1
|
Kovács A, Szabó E, László K, Kertes E, Zagorácz O, Mintál K, Tóth A, Gálosi R, Berta B, Lénárd L, Hormay E, László B, Zelena D, Tóth ZE. Brain RFamide Neuropeptides in Stress-Related Psychopathologies. Cells 2024; 13:1097. [PMID: 38994950 PMCID: PMC11240450 DOI: 10.3390/cells13131097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 06/21/2024] [Accepted: 06/22/2024] [Indexed: 07/13/2024] Open
Abstract
The RFamide peptide family is a group of proteins that share a common C-terminal arginine-phenylalanine-amide motif. To date, the family comprises five groups in mammals: neuropeptide FF, LPXRFamides/RFamide-related peptides, prolactin releasing peptide, QRFP, and kisspeptins. Different RFamide peptides have their own cognate receptors and are produced by different cell populations, although they all can also bind to neuropeptide FF receptors with different affinities. RFamide peptides function in the brain as neuropeptides regulating key aspects of homeostasis such as energy balance, reproduction, and cardiovascular function. Furthermore, they are involved in the organization of the stress response including modulation of pain. Considering the interaction between stress and various parameters of homeostasis, the role of RFamide peptides may be critical in the development of stress-related neuropathologies. This review will therefore focus on the role of RFamide peptides as possible key hubs in stress and stress-related psychopathologies. The neurotransmitter coexpression profile of RFamide-producing cells is also discussed, highlighting its potential functional significance. The development of novel pharmaceutical agents for the treatment of stress-related disorders is an ongoing need. Thus, the importance of RFamide research is underlined by the emergence of peptidergic and G-protein coupled receptor-based therapeutic targets in the pharmaceutical industry.
Collapse
Affiliation(s)
- Anita Kovács
- Institute of Physiology, Medical School, Centre for Neuroscience, Szentágothai Research Centre, University of Pécs, H7624 Pécs, Hungary; (A.K.); (E.S.); (K.L.); (E.K.); (O.Z.); (K.M.); (A.T.); (R.G.); (B.B.); (L.L.); (E.H.); (B.L.)
| | - Evelin Szabó
- Institute of Physiology, Medical School, Centre for Neuroscience, Szentágothai Research Centre, University of Pécs, H7624 Pécs, Hungary; (A.K.); (E.S.); (K.L.); (E.K.); (O.Z.); (K.M.); (A.T.); (R.G.); (B.B.); (L.L.); (E.H.); (B.L.)
| | - Kristóf László
- Institute of Physiology, Medical School, Centre for Neuroscience, Szentágothai Research Centre, University of Pécs, H7624 Pécs, Hungary; (A.K.); (E.S.); (K.L.); (E.K.); (O.Z.); (K.M.); (A.T.); (R.G.); (B.B.); (L.L.); (E.H.); (B.L.)
| | - Erika Kertes
- Institute of Physiology, Medical School, Centre for Neuroscience, Szentágothai Research Centre, University of Pécs, H7624 Pécs, Hungary; (A.K.); (E.S.); (K.L.); (E.K.); (O.Z.); (K.M.); (A.T.); (R.G.); (B.B.); (L.L.); (E.H.); (B.L.)
| | - Olga Zagorácz
- Institute of Physiology, Medical School, Centre for Neuroscience, Szentágothai Research Centre, University of Pécs, H7624 Pécs, Hungary; (A.K.); (E.S.); (K.L.); (E.K.); (O.Z.); (K.M.); (A.T.); (R.G.); (B.B.); (L.L.); (E.H.); (B.L.)
| | - Kitti Mintál
- Institute of Physiology, Medical School, Centre for Neuroscience, Szentágothai Research Centre, University of Pécs, H7624 Pécs, Hungary; (A.K.); (E.S.); (K.L.); (E.K.); (O.Z.); (K.M.); (A.T.); (R.G.); (B.B.); (L.L.); (E.H.); (B.L.)
| | - Attila Tóth
- Institute of Physiology, Medical School, Centre for Neuroscience, Szentágothai Research Centre, University of Pécs, H7624 Pécs, Hungary; (A.K.); (E.S.); (K.L.); (E.K.); (O.Z.); (K.M.); (A.T.); (R.G.); (B.B.); (L.L.); (E.H.); (B.L.)
| | - Rita Gálosi
- Institute of Physiology, Medical School, Centre for Neuroscience, Szentágothai Research Centre, University of Pécs, H7624 Pécs, Hungary; (A.K.); (E.S.); (K.L.); (E.K.); (O.Z.); (K.M.); (A.T.); (R.G.); (B.B.); (L.L.); (E.H.); (B.L.)
| | - Bea Berta
- Institute of Physiology, Medical School, Centre for Neuroscience, Szentágothai Research Centre, University of Pécs, H7624 Pécs, Hungary; (A.K.); (E.S.); (K.L.); (E.K.); (O.Z.); (K.M.); (A.T.); (R.G.); (B.B.); (L.L.); (E.H.); (B.L.)
| | - László Lénárd
- Institute of Physiology, Medical School, Centre for Neuroscience, Szentágothai Research Centre, University of Pécs, H7624 Pécs, Hungary; (A.K.); (E.S.); (K.L.); (E.K.); (O.Z.); (K.M.); (A.T.); (R.G.); (B.B.); (L.L.); (E.H.); (B.L.)
| | - Edina Hormay
- Institute of Physiology, Medical School, Centre for Neuroscience, Szentágothai Research Centre, University of Pécs, H7624 Pécs, Hungary; (A.K.); (E.S.); (K.L.); (E.K.); (O.Z.); (K.M.); (A.T.); (R.G.); (B.B.); (L.L.); (E.H.); (B.L.)
| | - Bettina László
- Institute of Physiology, Medical School, Centre for Neuroscience, Szentágothai Research Centre, University of Pécs, H7624 Pécs, Hungary; (A.K.); (E.S.); (K.L.); (E.K.); (O.Z.); (K.M.); (A.T.); (R.G.); (B.B.); (L.L.); (E.H.); (B.L.)
| | - Dóra Zelena
- Institute of Physiology, Medical School, Centre for Neuroscience, Szentágothai Research Centre, University of Pécs, H7624 Pécs, Hungary; (A.K.); (E.S.); (K.L.); (E.K.); (O.Z.); (K.M.); (A.T.); (R.G.); (B.B.); (L.L.); (E.H.); (B.L.)
| | - Zsuzsanna E. Tóth
- Department of Anatomy, Histology and Embryology, Semmelweis University, H1094 Budapest, Hungary
| |
Collapse
|
2
|
Quillet R, Ayachi S, Bihel F, Elhabazi K, Ilien B, Simonin F. RF-amide neuropeptides and their receptors in Mammals: Pharmacological properties, drug development and main physiological functions. Pharmacol Ther 2016; 160:84-132. [PMID: 26896564 DOI: 10.1016/j.pharmthera.2016.02.005] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
RF-amide neuropeptides, with their typical Arg-Phe-NH2 signature at their carboxyl C-termini, belong to a lineage of peptides that spans almost the entire life tree. Throughout evolution, RF-amide peptides and their receptors preserved fundamental roles in reproduction and feeding, both in Vertebrates and Invertebrates. The scope of this review is to summarize the current knowledge on the RF-amide systems in Mammals from historical aspects to therapeutic opportunities. Taking advantage of the most recent findings in the field, special focus will be given on molecular and pharmacological properties of RF-amide peptides and their receptors as well as on their implication in the control of different physiological functions including feeding, reproduction and pain. Recent progress on the development of drugs that target RF-amide receptors will also be addressed.
