1
|
de Sousa GG, Barbosa MA, Barbosa CM, Lima TC, Souza Dos Santos RA, Campagnole-Santos MJ, Alzamora AC. Different reactive species modulate the hypotensive effect triggered by angiotensins at CVLM of 2K1C hypertensive rats. Peptides 2020; 134:170409. [PMID: 32950566 DOI: 10.1016/j.peptides.2020.170409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 08/20/2020] [Accepted: 09/15/2020] [Indexed: 11/18/2022]
Abstract
Hypertension is associated with increased central activity of the renin-angiotensin system (RAS) and oxidative stress. Here, we evaluated whether reactive species and neurotransmitters could contribute to the hypotensive effect induced by angiotensin (Ang) II and Ang-(1-7) at the caudal ventrolateral medulla (CVLM) in renovascular hypertensive rats (2K1C). Therefore, we investigated the effect of Ang II, Ang-(1-7), and the Ang-(1-7) antagonist A-779 microinjected before and after CVLM microinjection of the nitric oxide (NO)-synthase inhibitor, (L-NAME), vitamin C (Vit C), bicuculline, or kynurenic acid in 2K1C and SHAM rats. Baseline values of the mean arterial pressure (MAP) in 2K1C rats were higher than in SHAM rats. CVLM microinjection of Ang II, Ang-(1-7), l-NAME, or bicuculline induced decreases in the MAP in SHAM and 2K1C rats. In addition, Vit C and A-779 produced decreases in the MAP only in 2K1C rats. Kynurenic acid increased the MAP in both SHAM and 2K1C rats. Only the Ang-(1-7) effect was increased by l-NAME and reduced by bicuculline in SHAM rats. L-NAME also reduced the A-779 effect in 2K1C rats. Only the Ang II effect was abolished by CVLM Vit C and enhanced by CVLM kynurenic acid in SHAM and 2K1C rats. Overall, the superoxide anion and glutamate participated in the hypotensive effect of Ang II, while NO and GABA participated in the hypotensive effect of Ang-(1-7) in CVLM. The higher hypotensive response of A-779 in the CVLM of 2K1C rats suggests that Ang-(1-7) contributes to renovascular hypertension.
Collapse
Affiliation(s)
- Graziele Galdino de Sousa
- Núcleo de Pesquisa em Ciências Biológicas, Universidade Federal de Ouro Preto, Ouro Preto, MG, Brazil
| | - Maria Andréa Barbosa
- Núcleo de Pesquisa em Ciências Biológicas, Universidade Federal de Ouro Preto, Ouro Preto, MG, Brazil
| | - Claudiane Maria Barbosa
- Núcleo de Pesquisa em Ciências Biológicas, Universidade Federal de Ouro Preto, Ouro Preto, MG, Brazil
| | - Taynara Carolina Lima
- Núcleo de Pesquisa em Ciências Biológicas, Universidade Federal de Ouro Preto, Ouro Preto, MG, Brazil
| | - Robson Augusto Souza Dos Santos
- Departamento de Fisiologia e Biofísica, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Maria José Campagnole-Santos
- Departamento de Fisiologia e Biofísica, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Andréia Carvalho Alzamora
- Departamento de Ciências Biológicas, Instituto de Ciências Exatas e Biológicas, Brazil; Núcleo de Pesquisa em Ciências Biológicas, Universidade Federal de Ouro Preto, Ouro Preto, MG, Brazil.
| |
Collapse
|
2
|
Haspula D, Clark MA. Molecular Basis of the Brain Renin Angiotensin System in Cardiovascular and Neurologic Disorders: Uncovering a Key Role for the Astroglial Angiotensin Type 1 Receptor AT1R. J Pharmacol Exp Ther 2018; 366:251-264. [PMID: 29752427 DOI: 10.1124/jpet.118.248831] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 05/08/2018] [Indexed: 12/13/2022] Open
Abstract
The central renin angiotensin system (RAS) is one of the most widely investigated cardiovascular systems in the brain. It is implicated in a myriad of cardiovascular diseases. However, studies from the last decade have identified its involvement in several neurologic abnormalities. Understanding the molecular functionality of the various RAS components can thus provide considerable insight into the phenotypic differences and mechanistic drivers of not just cardiovascular but also neurologic disorders. Since activation of one of its primary receptors, the angiotensin type 1 receptor (AT1R), results in an augmentation of oxidative stress and inflammatory cytokines, it becomes essential to investigate not just neuronal RAS but glial RAS as well. Glial cells are key homeostatic regulators in the brain and are critical players in the resolution of overt oxidative stress and neuroinflammation. Designing better and effective therapeutic strategies that target the brain RAS could well hinge on understanding the molecular basis of both neuronal and glial RAS. This review provides a comprehensive overview of the major studies that have investigated the mechanisms and regulation of the brain RAS, and it also provides insight into the potential role of glial AT1Rs in the pathophysiology of cardiovascular and neurologic disorders.
Collapse
Affiliation(s)
- Dhanush Haspula
- Department of Biomedical Engineering, Medical College of Wisconsin, Milwaukee, Wisconsin (D.H.); and College of Pharmacy, Department of Pharmaceutical Sciences, Nova Southeastern University, Ft. Lauderdale, Florida (M.A.C.)
| | - Michelle A Clark
- Department of Biomedical Engineering, Medical College of Wisconsin, Milwaukee, Wisconsin (D.H.); and College of Pharmacy, Department of Pharmaceutical Sciences, Nova Southeastern University, Ft. Lauderdale, Florida (M.A.C.)
| |
Collapse
|
3
|
Zhang HH, Tao YN, Jiang MY, Wang J, Chen J, Xia CM, Shen LL, Wang MY, Zhu DN. The protective effects of electro-acupuncture in thoracic surgery on trauma stressed rats involve the rostral ventrolateral medulla and supraoptic nucleus. Brain Res Bull 2017; 134:183-188. [PMID: 28782569 DOI: 10.1016/j.brainresbull.2017.07.022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Revised: 05/20/2017] [Accepted: 07/31/2017] [Indexed: 02/06/2023]
Abstract
The present study was designed to explore whether the rostral ventrolateral medulla (RVLM) and supraoptic nucleus (SON) were involved in the protective effects of electro-acupuncture (EA) in thoracic surgery on trauma-stressed rats. The rats were randomly divided into a non-stressed group (Control), surgical trauma-stressed group (Trauma), and Neiguan EA applied on the surgical trauma-stressed group (Trauma+EA-PC 6). RVLM neuron discharge was observed by using an in vivo electrophysiological method, and micro-dialysis combining high-performance liquid chromatography with fluorometric detection (HPLC-FD) was used to assess expression of amino acids in the RVLM. Immunohistochemical methods were used to assess c-Fos expression in SON neurons. The trauma of surgical stress was shown to dramatically increase the discharge frequency of RVLM neurons and promote the release of glutamate and taurine in the RVLM. The expression of c-Fos was also significantly increased in the SON of traumatized rats. EA application at Neiguan acupoints significantly suppressed trauma-induced increase of discharge frequency of the RVLM neurons, almost completely suppressed the trauma-induced increase of glutamate release but only very slightly reduced the trauma-enhanced taurine release, and inhibited the increase of c-Fos expression in these SON neurons of traumatized rats. These results indicate that Neiguan EA may improve cardiac function by modulating neurons in the RVLM and the SON in surgically traumatized rats. The taurine-mediated negative feedback may be involved in the protective effect of EA on cardiac function.
Collapse
Affiliation(s)
- Huan-Huan Zhang
- Cell Electrophysiology Laboratory, Wannan Medical College, Wuhu 241002, China; Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Yi-Nan Tao
- Cell Electrophysiology Laboratory, Wannan Medical College, Wuhu 241002, China
| | - Mei-Yan Jiang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Jin Wang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Jun Chen
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Chun-Mei Xia
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Lin-Lin Shen
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Meng-Ya Wang
- Cell Electrophysiology Laboratory, Wannan Medical College, Wuhu 241002, China.
| | - Da-Nian Zhu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China.
| |
Collapse
|
4
|
Claflin KE, Grobe JL. Control of energy balance by the brain renin-angiotensin system. Curr Hypertens Rep 2016; 17:38. [PMID: 25833461 DOI: 10.1007/s11906-015-0549-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The renin-angiotensin system (RAS) exists as a circulating hormone system but it is also used by various tissues of the body, including the brain, as a paracrine signaling mechanism. The local brain version of the RAS is mechanistically involved in fluid balance and blood pressure control, and there is growing appreciation for a role of the brain RAS in the control of energy balance. Here, we review major evidence for the control of energy balance by the brain RAS; outline the current understanding of the RAS components, targets, and mechanisms involved; and highlight some major questions that currently face the field.
