predictions that skeletal integrity would be significantly compromised by truncated gestation (i.e., preterm birth) and reduced body mass at birth. We generated a suite of both morphometric measures (tissue mineral density and cross-sectional geometry) and performance-related metrics (ability to resist loading, deformation, and fracture during three-point bending tests) of the appendicular skeleton of preterm and full-term infant pigs. Results showed that very few measures in our ontogenetic infant pig sample significantly varied with either gestation length or birth mass. Overall, our results contribute to a growing body of literature demonstrating the early functional capacity of the precocial infant musculoskeletal system and suggest that bone strength in perinatal precocial mammals may be robust to the factors shown to compromise skeletal integrity in more altricial taxa.
Collapse
Affiliation(s)
| | - Angela M. Mossor
- School of Biomedical SciencesKent State UniversityKentOhioUSA
- Department of Anatomy and NeurobiologyNortheast Ohio Medical University (NEOMED)RootstownOhioUSA
| | - Rebecca Z. German
- School of Biomedical SciencesKent State UniversityKentOhioUSA
- Department of Anatomy and NeurobiologyNortheast Ohio Medical University (NEOMED)RootstownOhioUSA
| | - Jesse W. Young
- School of Biomedical SciencesKent State UniversityKentOhioUSA
- Department of Anatomy and NeurobiologyNortheast Ohio Medical University (NEOMED)RootstownOhioUSA
| |
Collapse
|
6
|
Mota-Rojas D, Marcet-Rius M, Domínguez-Oliva A, Martínez-Burnes J, Lezama-García K, Hernández-Ávalos I, Rodríguez-González D, Bienboire-Frosini C. The Role of Oxytocin in Domestic Animal’s Maternal Care: Parturition, Bonding, and Lactation. Animals (Basel) 2023; 13:ani13071207. [PMID: 37048463 PMCID: PMC10093258 DOI: 10.3390/ani13071207] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/22/2023] [Accepted: 03/28/2023] [Indexed: 04/03/2023] Open
Abstract
Oxytocin (OXT) is one of the essential hormones in the birth process; however, estradiol, prolactin, cortisol, relaxin, connexin, and prostaglandin are also present. In addition to parturition, the functions in which OXT is also involved in mammals include the induction of maternal behavior, including imprinting and maternal care, social cognition, and affiliative behavior, which can affect allo-parental care. The present article aimed to analyze the role of OXT and the neurophysiologic regulation of this hormone during parturition, how it can promote or impair maternal behavior and bonding, and its importance in lactation in domestic animals.
Collapse
Affiliation(s)
- Daniel Mota-Rojas
- Neurophysiology, Behavior and Animal Welfare Assessment, DPAA, Xochimilco Campus, Universidad Autónoma Metropolitana, Mexico City 04960, Mexico
| | - Míriam Marcet-Rius
- Department of Animal Behaviour and Welfare, Research Institute in Semiochemistry and Applied Ethology (IRSEA), 84400 Apt, France
| | - Adriana Domínguez-Oliva
- Neurophysiology, Behavior and Animal Welfare Assessment, DPAA, Xochimilco Campus, Universidad Autónoma Metropolitana, Mexico City 04960, Mexico
| | - Julio Martínez-Burnes
- Facultad de Medicina Veterinaria y Zootecnia, Universidad Autónoma de Tamaulipas, Victoria City 87000, Mexico
| | - Karina Lezama-García
- Neurophysiology, Behavior and Animal Welfare Assessment, DPAA, Xochimilco Campus, Universidad Autónoma Metropolitana, Mexico City 04960, Mexico
| | - Ismael Hernández-Ávalos
- Facultad de Estudios Superiores Cuautitlán, Universidad Nacional Autónoma de Mexico (UNAM), Cuautitlán 54714, Mexico
| | - Daniela Rodríguez-González
- Neurophysiology, Behavior and Animal Welfare Assessment, DPAA, Xochimilco Campus, Universidad Autónoma Metropolitana, Mexico City 04960, Mexico
| | - Cécile Bienboire-Frosini
- Department of Molecular Biology and Chemical Communication, Research Institute in Semiochemistry and Applied Ethology (IRSEA), 84400 Apt, France
| |
Collapse
|
7
|
Bienboire-Frosini C, Marcet-Rius M, Orihuela A, Domínguez-Oliva A, Mora-Medina P, Olmos-Hernández A, Casas-Alvarado A, Mota-Rojas D. Mother-Young Bonding: Neurobiological Aspects and Maternal Biochemical Signaling in Altricial Domesticated Mammals. Animals (Basel) 2023; 13:ani13030532. [PMID: 36766424 PMCID: PMC9913798 DOI: 10.3390/ani13030532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 01/27/2023] [Accepted: 01/30/2023] [Indexed: 02/05/2023] Open
Abstract
Mother-young bonding is a type of early learning where the female and their newborn recognize each other through a series of neurobiological mechanisms and neurotransmitters that establish a behavioral preference for filial individuals. This process is essential to promote their welfare by providing maternal care, particularly in altricial species, animals that require extended parental care due to their limited neurodevelopment at birth. Olfactory, auditory, tactile, and visual stimuli trigger the neural integration of multimodal sensory and conditioned affective associations in mammals. This review aims to discuss the neurobiological aspects of bonding processes in altricial mammals, with a focus on the brain structures and neurotransmitters involved and how these influence the signaling during the first days of the life of newborns.
Collapse
Affiliation(s)
- Cécile Bienboire-Frosini
- Department of Molecular Biology and Chemical Communication, Research Institute in Semiochemistry and Applied Ethology (IRSEA), 84400 Apt, France
| | - Míriam Marcet-Rius
- Animal Behaviour and Welfare Department, Research Institute in Semiochemistry and Applied Ethology (IRSEA), 84400 Apt, France
| | - Agustín Orihuela
- Facultad de Ciencias Agropecuarias, Universidad Autónoma del Estado de Morelos, Cuernavaca 62209, Mexico
| | - Adriana Domínguez-Oliva
- Neurophysiology, Behavior and Animal Welfare Assessment, DPAA, Universidad Autónoma Metropolitana, Xochimilco Campus, Mexico City 04960, Mexico
| | - Patricia Mora-Medina
- Facultad de Estudios Superiores Cuautitlán, Universidad Nacional Autónoma de Mexico (UNAM), Cuautitlán Izcalli 54740, Mexico
| | - Adriana Olmos-Hernández
- Division of Biotechnology—Bioterio and Experimental Surgery, Instituto Nacional de Rehabilitación-Luis Guillermo Ibarra Ibarra (INR-LGII), Tlalpan, Mexico City 14389, Mexico
| | - Alejandro Casas-Alvarado
- Neurophysiology, Behavior and Animal Welfare Assessment, DPAA, Universidad Autónoma Metropolitana, Xochimilco Campus, Mexico City 04960, Mexico
| | - Daniel Mota-Rojas
- Neurophysiology, Behavior and Animal Welfare Assessment, DPAA, Universidad Autónoma Metropolitana, Xochimilco Campus, Mexico City 04960, Mexico
- Correspondence:
| |
Collapse
|
8
|
Nojiri T, Werneburg I, Tu VT, Fukui D, Takechi M, Iseki S, Furutera T, Koyabu D. Timing of organogenesis underscores the evolution of neonatal life histories and powered flight in bats. Proc Biol Sci 2023; 290:20221928. [PMID: 36629110 PMCID: PMC9832570 DOI: 10.1098/rspb.2022.1928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 12/09/2022] [Indexed: 01/12/2023] Open
Abstract
Bats have undergone one of the most drastic limb innovations in vertebrate history, associated with the evolution of powered flight. Knowledge of the genetic basis of limb organogenesis in bats has increased but little has been documented regarding the differences between limb organogenesis in bats and that of other vertebrates. We conducted embryological comparisons of the timelines of limb organogenesis in 24 bat species and 72 non-bat amniotes. In bats, the time invested for forelimb organogenesis has been considerably extended and the appearance timing of the forelimb ridge has been significantly accelerated, whereas the timing of the finger and first appearance of the claw development has been delayed, facilitating the enlargement of the manus. Furthermore, we discovered that bats initiate the development of their hindlimbs earlier than their forelimbs compared with other placentals. Bat neonates are known to be able to cling continuously with their well-developed foot to the maternal bodies or habitat substrates soon after birth. We suggest that this unique life history of neonates, which possibly coevolved with powered flight, has driven the accelerated development of the hindlimb and precocious foot.
Collapse
Affiliation(s)
- Taro Nojiri
- Graduate School of Medicine, Juntendo University, 2-1-1, Hongo, Bunkyo-ku, Tokyo 113-8421, Japan
- Graduate School of Environmental Science, Hokkaido University, North 11, West 10, Sapporo 060-0811, Japan
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1, Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan
| | - Ingmar Werneburg
- Senckenberg Centre for Human Evolution and Palaeoenvironment an der Eberhard Karls Universität, Sigwartstraße 10, D-72076 Tübingen, Germany
- Fachbereich Geowissenschaften, Eberhard Karls Universität, Hölderlinstraße 12, 72074 Tübingen, Germany
| | - Vuong Tan Tu
- Institute of Ecology and Biological Resources, Vietnam Academy of Science and Technology, No. 18, Hoang Quoc Viet road, Cau Giay district, Hanoi, Vietnam
- Vietnam Academy of Science and Technology, Graduate University of Science and Technology, No. 18, Hoang Quac Viet road, Cau Giay district, Hanoi, Vietnam
| | - Dai Fukui
- The University of Tokyo Hokkaido Forest, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 9-61, Yamabe-Higashimachi, Furano, Hokkaido 079-1563, Japan
| | - Masaki Takechi
- Graduate School of Medicine, Juntendo University, 2-1-1, Hongo, Bunkyo-ku, Tokyo 113-8421, Japan
- Molecular Craniofacial Embryology, Graduate School of Medicine and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8549, Japan
| | - Sachiko Iseki
- Molecular Craniofacial Embryology, Graduate School of Medicine and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8549, Japan
| | - Toshiko Furutera
- Graduate School of Medicine, Juntendo University, 2-1-1, Hongo, Bunkyo-ku, Tokyo 113-8421, Japan
- Molecular Craniofacial Embryology, Graduate School of Medicine and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8549, Japan
| | - Daisuke Koyabu
- Molecular Craniofacial Embryology, Graduate School of Medicine and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8549, Japan
- Research and Development Center for Precision Medicine, University of Tsukuba, 1-2 Kasuga, Tsukuba-shi, Ibaraki 305-8550, Japan
| |
Collapse
|
9
|
Mota-Rojas D, Bienboire-Frosini C, Marcet-Rius M, Domínguez-Oliva A, Mora-Medina P, Lezama-García K, Orihuela A. Mother-young bond in non-human mammals: Neonatal communication pathways and neurobiological basis. Front Psychol 2022; 13:1064444. [DOI: 10.3389/fpsyg.2022.1064444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Accepted: 11/14/2022] [Indexed: 11/30/2022] Open
Abstract
Mother-young bonding is a process by which the young establish social preferences for their mother. It fosters reproductive success and the survival of offspring by providing food, heat, and maternal care. This process promotes the establishment of the mother-young bond through the interaction of olfactory, auditory, tactile, visual, and thermal stimuli. The neural integration of multimodal sensory stimuli and attachment is coordinated into motor responses. The sensory and neurobiological mechanisms involved in filial recognition in precocial and altricial mammals are summarized and analyzed in this review.