Collapse
Affiliation(s)
- Raphaëlle Quillet
- Biotechnologie et Signalisation Cellulaire, UMR 7242 CNRS, Université de Strasbourg, Illkirch, France
| | - Safia Ayachi
- Biotechnologie et Signalisation Cellulaire, UMR 7242 CNRS, Université de Strasbourg, Illkirch, France
| | - Frédéric Bihel
- Laboratoire Innovation Thérapeutique, UMR 7200 CNRS, Université de Strasbourg, Illkirch, France
| | - Khadija Elhabazi
- Biotechnologie et Signalisation Cellulaire, UMR 7242 CNRS, Université de Strasbourg, Illkirch, France
| | - Brigitte Ilien
- Biotechnologie et Signalisation Cellulaire, UMR 7242 CNRS, Université de Strasbourg, Illkirch, France
| | - Frédéric Simonin
- Biotechnologie et Signalisation Cellulaire, UMR 7242 CNRS, Université de Strasbourg, Illkirch, France.
| |
Collapse
|
3
|
Umatani C, Abe H, Oka Y. Neuropeptide RFRP inhibits the pacemaker activity of terminal nerve GnRH neurons. J Neurophysiol 2013; 109:2354-63. [PMID: 23390313 DOI: 10.1152/jn.00712.2012] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
The terminal nerve gonadotropin-releasing hormone (TN-GnRH) neurons show spontaneous pacemaker activity whose firing frequency is suggested to regulate the release of GnRH peptides and control motivation for reproductive behaviors. Previous studies of the electrophysiological properties of TN-GnRH neurons reported excitatory modulation of pacemaker activity by auto/paracrine and synaptic modulations, but inhibition of pacemaker activity has not been reported to date. Our recent study suggests that neuropeptide FF, a type of Arg-Phe-amide (RFamide) peptide expressed in TN-GnRH neurons themselves, inhibits the pacemaker activity of TN-GnRH neurons in an auto- and paracrine manner. In the present study, we examined whether RFamide-related peptides (RFRPs), which are produced in the hypothalamus, modulate the pacemaker activity of TN-GnRH neurons as candidate inhibitory synaptic modulators. Bath application of RFRP2, among the three teleost RFRPs, decreased the frequency of firing of TN-GnRH neurons. This inhibition was diminished by RF9, a potent antagonist of GPR147/74, which are candidate RFRP receptors. RFRP2 changed the conductances for Na(+) and K(+). The reversal potential for RFRP2-induced current was altered by inhibitors of the transient receptor potential canonical (TRPC) channel (La(3+) and 2-aminoethoxydiphenyl borate) and by a less selective blocker of voltage-independent K(+) channels (Ba(2+)). By comparing the current-voltage relationship in artificial cerebrospinal fluid with that under each drug, the RFRP2-induced current was suggested to consist of TRPC channel-like current and voltage-independent K(+) current. Therefore, synaptic release of RFRP2 from hypothalamic neurons is suggested to inhibit the pacemaker activity of TN-GnRH neurons by closing TRPC channels and opening voltage-independent K(+) channels. This novel pathway may negatively regulate reproductive behaviors.
Collapse
Affiliation(s)
- Chie Umatani
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | | | | |
Collapse
|
4
|
Findeisen M, Rathmann D, Beck-Sickinger AG. RFamide Peptides: Structure, Function, Mechanisms and Pharmaceutical Potential. Pharmaceuticals (Basel) 2011. [PMCID: PMC4058657 DOI: 10.3390/ph4091248] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Different neuropeptides, all containing a common carboxy-terminal RFamide sequence, have been characterized as ligands of the RFamide peptide receptor family. Currently, five subgroups have been characterized with respect to their N-terminal sequence and hence cover a wide pattern of biological functions, like important neuroendocrine, behavioral, sensory and automatic functions. The RFamide peptide receptor family represents a multiligand/multireceptor system, as many ligands are recognized by several GPCR subtypes within one family. Multireceptor systems are often susceptible to cross-reactions, as their numerous ligands are frequently closely related. In this review we focus on recent results in the field of structure-activity studies as well as mutational exploration of crucial positions within this GPCR system. The review summarizes the reported peptide analogs and recently developed small molecule ligands (agonists and antagonists) to highlight the current understanding of the pharmacophoric elements, required for affinity and activity at the receptor family. Furthermore, we address the biological functions of the ligands and give an overview on their involvement in physiological processes. We provide insights in the knowledge for the design of highly selective ligands for single receptor subtypes to minimize cross-talk and to eliminate effects from interactions within the GPCR system. This will support the drug development of members of the RFamide family.
Collapse
|
5
|
Talmont F, Garcia LP, Mazarguil H, Zajac JM, Mollereau C. Characterization of two novel tritiated radioligands for labelling Neuropeptide FF (NPFF1 and NPFF2) receptors. Neurochem Int 2009; 55:815-9. [DOI: 10.1016/j.neuint.2009.08.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2009] [Revised: 07/29/2009] [Accepted: 08/05/2009] [Indexed: 10/20/2022]
|
6
|
Vyas N, Mollereau C, Chevé G, McCurdy CR. Structure-activity relationships of neuropeptide FF and related peptidic and non-peptidic derivatives. Peptides 2006; 27:990-6. [PMID: 16490282 DOI: 10.1016/j.peptides.2005.07.024] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2005] [Accepted: 07/13/2005] [Indexed: 10/25/2022]
Abstract
Neuropeptide FF, a member of the RFamide family of peptides, has demonstrated an interesting array of pharmacological effects. To date however, little information has been obtained as to the exact pharmacological roles of the individual NPFF1 and NPFF2 receptors. Through peptide analogs of NPFF and related peptides, the essential pharmacophore has emerged somewhat. Yet, the field is lacking small molecule ligands selective for each receptor. This review of the structure-activity relationships of the reported NPFF peptide analogs and some non-selective small molecule ligands highlights the current understanding of the pharmacophoric elements required for affinity and activity at the NPFF receptors. The lack of mutagenesis data on the receptor as well as a crystal structure has also hindered the understanding of ligand recognition at the receptor level. If the targets can be further investigated as to their requirements for ligand recognition, the successful development of highly selective ligands should follow.