Collapse
Affiliation(s)
- Kristin E Claflin
- Department of Pharmacology, Center for Hypertension Research, Obesity Research & Education Initiative, François M. Abboud Cardiovascular Research Center, and Fraternal Order of Eagles' Diabetes Research Center, University of Iowa, 51 Newton Rd., 2-307 BSB, Iowa City, IA, 52242, USA
| | | |
Collapse
|
5
|
Kawabe T, Iwasa M, Kawabe K, Sapru HN. Attenuation of angiotensin type 2 receptor function in the rostral ventrolateral medullary pressor area of the spontaneously hypertensive rat. Clin Exp Hypertens 2016; 38:209-17. [PMID: 26818039 DOI: 10.3109/10641963.2015.1081229] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
We hypothesized that blockade of angiotensin II type 2 receptors (AT2Rs) in the rostral ventrolateral medullary pressor area (RVLM) may elicit sympathoexcitatory responses which are smaller in hypertensive rats compared to normotensive rats. This hypothesis was tested in urethane-anesthetized, artificially ventilated male 14-week-old spontaneously hypertensive rats (SHR). Age-matched male Wistar-Kyoto rats (WKY) and Wistar rats were used as controls. PD123319 (AT2R antagonist) was microinjected into the RVLM and mean arterial pressure (MAP), heart rate (HR) and greater splanchnic nerve activity (GSNA) were recorded. Increases in MAP, HR and GSNA elicited by unilateral microinjections of PD123319 into the RVLM were significantly smaller in SHR when compared with those in WKY and Wistar rats. Unilateral microinjections of l-glutamate (l-Glu) into the RVLM elicited greater increases in MAP and GSNA in SHR compared to those in WKY. AT2R immunoreactivity was demonstrated in the RVLM neurons which were retrogradely labeled from the intermediolateral cell column (IML) of the spinal cord. These results indicate that AT2Rs are present on the RVLM neurons projecting to the IML and their blockade results in sympathoexcitatory responses. Activation of AT2Rs has an inhibitory influence in the RVLM and these receptors are tonically active. Attenuation of the function of AT2Rs in the RVLM may play a role in genesis and/or maintenance of hypertension in SHR.
Collapse
Affiliation(s)
- Tetsuya Kawabe
- a Department of Neurological Surgery , Rutgers New Jersey Medical School , Newark , NJ , USA
| | - Masamitsu Iwasa
- a Department of Neurological Surgery , Rutgers New Jersey Medical School , Newark , NJ , USA
| | - Kazumi Kawabe
- a Department of Neurological Surgery , Rutgers New Jersey Medical School , Newark , NJ , USA
| | - Hreday N Sapru
- a Department of Neurological Surgery , Rutgers New Jersey Medical School , Newark , NJ , USA
| |
Collapse
|
6
|
Ferreira PM, Xavier CH, Alzamora AC, Santos RAS, Campagnole-Santos MJ. Differential control of vasomotion by angiotensins in the rostral ventrolateral medulla of hypertensive rats. Neuropeptides 2015; 53:11-8. [PMID: 26390943 DOI: 10.1016/j.npep.2015.09.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2015] [Revised: 08/25/2015] [Accepted: 09/08/2015] [Indexed: 11/19/2022]
Abstract
The central and peripheral renin-angiotensin systems are known for playing a key role in cardiovascular control. In the present study, we evaluated the hemodynamic effects produced by nanoinjections of angiotensin II (Ang II) or angiotensin-(1-7) [Ang-(1-7)] into the rostral ventrolateral medulla (RVLM) of adult male normotensive (Wistar-WT) and spontaneously hypertensive rats (SHR). Animals were anesthetized (urethane 1.2g/kg) and instrumented for recording blood pressure (BP), heart rate (HR) and blood flow (BF) in the femoral, renal or mesenteric arteries. Afterwards, rats were positioned in a stereotaxic and prepared for nanoinjections (100 nl) of saline (NaCl 0.9%), Ang-(1-7) (40 ng) or Ang II (40 ng) into the RVLM. The vascular resistance (VR) was calculated by ΔMAP/ΔBF ratio. In WT, Ang-(1-7) or Ang II caused equipotent pressor effects that were not accompanied by changes in vascular resistance. However, MAP changes were greater in SHR. This strain also showed a concomitant increase in relative vascular resistance (ΔVR/VRbaseline) of renal (0.31 ± 0.07 and 0.3 ± 0.07 vs. 0.02 ± 0.01; Ang-(1-7), Ang II and Saline, respectively) and mesenteric beds (0.3 ± 0.06 and 0.33 ± 0.04 vs. 0.05 ± 0.02; Ang-(1-7), Ang II and saline, respectively). We conclude that Ang II and Ang-(1-7) at the RVLM control the vascular resistance of renal and mesenteric beds during hypertension.
Collapse
Affiliation(s)
- Patrícia M Ferreira
- Departamento de Ciências Fisiológicas, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiânia, GO, Brazil.
| | - Carlos H Xavier
- Departamento de Ciências Fisiológicas, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiânia, GO, Brazil
| | - Andreia C Alzamora
- Departamento de Ciências Biológicas, Instituto de Ciências Exatas e Biológicas, Universidade Federal de Ouro Preto, MG, Brazil
| | - Robson A S Santos
- Instituto Nacional de Ciência e Tecnologia em Nanobiofarmacêutica (INCT-Nanobiofar), Departamento de Fisiologia e Biofísica, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, MG, Brazil
| | - Maria J Campagnole-Santos
- Instituto Nacional de Ciência e Tecnologia em Nanobiofarmacêutica (INCT-Nanobiofar), Departamento de Fisiologia e Biofísica, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, MG, Brazil
| |
Collapse
|
7
|
Leenen FHH. Actions of circulating angiotensin II and aldosterone in the brain contributing to hypertension. Am J Hypertens 2014; 27:1024-32. [PMID: 24742639 DOI: 10.1093/ajh/hpu066] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
In the past 1-2 decades, it has become apparent that the brain renin-angiotensin-aldosterone system (RAAS) plays a crucial role in the regulation of blood pressure (BP) by the circulating RAAS. In the brain, angiotensinergic sympatho-excitatory pathways do not contribute to acute, second-to-second regulation but play a major role in the more chronic regulation of the setpoint for sympathetic tone and BP. Increases in plasma angiotensin II (Ang II) or aldosterone and in cerebrospinal fluid [Na(+)] can directly activate these pathways and chronically further activate/maintain enhanced activity by a slow neuromodulatory pathway involving local aldosterone, mineralocorticoid receptors (MRs), epithelial sodium channels, and endogenous ouabain. Blockade of any step in this slow pathway prevents Ang II-, aldosterone-, or salt and renal injury-induced forms of hypertension. It appears that the renal and arterial actions of circulating aldosterone and Ang II act as amplifiers but are not sufficient to cause chronic hypertension if their central actions are prevented, except perhaps at high concentrations. From a clinical perspective, oral treatment with an angiotensin type 1 (AT1)-receptor blocker at high doses can cause central AT1-receptor blockade and, in humans, lower sympathetic nerve activity. Low doses of the MR blocker spironolactone appear sufficient to cause central MR blockade and a decrease in sympathetic nerve activity. Integrating the brain actions of the circulating RAAS with its direct renal and arterial actions provides a better framework to understand the role of the circulating RAAS in the pathophysiology of hypertension and heart failure and to direct therapeutic strategies.
Collapse
Affiliation(s)
- Frans H H Leenen
- Hypertension Unit, University of Ottawa Heart Institute, Ottawa, Ontario, Canada.
| |
Collapse
|
8
|
Wang YK, Shen D, Hao Q, Yu Q, Wu ZT, Deng Y, Chen YF, Yuan WJ, Hu QK, Su DF, Wang WZ. Overexpression of angiotensin-converting enzyme 2 attenuates tonically active glutamatergic input to the rostral ventrolateral medulla in hypertensive rats. Am J Physiol Heart Circ Physiol 2014; 307:H182-90. [PMID: 24838502 DOI: 10.1152/ajpheart.00518.2013] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The rostral ventrolateral medulla (RVLM) plays a key role in cardiovascular regulation. It has been reported that tonically active glutamatergic input to the RVLM is increased in hypertensive rats, whereas angiotensin-converting enzyme 2 (ACE2) in the brain has been suggested to be beneficial to hypertension. This study was designed to determine the effect of ACE2 gene transfer into the RVLM on tonically active glutamatergic input in spontaneously hypertensive rats (SHRs). Lentiviral particles containing enhanced green fluorescent protein (lenti-GFP) or ACE2 (lenti-ACE2) were injected bilaterally into the RVLM. Both protein expression and activity of ACE2 in the RVLM were increased in SHRs after overexpression of ACE2. A significant reduction in blood pressure and heart rate in SHRs was observed 6 wk after lenti-ACE2 injected into the RVLM. The concentration of glutamate in microdialysis fluid from the RVLM was significantly reduced by an average of 61% in SHRs with lenti-ACE2 compared with lenti-GFP. ACE2 overexpression significantly attenuated the decrease in blood pressure and renal sympathetic nerve activity evoked by bilateral injection of the glutamate receptor antagonist kynurenic acid (2.7 nmol in 100 nl) into the RVLM in SHRs. Therefore, we suggest that ACE2 overexpression in the RVLM attenuates the enhanced tonically active glutamatergic input in SHRs, which may be an important mechanism underlying the beneficial effect of central ACE2 to hypertension.