Collapse
|
10
|
Pereira THDS, Monteiro FOB, Pereira da Silva G, Rodrigues de Matos SE, El Bizri HR, Valsecchi J, Bodmer RE, Pérez Peña P, Coutinho LN, López Plana C, Mayor P. Ultrasound evaluation of fetal bone development in the collared (Pecari tajacu) and white-lipped peccary (Tayassu pecari). J Anat 2022; 241:741-755. [PMID: 35796070 PMCID: PMC9358759 DOI: 10.1111/joa.13724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 04/27/2022] [Accepted: 06/20/2022] [Indexed: 11/28/2022] Open
Abstract
The study of fetal development allows for evaluating the different strategies adopted by mammal species to maximize neonatal survival. Autonomous locomotion is fundamental for newborns to perform foraging activities and increases newborn survival from predation. In this study, we assess the gestational bone development of 53 collared (CP, Pecari tajacu) and 61 white-lipped (WLP, Tayassu pecari) peccaries, collected through the collaboration of subsistence hunters in the Amazon. The bone mineralization and biometry of the axial and appendicular skeleton were assessed by ultrasound examinations, and the timing of the main bone developmental events was calculated in relation to the total dorsal length (TDL) and the percentage of the total gestational period (GP). The first US signs of mineralization of the axial skeleton in CP and WLP were observed in fetuses with 3.4 cm (42 gestation days, 30% GPCP ) and 5.1 cm (51 gestation days, 32% GPWLP ). The early development of the appendicular skeleton was observed by the synchronic appearance of the mineralized scapula, humerus, radius, ulna, ilium, ischium, femur, tibia, and fibula at 36% GPCP (50 gestation days), and 35% GPWLP (56 gestation days). The pubis was mineralized in fetuses at 55% GPCP (75 gestation days) and 59% GPWLP (94 gestation days). The mineralization was observed in all autopod bones at 79% GPCP (109 gestation days) and 67% GPWLP (106 gestation days). All primary ossification centers in long bones of thoracic and pelvic limbs were mineralized in advanced fetuses (GPCP and GPWLP ≥75%). The mineralized patella was not observed in advanced fetuses in either species. Secondary ossification centers first appeared at the distal epiphysis of the femur in the CP (99 gestation days, 72% GPCP ) and the distal epiphysis of the radius, femur, and tibia in the WLP (106 gestation days, 67% GPWLP ). Advanced fetuses of CP and WLP presented 60% (15/25) and 68% (17/25) of the total secondary ossification centers observed present in the adult domestic pig, while newborns from the domestic pig presented 52% (13/25). The early intrauterine development of the skeletal system in both peccary species suggests a precocial development strategy, which likely correlates with neonatal ability to escape predators and reduces the dependence on parental care.
Collapse
Affiliation(s)
- Thyago Habner de Souza Pereira
- Federal Rural University of the Amazon (UFRA), Postgraduate Program in Animal Health and Production in Amazonia (PPGSPAA)BelémBrazil
| | - Frederico Ozanan Barros Monteiro
- Federal Rural University of the Amazon (UFRA), Postgraduate Program in Animal Health and Production in Amazonia (PPGSPAA)BelémBrazil
| | - Gessiane Pereira da Silva
- Federal Rural University of the Amazon (UFRA), Postgraduate Program in Animal Health and Production in Amazonia (PPGSPAA)BelémBrazil
| | - Sandy Estefany Rodrigues de Matos
- Federal Rural University of the Amazon (UFRA), Postgraduate Program in Animal Health and Production in Amazonia (PPGSPAA)BelémBrazil
| | - Hani Rocha El Bizri
- Mamirauá Sustainable Development Institute (IDSM)TeféBrazil
- ComFauna, Comunidad de Manejo de Fauna Silvestre en la Amazonía y en LatinoaméricaIquitosPeru
- Rede de Pesquisa sobre Diversidade, Conservação e Uso da Fauna na Amazônia (REDEFAUNA)ManausBrazil
- Faculty of Humanities and Social Sciences, School of Social SciencesOxford Brookes UniversityOxfordUK
| | - João Valsecchi
- Mamirauá Sustainable Development Institute (IDSM)TeféBrazil
- ComFauna, Comunidad de Manejo de Fauna Silvestre en la Amazonía y en LatinoaméricaIquitosPeru
- Rede de Pesquisa sobre Diversidade, Conservação e Uso da Fauna na Amazônia (REDEFAUNA)ManausBrazil
| | | | - Pedro Pérez Peña
- Instituto de Investigaciones de la Amazonía Peruana (IIAP)IquitosPeru
| | - Leandro Nassar Coutinho
- Federal Rural University of the Amazon (UFRA), Postgraduate Program in Animal Health and Production in Amazonia (PPGSPAA)BelémBrazil
| | - Carlos López Plana
- Facultat de Veterinària, Departament de Sanitat i d'Anatomia AnimalsUniversitat Autònoma de Barcelona (UAB)BarcelonaSpain
| | - Pedro Mayor
- Federal Rural University of the Amazon (UFRA), Postgraduate Program in Animal Health and Production in Amazonia (PPGSPAA)BelémBrazil
- ComFauna, Comunidad de Manejo de Fauna Silvestre en la Amazonía y en LatinoaméricaIquitosPeru
- Museo de Culturas Indígenas AmazónicasIquitosPeru
- Facultat de Veterinària, Departament de Sanitat i d'Anatomia AnimalsUniversitat Autònoma de Barcelona (UAB)BarcelonaSpain
| |
Collapse
|
11
|
Mota-Rojas D, Wang D, Titto CG, Martínez-Burnes J, Villanueva-García D, Lezama K, Domínguez A, Hernández-Avalos I, Mora-Medina P, Verduzco A, Olmos-Hernández A, Casas A, Rodríguez D, José N, Rios J, Pelagalli A. Neonatal infrared thermography images in the hypothermic ruminant model: Anatomical-morphological-physiological aspects and mechanisms for thermoregulation. Front Vet Sci 2022; 9:963205. [PMID: 35990264 PMCID: PMC9386124 DOI: 10.3389/fvets.2022.963205] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 07/12/2022] [Indexed: 12/12/2022] Open
Abstract
Hypothermia is one factor associated with mortality in newborn ruminants due to the drastic temperature change upon exposure to the extrauterine environment in the first hours after birth. Ruminants are precocial whose mechanisms for generating heat or preventing heat loss involve genetic characteristics, the degree of neurodevelopment at birth and environmental aspects. These elements combine to form a more efficient mechanism than those found in altricial species. Although the degree of neurodevelopment is an important advantage for these species, their greater mobility helps them to search for the udder and consume colostrum after birth. However, anatomical differences such as the distribution of adipose tissue or the presence of type II muscle fibers could lead to the understanding that these species use their energy resources more efficiently for heat production. The introduction of unconventional ruminant species, such as the water buffalo, has led to rethinking other characteristics like the skin thickness or the coat type that could intervene in the thermoregulation capacity of the newborn. Implementing tools to analyze species-specific characteristics that help prevent a critical decline in temperature is deemed a fundamental strategy for avoiding the adverse effects of a compromised thermoregulatory function. Although thermography is a non-invasive method to assess superficial temperature in several non-human animal species, in newborn ruminants there is limited information about its application, making it necessary to discuss the usefulness of this tool. This review aims to analyze the effects of hypothermia in newborn ruminants, their thermoregulation mechanisms that compensate for this condition, and the application of infrared thermography (IRT) to identify cases with hypothermia.
Collapse
Affiliation(s)
- Daniel Mota-Rojas
- Neurophysiology, Behavior and Animal Welfare Assessment, DPAA, Universidad Autónoma Metropolitana (UAM), Unidad Xochimilco, Mexico City, Mexico
| | - Dehua Wang
- School of Life Sciences, Shandong University, Qingdao, China
| | - Cristiane Gonçalves Titto
- Laboratório de Biometeorologia e Etologia, FZEA-USP, Faculdade de Zootecnia e Engenharia de Alimentos, Universidade de São Paulo, Pirassununga, Brazil
| | - Julio Martínez-Burnes
- Animal Health Group, Facultad de Medicina Veterinaria y Zootecnia, Universidad Autónoma de Tamaulipas, Victoria City, Mexico
| | - Dina Villanueva-García
- Division of Neonatology, National Institute of Health, Hospital Infantil de México Federico Gómez, Mexico City, Mexico
| | - Karina Lezama
- Neurophysiology, Behavior and Animal Welfare Assessment, DPAA, Universidad Autónoma Metropolitana (UAM), Unidad Xochimilco, Mexico City, Mexico
| | - Adriana Domínguez
- Neurophysiology, Behavior and Animal Welfare Assessment, DPAA, Universidad Autónoma Metropolitana (UAM), Unidad Xochimilco, Mexico City, Mexico
| | - Ismael Hernández-Avalos
- Facultad de Estudios Superiores Cuautitlán, Universidad Nacional Autónoma de Mexico (UNAM), Mexico City, Mexico
| | - Patricia Mora-Medina
- Facultad de Estudios Superiores Cuautitlán, Universidad Nacional Autónoma de Mexico (UNAM), Mexico City, Mexico
| | - Antonio Verduzco
- Division of Biotechnology—Bioterio and Experimental Surgery, Instituto Nacional de Rehabilitación-Luis Guillermo Ibarra Ibarra (INR-LGII), Mexico City, Mexico
| | - Adriana Olmos-Hernández
- Division of Biotechnology—Bioterio and Experimental Surgery, Instituto Nacional de Rehabilitación-Luis Guillermo Ibarra Ibarra (INR-LGII), Mexico City, Mexico
| | - Alejandro Casas
- Neurophysiology, Behavior and Animal Welfare Assessment, DPAA, Universidad Autónoma Metropolitana (UAM), Unidad Xochimilco, Mexico City, Mexico
| | - Daniela Rodríguez
- Neurophysiology, Behavior and Animal Welfare Assessment, DPAA, Universidad Autónoma Metropolitana (UAM), Unidad Xochimilco, Mexico City, Mexico
| | - Nancy José
- Neurophysiology, Behavior and Animal Welfare Assessment, DPAA, Universidad Autónoma Metropolitana (UAM), Unidad Xochimilco, Mexico City, Mexico
| | - Jennifer Rios
- Neurophysiology, Behavior and Animal Welfare Assessment, DPAA, Universidad Autónoma Metropolitana (UAM), Unidad Xochimilco, Mexico City, Mexico
| | - Alessandra Pelagalli
- Department of Advanced Biomedical Sciences, University of Napoli Federico II, Naples, Italy
| |
Collapse
|
12
|
Dittmer KE, Neeley C, Perrott MR, Reynolds E, Garrick DJ, Littlejohn MD. Pathology of the peripheral neuropathy Charcot-Marie-Tooth disease type 4H in Holstein Friesian cattle with a splice site mutation in FGD4. Vet Pathol 2022; 59:442-450. [PMID: 35300540 DOI: 10.1177/03009858221083041] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Charcot-Marie-Tooth disease (CMT) is a hereditary sensory and motor peripheral neuropathy that is one of the most common inherited neurological diseases of humans and may be caused by mutations in a number of different genes. The subtype Charcot-Marie-Tooth disease type 4H (CMT4H) is caused by homozygous mutations in the FGD4 (FYVE, RhoGEF, and PH domain-containing 4) gene. A previous genome-wide association study involving 130,783 dairy cows found 6 novel variants, one of which was a homozygous splice site mutation in the FGD4 gene. Descendants of carriers were genotyped to identify 9 homozygous Holstein Friesian calves that were raised to maturity, of which 5 were euthanized and sampled for histopathology and electron microscopy at 2 and 2.5 years of age. Three control Holstein Friesian animals were raised with the calves and euthanized at the same time points. No macroscopic lesions consistent with CMT4H were seen at necropsy. Microscopically, peripheral nerves were hypercellular due to hyperplasia of S100-positive Schwann cells, and there was onion bulb formation, axonal degeneration with demyelination, and increased thickness of the endoneurium. On electron microscopy, decreased axonal density, onion bulb formations, myelin outfoldings, and increased numbers of mitochondria were present. These changes are consistent with those described in mouse models and humans with CMT4H, making these cattle a potential large animal model for CMT.