Collapse
Affiliation(s)
- Neha Vyas
- Laboratory for Applied Drug Design and Synthesis, Department of Medicinal Chemistry, School of Pharmacy, The University of Mississippi, University, MS 38677, USA
| | | | | | | |
Collapse
|
7
|
Gouardères C, Faura CC, Zajac JM. Rodent strain differences in the NPFF1 and NPFF2 receptor distribution and density in the central nervous system. Brain Res 2004; 1014:61-70. [PMID: 15212992 DOI: 10.1016/j.brainres.2004.04.005] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/01/2004] [Indexed: 11/25/2022]
Abstract
The present study evaluates the putative differences between NPFF1 and NPFF2 receptor distribution and density throughout the central nervous system between rat and mouse strains by using in vitro quantitative autoradiography. The binding of [125I]YVP ([125I]YVPNLPQRF-NH2) and [125I]EYF ([125I]EYWSLAAPQRF-NH2), used to label NPFF1 and NPFF2 receptors, respectively, was compared between Sprague-Dawley and Wistar rats and between Swiss and C57BL/6-SV129 mice. In contrast to Wistar, Sprague-Dawley brains contained NPFF1 binding sites in the cortical and spinal cord areas, the accumbens nucleus, the anterodorsal thalamic nucleus, the parafascicular thalamic nucleus, the inferior colliculus and the nucleus of the solitary tract. The distribution of NPFF2 binding sites was also different between the two strains of rats. As compared to Swiss, C57BL/6-SV129 mice showed higher basal NPFF2 receptor levels in cortical areas, telencephalon and some other regions. In contrast, they showed lower amounts in thalamic structures, except the reuniens nucleus, and in mesencephalic and rhombencephalic regions. In the cervical spinal cord the levels of NPFF2 receptors were similar. The NPFF1 binding levels were nearly the same in telencephalic structures while distinct in the forebrain. Differences in amount of NPFF receptor subtypes among these strains of rats or mice could lead to differences in NPFF control of opioid nociception.
Collapse
Affiliation(s)
- C Gouardères
- Institut de Pharmacologie et de Biologie Structurale, CNRS UMR 5089, 205 Route de Narbonne, 31077 Toulouse Cedex, France
| | | | | |
Collapse
|
8
|
Nystedt JM, Lemberg K, Lintunen M, Mustonen K, Holma R, Kontinen VK, Kalso E, Panula P. Pain- and morphine-associated transcriptional regulation of neuropeptide FF and the G-protein-coupled NPFF2 receptor gene. Neurobiol Dis 2004; 16:254-62. [PMID: 15207282 DOI: 10.1016/j.nbd.2004.02.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2003] [Revised: 02/05/2004] [Accepted: 02/10/2004] [Indexed: 01/01/2023] Open
Abstract
Neuropeptide FF (NPFF) is involved in pain modulation, especially plasticity during inflammatory and neuropathic pain, and opiate interactions. Its nociceptive functions may be mediated by the NPFF2 receptor. To elucidate the role of the NPFF system in plasticity associated with pathologic pain, we studied the changes of NPFF mRNA and NPFF2 receptor mRNA in rat models of acute colonic inflammation, inflammatory pain, and neuropathic pain. Furthermore, we studied the mRNA levels of both NPFF and NPFF2 receptor in morphine-tolerant rats and after acute morphine injections. We found an activation of spinal NPFF and NPFF2 receptor during early inflammatory pain. Supraspinally, we found an up-regulation of NPFF2 receptor mRNA during acute colonic inflammation and neuropathic pain. Acute, but not chronic, morphine activated the genes supraspinally. The results give further evidence for the involvement of the NPFF system in pain modulation and may provide new therapeutic opportunities for pathologic pain.
Collapse
|
9
|
Zeng Z, McDonald TP, Wang R, Liu Q, Austin CP. Neuropeptide FF receptor 2 (NPFF2) is localized to pain-processing regions in the primate spinal cord and the lower level of the medulla oblongata. J Chem Neuroanat 2003; 25:269-78. [PMID: 12842272 DOI: 10.1016/s0891-0618(03)00038-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Studies have suggested that NPFF-like peptides and their receptors play important roles in physiological and pathological conditions. Here, we show, using multiple expression modalities, that the type 2 NPFF receptor (hNPFF2) is expressed in regions of the primate spinal cord and brainstem mediating pain sensation. In situ hybridization using an NPFF2 riboprobe, and immunohistochemistry using a novel NPFF2 antibody, demonstrated strong NPFF2 expression in the superficial layer of the dorsal horn, and in the spinal trigeminal nucleus of the brainstem of the African green monkey (AGM). In addition, autoradiography using a radiolabeled NPFF analog ([125I]1DMe) revealed dense binding signal in the superficial layer of the dorsal horn in the spinal cord. The distribution pattern of hNPFF2 in the AGM spinal cord and the lower level of the brainstem are consistent with a hypothesized potential role for NPFF peptides in modulation of sensory input, opioid analgesia and morphine tolerance through spinal and supraspinal mechanisms.
Collapse
Affiliation(s)
- Zhizhen Zeng
- Department of Neuroscience, Merck Research Laboratories, WP26A-3000, P.O. Box 4, West Point, PA 19486, USA.
| | | | | | | | | |
Collapse
|
10
|
Abstract
Upon receipt in the dorsal horn (DH) of the spinal cord, nociceptive (pain-signalling) information from the viscera, skin and other organs is subject to extensive processing by a diversity of mechanisms, certain of which enhance, and certain of which inhibit, its transfer to higher centres. In this regard, a network of descending pathways projecting from cerebral structures to the DH plays a complex and crucial role. Specific centrifugal pathways either suppress (descending inhibition) or potentiate (descending facilitation) passage of nociceptive messages to the brain. Engagement of descending inhibition by the opioid analgesic, morphine, fulfils an important role in its pain-relieving properties, while induction of analgesia by the adrenergic agonist, clonidine, reflects actions at alpha(2)-adrenoceptors (alpha(2)-ARs) in the DH normally recruited by descending pathways. However, opioids and adrenergic agents exploit but a tiny fraction of the vast panoply of mechanisms now known to be involved in the induction and/or expression of descending controls. For example, no drug interfering with descending facilitation is currently available for clinical use. The present review focuses on: (1) the organisation of descending pathways and their pathophysiological significance; (2) the role of individual transmitters and specific receptor types in the modulation and expression of mechanisms of descending inhibition and facilitation and (3) the advantages and limitations of established and innovative analgesic strategies which act by manipulation of descending controls. Knowledge of descending pathways has increased exponentially in recent years, so this is an opportune moment to survey their operation and therapeutic relevance to the improved management of pain.