Collapse
Affiliation(s)
- Yang-Kai Wang
- Department of Physiology, Second Military Medical University, Shanghai, China
| | - Du Shen
- Department of Physiology, Second Military Medical University, Shanghai, China
| | - Qiang Hao
- Department of Medical Imaging, Changhai Hospital, Shanghai, China
| | - Qiang Yu
- Department of Neurobiology and Physiology, Ningxia Medical University, Yinchuan, China; and
| | - Zhao-Tang Wu
- Department of Physiology, Second Military Medical University, Shanghai, China
| | - Yu Deng
- Department of Neurobiology and Physiology, Ningxia Medical University, Yinchuan, China; and
| | - Yan-Fang Chen
- Department of Pharmacology and Toxicology, Wright State University School of Medicine, Dayton, Ohio
| | - Wen-Jun Yuan
- Department of Neurobiology and Physiology, Ningxia Medical University, Yinchuan, China; and
| | - Qi-Kuan Hu
- Department of Neurobiology and Physiology, Ningxia Medical University, Yinchuan, China; and
| | - Ding-Feng Su
- Department of Physiology, Second Military Medical University, Shanghai, China
| | - Wei-Zhong Wang
- Department of Physiology, Second Military Medical University, Shanghai, China;
| |
Collapse
|
9
|
Saigusa T, Arita J. ANG II modulates both slow and rapid baroreflex responses of barosensitive bulbospinal neurons in the rabbit rostral ventrolateral medulla. Am J Physiol Regul Integr Comp Physiol 2014; 306:R538-51. [DOI: 10.1152/ajpregu.00285.2013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
This study investigated the effects of ANG II on slow and rapid baroreflex responses of barosensitive bulbospinal neurons in the rostral ventrolateral medulla (RVLM) in urethane-anesthetized rabbits to determine whether the sympathetic baroreflex modulation induced by application of ANG II into the RVLM can be explained by the total action of ANG II on individual RVLM neurons. In response to pharmacologically induced slow ramp changes in mean arterial pressure (MAP), individual RVLM neurons exhibited a unit activity-MAP relationship that was fitted by a straight line with upper and lower plateaus. Iontophoretically applied ANG II raised the upper plateau without changing the slope, and, thereby, increased the working range of the baroreflex response. An asymmetric sigmoid curve that was determined by averaging individual unit activity-MAP relationship lines became more symmetric with ANG II application. The characteristics of the average curves, both before and during ANG II application, were consistent with the renal sympathetic nerve activity-MAP relationship curves obtained under the same experimental conditions. ANG II also affected rapid baroreflex responses of RVLM neurons that were induced by cardiac beats, as application of ANG II predominantly raised the average unit activities in the downstroke phase of arterial pulse waves. The present study provides a possible explanation for the ANG II-induced sympathetic baroreflex modulation based on the action of ANG II on barosensitive bulbospinal RVLM neurons. Our results also suggest that ANG II changes both static and dynamic characteristics of baroreflex responses of RVLM neurons.
Collapse
Affiliation(s)
- Takeshi Saigusa
- Department of Physiology, Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, Chuo, Yamanashi, Japan
| | - Jun Arita
- Department of Physiology, Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, Chuo, Yamanashi, Japan
| |
Collapse
|
10
|
Roysommuti S, Wyss JM. Perinatal taurine exposure affects adult arterial pressure control. Amino Acids 2012; 46:57-72. [PMID: 23070226 DOI: 10.1007/s00726-012-1417-5] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2012] [Accepted: 10/04/2012] [Indexed: 12/13/2022]
Abstract
Taurine is an abundant, free amino acid found in mammalian cells that contributes to many physiologic functions from that of a simple cell osmolyte to a programmer of adult health and disease. Taurine's contribution extends from conception throughout life, but its most critical exposure period is during perinatal life. In adults, taurine supplementation prevents or alleviates cardiovascular disease and related complications. In contrast, low taurine consumption coincides with increased risk of cardiovascular disease, obesity and type II diabetes. This review focuses on the effects that altered perinatal taurine exposure has on long-term mechanisms that control adult arterial blood pressure and could thereby contribute to arterial hypertension through its ability to program these cardiovascular regulatory mechanisms very early in life. The modifications of these mechanisms can last a lifetime and transfer to the next generation, suggesting that epigenetic mechanisms underlie the changes. The ability of perinatal taurine exposure to influence arterial pressure control mechanisms and hypertension in adult life appears to involve the regulation of growth and development, the central and autonomic nervous system, the renin-angiotensin system, glucose-insulin interaction and changes to heart, blood vessels and kidney function.
Collapse
Affiliation(s)
- Sanya Roysommuti
- Department of Physiology, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand,
| | | |
Collapse
|
11
|
Gabor A, Leenen FHH. Central neuromodulatory pathways regulating sympathetic activity in hypertension. J Appl Physiol (1985) 2012; 113:1294-303. [PMID: 22773773 DOI: 10.1152/japplphysiol.00553.2012] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The classical neurotransmitters, glutamate and GABA, mediate fast (milliseconds) synaptic transmission and modulate its effectiveness through slow (seconds to minutes) signaling processes. Angiotensinergic pathways, from the lamina terminalis to the paraventricular nucleus (PVN)/supraoptic nucleus and rostral ventrolateral medulla (RVLM), are activated by stimuli such as circulating angiotensin type II (Ang II), cerebrospinal fluid (CSF) sodium ion concentration ([Na(+)]), and possibly plasma aldosterone, leading to sympathoexcitation, largely by decreasing GABA and increasing glutamate release. The aldosterone-endogenous ouabain (EO) pathway is a much slower neuromodulatory pathway. Aldosterone enhances EO release, and the latter increases chronic activity in angiotensinergic pathways by, e.g., increasing expression for Ang I receptor (AT(1)R) and NADPH oxidase subunits in the PVN. Blockade of this pathway does not affect the initial sympathoexcitatory and pressor responses but to a large extent, prevents chronic responses to CSF [Na(+)] or Ang II. Recruitment of these two neuromodulatory pathways allows the central nervous system (CNS) to shift gears to rapidly cause and sustain sympathetic hyperactivity in an efficient manner. Decreased GABA release, increased glutamate release, and enhanced AT(1)R activation in, e.g., the PVN and RVLM contribute to the elevated blood pressure in a number of hypertension models. In Dahl S rats and spontaneous hypertensive rats, high salt activates the CNS aldosterone-EO pathway, and the salt-induced hypertension can be prevented/reversed by specific CNS blockade of any of the steps in the cascade from aldosterone synthase to AT(1)R. Further studies are needed to advance our understanding of how and where in the brain these rapid, slow, and very slow CNS pathways are activated and interact in models of hypertension and other disease states associated with chronic sympathetic hyperactivity.
Collapse
Affiliation(s)
- Alexander Gabor
- Hypertension Unit, University of Ottawa Heart Institute, Ottawa, Ontario, Canada
| | | |
Collapse
|
12
|
Abstract
Brain angiotensin II (Ang II) induces tonic sympathoexcitatory effects through AT1 receptor stimulation of glutamatergic neurons and sympathoinhibitory effects via GABAergic neurons in the rostral ventrolateral medulla, the brainstem 'pressor area'. NADPH-derived superoxide production and reactive oxygen species signalling is critical in these actions, and AT2 receptors in the rostral ventrolateral medulla appear to mediate opposing effects on sympathetic outflow. In the hypothalamic paraventricular nucleus, Ang II has AT1 receptor-mediated sympathoexcitatory effects and enhances nitric oxide formation, which in turn inhibits the Ang II effects through a GABAergic mechanism. Ang II also decreases the tonic sympathoinhibitory effect of gamma amino butyric acid within the paraventricular nucleus. Angiotensin III and Angiotensin IV increase blood pressure via brain AT1 receptor stimulation. Angiotensin (1-7) influences cardiovascular function through a specific Mas-receptor. This review examines the evidence that brain angiotensin peptides, glutamate, gamma amino butyric acid and nitric oxide interact within the rostral ventrolateral medulla and paraventricular nucleus to control sympathetic tone and blood pressure.