Collapse
Affiliation(s)
| | | | | | | | | | - Mathew D Littlejohn
- Massey University, Palmerston North, New Zealand.,Livestock Improvement Corporation, Hamilton, New Zealand
| |
Collapse
|
13
|
Wu Q, Liu H, Yang Q, Wei B, Wang L, Tang Q, Wang J, Xi Y, Han C, Wang J, Li L. Developmental Transcriptome Profiling of the Tibial Reveals the Underlying Molecular Basis for Why Newly Hatched Quails Can Walk While Newly Hatched Pigeons Cannot. Front Cell Dev Biol 2022; 10:745129. [PMID: 35198553 PMCID: PMC8858812 DOI: 10.3389/fcell.2022.745129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 01/12/2022] [Indexed: 11/13/2022] Open
Abstract
Birds can be classified into altricial and precocial species. The hatchlings of altricial birds cannot stand, whereas precocial birds can walk and run soon after hatching. It might be owing to the development of the hindlimb bones in the embryo stage, but the molecular regulatory basis underlying the divergence is unclear. To address this issue, we chose the altricial pigeon and the precocial Japanese quail as model animals. The data of tibia weight rate, embryonic skeletal staining, and tibia tissues paraffin section during the embryonic stage showed that the Japanese quail and pigeon have similar skeletal development patterns, but the former had a faster calcification rate. We utilized the comparative transcriptome approach to screen the genes and pathways related to this heterochronism. We separately analyzed the gene expression of tibia tissues of quail and pigeon at two consecutive time points from an inability to stand to be able to stand. There were 2910 differentially expressed genes (DEGs) of quail, and 1635 DEGs of pigeon, respectively. A total of 409 DEGs in common in the quail and pigeon. On the other hand, we compared the gene expression profiles of pigeons and quails at four time points, and screened out eight pairs of expression profiles with similar expression trends but delayed expression in pigeons. By screening the common genes in each pair of expression profiles, we obtained a gene set consisting of 152 genes. A total of 79 genes were shared by the 409 DEGs and the 152 genes. Gene Ontology analysis of these common genes showed that 21 genes including the COL gene family (COL11A1, COL9A3, COL9A1), IHH, MSX2, SFRP1, ATP6V1B1, SRGN, CTHRC1, NOG, and GDF5 involved in the process of endochondral ossification. These genes were the candidate genes for the difference of tibial development between pigeon and quail. This is the first known study on the embryo skeletal staining in pigeon. It provides some new insights for studying skeletal development mechanisms and locomotor ability of altricial and precocial bird species.
Collapse
|
14
|
Rocha JR, Passetto MDF, Maldonado-Menetti JDS, Cabral ALB, Toledo CABD, Koike M. Pigeon as a model to study peripheral projections from the horizontal semicircular canal vestibular apparatus to a brainstem target immunoreactive for AMPA. Acta Cir Bras 2022; 36:e361206. [PMID: 35019066 PMCID: PMC8734960 DOI: 10.1590/acb361206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Accepted: 11/20/2021] [Indexed: 11/26/2022] Open
Abstract
Purpose: To evaluate whether the pigeon (Columba livia) is a good
model for evaluating the vestibular system involved with postural
maintenance during movement. Methods: This study maps the brainstem targets of the horizontal ampullary inputs from
the vestibular periphery of the pigeon. We used biotin dextran amine (BDA)
injection in horizontal semicircular canal (HSCC), immunohistochemistry for
GluR2/3 and GluR4 AMPA and computerized histomorphology reconstruction. Results: Our results show the same distribution pattern with ipsilateral projections
to vestibular nuclear complex (VNC) from the HSCC, with the majority of
labeled fibers being, long, thin, with few varicosities and many
ramifications. Horizontal semicircular canal projections achieve neurons
belonging to all nuclei of the VNC with exception of dorsal portion of
lateral vestibular nucleus and this area express GluR2/3 and GluR4 AMPA
receptors reinforcing the idea of glutamate participation in these
connections. Conclusions: Pigeon is an appropriated experimental model to study of projections of HSCC
and reinforcing the information that the vestibular system has strong
relation with the fast responses necessary for postural control. Moreover,
its phylogenetic organization apparently conservation, also seems to be a
fundamental characteristic for vertebrates.
Collapse
Affiliation(s)
- João Roberto Rocha
- Instituto de Assistência Médica ao Servidor Público Estadual de São Paulo, Brazil
| | | | | | | | | | | |
Collapse
|
15
|
Allonursing in Wild and Farm Animals: Biological and Physiological Foundations and Explanatory Hypotheses. Animals (Basel) 2021; 11:ani11113092. [PMID: 34827824 PMCID: PMC8614478 DOI: 10.3390/ani11113092] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 10/23/2021] [Accepted: 10/27/2021] [Indexed: 12/28/2022] Open
Abstract
The dams of gregarious animals must develop a close bond with their newborns to provide them with maternal care, including protection against predators, immunological transference, and nutrition. Even though lactation demands high energy expenditures, behaviors known as allonursing (the nursing of non-descendant infants) and allosuckling (suckling from any female other than the mother) have been reported in various species of wild or domestic, and terrestrial or aquatic animals. These behaviors seem to be elements of a multifactorial strategy, since reports suggest that they depend on the following: species, living conditions, social stability, and kinship relations, among other group factors. Despite their potential benefits, allonursing and allosuckling can place the health and welfare of both non-filial dams and alien offspring at risk, as it augments the probability of pathogen transmission. This review aims to analyze the biological and physiological foundations and bioenergetic costs of these behaviors, analyzing the individual and collective advantages and disadvantages for the dams' own offspring(s) and alien neonate(s). We also include information on the animal species in which these behaviors occur and their implications on animal welfare.
Collapse
|
16
|
Speijer D. Getting updated on the brain: A review of “Livewired—The inside story of the ever‐changing brain” by David Eagleman. Bioessays 2021. [DOI: 10.1002/bies.202100199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Dave Speijer
- AmsterdamUMC Medical Biochemistry Amsterdam The Netherlands
| |
Collapse
|
17
|
Ramírez-Otarola N, Maldonado K, Cavieres G, Bozinovic F, Sabat P. Nutritional ecology and ecological immunology in degus: Does early nutrition affect the postnatal development of the immune function? JOURNAL OF EXPERIMENTAL ZOOLOGY PART 2020; 335:239-249. [PMID: 33184965 DOI: 10.1002/jez.2429] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 10/19/2020] [Accepted: 10/29/2020] [Indexed: 11/10/2022]
Abstract
Environmental conditions experienced by developing animals have an impact on the development and maturity of the immune system. Specifically, the diet experienced during early development influences the maintenance and function of the immune system in young and adult animals. It is well known that exposure to low-protein diets during early development are related to an attenuation of immunocompetence in adulthood. While this functional linkage has been widely studied in altricial models' mammals, it has been little explored how the nutritional history modulates the immune function in precocial animals. We evaluated the effect of dietary protein consumed during early development on the immune function and the oxidative costs in the precocial Caviomorph rodent Octodon degus, or degu. We evaluated components of the acute phase response (APR) and oxidative parameters before and after immune challenge. We found that after the immune challenge, the juveniles on the low-protein dietary treatment exhibited an attenuation of body temperature but showed higher levels of lipid peroxidation than juvenile degus on the high-protein diet. We did not find a significant effect of the interaction between diet and immune challenge on body mass, levels of inflammatory proteins, nor in the total antioxidant capacity. Our results suggest that some components of the immune function and the oxidative status in the degu can be modulated by diet during development. However, the modulation would depend on the immune variables analyzed, and the characteristics of the immune system of precocial rodents.
Collapse
Affiliation(s)
- Natalia Ramírez-Otarola
- Escuela de Medicina Veterinaria, Facultad de Ciencias, Universidad Mayor, Huechuraba, Santiago, Chile.,Departamento de Ciencias Ecológicas, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | - Karin Maldonado
- Departamento de Ciencias Ecológicas, Facultad de Ciencias, Universidad de Chile, Santiago, Chile.,Departamento de Ciencias, Facultad de Artes Liberales, Universidad Adolfo Ibañez, Santiago, Chile
| | - Grisel Cavieres
- Center of Applied Ecology and Sustainability (CAPES), Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Francisco Bozinovic
- Center of Applied Ecology and Sustainability (CAPES), Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Pablo Sabat
- Departamento de Ciencias Ecológicas, Facultad de Ciencias, Universidad de Chile, Santiago, Chile.,Center of Applied Ecology and Sustainability (CAPES), Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
18
|
da Silva GP, Monteiro FOB, Pereira THDS, de Matos SER, Dos Santos de Andrade R, El Bizri HR, Coutinho LN, Valsecchi J, López-Plana C, Mayor P. Fetal bone development in the lowland paca (Cuniculus paca, Rodentia, Cuniculidae) determined using ultrasonography. J Anat 2020; 237:105-118. [PMID: 32255516 DOI: 10.1111/joa.13184] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 02/20/2020] [Accepted: 02/21/2020] [Indexed: 12/01/2022] Open
Abstract
Studying the timing of the main events of embryonic and fetal development may clarify the strategies adopted by species to maximize neonatal survival and the consequences of these events for their life history. This study describes bone development during the fetal phase of the lowland paca (Cuniculus paca), comparing it with other precocial or altricial species, and its relationship with the species' adaptive strategies. A total of 102 embryos/fetuses obtained over the course of 17 years through collaboration with local subsistence hunters in the Amazon were analyzed. Measurements of mineralization of the axial and appendicular skeletons were performed by ultrasonography using a 10-18-MHz linear transducer. The chronological order of occurrence of mineralization in relation to the total dorsal length (TDL) was: skull (TDL = 4.1 cm); vertebral bodies (TDL = 4.6 cm); scapula, humerus, radius, ulna, ilium, ischium, femur, tibia, and fibula (TDL = 6.7 cm); ribs (TDL = 7.8 cm); clavicle (TDL = 8.5 cm); metacarpi/metatarsi (TDL = 11 cm); phalanges (TDL = 15 cm); tarsus (TDL = 18 cm); patella (TDL = 23 cm); and carpus (TDL = 27.2 cm). Secondary ossification centers first appeared in the femoral distal epiphysis (TDL = 16.6 cm) and tibial proximal epiphysis (TDL = 18.4 cm). Advanced fetuses (TDL > 30 cm, 97% gestational period) presented mineralization in all primary and most secondary centers. Compared to other species, paca neonates have a well-developed skeletal system at birth, which is important for their independent postnatal locomotion. Our results may contribute to the monitoring of bone development in other wild species, helping us to understand their life history, and serving as parameters for comparisons between precocial and altricial mammals.