Collapse
Affiliation(s)
- Mark J Millan
- Department of Psychopharmacology, Institut de Recherches Servier, 125 Chemin de Ronde, 78290 Croissy/Seine, Paris, France.
| |
Collapse
|
11
|
Mazarguil H, Gouardères C, Tafani JA, Marcus D, Kotani M, Mollereau C, Roumy M, Zajac JM. Structure-activity relationships of neuropeptide FF: role of C-terminal regions. Peptides 2001; 22:1471-8. [PMID: 11514031 DOI: 10.1016/s0196-9781(01)00468-5] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
A structure-activity study was carried out to determine the importance of the C-terminal amino acids of the octapeptide Neuropeptide FF (NPFF) in binding and agonistic activity. Affinities of NPFF analogues were tested toward NPFF receptors of the rat spinal cord and the human NPFF2 receptors transfected in CHO cells. The activities of these analogues were evaluated by their ability to both inhibit adenylate cyclase in NPFF2 receptor transfected CHO cells and to reverse the effect of nociceptin on acutely dissociated rat dorsal raphe neurons. The substitutions of Phenylalanine8 by a tyrosine, phenylglycine or homophenylalanine were deleterious for high affinity. Similarly, the replacement of Arginine7 by a lysine or D. Arginine induces a loss in affinity. The pharmacological characterization showed that the presence of the amidated Phe8 and Arg7 residues are also extremely critical for activation of anti-opioid effects on dorsal raphe neurons. The sequence of the C-terminal dipeptide seems also to be responsible for the high affinity and the activity on human NPFF2 receptors. The results support the view that a code messaging the molecular interaction toward NPFF-receptors is expressed in the C-terminal region of these peptides but the N-terminal segment is important to gain very high affinity.
Collapse
Affiliation(s)
- H Mazarguil
- Institut de Pharmacologie et de Biologie Structurale, CNRS UMR 5089, 205 Route de Narbonne, 31077, Toulouse Cedex, France
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Kotani M, Mollereau C, Detheux M, Le Poul E, Brézillon S, Vakili J, Mazarguil H, Vassart G, Zajac JM, Parmentier M. Functional characterization of a human receptor for neuropeptide FF and related peptides. Br J Pharmacol 2001; 133:138-44. [PMID: 11325803 PMCID: PMC1572755 DOI: 10.1038/sj.bjp.0704038] [Citation(s) in RCA: 107] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
1. Neuropeptides FF (NPFF) and AF (NPAF) are involved in pain modulation and opioid tolerance. These peptides were known to act through uncharacterized G protein-coupled receptors (GPCR). We describe here, using an aequorin-based assay as screening tool, that an orphan GPCR, previously designated HLWAR77, is a functional high affinity receptor for NPFF and related peptides. This receptor is further designated as NPFFR. 2. Binding experiments were performed with a new radioiodinated probe, [(125)I]-EYF, derived from the EFW-NPSF sequence of the rat NPFF precursor. Chinese hamster ovary (CHO) cell membranes expressing NPFFR bound [(125)I]-EYF with a K(d) of 0.06 nM. Various NPFF analogues and related peptides inhibited [(125)I]-EYF specific binding with the following rank order (K(i)): human NPAF (0.22 nM), SQA-NPFF (0.29 nM), NPFF (0.30 nM), 1DMe (0.31 nM), EYW-NPSF (0.32 nM), QFW-NPSF (0.35 nM), 3D (1.12 nM), Met-enk-RF-NH(2) (3.25 nM), FMRF-NH(2) (10.5 nM) and NPSF (12.1 nM). 3. The stimulatory activity of the same set of peptides was measured by a functional assay based on the co-expression of NPFFR, G(alpha 16) and apoaequorin. The rank order of potency was consistent with the results of the binding assay. 4. Membranes from NPFFR expressing CHO cells bound GTP gamma[(35)S] in the presence of SQA-NPFF. This functional response was prevented by pertussis toxin treatment, demonstrating the involvement of G(i) family members. 5. SQA-NPFF inhibited forskolin induced cyclic AMP accumulation in recombinant CHO cells in a dose dependent manner. This response was abolished as well by pertussis toxin pre-treatment. 6. RT -- PCR analysis of human tissues mRNA revealed that expression of NPFFR was mainly detected in placenta, thymus and at lower levels in pituitary gland, spleen and testis.
Collapse
Affiliation(s)
- Masato Kotani
- I.R.I.B.H.N., Université Libre de Bruxelles, Campus Erasme, 808 Route de Lennik, B-1070 Brussels, Belgium
| | - Catherine Mollereau
- Institut de Pharmacologie et de Biologie Structurale, CNRS, 205 Route de Narbonne, 31077 Toulouse Cedex 4, France
| | - Michel Detheux
- Euroscreen S.A., 802 Route de Lennik, B-1070 Brussels, Belgium
| | | | | | - Jalal Vakili
- Institut de Pharmacologie et de Biologie Structurale, CNRS, 205 Route de Narbonne, 31077 Toulouse Cedex 4, France
| | - Honoré Mazarguil
- Institut de Pharmacologie et de Biologie Structurale, CNRS, 205 Route de Narbonne, 31077 Toulouse Cedex 4, France
| | - Gilbert Vassart
- I.R.I.B.H.N., Université Libre de Bruxelles, Campus Erasme, 808 Route de Lennik, B-1070 Brussels, Belgium
- Service de Génétique Médicale, Université Libre de Bruxelles, Campus Erasme, 808 Route de Lennik, B-1070 Brussels, Belgium
| | - Jean-Marie Zajac
- Institut de Pharmacologie et de Biologie Structurale, CNRS, 205 Route de Narbonne, 31077 Toulouse Cedex 4, France
| | - Marc Parmentier
- I.R.I.B.H.N., Université Libre de Bruxelles, Campus Erasme, 808 Route de Lennik, B-1070 Brussels, Belgium
- Author for correspondence:
| |
Collapse
|
13
|
Gouardères C, Mollereau C, Tafani JA, Mazarguil H, Zajac JM. [(125)I]EYF: a new high affinity radioligand to neuropeptide FF receptors. Peptides 2001; 22:623-9. [PMID: 11311733 DOI: 10.1016/s0196-9781(01)00372-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
[(125)I]EYF ([(125)I]EYWSLAAPQRFamide), a new radioiodinated probe derived from a peptide present in the rat Neuropeptide FF precursor (EFWSLAAPQRFamide, EFW-NPSF) was synthesized and its binding characteristics investigated on sections of the rat spinal cord and on membranes of mouse olfactory bulb. In both tissues, [(125)I]EYF binding was saturable and revealed a very high affinity interaction with a single class of binding sites in rat and mouse (K(D) = 0.041 and 0.019 nM, respectively). Competition studies showed that [(125)I]EYF bound to one class of binding sites exhibiting a high affinity for all the different peptides the precursor could generate (NPA-NPFF, SPA-NPFF, NPFF, EFW-NPSF, QFW-NPSF) with the exception of NPSF which displayed a low affinity. Autoradiographic studies demonstrated that [(125)I]EYF binding sites were fully inhibited by a synthetic Neuropeptide FF agonist (1DMe) in all areas of the rat brain. The density of [(125)I]EYF binding sites was high in the intralaminar thalamic nuclei, the parafascicular thalamic nucleus and in the superficial layers of the dorsal horn. Non specific binding reached 5-10% of the total binding in all brain areas. Similarly, in mouse brain experiments, the non-specific binding was never superior to 10%. These findings demonstrate that putative neuropeptides generated by the Neuropeptide FF precursor and containing the NPFF or NPSF sequences should bind to the same receptor. Furthermore, these data indicate that [(125)I]EYF is a useful radiolabeled probe to investigate the NPFF receptors; its major advantages being its high affinity and the very low non-specific binding it induces.