Collapse
|
13
|
Peng JF, Wu ZT, Wang YK, Yuan WJ, Sun T, Ni X, Su DF, Wang W, Xu MJ, Wang WZ. GABAergic mechanism in the rostral ventrolateral medulla contributes to the hypotension of moxonidine. Cardiovasc Res 2010; 89:473-81. [PMID: 20829217 DOI: 10.1093/cvr/cvq289] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
AIMS The depressor action of the centrally antihypertensive drug moxonidine has been attributed to activation of I(1)-imidazoline receptor in the rostral ventrolateral medulla (RVLM). The objective of this study was to determine the role of the γ-aminobutyric acid (GABA) mechanisms in the RVLM in mediating the effect of moxonidine in anaesthetized normotensive rats. METHODS AND RESULTS The relationship between the effects of microinjection or picoinjection of moxonidine and the functional state of GABA receptors at the level of the RVLM or pre-sympathetic neuron was determined. Microdialysis was performed to detect the effect of moxonidine on the release of GABA in the RVLM. Western blot analysis was carried out to test the effect of chronic intracerebroventricular injection of moxonidine on the protein expression of GABA receptors in the RVLM. Pre-treatment with the GABA(A) or GABA(B) receptor antagonist bicuculline (5 pmol) or CGP35348 (200 pmol), respectively, microinjected into the RVLM significantly attenuated the decrease in blood pressure and renal sympathetic nerve activity induced by moxonidine. In 22 moxonidine-sensitive pre-sympathetic neurons in the RVLM, picoinjection of bicuculline (100 fmol/5 nL) significantly attenuated the neuronal inhibition evoked by moxonidine (100 pmol/5 nL). The release of GABA in the RVLM was increased after intravenous moxonidine (50 μg/kg). Central infusion of moxonidine upregulated the protein expression of both GABA(A) and GABA(B) receptors in the RVLM. CONCLUSION The current data demonstrate that GABAergic mechanisms in the RVLM are responsible for the hypotension and sympathoinhibition of moxonidine.
Collapse
Affiliation(s)
- Jun-Feng Peng
- Department of Physiology, Second Military Medical University, 800 Xiangyin Road, Shanghai 200433, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Thaeomor A, Wyss JM, Jirakulsomchok D, Roysommuti S. High sugar intake via the renin-angiotensin system blunts the baroreceptor reflex in adult rats that were perinatally depleted of taurine. J Biomed Sci 2010; 17 Suppl 1:S30. [PMID: 20804606 PMCID: PMC2994397 DOI: 10.1186/1423-0127-17-s1-s30] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Perinatal taurine depletion leads to several physiological impairments in adult life, in part, due to taurine’s effects on the renin-angiotensin system, a crucial regulator of growth and differentiation during early life. The present study tests the hypothesis that perinatal taurine depletion predisposes adult female rats to impaired baroreceptor control of arterial pressure by altering the renin-angiotensin system. Female Sprague Dawley (SD) rats were fed normal rat chow and from conception to weaning drank 3% beta-alanine in water (taurine depletion, TD) or water alone (Control, C). Female offspring ate a normal rat chow and drank water with (G) or without (W) 5% glucose throughout the experiment. To test the possible role of the renin-angiotensin system, 50% of the rats received captopril (an angiotensin converting enzyme inhibitor, 400 mg/L) from 7 days before parameter measurements until the end of experiment. At 7-8 weeks of age, arterial pressure, heart rate, baroreflex control of heart rate and renal nerve activity were studied in either conscious, freely moving or anesthetized rats. Perinatal taurine depletion did not alter resting mean arterial pressure or heart rate in the adult female offspring that received either high or normal sugar intake. Captopril treatment slightly decreased mean arterial pressure but not heart rate in all groups. Compared to controls, only the TDG rats displayed blunted baroreflex responses. Captopril treatment normalized baroreflex sensitivity in TDG. The present data indicate that in perinatal taurine depleted female rats, the renin-angiotensin system underlines the ability of high sugar intake to blunt baroreceptor responses.
Collapse
Affiliation(s)
- Atcharaporn Thaeomor
- Department of Physiology Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand.
| | | | | | | |
Collapse
|
15
|
Abstract
Headache treatment has been based primarily on experiences with non-specific drugs such as analgesics, non-steroidal anti-inflammatory drugs, or drugs that were originally developed to treat other diseases, such as beta-blockers and anticonvulsant medications. A better understanding of the basic pathophysiological mechanisms of migraine and other types of headache has led to the development over the past two decades of more target-specific drugs. Since activation of the trigeminovascular system and neurogenic inflammation are thought to play important roles in migraine pathophysiology, experimental studies modeling those events successfully predicted targets for selective development of pharmacological agents to treat migraine. Basically, there are two fundamental strategies for the treatment of migraine, abortive or preventive, based to a large degree on the frequency of attacks. The triptans, which exhibit potency towards selective serotonin (5-hydroxytryptamine, 5-HT) receptors expressed on trigeminal nerves, remain the most effective drugs for the abortive treatment of migraine. However, numerous preventive medications are currently available that modulate the excitability of the nervous system, particularly the cerebral cortex. In this chapter, the pharmacology of commercially available medications as well as drugs in development that prevent or abort headache attacks will be discussed.
Collapse
Affiliation(s)
- Hayrunnisa Bolay
- Department of Neurology, Gazi Hospital and Neuropsychiatry Centre, Gazi University, Besevler, Ankara, Turkey.
| | | |
Collapse
|
16
|
Tedesco A, Ally A. Angiotensin II type-2 (AT2) receptor antagonism alters cardiovascular responses to static exercise and simultaneously changes glutamate/GABA levels within the ventrolateral medulla. Neurosci Res 2009; 64:372-9. [PMID: 19379780 DOI: 10.1016/j.neures.2009.04.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2009] [Revised: 03/30/2009] [Accepted: 04/09/2009] [Indexed: 11/16/2022]
Abstract
UNLABELLED Angiotensin II receptors (Ang II), classified into AT1 and AT2 subtypes, are located in different regions of the central nervous system, including the cardiovascular control centers in the medulla oblongata. We previously reported the role of Ang II AT1 receptors within the medulla on cardiovascular responses and glutamate/GABA neurotransmission during the exercise pressor reflex [Patel, D., Böhlke, M., Phattanarudee, S., Kabadi, S., Maher, T.J., Ally, A., 2008. Cardiovascular responses and neurotransmitter changes during blockade of angiotensin II receptors within the ventrolateral medulla. Neurosci. Res. 60 (3), 340-348]. In this study, we investigated the role of the AT2 receptor subtype within the ventrolateral medullary region (VLM) in modulating increases in mean arterial pressure (MAP) and heart rate (HR) in response to static skeletal muscle contraction. METHODS Using microdialysis methods in anesthetized rats, we administered AR-AT2 antagonists into the rostral (RVLM) and caudal (CVLM) VLM and determined its effects on cardiovascular responses and glutamate/GABA neurotransmission following muscle contraction. Bilateral microdialysis of a selective AT2 antagonist, PD 123319 (10 microM), for 30 min into the RVLM augmented MAP and HR responses during a static muscle contraction. Simultaneously, the drug increased glutamate and decreased GABA levels within the RVLM. After 60 min of discontinuation of the drug, only MAP and HR values but not the neurotransmitter levels in response to a muscle contraction returned to baseline. In contrast, bilateral microdialysis of the drug into the CVLM attenuated cardiovascular responses during a static muscle contraction, decreased glutamate and increased GABA. However, only the cardiovascular responses recovered after 60 min of discontinuation of the drug. These results demonstrate that AT2 within both RVLM and CVLM plays important differential roles in modulating neurotransmission and cardiovascular function during the exercise pressor reflex.
Collapse
Affiliation(s)
- Anthony Tedesco
- Department of Pharmaceutical Sciences, Massachusetts College of Pharmacy and Health Sciences, 179 Longwood Avenue, Boston, MA 02115, USA
| | | |
Collapse
|
17
|
Ferreira P, Alzamora A, Santos R, Campagnole-Santos M. Hemodynamic effect produced by microinjection of angiotensins at the caudal ventrolateral medulla of spontaneously hypertensive rats. Neuroscience 2008; 151:1208-16. [DOI: 10.1016/j.neuroscience.2007.11.042] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2007] [Revised: 11/06/2007] [Accepted: 11/16/2007] [Indexed: 01/23/2023]
|
18
|
Patel D, Böhlke M, Phattanarudee S, Kabadi S, Maher TJ, Ally A. Cardiovascular responses and neurotransmitter changes during blockade of angiotensin II receptors within the ventrolateral medulla. Neurosci Res 2007; 60:340-8. [PMID: 18207270 DOI: 10.1016/j.neures.2007.12.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2007] [Revised: 11/16/2007] [Accepted: 12/05/2007] [Indexed: 11/26/2022]
Abstract
Angiotensin II (Ang II) receptors are located in different regions of the brain, particularly within the cardiovascular control centers in the brainstem. These Ang II receptors are divided into AT1 and AT2 subtypes. We investigated the role of AT1 receptor subtype within the rostral (RVLM) and caudal (CVLM) ventrolateral medulla on cardiovascular responses and glutamate/GABA neurotransmission during static exercise using microdialysis in anesthetized rats. Bilateral microdialysis of a selective AT1 receptor antagonist, ZD7155 (10 microM), for 30 min into the RVLM attenuated increases in mean arterial pressure (MAP) and heart rate (HR) during a static muscle contraction. Glutamate concentrations within the RVLM decreased while GABA levels increased simultaneously during the contraction period when compared to those before ZD7155. After 60 min of discontinuation of ZD7155, MAP, HR, glutamate, and GABA levels in response to another muscle contraction returned to baseline levels. Conversely, bilateral microdialysis of ZD7155 into the CVLM potentiated cardiovascular responses during a static muscle contraction; glutamate concentrations increased while GABA levels within the CVLM decreased. All responses recovered after 60 min of discontinuation of ZD7155. These results demonstrate that medullary AT1 receptors play an important role in modulating both neurotransmission and cardiovascular function during static exercise.