Collapse
Affiliation(s)
- Gessiane Pereira da Silva
- Postgraduate Program in Animal Health and Production in Amazonia (PPGSPAA), Federal Rural University of the Amazon (UFRA), Belém, Brazil
| | - Frederico Ozanan Barros Monteiro
- Postgraduate Program in Animal Health and Production in Amazonia (PPGSPAA), Federal Rural University of the Amazon (UFRA), Belém, Brazil
| | - Thyago Habner de Souza Pereira
- Postgraduate Program in Animal Health and Production in Amazonia (PPGSPAA), Federal Rural University of the Amazon (UFRA), Belém, Brazil
| | - Sandy Estefany Rodrigues de Matos
- Postgraduate Program in Animal Health and Production in Amazonia (PPGSPAA), Federal Rural University of the Amazon (UFRA), Belém, Brazil
| | - Rafael Dos Santos de Andrade
- Postgraduate Program in Animal Health and Production in Amazonia (PPGSPAA), Federal Rural University of the Amazon (UFRA), Belém, Brazil
| | - Hani Rocha El Bizri
- Mamirauá Sustainable Development Institute (IDSM), Tefé, Brazil.,Comunidad de Manejo de Fauna Silvestre en la Amazonía y en Latinoamérica, ComFauna, Iquitos, Peru.,Rede de Pesquisa para Estudos sobre Diversidade, Conservação e Uso da Fauna na Amazônia (RedeFauna), Manaus, Amazonas, Brazil.,Department of Natural Sciences, Manchester Metropolitan University, Oxford Road, Manchester, UK
| | - Leandro Nassar Coutinho
- Postgraduate Program in Animal Health and Production in Amazonia (PPGSPAA), Federal Rural University of the Amazon (UFRA), Belém, Brazil
| | - João Valsecchi
- Mamirauá Sustainable Development Institute (IDSM), Tefé, Brazil.,Comunidad de Manejo de Fauna Silvestre en la Amazonía y en Latinoamérica, ComFauna, Iquitos, Peru.,Rede de Pesquisa para Estudos sobre Diversidade, Conservação e Uso da Fauna na Amazônia (RedeFauna), Manaus, Amazonas, Brazil
| | - Carlos López-Plana
- Departament de Sanitat i d'Anatomia Animals, Facultat de Veterinària, Universitat Autònoma de Barcelona (UAB), Barcelona, Spain
| | - Pedro Mayor
- Postgraduate Program in Animal Health and Production in Amazonia (PPGSPAA), Federal Rural University of the Amazon (UFRA), Belém, Brazil.,Comunidad de Manejo de Fauna Silvestre en la Amazonía y en Latinoamérica, ComFauna, Iquitos, Peru.,Departament de Sanitat i d'Anatomia Animals, Facultat de Veterinària, Universitat Autònoma de Barcelona (UAB), Barcelona, Spain.,Museo de Culturas Indígenas Amazónicas, Iquitos, Peru
| |
Collapse
|
19
|
|
20
|
Gustison ML, Borjon JI, Takahashi DY, Ghazanfar AA. Vocal and locomotor coordination develops in association with the autonomic nervous system. eLife 2019; 8:e41853. [PMID: 31310236 PMCID: PMC6684270 DOI: 10.7554/elife.41853] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2018] [Accepted: 07/06/2019] [Indexed: 11/13/2022] Open
Abstract
In adult animals, movement and vocalizations are coordinated, sometimes facilitating, and at other times inhibiting, each other. What is missing is how these different domains of motor control become coordinated over the course of development. We investigated how postural-locomotor behaviors may influence vocal development, and the role played by physiological arousal during their interactions. Using infant marmoset monkeys, we densely sampled vocal, postural and locomotor behaviors and estimated arousal fluctuations from electrocardiographic measures of heart rate. We found that vocalizations matured sooner than postural and locomotor skills, and that vocal-locomotor coordination improved with age and during elevated arousal levels. These results suggest that postural-locomotor maturity is not required for vocal development to occur, and that infants gradually improve coordination between vocalizations and body movement through a process that may be facilitated by arousal level changes.
Collapse
Affiliation(s)
- Morgan L Gustison
- Princeton Neuroscience Institute, Princeton UniversityPrincetonUnited States
| | - Jeremy I Borjon
- Princeton Neuroscience Institute, Princeton UniversityPrincetonUnited States
- Department of PsychologyPrinceton UniversityPrincetonUnited States
| | - Daniel Y Takahashi
- Princeton Neuroscience Institute, Princeton UniversityPrincetonUnited States
- Department of PsychologyPrinceton UniversityPrincetonUnited States
| | - Asif A Ghazanfar
- Princeton Neuroscience Institute, Princeton UniversityPrincetonUnited States
- Department of PsychologyPrinceton UniversityPrincetonUnited States
- Department of Ecology and Evolutionary BiologyPrinceton UniversityPrincetonUnited States
| |
Collapse
|
21
|
Butcher MT, Rose JA, Glenn ZD, Tatomirovich NM, Russo GA, Foster AD, Smith GA, Young JW. Ontogenetic allometry and architectural properties of the paravertebral and hindlimb musculature in Eastern cottontail rabbits (Sylvilagus floridanus): functional implications for developmental changes in locomotor performance. J Anat 2019; 235:106-123. [PMID: 31099418 PMCID: PMC6579946 DOI: 10.1111/joa.12991] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/06/2019] [Indexed: 11/27/2022] Open
Abstract
Due to small body size, an immature musculoskeletal system, and other growth-related limits on performance, juvenile mammals frequently experience a greater risk of predation than their adult counterparts. As a result, behaviorally precocious juveniles are hypothesized to exhibit musculoskeletal advantages that permit them to accelerate rapidly and evade predation. This hypothesis was tested through detailed quantitative evaluation of muscle growth in wild Eastern cottontail rabbits (Sylvilagus floridanus). Cottontail rabbits experience high rates of mortality during the first year of life, suggesting that selection might act to improve performance in growing juveniles. Therefore, it was predicted that muscle properties associated with force and power capacity should be enhanced in juvenile rabbits to facilitate enhanced locomotor performance. We quantified muscle architecture from 24 paravertebral and hindlimb muscles across ontogeny in a sample of n = 29 rabbits and evaluated the body mass scaling of muscle mass (MM), physiological cross-sectional area (PCSA), isometric force (Fmax ), and instantaneous power (Pinst ), along with several dimensionless architectural indices. In contrast to our hypothesis, MM and PCSA for most muscles change with positive allometry during growth by scaling at M b 1.3 and M b 1.1 , respectively, whereas Fmax and Pinst generally scale indistinguishably from isometry, as do the architectural indices tested. However, scaling patterns indicate that the digital flexors and ankle extensors of juvenile S. floridanus have greater capacities for force and power, respectively, than those in adults, suggesting these muscle properties may be a part of several compensatory features that promote enhanced acceleration performance in young rabbits. Overall, our study implies that body size constraints place larger, more mature rabbits at a disadvantage during acceleration, and that adults must develop hypertrophied muscles in order to maintain mechanical similarity in force and power capacities across development. These findings challenge the accepted understanding that juvenile animals are at a performance detriment relative to adults. Instead, for prey-predator interactions necessitating short intervals of high force and power generation relative to body mass, as demonstrated by rapid acceleration of cottontail rabbits fleeing predators, it may be the adults that struggle to keep pace with juveniles.
Collapse
Affiliation(s)
- M. T. Butcher
- Department of Biological SciencesYoungstown State UniversityYoungstownOHUSA
| | - J. A. Rose
- Department of Biological SciencesYoungstown State UniversityYoungstownOHUSA
| | - Z. D. Glenn
- Department of Biological SciencesYoungstown State UniversityYoungstownOHUSA
| | - N. M. Tatomirovich
- Department of Biological SciencesYoungstown State UniversityYoungstownOHUSA
| | - G. A. Russo
- Department of AnthropologyStony Brook UniversityStony BrookNYUSA
| | - A. D. Foster
- Department of AnatomyCampbell UniversityBuies CreekNCUSA
| | - G. A. Smith
- Department of Biological SciencesKent State University at StarkCantonOHUSA
| | - J. W. Young
- Department of Anatomy and NeurobiologyNortheast Ohio Medical UniversityRootstownOHUSA
| |
Collapse
|
22
|
Young JW, Shapiro LJ. Developments in development: What have we learned from primate locomotor ontogeny? AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2018; 165 Suppl 65:37-71. [DOI: 10.1002/ajpa.23388] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Jesse W. Young
- Department of Anatomy and NeurobiologyNortheast Ohio Medical University (NEOMED)Rootstown Ohio, 44272
| | - Liza J. Shapiro
- Department of AnthropologyUniversity of TexasAustin Texas, 78712
| |
Collapse
|
23
|
Abstract
The purpose of the present study was to evaluate locomotor strategies during development in domestic chickens (Gallus gallus domesticus); we were motivated, in part, by current efforts to improve the design of housing systems for laying hens which aim to reduce injury and over-exertion. Using four strains of laying hens (Lohmann Brown, Lohmann LSL lite, Dekalb White and Hyline Brown) throughout this longitudinal study, we investigated their locomotor style and climbing capacity in relation to the degree (0 to 70°) of incline, age (2 to 36 weeks) and the surface substrate (sandpaper or wire grid). Chicks and adult fowl performed only walking behavior to climb inclines ⩽40° and performed a combination of wing-assisted incline running (WAIR) or aerial ascent on steeper inclines. Fewer birds used their wings to aid their hind limbs when climbing 50° inclines on wire grid surface compared with sandpaper. The steepness of angle achieved during WAIR and the tendency to fly instead of using WAIR increased with increasing age and experience. White-feathered strains performed more wing-associated locomotor behavior compared with brown-feathered strains. A subset of birds was never able to climb incline angles >40° even when using WAIR. Therefore, we suggest that inclines of up to 40° should be provided for hens in three-dimensional housing systems, which are easily negotiated (without wing use) by chicks and adult fowl.