Collapse
Affiliation(s)
- C Gouardères
- Institut de Pharmacologie et Biologie Structurale, CNRS, 205 route de Narbonne, 31077, Toulouse, France
| | | | | | | | | |
Collapse
|
14
|
Bonini JA, Jones KA, Adham N, Forray C, Artymyshyn R, Durkin MM, Smith KE, Tamm JA, Boteju LW, Lakhlani PP, Raddatz R, Yao WJ, Ogozalek KL, Boyle N, Kouranova EV, Quan Y, Vaysse PJ, Wetzel JM, Branchek TA, Gerald C, Borowsky B. Identification and characterization of two G protein-coupled receptors for neuropeptide FF. J Biol Chem 2000; 275:39324-31. [PMID: 11024015 DOI: 10.1074/jbc.m004385200] [Citation(s) in RCA: 365] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The central nervous system octapeptide, neuropeptide FF (NPFF), is believed to play a role in pain modulation and opiate tolerance. Two G protein-coupled receptors, NPFF1 and NPFF2, were isolated from human and rat central nervous system tissues. NPFF specifically bound to NPFF1 (K(d) = 1.13 nm) and NPFF2 (K(d) = 0.37 nm), and both receptors were activated by NPFF in a variety of heterologous expression systems. The localization of mRNA and binding sites of these receptors in the dorsal horn of the spinal cord, the lateral hypothalamus, the spinal trigeminal nuclei, and the thalamic nuclei supports a role for NPFF in pain modulation. Among the receptors with the highest amino acid sequence homology to NPFF1 and NPFF2 are members of the orexin, NPY, and cholecystokinin families, which have been implicated in feeding. These similarities together with the finding that BIBP3226, an anorexigenic Y1 receptor ligand, also binds to NPFF1 suggest a potential role for NPFF1 in feeding. The identification of NPFF1 and NPFF2 will help delineate their roles in these and other physiological functions.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Arginine/analogs & derivatives
- Arginine/metabolism
- Binding Sites
- Brain/metabolism
- COS Cells
- Calcium/metabolism
- Chromosome Mapping
- Cloning, Molecular
- Cyclic AMP/metabolism
- DNA, Complementary/metabolism
- Electrophysiology
- Gene Library
- Humans
- Kinetics
- Ligands
- Molecular Sequence Data
- Oligopeptides/metabolism
- Oocytes
- Phosphatidylinositols/metabolism
- Protein Binding
- Protein Structure, Tertiary
- RNA, Messenger/metabolism
- Rats
- Receptors, Cell Surface/chemistry
- Receptors, Cell Surface/metabolism
- Receptors, Neuropeptide/biosynthesis
- Receptors, Neuropeptide/chemistry
- Receptors, Neuropeptide/metabolism
- Reverse Transcriptase Polymerase Chain Reaction
- Sequence Homology, Amino Acid
- Tissue Distribution
- Xenopus
Collapse
Affiliation(s)
- J A Bonini
- Synaptic Pharmaceutical Corporation, Paramus, New Jersey 07652, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Gouardères C, Sutak M, Zajac JM, Jhamandas K. Role of adenosine in the spinal antinociceptive and morphine modulatory actions of neuropeptide FF analogs. Eur J Pharmacol 2000; 406:391-401. [PMID: 11040346 DOI: 10.1016/s0014-2999(00)00716-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The neuropeptide FF (Phe-Leu-Phe-Gln-Pro-Gln-Arg-Phe-NH(2)) and its synthetic analogs bind to specific receptors in the spinal cord to produce antinociceptive effects that are partially attenuated by opioid antagonists, and at sub-effective doses neuropeptide FF receptor agonists augment spinal opioid antinociception. Since adenosine plays an intermediary role in the production of spinal opioid antinociception, this study investigated whether this purine has a similar role in the expression of spinal effects produced by neuropeptide FF receptor agonists. In rats bearing indwelling spinal catheters, injection of adenosine receptor agonists, N6-cyclohexyladenosine (CHA, 1.72 nmol) and N-ethylcarboxiamidoadenosine (NECA, 1.95 nmol), as well as morphine (13.2 nmol) elicited antinociception in the tail-flick and paw-pressure tests. Pretreatment with intrathecal 8-phenyltheophylline (5.9 and 11.7 nmol), an adenosine receptor antagonist, blocked the effect of all three agents without influencing baseline responses. Administration of two synthetic neuropeptide FF (NPFF) analogs, [D-Tyr(1),(NMe)Phe(3)]NPFF (1DMe, 0. 86 nmol) and [D-Tyr(1),D-leu(2),D-Phe(3)]NPFF (3D, 8.6 nmol) produced sustained thermal and mechanical antinociception. Pretreatment with doses of intrathecal 8-phenyltheophylline (5.9, 11. 7 and 23.5 nmol), producing adenosine receptor blockade, significantly inhibited the antinociceptive effects of 1DMe or 3D. Injection of a sub-antinociceptive dose of 1DMe (0.009 nmol) significantly augmented the antinociceptive effect of intrathecal morphine (13.2 nmol) in the tail-flick and paw-pressure tests. Intrathecal 8-phenyltheophylline (11.7 nmol) reduced the effect of this combination. Administration of low dose of 1DMe (0.009 nmol) or 3D (0.009 nmol) very markedly potentiated the antinociceptive actions of the adenosine receptor agonist, N6-cyclohexyladenosine (0. 43, 0.86 and 1.72 nmol) in the tail-flick and paw-pressure tests 50 min after injection. The results suggest that the antinociceptive and morphine modulatory effects resulting from activation of spinal NPFF receptors could be due to an increase in the actions or availability of adenosine.