Collapse
Affiliation(s)
- Dipan Patel
- Department of Pharmaceutical Sciences, Massachusetts College of Pharmacy and Health Sciences, 179 Longwood Avenue, Boston, MA 02115, USA
| | | | | | | | | | | |
Collapse
|
19
|
Wang YR, Wang J, Li L, Shen LL, Cao YX, Zhu DN. Relationship between the central hypotensive effect of acupuncture or melatonin and the changes of medullary amino acid neurotransmitter. JOURNAL OF ACUPUNCTURE AND TUINA SCIENCE 2007. [DOI: 10.1007/s11726-007-0274-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
20
|
El-Haddad MA, Chao CR, Ross MG. N-methyl-D-aspartate glutamate receptor mediates spontaneous and angiotensin II-stimulated ovine fetal swallowing. ACTA ACUST UNITED AC 2005; 12:504-9. [PMID: 16202927 DOI: 10.1016/j.jsgi.2005.06.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2004] [Indexed: 11/16/2022]
Abstract
BACKGROUND In adult rats, N-methyl-D-aspartate (NMDA) receptors have been implicated in the central control of body fluid homeostasis, as intracerebroventricular (ICV) injection of NMDA receptor antagonists suppresses stimulated drinking behavior. Fetal swallowing occurs at a significantly higher rate as compared to adult drinking, contributing to amniotic fluid volume regulation and fetal gastrointestinal development. The aim of present study was to determine the role of central NMDA receptors in the modulation of fetal swallowing activity. METHODS Eight time-dated pregnant ewes and fetuses were chronically prepared with fetal vascular and ICV catheters, electrocorticogram (ECoG), and esophageal electromyogram electrodes and studied at 130 +/- 1 days' gestation. Following an initial 2-hour baseline period (time 2 h), the NMDA receptor antagonist, dizocipline (1 mg), was injected ICV. At time 4 h, the dose of dizocipline was repeated, together with angiotensin II (AngII, 6.4 microg). Fetal swallowing was monitored for 2 hours after each injection. Four of these fetuses also received an identical control study (on an alternate day) in which dizocipline was replaced with artificial cerebrospinal fluid (aCSF). RESULTS ICV dizocipline injection nearly abolished spontaneous fetal swallowing activities (0.6 +/- 0.1 to 0.2 +/- 0.1 swallows/min; P < .001). ICV AngII in the presence of dizocipline did not demonstrate a dipsogenic effect on fetal swallowing (0.1 +/- 0.1; P < .001). In the control study, ICV injection of aCSF did not change fetal swallowing activity (1.0 +/- 0.1 swallows/min), while ICV AngII resulted in a significant increase in fetal swallowing (2.0 +/- 0.1 swallows/min; P < .001). CONCLUSIONS This study demonstrates that central NMDA-glutamate receptor-mediated activity contributes to the high rate of spontaneous and AngII-stimulated fetal swallowing. We speculate that reduced NMDA receptor expression within the forebrain dipsogenic neurons may account for observed differences in drinking activities between the fetus/neonate and the adult.
Collapse
Affiliation(s)
- Mostafa A El-Haddad
- Perinatal Research Laboratories, Harbor/UCLA Medical Center, School of Medicine, Los Angeles, California, USA
| | | | | |
Collapse
|
21
|
Wang J, Peng YJ, Zhu DN. Amino acids modulate the hypotensive effect of angiotensin-(1-7) at the caudal ventrolateral medulla in rats. ACTA ACUST UNITED AC 2005; 129:1-7. [PMID: 15927691 DOI: 10.1016/j.regpep.2004.12.031] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2004] [Revised: 12/24/2004] [Accepted: 12/30/2004] [Indexed: 11/18/2022]
Abstract
The present experiment was designed to investigate the possible involvement of glutamate and taurine in the depressor response produced by angiotensin (Ang)-(1-7) at the caudal ventrolateral medulla (CVLM) in rats anesthetized with urethane and alpha-chloralose. Microinjection of Ang-(1-7) into the CVLM elicited a depressor response which was partially blocked by nonselective glutamate receptors antagonist kynurenic acid, whereas selective Ang-(1-7) antagonist Ang779 produced a pressor response which was significantly attenuated by taurine receptors antagonist 6-aminomethyl-3-methyl-4H-1,2,4-benzothiadiazine-1,1-dioxide. Release of glutamate and taurine in the CVLM was evaluated with microdialysis, and the contents of these amino acids were measured with high performance liquid chromatography-fluorescent detection. The depressor response to Ang-(1-7) was accompanied by an increased release of glutamate and a decrease of taurine at the CVLM, whereas the pressor response to Ang779 was associated with a decreased release of glutamate and an increase of taurine. These results suggest that Ang-(1-7) and its antagonist Ang779 modulate the release of glutamate and taurine at the CVLM, which in turn contributes at least in part to the blood pressure response to Ang-(1-7) and Ang779.
Collapse
Affiliation(s)
- Jin Wang
- Department of Physiology and Pathophysiology, Shanghai Medical College of Fudan University (The former Shanghai Medical University), Shanghai 200032, China
| | | | | |
Collapse
|
22
|
Nandhini ATA, Thirunavukkarasu V, Anuradha CV. Potential role of kinins in the effects of taurine in high-fructose-fed rats. Can J Physiol Pharmacol 2004; 82:1-8. [PMID: 15052299 DOI: 10.1139/y03-118] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The present work investigates the involvement of kinins in the effects of taurine in fructose-fed hypertensive rats. The effects of taurine on blood pressure, plasma glucose, insulin, and the insulin sensitivity index were determined. Angiotensin-converting enzyme (ACE) activity and nitrite content in plasma, plasma and tissue kallikrein activity, and taurine content were also investigated. The blood pressure changes in response to the coadministration of inhib itors of the synthesis of nitric oxide (NO), prostaglandins (PGs), or a kinin receptor blocker along with taurine was also evaluated. Fructose-fed rats had higher blood pressure and elevated plasma levels of glucose and insulin. Kallikrein activity, taurine, and nitrite contents were significantly lower in fructose-fed rats as compared with controls. The increases in systolic blood pressure, hyperglycemia, and hyperinsulinemia were controlled by taurine administration in fructose-fed rats. ACE activity was lower, while nitrite and taurine content and kallikrein activity were higher, in taurine-supplemented rats as compared with fructose-fed rats. A significant increase in blood pressure was observed in rats cotreated with the inhibitors Hoe 140 (a kinin receptor blocker), L-NAME (a NO synthase inhibitor), or indo metha cin (a PG synthesis inhibitor) with taurine for 1 week as compared with taurine-treated fructose-fed rats. This suggests that the antihypertensive effect of taurine in fructose-fed rats was blocked by the inhibitors. Augmented kallikrein activity and, hence, increased kinin availability may be implicated in the effects of taurine in fructose-fed hypertensive rats.Key words: kallikrein, nitric oxide, angiotensin-converting enzyme, blood pressure, taurine.
Collapse
Affiliation(s)
- A T Anitha Nandhini
- Departmernt of Biochemistry, Faculty of Science, Annamalai University, Annamalainagar 608-002, Tamil Nadu, India
| | | | | |
Collapse
|
23
|
Abebe W, Mozaffari MS. Effect of taurine deficiency on adenosine receptor-mediated relaxation of the rat aorta. Vascul Pharmacol 2003; 40:219-28. [PMID: 14746829 DOI: 10.1016/j.vph.2003.08.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
We recently demonstrated that chronic taurine supplementation or deficiency causes alterations in reactivity of the rat aorta to several vasoactive agents. In the present investigation, we examined the effects beta-alanine-induced endogenous taurine deficiency on the mechanical responsiveness of the isolated rat aorta to adenosine receptor stimulation with 2-chloroadenosine (CAD), 5'-N-ethylcarboxyamidoadenosine (NECA), and N(6)-cyclopentyladenosine (CPA). The adenosine analogs produced concentration-dependent (1 x 10(-9)-3 x 10(-3) M) relaxations of aortas from both control and beta-alanine-treated rats with the rank order of potencies NECA>CAD>CPA, which was consistent with A(2) receptor identification. CAD and NECA induced both endothelium-dependent and -independent relaxations of the aortas. The endothelium-dependent responses to both agents and the independent responses to CAD were significantly attenuated by beta-alanine treatment. The relaxation responses of the aortas from control and taurine-deficient rats to CAD and NECA were markedly antagonized by ZM241385 (10(-5) M), suggesting the involvement of A(2A) adenosine receptors. Further, N-nitro-L-arginine methyl ester (L-NAME; 10(-5) M) significantly attenuated the endothelium-mediated relaxation produced by CAD and NECA in both groups. However, the inhibitory effect of L-NAME was less on the beta-alanine-treated tissues, providing evidence that the effect of taurine deficiency was linked to a reduction in nitric oxide generation. As in the aorta, CAD produced both endothelium-dependent and -independent relaxation responses in the rat superior mesenteric artery, and both responses were inhibited by chronic beta-alanine treatment, suggesting that not only similar responses can be generated by a given adenosine agonist in different vascular beds, but also beta-alanine treatment modulates these responses. On the other hand, while CPA elicited only endothelium-independent aortic relaxation, this response was not altered by taurine deficiency. The results indicate that endogenous taurine deficiency causes differential inhibitory effects on adenosine receptor-mediated vasorelaxation, depending upon the agonists used. Given the recognized role of adenosine in the vasculature, these alterations suggest taurine-mediated modulation of blood flow regulation.