Collapse
|
24
|
Cadena-Burbano EV, Cavalcanti CCL, Lago AB, Benjamim RDAC, Oliveira TRDP, Silva JM, Manhães-De-Castro R, Da Silva Aragão R. A maternal high-fat/high-caloric diet delays reflex ontogeny during lactation but enhances locomotor performance during late adolescence in rats. Nutr Neurosci 2017; 22:98-109. [DOI: 10.1080/1028415x.2017.1354958] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- Erika Vanesa Cadena-Burbano
- Post-graduate Program of Nutrition, Department of Nutrition, Universidade Federal de Pernambuco, 50670-901 Recife, PE, Brazil
| | | | - Amanda Braz Lago
- Department of Nutrition, Universidade Federal de Pernambuco, 50670-901 Recife, PE, Brazil
| | | | | | - Jacqueline Maria Silva
- Post-graduate Program of Nutrition, Department of Nutrition, Universidade Federal de Pernambuco, 50670-901 Recife, PE, Brazil
| | - Raul Manhães-De-Castro
- Post-graduate Program of Nutrition, Department of Nutrition, Universidade Federal de Pernambuco, 50670-901 Recife, PE, Brazil
| | - Raquel Da Silva Aragão
- Post-graduate Program of Nutrition, Department of Nutrition, Universidade Federal de Pernambuco, 50670-901 Recife, PE, Brazil
| |
Collapse
|
25
|
Tobalske BW, Jackson BE, Dial KP. Ontogeny of Flight Capacity and Pectoralis Function in a Precocial Ground Bird (Alectoris chukar). Integr Comp Biol 2017; 57:217-230. [DOI: 10.1093/icb/icx050] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|
26
|
Sun SY, Bradley NS. Differences in flexor and extensor activity during locomotor-related leg movements in chick embryos. Dev Psychobiol 2017; 59:357-366. [PMID: 28323348 PMCID: PMC9969848 DOI: 10.1002/dev.21500] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Revised: 12/14/2016] [Accepted: 12/21/2016] [Indexed: 11/08/2022]
Abstract
Prior to hatching, chick embryos spontaneously produce repetitive limb movements (RLMs), a developmental precursor to walking. During RLMs, flexor and extensor muscles are alternately active as during stance and swing phases of gait. However, previous studies of RLMs observed that flexor muscles were rhythmically active for many cycles, whereas extensors often failed to be recruited. Thus, we asked if flexor muscles are preferentially recruited during RLMs in chick embryos 1 day before hatching and onset of walking. Using a within-subject design, we compared EMG burst parameters for flexor and extensor muscles acting at the hip or ankle. Findings indicated that flexor burst count exceeded extensor count. Also, flexor muscles were consistently recruited at the lowest levels of neural drive. We conclude that there is a bias favoring flexor muscle recruitment and drive during spontaneously produced RLMs. Potential neural mechanisms and developmental implications of our findings are discussed.
Collapse
Affiliation(s)
- Soo Yeon Sun
- Division of Biokinesiology and Physical Therapy; University of Southern California; Los Angeles California
| | - Nina S. Bradley
- Division of Biokinesiology and Physical Therapy; University of Southern California; Los Angeles California
| |
Collapse
|
27
|
Kozak M, Tobalske B, Martins C, Bowley S, Wuerbel H, Harlander-Matauschek A. Use of space by domestic chicks housed in complex aviaries. Appl Anim Behav Sci 2016. [DOI: 10.1016/j.applanim.2016.05.024] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
28
|
Abstract
The corticospinal system is the principal motor system for controlling movements that require the greatest skill and flexibility. It is the last motor system to develop. The pattern of termination of corticospinal axons, as they grow into the spinal gray matter, bears little resemblance to the pattern later in development and in maturity. Refinement of corticospinal terminations occurs during a protracted postnatal period and includes both elimination of transient terminations and growth to new targets. This refinement is driven by neural activity in the motor cortical areas and by limb motor experience. Developing corticospinal terminals compete with each other for synaptic space on spinal neurons. More active terminals are more competitive and are able to secure more synaptic space than their less active counterparts. Corticospinal terminals can activate spinal neurons from very early in development. The importance of this early synaptic activity appears to be more for refining corticospinal connections than for transmitting signals to spinal motor circuits for movement control. The motor control functions of the corticospinal system are not expressed until development of connectional specificity with spinal cord neurons, a strong capacity for corticospinal synapses to facilitate spinal motor circuits, and the formation of the cortical motor map.
Collapse
Affiliation(s)
- John H Martin
- Center for Neurology and Behavior, Columbia University, 1051 Riverside Drive, New York, NY 10032, USA.
| |
Collapse
|
29
|
LeBlanc S, Tobalske B, Quinton M, Springthorpe D, Szkotnicki B, Wuerbel H, Harlander-Matauschek A. Physical Health Problems and Environmental Challenges Influence Balancing Behaviour in Laying Hens. PLoS One 2016; 11:e0153477. [PMID: 27078835 PMCID: PMC4831827 DOI: 10.1371/journal.pone.0153477] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2015] [Accepted: 03/30/2016] [Indexed: 11/19/2022] Open
Abstract
With rising public concern for animal welfare, many major food chains and restaurants are changing their policies, strictly buying their eggs from non-cage producers. However, with the additional space in these cage-free systems to perform natural behaviours and movements comes the risk of injury. We evaluated the ability to maintain balance in adult laying hens with health problems (footpad dermatitis, keel damage, poor wing feather cover; n = 15) using a series of environmental challenges and compared such abilities with those of healthy birds (n = 5). Environmental challenges consisted of visual and spatial constraints, created using a head mask, perch obstacles, and static and swaying perch states. We hypothesized that perch movement, environmental challenges, and diminished physical health would negatively impact perching performance demonstrated as balance (as measured by time spent on perch and by number of falls of the perch) and would require more exaggerated correctional movements. We measured perching stability whereby each bird underwent eight 30-second trials on a static and swaying perch: with and without disrupted vision (head mask), with and without space limitations (obstacles) and combinations thereof. Video recordings (600 Hz) and a three-axis accelerometer/gyroscope (100 Hz) were used to measure the number of jumps/falls, latencies to leave the perch, as well as magnitude and direction of both linear and rotational balance-correcting movements. Laying hens with and without physical health problems, in both challenged and unchallenged environments, managed to perch and remain off the ground. We attribute this capacity to our training of the birds. Environmental challenges and physical state had an effect on the use of accelerations and rotations to stabilize themselves on a perch. Birds with physical health problems performed a higher frequency of rotational corrections to keep the body centered over the perch, whereas, for both health categories, environmental challenges required more intense and variable movement corrections. Collectively, these results provide novel empirical support for the effectiveness of training, and highlight that overcrowding, visual constraints, and poor physical health all reduce perching performance.
Collapse
Affiliation(s)
- Stephanie LeBlanc
- Department of Animal and Poultry Science, University of Guelph, Guelph, Ontario, Canada
| | - Bret Tobalske
- Division of Biological Sciences, University of Montana, Missoula, Montana, United States of America
| | - Margaret Quinton
- Department of Animal and Poultry Science, University of Guelph, Guelph, Ontario, Canada
| | - Dwight Springthorpe
- Department of Integrative Biology, University of California, Berkeley, California, United States of America
| | - Bill Szkotnicki
- Department of Animal and Poultry Science, University of Guelph, Guelph, Ontario, Canada
| | - Hanno Wuerbel
- Division of Animal Welfare, VPH Institute, University of Bern, Bern, Switzerland
| | | |
Collapse
|
30
|
Swann HE, Kempe RB, Van Orden AM, Brumley MR. Serotonergic activation of locomotor behavior and posture in one-day old rats. Behav Brain Res 2016; 302:104-14. [PMID: 26795091 DOI: 10.1016/j.bbr.2016.01.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2015] [Revised: 11/18/2015] [Accepted: 01/05/2016] [Indexed: 01/28/2023]
Abstract
The purpose of this study was to determine what dose of quipazine, a serotonergic agonist, facilitates air-stepping and induces postural control and patterns of locomotion in newborn rats. Subjects in both experiments were 1-day-old rat pups. In Experiment 1, pups were restrained and tested for air-stepping in a 35-min test session. Immediately following a 5-min baseline, pups were treated with quipazine (1.0, 3.0, or 10.0 mg/kg) or saline (vehicle control), administered intraperitoneally in a 50 μL injection. Bilateral alternating stepping occurred most frequently following treatment with 10.0 mg/kg quipazine, however the percentage of alternating steps, interlimb phase, and step period were very similar between the 3.0 and 10.0 mg/kg doses. For interlimb phase, the forelimbs and hindlimbs maintained a near perfect anti-phase pattern of coordination, with step period averaging about 1s. In Experiment 2, pups were treated with 3.0 or 10.0 mg/kg quipazine or saline, and then were placed on a surface (open field, unrestrained). Both doses of quipazine resulted in developmentally advanced postural control and locomotor patterns, including head elevation, postural stances, pivoting, crawling, and a few instances of quadrupedal walking. The 3.0 mg/kg dose of quipazine was the most effective at evoking sustained locomotion. Between the 2 experiments, behavior exhibited by the rat pup varied based on testing environment, emphasizing the role that environment and sensory cues exert over motor behavior. Overall, quipazine administered at a dose of 3.0 mg/kg was highly effective at promoting alternating limb coordination and inducing locomotor activity in both testing environments.
Collapse
Affiliation(s)
- Hillary E Swann
- Idaho State University, Department of Psychology, Pocatello, ID, United States
| | - R Blaine Kempe
- Idaho State University, Department of Psychology, Pocatello, ID, United States
| | - Ashley M Van Orden
- Idaho State University, Department of Psychology, Pocatello, ID, United States
| | - Michele R Brumley
- Idaho State University, Department of Psychology, Pocatello, ID, United States.
| |
Collapse
|
31
|
Loss of Projections, Functional Compensation, and Residual Deficits in the Mammalian Vestibulospinal System of Hoxb1-Deficient Mice. eNeuro 2015; 2:eN-NWR-0096-15. [PMID: 26730404 PMCID: PMC4697082 DOI: 10.1523/eneuro.0096-15.2015] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Revised: 11/02/2015] [Accepted: 11/12/2015] [Indexed: 11/21/2022] Open
Abstract
The genetic mechanisms underlying the developmental and functional specification of brainstem projection neurons are poorly understood. Here, we use transgenic mouse tools to investigate the role of the gene Hoxb1 in the developmental patterning of vestibular projection neurons, with particular focus on the lateral vestibulospinal tract (LVST). The LVST is the principal pathway that conveys vestibular information to limb-related spinal motor circuits and arose early during vertebrate evolution. We show that the segmental hindbrain expression domain uniquely defined by the rhombomere 4 (r4) Hoxb1 enhancer is the origin of essentially all LVST neurons, but also gives rise to subpopulations of contralateral medial vestibulospinal tract (cMVST) neurons, vestibulo-ocular neurons, and reticulospinal (RS) neurons. In newborn mice homozygous for a Hoxb1-null mutation, the r4-derived LVST and cMVST subpopulations fail to form and the r4-derived RS neurons are depleted. Several general motor skills appear unimpaired, but hindlimb vestibulospinal reflexes, which are mediated by the LVST, are greatly reduced. This functional deficit recovers, however, during the second postnatal week, indicating a substantial compensation for the missing LVST. Despite the compensatory plasticity in balance, adult Hoxb1-null mice exhibit other behavioral deficits that manifest particularly in proprioception and interlimb coordination during locomotor tasks. Our results provide a comprehensive account of the developmental role of Hoxb1 in patterning the vestibular system and evidence for a remarkable developmental plasticity in the descending control of reflex limb movements. They also suggest an involvement of the lateral vestibulospinal tract in proprioception and in ensuring limb alternation generated by locomotor circuitry.