Collapse
Affiliation(s)
- C Gouardères
- Institut de Pharmacologie et de Biologie Structurale, C.N.R.S., 205 Route de Narbonne, Toulouse, France
| | | | | | | |
Collapse
|
16
|
Roumy M, Gouardères C, Mazarguil H, Zajac JM. Are neuropeptides FF and SF neurotransmitters in the rat? Biochem Biophys Res Commun 2000; 275:821-4. [PMID: 10973805 DOI: 10.1006/bbrc.2000.3394] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We have compared the affinities and anti-opioid activities of the different peptides putatively produced by the rat NPFF precursor, NPAFLFQPQRF-NH(2) (NPA-NPFF) and EFWSLAAPQRF-NH(2) (EFW-NPSF), with those already identified in nervous tissue, FLFQPQRF-NH(2) (NPFF) and SLAAPQRF-NH(2) (NPSF). NPFF and NPA-NPFF exhibit a high affinity (0.34 and 0.14 nM, respectively) for [(125)I]1DMe binding sites of the rat spinal cord. In contrast, EFW-NPSF displays an affinity 13 times higher than NPSF (1.99 and 9.5 nM, respectively). In rat dorsal raphe neurones, EFW-NPSF, NPFF, and NPA-NPFF maximally reduce the inhibitory effect of nociceptin on the [Ca(2+)](i) transients triggered by depolarization by 39, 31, and 58%, respectively. NPSF is inactive in the same test. We conclude that NPA-NPFF and EFW-NPSF are likely to be the physiologically active neurotransmitters in rat brain.
Collapse
Affiliation(s)
- M Roumy
- Institut de Pharmacologie et de Biologie Structurale, C.N.R.S. UMR 5089, 205 Route de Narbonne, Toulouse Cedex, 31077, France
| | | | | | | |
Collapse
|
17
|
Chen X, Zidichouski JA, Harris KH, Jhamandas JH. Synaptic actions of neuropeptide FF in the rat parabrachial nucleus: interactions with opioid receptors. J Neurophysiol 2000; 84:744-51. [PMID: 10938301 DOI: 10.1152/jn.2000.84.2.744] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The pontine parabrachial nucleus (PBN) receives both opioid and Neuropeptide FF (NPFF) projections from the lower brain stem and/or the spinal cord. Because of this anatomical convergence and previous evidence that NPFF displays both pro- and anti-opioid activities, this study examined the synaptic effects of NPFF in the PBN and the mechanisms underlying these effects using an in vitro brain slice preparation and the nystatin-perforated patch-clamp recording technique. Under voltage-clamp conditions, NPFF reversibly reduced the evoked excitatory postsynaptic currents (EPSCs) in a dose-dependent fashion. This effect was not accompanied by apparent changes in the holding current, the current-voltage relationship or alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid-induced inward currents in the PBN cells. When a paired-pulse protocol was used, NPFF increased the ratio of these synaptic currents. Analysis of miniature EPSCs showed that NPFF caused a rightward shift in the frequency-distribution curve, whereas the amplitude-distribution curve remained unchanged. Collectively, these experiments indicate that NPFF reduces the evoked EPSCs through a presynaptic mechanism of action. The synaptic effects induced by NPFF (5 microM) could not be blocked by the specific mu-opioid receptor antagonist, D-Phe-Cys-Tyr-D-Trp-Arg-Thr-Pen-Thr-NH(2) (1 microM), but application of delta-opioid receptor antagonist Tyr-Tic-Phe-Phe (5 microM) almost completely prevented effects of NPFF. Moreover, the delta-opioid receptor agonist, Deltorphin (1 microM), mimicked the effects as NPFF and also occluded NPFF's actions on synaptic currents. These results indicate that NPFF modulates excitatory synaptic transmission in the PBN through an interaction with presynaptic delta-opioid receptors. These observations provide a cellular basis for NPFF enhancement of the antinociceptive effects consequent to central activation of delta-opioid receptors.
Collapse
Affiliation(s)
- X Chen
- Division of Basic Medical Sciences, Memorial University of Newfoundland, St. John's, Newfoundland A1B 3V6, Canada
| | | | | | | |
Collapse
|
18
|
Chapter V Neuropeptide FF receptors. ACTA ACUST UNITED AC 2000. [DOI: 10.1016/s0924-8196(00)80007-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
19
|
Abstract
Although neuropeptide FF (NPFF) is generally considered an anti-opioid, its intrathecal administration produces analgesia. In the present study, the stable analog 1DMe ([D.Tyr(1), (NMe)Phe(3)]neuropeptide FF) was used in quantitative autoradiographic experiments in combination with surgical and chemical lesions to precisely localize NPFF receptors in the rat spinal cord. Ligation of lumbar dorsal spinal roots revealed the presence of NPFF receptors in dorsal root fibers and it induced a significant accumulation of [(125)I]1DMe-specific binding on the side peripheral to the ligature, demonstrating that a population of NPFF receptors is synthesized in dorsal root ganglia and migrates anterogradely towards primary afferent nerve endings. Complete mid-thoracic spinal cord transection failed to modify the [(125)I]1DMe labeling density in the dorsal horn, indicating that NPFF receptors are not located on the descending fiber terminals. In contrast, unilateral microinjections of kainic acid into the dorsal horn dramatically reduced [(125)I]1DMe-specific binding in the superficial layers, revealing localization of a population of NPFF receptors on the spinal intrinsic neurons. NPFF receptor binding was not modified during the development of spinal opioid tolerance. The pre- and postsynaptic localization of spinal NPFF receptors provide further support for heterogeneity in the pain modulation by NPFF and related agonists.
Collapse
Affiliation(s)
- C Gouardères
- Institut de Pharmacologie et de Biologie Structurale, CNRS, Toulouse, France
| | | | | | | | | |
Collapse
|
20
|
Roumy M, Zajac J. Neuropeptide FF selectively attenuates the effects of nociceptin on acutely dissociated neurons of the rat dorsal raphe nucleus. Brain Res 1999; 845:208-14. [PMID: 10536200 DOI: 10.1016/s0006-8993(99)01965-4] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Intracellular Ca2+ concentration ([Ca2+]i) was measured in neurons, acutely dissociated from the rat dorsal raphe nucleus (DRN), with the fluorescent calcium probe Fluo3. Nociceptin (300 nM) had no effect on resting [Ca2+]i but reduced the magnitude of the [Ca2+]i transient triggered by depolarization in 90% of neurons having polygonal or fusiform perikarya. In 94% of neurons with the same morphology 5-HT (30 microM) also reduced the magnitude of the [Ca2+]i transient. The selective 5-HT(1A) receptor antagonist 4-iodo-N-[2-[4-(methoxyphenyl)-1-piperazinyl]ethyl]-N-2-pyridinyl-ben zamide hydrochloride (p-MPPI) (0.4 microM) strongly attenuated (by 72+/-7%, n=4) this effect. The responses to nociceptin and 5-HT were not affected by BaCl2 (100 microM). The neuropeptide FF analog [D-Tyr1, (N-Me)Phe3]NPFF (1DMe) altered neither the resting [Ca2+]i nor the [Ca2+]i transient triggered by depolarization but dose-dependently decreased the effect of nociceptin (EC50=1.8 nM, maximal reduction: 68+/-5%). 1DMe had no effect on the response to 5-HT. Another neuropeptide FF analog, exhibiting a different pharmacological activity in mice and rats, [D-Tyr1, D-Leu2, D-Phe3]NPFF (1 microM) also reduced the effect of nociceptin by 74+/-11% (n=4). Few neurons (5 out of 42), either with polygonal/fusiform or smaller ovoid cell bodies, responded to the mu-opioid receptor agonist [D-Ala2, (N-Me)Phe4, Gly-ol5]-enkephalin (DAGO) with a decrease in the depolarization-induced [Ca2+]i transient. 1DMe (100 nM) attenuated this response by 69+/-14%. These results suggest that, at the cellular level, neuropeptide FF selectively counteracts the effects of opioid receptor activation.