Collapse
Affiliation(s)
- Worku Abebe
- Department of Oral Biology and Maxillofacial Pathology, School of Dentistry, CB 3710, Medical College of Georgia, Augusta, GA 30912-1128, USA.
| | | |
Collapse
|
24
|
Abstract
We recently showed that chronic taurine supplementation is associated with attenuation of contractile responses of rat aorta to norepinephrine and potassium chloride. However, the potential involvement of endogenous taurine in modulation of vascular reactivity is not known. Therefore, we examined the effect of β-alanine-induced taurine depletion on the in vitro reactivity of rat aorta to selected vasoactive agents. The data indicate that both norepinephrine- and potassium-chloride-induced maximum contractile responses of endothelium-denuded aortae were enhanced in taurine-depleted rats compared with control animals. However, taurine depletion did not affect tissue sensitivity to either norepinephrine or potassium chloride. By contrast, sensitivity of the endothelium-denuded aortae to sodium nitroprusside was attenuated by taurine depletion. Similarly, taurine deficiency reduced the relaxant responses of endothelium-intact aortic rings elicited by submaximal concentrations of acetylcholine, and this effect was associated with decreased nitric oxide production. Taken together, the data suggest that taurine depletion augments contractility but attenuates relaxation of vascular smooth muscle in a nonspecific manner. Impairment of endothelium-dependent responses, which is at least in part associated with reduced nitric oxide generation, may contribute to the attenuation of the vasorelaxant responses. These vascular alterations could be of potential consequence in pathological conditions associated with taurine deficiency.Key words: rat aorta, β-alanine, taurine depletion, vascular reactivity.
Collapse
MESH Headings
- Acetylcholine/pharmacology
- Animals
- Aorta/drug effects
- Aorta/metabolism
- Endothelium, Vascular/drug effects
- Endothelium, Vascular/metabolism
- In Vitro Techniques
- Male
- Models, Animal
- Muscle Contraction/drug effects
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/physiology
- Nitric Oxide Donors/pharmacology
- Nitroprusside/pharmacology
- Norepinephrine/pharmacology
- Potassium Chloride/pharmacology
- Rats
- Rats, Inbred WKY
- Taurine/antagonists & inhibitors
- Taurine/metabolism
- beta-Alanine/pharmacology
Collapse
Affiliation(s)
- Worku Abebe
- Department of Oral Biology and Maxillofacial Pathology, CB 3710, School of Dentistry, Medical College of Georgia, Augusta, GA 30912-1128, USA.
| | | |
Collapse
|
25
|
Veerasingham SJ, Raizada MK. Brain renin-angiotensin system dysfunction in hypertension: recent advances and perspectives. Br J Pharmacol 2003; 139:191-202. [PMID: 12770924 PMCID: PMC1573858 DOI: 10.1038/sj.bjp.0705262] [Citation(s) in RCA: 203] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2003] [Accepted: 02/27/2003] [Indexed: 11/08/2022] Open
Abstract
This review focuses on the dysfunction of the intrinsic brain renin-angiotensin system (RAS) in the pathogenesis of hypertension. Hyperactivity of the brain RAS plays a critical role in mediating hypertension in both humans and animal models of hypertension, including the spontaneously hypertensive rat (SHR). The specific mechanisms by which increased brain RAS activity results in hypertension are not well understood but include increases in sympathetic vasomotor tone and impaired arterial baroreflex function. We discuss the contribution of endogenous angiotensin (Ang) II actions on presympathetic vasomotor rostral ventrolateral medulla neurons to enhance sympathetic activity and maintain hypertension. In addition, we discuss Ang II-induced attenuation of afferent baroreceptor feedback within the nucleus tractus solitarius and its relevance to the development of hypertension. We also outline the cellular and molecular mechanisms of Ang II signal transduction that may be critical for the initiation and establishment of hypertension. In particular, we present evidence for a phosphoinositide-3-kinase-dependent signaling pathway that appears to contribute to hypertension in the SHR, possibly via augmented Ang II-induced increases in neuronal firing rate and enhanced transcriptional noradrenaline neuromodulation. Finally, we outline future directions in utilizing our understanding of the brain RAS dysfunction in hypertension for the development of improved therapeutic intervention in hypertension.
Collapse
Affiliation(s)
| | - Mohan K Raizada
- Department of Physiology and Functional Genomics, University of Florida, U.S.A
| |
Collapse
|
26
|
Matsuura T, Kumagai H, Kawai A, Onimaru H, Imai M, Oshima N, Sakata K, Saruta T. Rostral ventrolateral medulla neurons of neonatal Wistar-Kyoto and spontaneously hypertensive rats. Hypertension 2002; 40:560-5. [PMID: 12364363 DOI: 10.1161/01.hyp.0000032043.64223.87] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
We compared the electrophysiological properties of neurons in the rostral ventrolateral medulla (RVLM) of neonatal Wistar-Kyoto rats (WKY) and spontaneously hypertensive rats (SHR), and responses to angiotensin II and its type 1 receptor antagonist candesartan. Using the whole-cell patch-clamp technique, we examined the characteristics of RVLM neurons in brainstem-spinal cord preparations with a preserved sympathetic neuronal network. The baseline membrane potential of irregularly firing neurons was less negative (-50.1+/-0.6 versus -52.0+/-0.6 mV) and the firing rate was faster (3.0+/-0.2 versus 2.0+/-0.2 Hz) in SHR (n=56) than in WKY (n=38). Superfusion with angiotensin II (6 micromol/L) significantly depolarized the RVLM bulbospinal neurons in SHR (5.4+/-1.1 mV, n=15) but not in WKY. In contrast, candesartan (0.12 micromol/L) induced a significant membrane hyperpolarization (-3.7+/-0.4 mV; n=14) and a decrease in the firing rate in RVLM bulbospinal neurons of SHR but not of WKY. These results suggest that endogenously generated angiotensin II binds to type 1 receptors on RVLM bulbospinal neurons, thus tonically contributing to a higher membrane potential and a faster firing rate in SHR. The electrophysiological properties of RVLM neurons and their responses to angiotensin II and candesartan differ between neonatal WKY and SHR. These differences in RVLM neurons suggest a mechanism that possibly leads to elevation in blood pressure.
Collapse
Affiliation(s)
- Tomokazu Matsuura
- Department of Internal Medicine, Keio University School of Medicine, Shinjuku-ku, Tokyo, Japan
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Sved AF, Ito S, Yajima Y. Role of excitatory amino acid inputs to the rostral ventrolateral medulla in cardiovascular regulation. Clin Exp Pharmacol Physiol 2002; 29:503-6. [PMID: 12010199 DOI: 10.1046/j.1440-1681.2002.03663.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
1. Excitatory amino acid (EAA)-mediated neural transmission in the rostral ventrolateral medulla (RVLM) is important for many cardiovascular reflexes, although the receptor subtypes involved vary depending on the specific response. 2. Although injection of the EAA ionotropic receptor antagonist kynurenic acid into the RVLM has no effect on baseline arterial pressure, this lack of effect appears to result from EAA inputs to RVLM exciting both excitatory and inhibitory mechanisms within the RVLM. 3. The balance between EAA-mediated excitation and inhibition of RVLM neurons may be shifted to excitation in experimental models of hypertension. 4. The excitatory influence that EAA inputs to the RVLM have on vasomotor neurons in the RVLM may involve a sarthran-sensitive intermediary in the RVLM.