Collapse
|
32
|
Postnatal development of subterranean habits in tuco-tucos Ctenomys talarum (Rodentia, Caviomorpha, Ctenomyidae). J ETHOL 2015. [DOI: 10.1007/s10164-015-0453-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
33
|
Lamas LP, Main RP, Hutchinson JR. Ontogenetic scaling patterns and functional anatomy of the pelvic limb musculature in emus (Dromaius novaehollandiae). PeerJ 2014; 2:e716. [PMID: 25551028 PMCID: PMC4277488 DOI: 10.7717/peerj.716] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2014] [Accepted: 12/10/2014] [Indexed: 11/30/2022] Open
Abstract
Emus (Dromaius novaehollandiae) are exclusively terrestrial, bipedal and cursorial ratites with some similar biomechanical characteristics to humans. Their growth rates are impressive, as their body mass increases eighty-fold from hatching to adulthood whilst maintaining the same mode of locomotion throughout life. These ontogenetic characteristics stimulate biomechanical questions about the strategies that allow emus to cope with their rapid growth and locomotion, which can be partly addressed via scaling (allometric) analysis of morphology. In this study we have collected pelvic limb anatomical data (muscle architecture, tendon length, tendon mass and bone lengths) and calculated muscle physiological cross sectional area (PCSA) and average tendon cross sectional area from emus across three ontogenetic stages (n = 17, body masses from 3.6 to 42 kg). The data were analysed by reduced major axis regression to determine how these biomechanically relevant aspects of morphology scaled with body mass. Muscle mass and PCSA showed a marked trend towards positive allometry (26 and 27 out of 34 muscles respectively) and fascicle length showed a more mixed scaling pattern. The long tendons of the main digital flexors scaled with positive allometry for all characteristics whilst other tendons demonstrated a less clear scaling pattern. Finally, the two longer bones of the limb (tibiotarsus and tarsometatarsus) also exhibited positive allometry for length, and two others (femur and first phalanx of digit III) had trends towards isometry. These results indicate that emus experience a relative increase in their muscle force-generating capacities, as well as potentially increasing the force-sustaining capacities of their tendons, as they grow. Furthermore, we have clarified anatomical descriptions and provided illustrations of the pelvic limb muscle–tendon units in emus.
Collapse
Affiliation(s)
- Luis P Lamas
- Structure and Motion Laboratory, Department of Comparative Biomedical Sciences, The Royal Veterinary College , Hatfield , United Kingdom
| | - Russell P Main
- Department of Basic Medical Sciences, College of Veterinary Medicine, Purdue University , West Lafayette, IN , USA
| | - John R Hutchinson
- Structure and Motion Laboratory, Department of Comparative Biomedical Sciences, The Royal Veterinary College , Hatfield , United Kingdom
| |
Collapse
|
34
|
Strain MM, Brumley MR. Range of motion (ROM) restriction influences quipazine-induced stepping behavior in postnatal day one and day ten rats. Behav Brain Res 2014; 274:365-81. [PMID: 25151623 DOI: 10.1016/j.bbr.2014.08.028] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2013] [Revised: 07/12/2014] [Accepted: 08/13/2014] [Indexed: 10/24/2022]
Abstract
Previous research has shown that neonatal rats can adapt their stepping behavior in response to sensory feedback in real-time. The current study examined real-time and persistent effects of ROM (range of motion) restriction on stepping in P1 and P10 rats. On the day of testing, rat pups were suspended in a sling. After a 5-min baseline, they were treated with the serotonergic receptor agonist quipazine (3.0mg/kg) or saline (vehicle control). Half of the pups had a Plexiglas plate placed beneath them at 50% of limb length to induce a period of ROM restriction during stepping. The entire test session included a 5-min baseline, 15-min ROM restriction, and 15-min post-ROM restriction periods. Following treatment with quipazine, there was an increase in both fore- and hindlimb total movement and alternated steps in P1 and P10 pups. P10 pups also showed more synchronized steps than P1 pups. During the ROM restriction period, there was a suppression of forelimb movement and synchronized steps. We did not find evidence of persistent effects of ROM restriction on the amount of stepping. However, real-time and persistent changes in intralimb coordination occurred. Developmental differences also were seen in the time course of stepping between P1 and P10 pups, with P10 subjects showing show less stepping than younger pups. These results suggest that sensory feedback modulates locomotor activity during the period of development in which the neural mechanisms of locomotion are undergoing rapid development.
Collapse
Affiliation(s)
- Misty M Strain
- Department of Psychology, Idaho State University, 921 S 8th Ave, Stop 8112 Pocatello, ID 83209-8112, USA
| | - Michele R Brumley
- Department of Psychology, Idaho State University, 921 S 8th Ave, Stop 8112 Pocatello, ID 83209-8112, USA.
| |
Collapse
|
35
|
Jamon M. The development of vestibular system and related functions in mammals: impact of gravity. Front Integr Neurosci 2014; 8:11. [PMID: 24570658 PMCID: PMC3916785 DOI: 10.3389/fnint.2014.00011] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2013] [Accepted: 01/20/2014] [Indexed: 12/12/2022] Open
Abstract
This chapter reviews the knowledge about the adaptation to Earth gravity during the development of mammals. The impact of early exposure to altered gravity is evaluated at the level of the functions related to the vestibular system, including postural control, homeostatic regulation, and spatial memory. The hypothesis of critical periods in the adaptation to gravity is discussed. Demonstrating a critical period requires removing the gravity stimulus during delimited time windows, what is impossible to do on Earth surface. The surgical destruction of the vestibular apparatus, and the use of mice strains with defective graviceptors have provided useful information on the consequences of missing gravity perception, and the possible compensatory mechanisms, but transitory suppression of the stimulus can only be operated during spatial flight. The rare studies on rat pups housed on board of space shuttle significantly contributed to this problem, but the use of hypergravity environment, produced by means of chronic centrifugation, is the only available tool when repeated experiments must be carried out on Earth. Even though hypergravity is sometimes considered as a mirror situation to microgravity, the two situations cannot be confused because a gravitational force is still present. The theoretical considerations that validate the paradigm of hypergravity to evaluate critical periods are discussed. The question of adaption of graviceptor is questioned from an evolutionary point of view. It is possible that graviception is hardwired, because life on Earth has evolved under the constant pressure of gravity. The rapid acquisition of motor programming by precocial mammals in minutes after birth is consistent with this hypothesis, but the slow development of motor skills in altricial species and the plasticity of vestibular perception in adults suggest that gravity experience is required for the tuning of graviceptors. The possible reasons for this dichotomy are discussed.
Collapse
Affiliation(s)
- Marc Jamon
- Faculté de Médecine de la Timone, Institut National de la Santé et de la Recherche Médicale U 1106, Aix-Marseille University Marseille, France
| |
Collapse
|
36
|
Bradley NS, Ryu YU, Yeseta MC. Spontaneous locomotor activity in late-stage chicken embryos is modified by stretch of leg muscles. ACTA ACUST UNITED AC 2013; 217:896-907. [PMID: 24265423 DOI: 10.1242/jeb.093567] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Chicks initiate bilateral alternating steps several days before hatching and adaptively walk within hours of hatching, but emergence of precocious walking skills is not well understood. One of our aims was to determine whether interactions between environment and movement experience prior to hatching are instrumental in establishing precocious motor skills. However, physiological evidence of proprioceptor development in the chick has yet to be established; thus, one goal of this study was to determine when in embryogenesis proprioception circuits can code changes in muscle length. A second goal was to determine whether proprioception circuits can modulate leg muscle activity during repetitive limb movements for stepping (RLMs). We hypothesized that proprioception circuits code changes in muscle length and/or tension, and modulate locomotor circuits producing RLMs in anticipation of adaptive locomotion at hatching. To this end, leg muscle activity and kinematics were recorded in embryos during normal posture and after fitting one ankle with a restraint that supported the limb in an atypical posture. We tested the hypotheses by comparing leg muscle activity during spontaneous RLMs in control posture and ankle extension restraint. The results indicated that proprioceptors detect changes in muscle length and/or muscle tension 3 days before hatching. Ankle extension restraint produced autogenic excitation of the ankle flexor and reciprocal inhibition of the ankle extensor. Restraint also modified knee extensor activity during RLMs 1 day before hatching. We consider the strengths and limitations of these results and propose that proprioception contributes to precocious locomotor development during the final 3 days before hatching.
Collapse
Affiliation(s)
- Nina S Bradley
- University of Southern California, Department of Biokinesiology and Physical Therapy, 1540 E. Alcazar Street, Center for Health Professions 155, Los Angeles, CA 90033-9006, USA
| | | | | |
Collapse
|
37
|
Matsui R, Tanabe Y, Watanabe D. Avian adeno-associated virus vector efficiently transduces neurons in the embryonic and post-embryonic chicken brain. PLoS One 2012; 7:e48730. [PMID: 23144948 PMCID: PMC3492410 DOI: 10.1371/journal.pone.0048730] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2012] [Accepted: 09/28/2012] [Indexed: 11/18/2022] Open
Abstract
The domestic chicken is an attractive model system to explore the development and function of brain circuits. Electroporation-mediated and retrovirus (including lentivirus) vector-mediated gene transfer techniques have been widely used to introduce genetic material into chicken cells. However, it is still challenging to efficiently transduce chicken postmitotic neurons without harming the cells. To overcome this problem, we searched for a virus vector suitable for gene transfer into chicken neurons, and report here a novel recombinant virus vector derived from avian adeno-associated virus (A3V). A3V vector efficiently transduces neuronal cells, but not non-neuronal cells in the brain. A single A3V injection into a postembryonic chick brain allows gene expression selectively in neuronal cells within 24 hrs. Such rapid and neuron-specific gene transduction raises the possibility that A3V vector can be utilized for studies of memory formation in filial imprinting, which occurs during the early postnatal days. A3V injection into the neural tube near the ear vesicle at early embryonic stage resulted in persistent and robust gene expression until E20.5 in the auditory brainstem. We further devised an A3V-mediated tetracycline (Tet) dependent gene expression system as a tool for studying the auditory circuit, consisting of the nucleus magnocellularis (NM) and nucleus laminaris (NL), that primarily computes interaural time differences (ITDs). Using this Tet system, we can transduce NM neurons without affecting NL neurons. Thus, the A3V technology complements current gene transfer techniques in chicken studies and will contribute to better understanding of the functional organization of neural circuits.