Collapse
Affiliation(s)
- M Roumy
- Institut de Pharmacologie et de Biologie Structurale, C.N.R.S. UPR 9062, 205 Route de Narbonne, 31077, Toulouse, France.
| | | |
Collapse
|
21
|
Xu M, Kontinen VK, Panula P, Kalso E. Effects of (1DMe)NPYF, a synthetic neuropeptide FF analogue, in different pain models. Peptides 1999; 20:1071-7. [PMID: 10499424 DOI: 10.1016/s0196-9781(99)00100-x] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The antinociceptive effects of intrathecal (IT) (1DMe)NPYF were studied in adult Sprague-Dawley rats. (1DMe)NPYF produced dose-dependent antinociception that was reduced by subcutaneous injection of naloxone. (1DMe)NPYF (0.5 nmol) also potentiated the antinociceptive effects of intrathecal morphine 7.8 nmol. This suggests that the antinociceptive effects of (1DMe)NPYF are partially mediated by opioid receptor activation. In carrageenan inflammation, 5-10 nmol of (1DMe)NPYF was effective against both thermal hyperalgesia and mechanical allodynia. In the neuropathic pain model, the lowest dose tested (0.5 nmol) showed antiallodynic effects against cold allodynia. The results suggest a potential role for (1DMe)NPYF in the treatment of pain including neuropathic pain.
Collapse
Affiliation(s)
- M Xu
- Department of Pharmacology and Toxicology, Institute of Biomedicine, University of Helsinki, Finland.
| | | | | | | |
Collapse
|
22
|
Sol JC, Roussin A, Proto S, Mazarguil H, Zajac JM. Enzymatic degradation of neuropeptide FF and SQA-neuropeptide FF in the mouse brain. Peptides 1999; 20:1219-27. [PMID: 10573294 DOI: 10.1016/s0196-9781(99)00126-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Degradation of neuropeptide FF (NPFF) and SQA-neuropeptide FF (SQA-NPFF) by mouse brain sections was investigated by using capillary electrophoresis with UV detection for the separation and the identification of the degradation products. The half disappearance time of SQA-NPFF was 2-fold greater than that of NPFF. NPFF was cleaved preferentially into an inactive metabolite, Gln-Arg-Phe-NH2, in the cerebrum slices. SQA-NPFF was hydrolyzed by an unidentified degrading activity to generate NPFF, and NPFF accounted for a larger part of SQA-NPFF degradation in the hindbrain and cervical spinal cord than in the cerebrum slices. These findings suggest that, depending on the brain regions, NPFF produced from SQA-NPFF could prolong the biologic effects of SQA-NPFF.
Collapse
Affiliation(s)
- J C Sol
- Institut de Pharmacologie et de Biologie Structurale, CNRS, Toulouse, France
| | | | | | | | | |
Collapse
|
23
|
Abstract
The highly disagreeable sensation of pain results from an extraordinarily complex and interactive series of mechanisms integrated at all levels of the neuroaxis, from the periphery, via the dorsal horn to higher cerebral structures. Pain is usually elicited by the activation of specific nociceptors ('nociceptive pain'). However, it may also result from injury to sensory fibres, or from damage to the CNS itself ('neuropathic pain'). Although acute and subchronic, nociceptive pain fulfils a warning role, chronic and/or severe nociceptive and neuropathic pain is maladaptive. Recent years have seen a progressive unravelling of the neuroanatomical circuits and cellular mechanisms underlying the induction of pain. In addition to familiar inflammatory mediators, such as prostaglandins and bradykinin, potentially-important, pronociceptive roles have been proposed for a variety of 'exotic' species, including protons, ATP, cytokines, neurotrophins (growth factors) and nitric oxide. Further, both in the periphery and in the CNS, non-neuronal glial and immunecompetent cells have been shown to play a modulatory role in the response to inflammation and injury, and in processes modifying nociception. In the dorsal horn of the spinal cord, wherein the primary processing of nociceptive information occurs, N-methyl-D-aspartate receptors are activated by glutamate released from nocisponsive afferent fibres. Their activation plays a key role in the induction of neuronal sensitization, a process underlying prolonged painful states. In addition, upon peripheral nerve injury, a reduction of inhibitory interneurone tone in the dorsal horn exacerbates sensitized states and further enhance nociception. As concerns the transfer of nociceptive information to the brain, several pathways other than the classical spinothalamic tract are of importance: for example, the postsynaptic dorsal column pathway. In discussing the roles of supraspinal structures in pain sensation, differences between its 'discriminative-sensory' and 'affective-cognitive' dimensions should be emphasized. The purpose of the present article is to provide a global account of mechanisms involved in the induction of pain. Particular attention is focused on cellular aspects and on the consequences of peripheral nerve injury. In the first part of the review, neuronal pathways for the transmission of nociceptive information from peripheral nerve terminals to the dorsal horn, and therefrom to higher centres, are outlined. This neuronal framework is then exploited for a consideration of peripheral, spinal and supraspinal mechanisms involved in the induction of pain by stimulation of peripheral nociceptors, by peripheral nerve injury and by damage to the CNS itself. Finally, a hypothesis is forwarded that neurotrophins may play an important role in central, adaptive mechanisms modulating nociception. An improved understanding of the origins of pain should facilitate the development of novel strategies for its more effective treatment.
Collapse
Affiliation(s)
- M J Millan
- Institut de Recherches Servier, Psychopharmacology Department, Paris, France
| |
Collapse
|
24
|
Gelot A, Francés B, Roussin A, Latapie JP, Zajac JM. Anti-opioid efficacy of neuropeptide FF in morphine-tolerant mice. Brain Res 1998; 808:166-73. [PMID: 9767158 DOI: 10.1016/s0006-8993(98)00665-9] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The modulatory effects of 1DMe (d-Tyr-Leu-(NMe)Phe-Gln-Pro-Gln-Arg-Phe-NH2), an agonist of Neuropeptide FF (NPFF) receptors, on opioid antinociceptive activity have been compared in naive and tolerant mice in the tail-flick and the hot-plate tests. In naive mice, 1DMe alone had no effect on pain threshold but decreased dose-dependently (3-22 nmol) the analgesic activity of morphine in both tests. In tolerant mice, injections of 60-fold lower doses of 1DMe (0.05-0.5 nmol) reverse morphine-induced analgesia in the tail-flick test but this anti-opioid effect was no longer observed with the highest doses of 1DMe tested (3-22 nmol). In the hot-plate test, the anti-opioid action of 1DMe was not detected, whatever doses tested. Neither the NPFF-like immunoreactivity content of spinal cord and of olfactory bulbs, nor the density of NPFF receptors in olfactory bulbs, were altered. These results indicate that a chronic morphine treatment modifies the pharmacological properties of NPFF but the type of pain test is crucial in determining NPFF effects.