Collapse
Affiliation(s)
- Alan F Sved
- Department of Neuroscience, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.
| | | | | |
Collapse
|
28
|
Hu L, Zhu DN, Yu Z, Wang JQ, Sun ZJ, Yao T. Expression of angiotensin II type 1 (AT(1)) receptor in the rostral ventrolateral medulla in rats. J Appl Physiol (1985) 2002; 92:2153-61. [PMID: 11960969 DOI: 10.1152/japplphysiol.00261.2001] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
In the present study, the changes of amino acids release in the spinal cord after the application of angiotensin II (ANG II) in the rostral ventrolateral medulla (RVLM) and the distribution of ANG receptors on neurons of the RVLM were investigated. A microdialysis experiment showed that microinjection of angiotensin II into the RVLM significantly (P < 0.01) increased the release of aspartate and glutamate in the intermediolateral column of the spinal cord. Immunofluorescence technique combined with confocal microscopy demonstrated that most of the glutamatergic and GABAergic neurons in the RVLM of both Wistar and spontaneously hypertensive rats (SHR) were double labeled with ANG type 1 (AT1) receptor. Immunocytochemical studies demonstrated that the mean optic density of AT1 receptor of the cell surface as well as the whole cell was higher (P < 0.05) in SHR than that in Wistar rats, indicating that the higher expression of AT1 receptors in the RVLM may contribute to the higher responsiveness of SHR to ANG II stimulation. Immunogold staining and electronmicroscopic study demonstrated that AT1 receptor in the RVLM was distributed on the rough endoplasmic reticulum, cell membrane, and nerve processes. The results suggest that effects evoked by ANG II in the RVLM are closely related to glutamatergic and GABAergic pathways. These results indirectly support the hypothesis that ANG II in the RVLM may activate vasomotor sympathetic glutamatergic neurons, leading to an increase in sympathetic nerve activity and arterial blood pressure.
Collapse
Affiliation(s)
- Lian Hu
- Department of Physiology, Medical Center of Fudan University (Former Shanghai Medical University), Shanghai 200032, China
| | | | | | | | | | | |
Collapse
|
29
|
Abstract
1. The aim of the present article is to review the intracellular signal transduction pathways that are influenced by the peptide angiotensin (Ang) II, acting via its type 1 (AT1) receptor, in neurons. 2. The AT1 receptors couple to a wide variety of signalling pathways in peripheral tissues, such as kidney, heart and vascular smooth muscle. A similar diversity of signalling mechanisms exists for AT1 receptors in neurons. 3. We outline the known neuronal AT1 receptor signalling pathways as they relate to function. Pathways that couple activation of AT1 receptors to short-term changes in neuronal membrane ionic currents and firing rate will be reviewed. These are different from the pathways that elicit longer-term changes in enzyme activity and gene expression and, ultimately, increases in noradrenaline synthesis. 4. Novel AT1 receptor signalling pathways discovered through gene expression profiling and their potential functional significance have been discussed.
Collapse
Affiliation(s)
- Colin Sumners
- Department of Physiology, College of Medicine and McKnight Brain Institute, University of Florida, Gainesville, Florida 32610, USA.
| | | | | |
Collapse
|
30
|
Ishide T, Maher T, Nauli SM, Pearce WJ, Ally A. Modulation of pressor response to muscle contraction via monoamines following AMPA-receptor blockade in the ventrolateral medulla. Pharmacol Res 2001; 44:481-9. [PMID: 11735354 DOI: 10.1006/phrs.2001.0881] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We hypothesized that cardiovascular responses to static muscle contraction are mediated via changes in extracellular concentrations of monoamines (norepinephrine, dopamine and serotonin) following the administration of 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX, an AMPA-receptor antagonist) into the rostral (RVLM) or caudal (CVLM) ventrolateral medulla. For the RVLM experiments (n= 8), a 2-min static muscle contraction increased the mean arterial pressure (MAP) and heart rate (HR) by 23 +/- 2 mmHg and 28 +/- 8 bpm, respectively. During this contraction, the concentrations of norepinephrine, dopamine, and serotonin within the RVLM increased by 278 +/- 52%, 213 +/- 23%, and 232 +/- 24%, respectively. Microdialysis of CNQX (1.0 microM) for 30 min into the RVLM attenuated the increases in MAP and HR ( 11 +/- 2 mmHg and 14 +/- 5 bpm) without a change in developed muscle tension. The levels of norepinephrine, dopamine, and serotonin within the RVLM were also attenuated. In contrast, microdialysis of CNQX into the CVLM (n= 8) potentiated the contraction-evoked responses in MAP ( 21 +/- 2 vs 33 +/- 5 mmHg) and HR ( 25 +/- 5 vs 46 +/- 8 bpm) without any effect on the monoamine levels within the CVLM region. These results suggest that AMPA-receptor blockade within the RVLM and CVLM has opposing effects on cardiovascular responses during static muscle contraction. In addition, such receptor blockade modulates extracellular concentrations of monoamines within the RVLM but not in the CVLM. These results provide evidence that AMPA receptors within the ventrolateral medulla play a role in exercise pressor reflex.
Collapse
Affiliation(s)
- T Ishide
- Department of Physiology, Center for Perinatal Biology, Loma Linda University School of Medicine, Loma Linda, CA 92350, USA
| | | | | | | | | |
Collapse
|
31
|
Baltatu O, Fontes MA, Campagnole-Santos MJ, Caligiorni S, Ganten D, Santos RA, Bader M. Alterations of the renin-angiotensin system at the RVLM of transgenic rats with low brain angiotensinogen. Am J Physiol Regul Integr Comp Physiol 2001; 280:R428-33. [PMID: 11208571 DOI: 10.1152/ajpregu.2001.280.2.r428] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The transgenic rats TGR(ASrAOGEN) (TGR) with low levels of brain angiotensinogen were analyzed for cardiovascular reactivity to microinjections of ANG II and angiotensin receptor (AT(1)) antagonists [CV-11974, AT(1) specific; A-779, ANG-(1--7) selective; sarthran, nonspecific] into the rostral ventrolateral medulla (RVLM) of conscious rats. Microinjection of ANG II resulted in a significantly higher increase in the mean arterial pressure (MAP) of TGR than control [Sprague-Dawley (SD)] rats, suggesting an upregulation of ANG II receptors in TGR. CV-11974 produced an increase in MAP of SD but not in TGR rats. A-779 produced a depressor response in SD but not in TGR rats. Conversely, sarthran produced a similar decrease of MAP in both rat groups. The pressor effect of the AT(1) antagonist may indicate an inhibitory role of AT(1) receptors in the RVLM. On the other hand, ANG-(1--7) appears to have a tonic excitatory role in this region. The altered response to specific angiotensin antagonists in TGR further supports the functionally relevant decrease in angiotensins in the brains of TGR and corroborates the importance of the central renin-angiotensin system in cardiovascular homeostasis.
Collapse
Affiliation(s)
- O Baltatu
- Max Delbrück Center for Molecular Medicine, D-13092 Berlin-Buch, Germany.
| | | | | | | | | | | | | |
Collapse
|
32
|
Len W, Chan SH, Chan JY. Parabrachial nucleus induces suppression of baroreflex bradycardia by the release of glutamate in the rostral ventrolateral medulla of the rat. J Biomed Sci 2000; 7:401-11. [PMID: 10971138 DOI: 10.1007/bf02255815] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
The involvement of glutamatergic neurotransmission in the rostral ventrolateral medulla (RVLM) in the suppression of baroreflex bradycardia by the parabrachial nucleus (PBN) was investigated. Repeated electrical activation of the PBN increased the concentration of glutamate in the dialysate collected from the RVLM. The same stimulation also suppressed baroreflex bradycardia in response to transient hypertension evoked by phenylephrine (5 microg/kg, intravenously). Microinfusion of L-glutamate (10, 50 or 100 microM) via the microdialysis probe into the RVLM dose-dependently elicited a significant inhibition of baroreflex bradycardia that paralleled the concentration and time course of the PBN-elicited elevation in extracellular glutamate in the RVLM. The suppression of baroreflex bradycardia elicited by microinjection of L-glutamate (1 nmol) into the RVLM was appreciably reversed by coinjection of the NMDA receptor antagonist, dizocilpine (500 pmol), or the non-NMDA receptor antagonist, 6-cyano-7-nitroquinoxaline-2, 3-dione (50 pmol). These results suggest that an increase in the extracellular concentration of glutamate and activation of both NMDA and non-NMDA receptors in the RVLM may mediate the suppression of baroreflex bradycardia by activation of the PBN.