Collapse
Affiliation(s)
- Ryosuke Matsui
- Department of Molecular and Systems Biology, Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - Yasuto Tanabe
- Department of Developmental Neuroscience, Graduate School of Frontier Biosciences, Osaka University, Suita, Japan
| | - Dai Watanabe
- Department of Molecular and Systems Biology, Graduate School of Biostudies, Kyoto University, Kyoto, Japan
- Department of Biological Sciences, Faculty of Medicine, Kyoto University, Kyoto, Japan
- * E-mail:
| |
Collapse
|
38
|
Shapiro LJ, Young JW. Kinematics of quadrupedal locomotion in sugar gliders (Petaurus breviceps): effects of age and substrate size. J Exp Biol 2012; 215:480-96. [DOI: 10.1242/jeb.062588] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
SUMMARY
Arboreal mammals face unique challenges to locomotor stability. This is particularly true with respect to juveniles, who must navigate substrates similar to those traversed by adults, despite a reduced body size and neuromuscular immaturity. Kinematic differences exhibited by juveniles and adults on a given arboreal substrate could therefore be due to differences in body size relative to substrate size, to differences in neuromuscular development, or to both. We tested the effects of relative body size and age on quadrupedal kinematics in a small arboreal marsupial (the sugar glider, Petaurus breviceps; body mass range of our sample 33-97 g). Juvenile and adult P. breviceps were filmed moving across a flat board and three poles 2.5, 1.0 and 0.5 cm in diameter. Sugar gliders (regardless of age or relative speed) responded to relative decreases in substrate diameter with kinematic adjustments that promote stability; they increased duty factor, increased the average number of supporting limbs during a stride, increased relative stride length and decreased relative stride frequency. Limb phase increased when moving from the flat board to the poles, but not among poles. Compared with adults, juveniles (regardless of relative body size or speed) used lower limb phases, more pronounced limb flexion, and enhanced stability with higher duty factors and a higher average number of supporting limbs during a stride. We conclude that although substrate variation in an arboreal environment presents similar challenges to all individuals, regardless of age or absolute body size, neuromuscular immaturity confers unique problems to growing animals, requiring kinematic compensation.
Collapse
Affiliation(s)
- Liza J. Shapiro
- Department of Anthropology, University of Texas at Austin, Austin, TX 78712-0303, USA
| | - Jesse W. Young
- Department of Anatomy and Neurobiology, Northeastern Ohio Medical University (NEOMED, formerly known as the Northeastern Ohio Universities College of Medicine), Rootstown, OH 44272, USA
| |
Collapse
|
39
|
Volk HA, Shihab N, Matiasek K. Neuromuscular disorders in the cat: clinical approach to weakness. J Feline Med Surg 2011; 13:837-49. [PMID: 22063208 PMCID: PMC10911292 DOI: 10.1016/j.jfms.2011.09.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
Abstract
PRACTICAL RELEVANCE Weakness is a relatively common clinical presentation in feline medicine and can be caused by primary neuromuscular disease or by diseases of other body systems affecting the neuromuscular system secondarily. Successful work-up relies on a thorough clinical and neurological examination, and logical problem solving, based on an understanding of the underlying neuroanatomical and pathophysiological mechanisms. CLINICAL CHALLENGES Feline neuromuscular diseases can be a diagnostic challenge. On initial inspection, the presenting signs can mimic disorders of other body systems, particularly cardiovascular, pulmonary and orthopaedic disease, or may be confused with systemic illnesses. Additionally, because many different pathologies of the feline neuromuscular system converge to a similar clinical phenotype, further diagnostic steps such as electrodiagnostics, cerebrospinal fluid analysis, and muscle and nerve biopsies must be considered even after neuromuscular dysfunction has been identified. AUDIENCE This review provides a framework for the clinical approach to the weak cat and gives a practical summary of neuromuscular diseases for the general practitioner and specialist alike. EVIDENCE BASE Many diseases affecting the feline neuromuscular system have been well described in the veterinary literature, mostly based on retrospective case reports and series. The evidence base for the treatment of feline neuromuscular diseases remains very limited.
Collapse
Affiliation(s)
- Holger A Volk
- Department of Veterinary Clinical Sciences, Royal Veterinary College, Hatfield, UK.
| | | | | |
Collapse
|
40
|
Aragão RDS, Rodrigues MAB, de Barros KMFT, Silva SRF, Toscano AE, de Souza RE, Manhães-de-Castro R. Automatic system for analysis of locomotor activity in rodents—A reproducibility study. J Neurosci Methods 2011; 195:216-21. [DOI: 10.1016/j.jneumeth.2010.12.016] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2010] [Revised: 12/11/2010] [Accepted: 12/13/2010] [Indexed: 11/28/2022]
|
41
|
Shriner AM, Drever FR, Metz GA. The development of skilled walking in the rat. Behav Brain Res 2009; 205:426-35. [PMID: 19660502 PMCID: PMC5222626 DOI: 10.1016/j.bbr.2009.07.029] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2009] [Revised: 07/22/2009] [Accepted: 07/24/2009] [Indexed: 11/24/2022]
Abstract
The rat is an altricial species and consequently undergoes considerable postnatal development. Careful analysis of the emergence and disappearance of motor behaviours is essential to gain insight into the temporal pattern of maturation of motor system structures. This study presents a qualitative analysis of the developmental progression of skilled movement in the rat by using a skilled walking task. A new rung bridge task was used to expose rat pups to a novel environment in order to reveal their potential capabilities. Ten rat pups were filmed daily from postnatal day 7 through postnatal day 30 as they explored the rung bridge task. Discrete changes in skilled and non-skilled walking in fore- and hind-limbs were evaluated by scoring seven categories and 24 subcategories of motor behaviour, including limb flexion and extension, coordination, posture, sensorimotor responses, distal control, and tail use in rat pups. Frame-by-frame analysis of ambulatory movement revealed six distinct stages of locomotor development. The most significant transformation to mature gait patterns was found between postnatal days 15 and 19, and maturation of all motor behaviour was completed by postnatal day 27. The findings are discussed in relation to the maturation of underlying structures and their relevance to studies of brain damage.
Collapse
Affiliation(s)
- Alexandra M. Shriner
- Canadian Centre for Behavioural Neuroscience, University of Lethbridge, 4401 University Drive, Lethbridge, AB, Canada T1K 3M4
| | - Felicia R. Drever
- Canadian Centre for Behavioural Neuroscience, University of Lethbridge, 4401 University Drive, Lethbridge, AB, Canada T1K 3M4
| | - Gerlinde A. Metz
- Canadian Centre for Behavioural Neuroscience, University of Lethbridge, 4401 University Drive, Lethbridge, AB, Canada T1K 3M4
| |
Collapse
|
42
|
Dubrovskaya NM, Zhuravin IA. Ontogenetic characteristics of behavior in rats subjected to hypoxia on day 14 or day 18 of embryogenesis. ACTA ACUST UNITED AC 2009; 40:231-8. [PMID: 20033314 DOI: 10.1007/s11055-009-9235-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2008] [Accepted: 06/09/2008] [Indexed: 10/20/2022]
Abstract
Physiological development, motor activity, and cognitive functions were studied in rats subjected to acute normobaric hypoxic hypoxia (3 h at an O2 concentration of 7%) at different stages of embryogenesis (days E14 or E18). Prenatal hypoxia was found to lead to delays in physiological development and the establishment of motor behavior during the first month of postnatal ontogenesis. These changes were more marked in rats subjected to hypoxia on day 14 of intrauterine development and disappeared with age. In adult rats, regardless of the timing of exposure to hypoxia (E14 or E18), learning ability was degraded and long-term and short-term memory were impaired. These results suggest that exposure to the pathogenic factor during the main period of neuroblast generation and migration (E14) was significant both for physiological development and the establishment of motor behavior in the animals and for the execution of the cognitive functions of the brain, while exposure during the period at which maturation and differentiation processes dominate in the brain (E18) was more significant in relation to the execution of cognitive functions.
Collapse
Affiliation(s)
- N M Dubrovskaya
- I. M. Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, St. Petersburg, Russia.
| | | |
Collapse
|
43
|
A unifying model for timing of walking onset in humans and other mammals. Proc Natl Acad Sci U S A 2009; 106:21889-93. [PMID: 20018704 DOI: 10.1073/pnas.0905777106] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The onset of walking is a fundamental milestone in motor development of humans and other mammals, yet little is known about what factors determine its timing. Hoofed animals start walking within hours after birth, rodents and small carnivores require days or weeks, and nonhuman primates take months and humans approximately a year to achieve this locomotor skill. Here we show that a key to the explanation for these differences is that time to the onset of walking counts from conception and not from birth, indicating that mechanisms underlying motor development constitute a functional continuum from pre- to postnatal life. In a multiple-regression model encompassing 24 species representative of 11 extant orders of placental mammals that habitually walk on the ground, including humans, adult brain mass accounted for 94% of variance in time to walking onset postconception. A dichotomous variable reflecting species differences in functional limb anatomy accounted for another 3.8% of variance. The model predicted the timing of walking onset in humans with high accuracy, showing that this milestone in human motor development occurs no later than expected given the mass of the adult human brain, which in turn reflects the duration of its ontogenetic development. The timing of motor development appears to be highly conserved in mammalian evolution as the ancestors of some of the species in the sample presented here diverged in phylogenesis as long as 100 million years ago. Fundamental patterns of early human life history may therefore have evolved before the evolution of primates.
Collapse
|
44
|
Jackson BE, Segre P, Dial KP. Precocial development of locomotor performance in a ground-dwelling bird (Alectoris chukar): negotiating a three-dimensional terrestrial environment. Proc Biol Sci 2009; 276:3457-66. [PMID: 19570787 DOI: 10.1098/rspb.2009.0794] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Developing animals are particularly vulnerable to predation. Hence, precocial young of many taxa develop predator escape performance that rivals that of adults. Ontogenetically unique among vertebrates, birds transition from hind limb to forelimb dependence for escape behaviours, so developmental investment for immediate gains in running performance may impair flight performance later. Here, in a three-dimensional kinematic study of developing birds performing pre-flight flapping locomotor behaviours, wing-assisted incline running (WAIR) and a newly described behaviour, controlled flapping descent (CFD), we define three stages of locomotor ontogeny in a model gallinaceous bird (Alectoris chukar). In stage I (1-7 days post-hatching (dph)) birds crawl quadrupedally during ascents, and their flapping fails to reduce their acceleration during aerial descents. Stage II (8-19 dph) birds use symmetric wing beats during WAIR, and in CFD significantly reduce acceleration while controlling body pitch to land on their feet. In stage III (20 dph to adults), birds are capable of vertical WAIR and level-powered flight. In contrast to altricial species, which first fly when nearly at adult mass, we show that in a precocial bird the major requirements for flight (i.e. high power output, wing control and wing size) convene by around 8 dph (at ca 5% of adult mass) and yield significant gains in escape performance: immature chukars can fly by 20 dph, at only about 12 per cent of adult mass.