Collapse
Affiliation(s)
- A Gelot
- Institut de Pharmacologie et de Biologie Structurale, CNRS, 205 Route de Narbonne, 31077, Toulouse, France
| | | | | | | | | |
Collapse
|
25
|
Gelot A, Mazarguil H, Dupuy P, Francés B, Gouardères C, Roumy M, Zajac JM. Biochemical, cellular and pharmacological activities of a human neuropeptide FF-related peptide. Eur J Pharmacol 1998; 354:167-72. [PMID: 9754917 DOI: 10.1016/s0014-2999(98)00459-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
We report on the biochemical, cellular and pharmacological activities of SQA-neuropeptide FF (Ser-Gln-Ala-Phe-Leu-Phe-Gln-Pro-Gln-Arg-Phe-NH2), a peptide sequence contained in the human neuropeptide FF (neuropeptide FF, Phe-Leu-Phe-Gln-Pro-Gln-Arg-Phe-NH2) precursor. Quantitative autoradiography revealed that, in the superficial layers of the rat spinal cord, SQA-neuropeptide FF displayed the same high affinity for [125I]1DMe ([125I]D-Tyr-Leu-(NMe)Phe-Gln-Pro-Gln-Arg-Phe-NH2) binding sites (Ki = 0.33 nM) as did neuropeptide FF (Ki = 0.38 nM). In acutely dissociated mouse dorsal root ganglion neurones, SQA-neuropeptide FF reduced by 40% the depolarisation-induced rise in intracellular Ca2+ as measured with the Ca2+ indicator, Fluo-3. In mice, 1DMe and SQA-neuropeptide FF dose-dependently inhibited the antinociceptive effect of intracerebroventricular (i.c.v.) injections of morphine, but SQA-neuropeptide FF was less potent than 1DMe. Furthermore, SQA-neuropeptide FF, as well as 1DMe, produced marked hypothermia following third ventricle injections in mice. These data demonstrate that the human peptide, SQA-neuropeptide FF, exhibits biochemical and pharmacological properties similar to those of neuropeptide FF or neuropeptide FF analogues, and belongs to the neuropeptide FF family.
Collapse
Affiliation(s)
- A Gelot
- Institut de Pharmacologie et de Biologie Structurale, CNRS, Toulouse, France
| | | | | | | | | | | | | |
Collapse
|
26
|
Abstract
Neuropeptide FF (Phe-Leu-Phe-Gln-Pro-Gln-Arg-Phe-NH2) and the octadecapeptide neuropeptide AF (Ala-Gly-Glu-Gly-Leu-Ser-Ser-Pro-Phe-Trp-Ser-Leu-Ala-Ala-Pro-Gln-Arg-Phe -NH2) were isolated from bovine brain, and were initially characterized as anti-opioid peptides. They can oppose the acute effects of opioids and an increase in their brain concentrations may be responsible for the development of tolerance and dependence to opioids. Numerous experiments suggest a possible neuromodulatory role for neuropeptide FF. A precursor protein has been identified, in particular in human brain. Neuropeptide FF immunoreactive neurons are present only in the medial hypothalamus, and the nucleus of the solitary tract, and in the spinal cord in the superficial layers of the dorsal horn and areas around the central canal. Depolarization induces a Ca2+-dependent release of neuropeptide FF immunoreactivity from the spinal cord. Neuropeptide FF acts through stimulation of its own receptors and high densities of specific binding sites are found in regions related either to sensory input and visceral functions or to the processing of nociceptive messages. In both isolated dorsal root ganglion neurons and CA1 pyramidal neurons of the hippocampus, neuropeptide FF has little effect of its own but reverses the effects of mu-opioid receptor agonists. In agreement with the hypothesized anti-opioid role of neuropeptide FF, supraspinal injection lowers the nociceptive threshold and reverses morphine-induced analgesia in rats. Furthermore, immunoneutralization of neuropeptide FF increases endogenous and exogenous opioid-induced analgesia. Similarly, microinfusion of neuropeptide FF or neuropeptide FF analogs into the nucleus raphe dorsalis, the parafascicular nucleus, or the ventral tegmental area has no effect on the nociceptive threshold but inhibits the analgesia induced by co-injected morphine. Furthermore, infusion of neuropeptide FF into the parafascicular nucleus or the nucleus raphe dorsalis reverses the analgesic effect of morphine infused into the nucleus raphe dorsalis or the parafascicular nucleus, respectively, demonstrating remote interactions between neuropeptide FF and opioid systems. By contrast, intrathecal administration of neuropeptide FF analogs induces a long lasting, opioid-dependent analgesia and potentiates the analgesic effect of morphine. Analgesic effects of neuropeptide FF after supraspinal injection could also be observed, for example during nighttime. In young mice, (1DMe)Y8Famide (D.Tyr-Leu-(NMe)Phe-Gln-Pro-Gln-Arg-Phe-NH2), a neuropeptide FF analog, increases delta-opioid receptor-mediated analgesia. These findings indicate that neuropeptide FF constitutes a neuromodulatory neuronal system interacting with opioid systems, and should be taken into account as a participant of the homeostatic process controlling the transmission of nociceptive information.
Collapse
Affiliation(s)
- M Roumy
- Institut de Pharmacologie et de Biologie Structurale, C.N.R.S. UPR 9062, Toulouse, France
| | | |
Collapse
|
27
|
Abstract
Several high-affinity analogs of neuropeptide FF (Phe-Leu-Phe-Gln-Pro-Gln-Arg-Phe-NH2, NPFF) exhibiting both supraspinal anti-opioid and spinal analgesic activities were studied for their abilities to interact with specific mu, delta, and kappa opioid binding in the rat spinal cord. Measurements by quantitative receptor autoradiography in the superficial layers of the spinal cord revealed that NPFF analogs tested have only a low affinity for opioid receptors since Ki values ranged from 5 to 400 microM. Taking into account the high efficacy of NPFF after intrathecal injection, these results indicate that analgesic effects of NPFF did not result from opioid receptor stimulation.
Collapse
Affiliation(s)
- C Gouardères
- Institut de Pharmacologie et de Biologie Structurale, CNRS, Toulouse, France
| | | | | |
Collapse
|