Collapse
Affiliation(s)
- Brandon E Jackson
- Flight Laboratory, Division of Biological Sciences, The University of Montana, Missoula, MT 59812, USA.
| | | | | |
Collapse
|
45
|
Lestyk KC, Folkow LP, Blix AS, Hammill MO, Burns JM. Development of myoglobin concentration and acid buffering capacity in harp (Pagophilus groenlandicus) and hooded (Cystophora cristata) seals from birth to maturity. J Comp Physiol B 2009; 179:985-96. [PMID: 19565249 DOI: 10.1007/s00360-009-0378-9] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2009] [Revised: 06/08/2009] [Accepted: 06/12/2009] [Indexed: 12/01/2022]
Abstract
Pinnipeds rely on muscle oxygen stores to help support aerobic diving, therefore muscle maturation may influence the behavioral ecology of young pinnipeds. To investigate the pattern of muscle development, myoglobin concentration ([Mb]) and acid buffering ability (beta) was measured in ten muscles from 23 harp and 40 hooded seals of various ages. Adult [Mb] ranged from 28-97 to 35-104 mg g tissue(-1) in harp and hooded seals, respectively, with values increasing from the cervical, non-swimming muscles to the main swimming muscles of the lumbar region. Neonatal and weaned pup muscles exhibited lower (approximately 30% adult values) and less variable [Mb] across the body than adults. In contrast, adult beta showed little regional variation (60-90 slykes), while high pup values (approximately 75% adult values) indicate significant in utero development. These findings suggest that intra-uterine conditions are sufficiently hypoxic to stimulate prenatal beta development, but that [Mb] development requires additional postnatal signal such as exercise, and/or growth factors. However, because of limited development in both beta and [Mb] during the nursing period, pups are weaned with muscles with lower aerobic and anaerobic capacities than those of adults.
Collapse
Affiliation(s)
- Keri C Lestyk
- Department of Biological Sciences, University of Alaska Anchorage, Anchorage, AK 99508, USA.
| | | | | | | | | |
Collapse
|
46
|
Abstract
AbstractUltrasonography has not previously been used for studying fetal movements in precocial rodents. The objective of this study was to ultrasonographically determine the sequence of the appearance of basic movements in a guinea pig fetus. The research included eight guinea pig females carrying one fetus each. Fetal movements were observed for 10 minutes each day, from the 25th to 38th day of gestation. The time and sequence of the appearance of movements was observed as follows: whole body flexion (mean 27.6 SD ± 1.68), whole body extension (mean 28.1 SD ± 1.12), head flexion (mean 28.1 SD ± 1.80), head extension (mean 30.5 SD ± 2.67) forelimbs flexion (mean 30.5 SD ± 2.32), forelimbs extension (mean 30.7 SD ± 1.84), trunk rotation (mean 31.9 SD ± 2.23), forelimbs alternating flexion and extension (mean 32.1 SD ± 2.1), hind limbs extension (mean 32.2 SD ± 3.2), hind limbs flexion (mean 32.4 SD ± 3.16), and hind limbs alternating flexion and extension (mean 33.5 SD ± 2.39). The identical sequences of basic movement appearances in guinea pigs, sheep, and rats suggest that the rostrocaudal gradient of basic movement appearance could be a general developmental pattern in mammalian species.
Collapse
|
47
|
Christensson M, Broman J, Garwicz M. Time course of cerebellar morphological development in postnatal ferrets: ontogenetic and comparative perspectives. J Comp Neurol 2007; 501:916-30. [PMID: 17311324 DOI: 10.1002/cne.21291] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
We provide the first systematic description of the morphological ontogenesis of the ferret cerebellum and compare its relative time-course to that of the rat cerebellum. Overall cerebellar size, foliation, and thickness of cortical layers were quantified and Purkinje cell morphology was characterized at 24 timepoints in ferrets from postnatal day (P)1 to P63. The ferret cerebellum was substantially larger than that of the rat and had a much longer developmental period. In ferrets, Purkinje cells were dispersed into a monolayer by P9, the formation of folia declined abruptly around P20, and the external granular layer peaked in thickness around P22 and disappeared by P56. Timepoints of corresponding relative developmental maturity of the quantified architectural features of rat and ferret cerebella were determined and their relationship was analyzed by linear regression. The time-conversion equation derived, describing the relationship between cerebellar morphogenesis in the two species, had a determination coefficient (r2) of 0.95. Conspicuously, the equation predicted with high accuracy the timing of structural changes in individual Purkinje cells in the ferret cerebellum. The conversion equation should be useful for precise quantitative translation of data between studies of ferret and rat cerebellum and for comparisons between development of motor and sensory structures and functions in ferrets. The degree of similarity in the time-courses of cerebellar development in two distantly related mammals makes explicit in quantitative terms how remarkably conserved the cerebellum is in phylogenesis. Therefore, the methodology should be applicable to precise quantitative conversions of cerebellar developmental time-courses also between other species.
Collapse
Affiliation(s)
- Maria Christensson
- Department of Experimental Medical Science, Division of Neuroscience, Lund University, BMC F10, 221 84 Lund, Sweden.
| | | | | |
Collapse
|
48
|
Friel KM, Drew T, Martin JH. Differential activity-dependent development of corticospinal control of movement and final limb position during visually guided locomotion. J Neurophysiol 2007; 97:3396-406. [PMID: 17376849 PMCID: PMC2740651 DOI: 10.1152/jn.00750.2006] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Although we understand that activity- and use-dependent processes are important in determining corticospinal axon terminal development in the spinal cord, little is known about the role of these processes in development of skilled control of limb movements. In the present study we determined the effects of unilateral motor cortex activity blockade produced by muscimol infusion during the corticospinal axon terminal refinement period, between postnatal weeks 5-7, on visually guided locomotion. We examined stepping and forepaw placement on the rungs of a horizontal ladder and gait modifications as animals stepped over obstacles during treadmill walking. When cats traversed the horizontal ladder, the limb contralateral to inactivation was placed significantly farther forward on the rungs than the ipsilateral limb, indicating defective endpoint control. Similarly, when animals stepped over obstacles on a treadmill, the contralateral limb was placed farther in front of the obstacle, but only when it was the first (i.e., leading) limb to step over the obstacle, not when it was the second (i.e., trailing) limb. This is also indicative of an endpoint control deficit. In contrast, neither during ladder walking, nor when stepping over obstacles on the treadmill, was there any consistent evidence for a major impairment in limb trajectory. These results point to distinct and possibility independent corticospinal mechanisms for movement trajectory control and endpoint control. Although corticospinal activity during early postnatal development is needed to refine circuits for accurate endpoint control, this activity-dependent refinement is not needed for movement trajectory control.
Collapse
Affiliation(s)
- K. M. Friel
- Center for Neurobiology and Behavior, Columbia University, New York
| | - T. Drew
- Department of Physiology, Université de Montréal, Montreal, Quebec, Canada
| | - J. H. Martin
- Center for Neurobiology and Behavior, Columbia University, New York
- New York State Psychiatric Institute, New York, New York
| |
Collapse
|
49
|
Gibb AC, Liu C, Swanson BO. Heterochrony and the development of the escape response: prehatching movements in the rainbow troutOncorhynchus mykiss. ACTA ACUST UNITED AC 2007; 307:556-67. [PMID: 17683078 DOI: 10.1002/jez.409] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Teleost fishes produce coordinated escape responses (C-starts) at hatching. This implies that essential swimming morphologies and motor behaviors develop during the incubation interval while the embryo is in the chorion. We examined prehatching motor behaviors in rainbow trout Oncorhycus mykiss (considered morphologically mature at hatching) and compared this species with zebrafish Danio rerio (considered morphologically immature) and assessed two hypotheses concerning the development of escape behavior. (1) Escape behavior is associated with the formation of key elements of the musculoskeletal and nervous systems; thus, the escape response appears early in ontogeny, when these elements form. (2) Escape behavior is not directly associated with the formation of underlying morphological elements; instead, it appears at hatching (i.e. when needed). We find that rainbow trout, like zebrafish, respond to touch early in the incubation interval, but do not demonstrate a complete C-start (including the second, propulsive stage) until shortly before hatching. At hatching, rainbow trout and zebrafish are similar in the degree of development of the chondocranium, paired fins and visceral arches (which comprise the larval jaw and gill support); however, rainbow trout have incipient rays in their unpaired fins (dorsal, anal and caudal), whereas zebrafish retain the embryonic fin fold. Although rainbow trout are more mature in axial swimming morphology at hatching, the essential neural and musculoskeletal systems that produce a coordinated escape response are functional at hatching in both species. This finding supports the evolutionary hypothesis that an effective escape response is critical for the survival of newly hatched teleost fishes.
Collapse
Affiliation(s)
- Alice C Gibb
- Department of Biology, Northern Arizona University, Flagstaff, Arizona 86011-5640, USA.
| | | | | |
Collapse
|
50
|
van Wessel T, Langenbach GEJ, Brugman P, Korfage JAM, van Eijden TMGJ. Daily activity of the rabbit jaw muscles during early postnatal development. Neuroscience 2006; 140:137-46. [PMID: 16529874 DOI: 10.1016/j.neuroscience.2006.01.037] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2005] [Revised: 01/17/2006] [Accepted: 01/29/2006] [Indexed: 10/24/2022]
Abstract
Early postnatal development of the jaw muscles is characterized by the transition from suckling to chewing behavior. As chewing develops the jaw closing muscles become more powerful compared with the jaw openers. These changes are likely to affect the amount of daily muscle activity. Therefore, the purpose of this study was to characterize for a jaw opener (digastric) and jaw closer (masseter) the total duration of daily muscle activity (i.e. the duty time), and the daily burst numbers and lengths during early postnatal development. Using radiotelemetry the activity of these muscles was recorded in 10 young New Zealand White rabbits between three and eight weeks of age. Fiber-type composition was analyzed at eight weeks of age by determining the myosin heavy chain content of the fibers. During postnatal development both muscles showed no significant decrease or increase in their daily activity. However, the interindividual variation of the duty time and burst number significantly decreased. There were no significant differences between the digastric and masseter except for the most powerful activities at eight weeks of age, where the masseter showed a significantly higher duty time and burst number than the digastric. The masseter contained a higher number of slow-type fibers expressing myosin heavy chain-I and myosin heavy chain-cardiac alpha than the digastric. The present results suggest that the amount of jaw muscle activation is already established early during postnatal development, before the transition from suckling to chewing behavior. This amount of activation seems to be related to the number of slow-type fibers.
Collapse
Affiliation(s)
- T van Wessel
- Department of Functional Anatomy, Academic Centre for Dentistry Amsterdam, Universiteit van Amsterdam and Vrije Universiteit, Meibergdreef 15, 1105 AZ, Amsterdam, The Netherlands.
| | | | | | | | | |
Collapse
|