Collapse
Affiliation(s)
- W Len
- Department of Biomedical Science, Chang-Gung College of Nursing, Taoyuan, Taiwan, Republic of China
| | | | | |
Collapse
|
33
|
Reidman DA, Maher TJ, Chaiyakul P, Ally A. Modulation of extracellular glutamate and pressor response to muscle contraction during NMDA-receptor blockade in the rostral ventrolateral medulla. Neurosci Res 2000; 36:147-56. [PMID: 10711812 DOI: 10.1016/s0168-0102(99)00118-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Recently our laboratory demonstrated increases in extracellular glutamate concentrations within the rostral ventrolateral medulla (RVLM) during static muscle contraction (Caringi, D.C., Maher, T., Chaiyakul, P., Asmundsson, G., Ishide, T., Ally, A. Pflügers Arch. Eur. J. Physiol., 435:465-471, 1998). In this study, we determined effects of microdialyzing D(-)2-amino-7-phosphonohepatanoic acid (AP-7), an NMDA-receptor antagonist, into the RVLM on changes in mean arterial pressure (MAP), heart rate (HR), and extracellular glutamate levels during muscle contraction in anesthetized rats. Bilateral placements of microdialysis probes into the RVLM were verified by perfusing L-glutamate and obtaining a pressor response. Muscle contraction for 2 min, increased MAP and HR by 22+/-4 mmHg and 28+/-5 bpm, respectively. Extracellular glutamate as determined by microdialysis increased from 0.8+/-0.2 to 6.3+/-1.2 ng/5 microl. Microdialysis of AP-7 (1.0 microM) for 30 min inhibited contraction-evoked MAP and HR responses (10+/-3 mmHg and 13+/-3 bpm) and attenuated increases in glutamate during muscle contraction. Developed tensions did not differ during contractions before and after AP-7. Results demonstrate that NMDA-receptor blockade in the RVLM inhibits cardiovascular responses during static muscle contraction via a reduction in extracellular glutamate levels.
Collapse
Affiliation(s)
- D A Reidman
- Department of Physiology, University of New England, College of Osteopathic Medicine, Biddeford, ME 04005, USA
| | | | | | | |
Collapse
|
34
|
Averill DB, Diz DI. Angiotensin peptides and baroreflex control of sympathetic outflow: pathways and mechanisms of the medulla oblongata. Brain Res Bull 2000; 51:119-28. [PMID: 10709957 DOI: 10.1016/s0361-9230(99)00237-3] [Citation(s) in RCA: 124] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The baroreceptor reflex is a relatively high gain control system that maintains arterial pressure within normal limits. To a large extent, this is accomplished through central neural pathways responsible for autonomic outflow residing in the medulla oblongata. The circulating renin-angiotensin system also contributes to the regulation of blood pressure, predominantly through its effects on the control of hydromineral balance and fluid volume. All the components of the renin-angiotensin system are also found in the brain. One of the principal products of the renin-angiotensin system cascade (brain or blood), angiotensin II, modulates the baroreceptor reflex by diminishing the sensitivity of the reflex and shifting the operating point for regulation of sympathetic outflow to higher blood pressures. This paper reviews our current knowledge about the neuronal pathways in the medulla oblongata through which angiotensin peptides alter the baroreceptor reflex control of sympathetic nerve activity. Emphasis is placed on the probable components and neural mechanisms of the medullary baroreflex arc that account for the ability of angiotensin peptides to change the sensitivity of the baroreceptor reflex and to shift the baroreceptor reflex control of sympathetic outflow to higher blood pressures in a pressure-independent manner.
Collapse
Affiliation(s)
- D B Averill
- Hypertension and Vascular Disease Center, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA.
| | | |
Collapse
|
35
|
Lillaney R, Maher TJ, Chaiyakul P, Ally A. Changes in extracellular glutamate and pressor response during muscle contraction following AMPA-receptor blockade in the RVLM and CVLM. Brain Res 1999; 844:164-73. [PMID: 10536273 DOI: 10.1016/s0006-8993(99)01920-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
We examined whether modulation of cardiovascular responses by administering 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX, an AMPA-receptor antagonist) into the rostral (RVLM) or caudal (CVLM) ventrolateral medulla are mediated via changes in extracellular levels of glutamate. Microdialysis probes were inserted bilaterally into the RVLM or the CVLM. For the RVLM experiments (n=8), muscle contraction for 2 min increased mean arterial pressure (MAP) and heart rate (HR) by 18+/-3 mmHg and 24+/-5 bpm, respectively. Extracellular glutamate concentrations increased from 1.5+/-0.3 to 4.3+/-0.9 ng/5 microl during the contraction. Microdialysis of CNQX (1.0 microM) for 30 min into the RVLM attenuated the increases in MAP, HR, and glutamate concentration in response to a muscle contraction (8+/-2 mmHg, 11+/-3 bpm, and 2.2+/-0.7 ng/5 microl, respectively). Developed tensions did not change during contractions before and after CNQX. Microdialysis of CNQX into the CVLM (n=8) potentiated the contraction-evoked responses in MAP (19+/-3 vs. 34+/-3 mmHg) and HR (25+/-4 vs. 49+/-5 bpm) without a change in developed tension. Following CNQX perfusion into the CVLM, the levels of extracellular glutamate in the CVLM were also augmented during the contraction. Results suggests that AMPA-receptors within the RVLM and CVLM differentially modulate cardiovascular responses during static muscle contraction via increasing and decreasing, respectively, extracellular glutamate concentrations.
Collapse
Affiliation(s)
- R Lillaney
- Department of Physiology, College of Osteopathic Medicine, University of New England, Biddeford, ME 04055, USA
| | | | | | | |
Collapse
|
36
|
Tagawa T, Horiuchi J, Potts PD, Dampney RA. Sympathoinhibition after angiotensin receptor blockade in the rostral ventrolateral medulla is independent of glutamate and gamma-aminobutyric acid receptors. JOURNAL OF THE AUTONOMIC NERVOUS SYSTEM 1999; 77:21-30. [PMID: 10494746 DOI: 10.1016/s0165-1838(99)00026-0] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Bilateral blockade of angiotensin (Ang) receptors in the rostral ventrolateral medulla (RVLM) causes a profound fall in arterial pressure. In this study, we tested whether this effect is due to an interaction between Ang receptors and either glutamatergic or gamma-aminobutyric acidergic (GABAergic) synaptic inputs to RVLM sympathoexcitatory neurons. In urethane-anaesthetised rats, bilateral microinjections of the Ang receptor antagonists [Sar1,Thr8]Ang II or [Sar1,Ile8]Ang II into the RVLM pressor region caused large decreases in arterial pressure, heart rate and renal sympathetic nerve activity (RSNA). These responses were not significantly altered following bilateral microinjections into the RVLM of the glutamate receptor antagonist kynurenic acid (4.5 nmol). Furthermore, bilateral injections of kynurenic acid plus the GABA(A) receptor antagonist bicuculline (200 pmol) into the RVLM increased the baseline arterial pressure and RSNA, but did not alter the percentage decreases in these variables evoked by bilateral microinjections of [Sar1,Ile8]Ang II. However, the level of arterial pressure and RSNA following bilateral injections of kynurenic acid, bicuculline and [Sar1,Ile8]Ang II were similar to the levels before injection of any of these compounds. The effectiveness of the microinjections of kynurenic acid and bicuculline into the RVLM was demonstrated by the observation that they virtually abolished the somato-sympathoexcitatory and baroreceptor-sympathoinhibitory reflexes, which are mediated by glutamatergic and GABAergic synapses, respectively, in the RVLM. These results indicate that (1) blockade of Ang receptors greatly reduces the firing rate of RVLM sympathoexcitatory neurons via a mechanism that is independent of glutamatergic or GABAergic neurotransmission, and (2) in the absence of inputs mediated by ionotropic glutamate, GABA(A) and Ang receptors, there are other mechanisms which generate a level of tonic activity in RVLM sympathoexcitatory neurons sufficient to maintain a normal level of sympathetic vasomotor activity.
Collapse
Affiliation(s)
- T Tagawa
- Department of Physiology and Institute for Biomedical Research, University of Sydney, New South Wales, Australia
| | | | | | | |
Collapse
|
37
|
Tsuchihashi T, Kagiyama S, Matsumura K, Abe I, Fujishima M. Effects of chronic oral treatment with imidapril and TCV-116 on the responsiveness to angiotensin II in ventrolateral medulla of SHR. J Hypertens 1999; 17:917-22. [PMID: 10419064 DOI: 10.1097/00004872-199917070-00007] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE To examine whether chronic oral treatment with an angiotensin-converting enzyme inhibitor imidapril and an angiotensin II type 1 receptor antagonist TCV-116 would alter the response to angiotensin II in the rostral ventrolateral medulla. METHODS Twelve-week-old spontaneously hypertensive rats (SHR) were treated with imidapril (20 mg/kg per day, n = 7), TCV-116 (5 mg/kg per day, n = 8) or vehicle (n = 8) for 4 weeks. Wistar- Kyoto rats (WKY) (n = 8) served as normotensive controls. At 16 weeks of age, angiotensin II (100 pmol) was microinjected into the rostral ventrolateral medulla of anaesthetized rats. RESULTS Blood pressure decreased significantly in the rats treated with either imidapril or TCV-116. Pressor responses to angiotensin II microinjected into the rostral ventrolateral medulla were comparable in the untreated SHR, the imidapril-treated SHR and WKY (12 +/- 2, 15 +/- 4 and 10 +/- 1 mmHg, respectively), but were abolished in SHR treated with TCV-116 (0 +/- 2 mmHg, P< 0.01). Angiotensin-converting enzyme activity in the brain stem was significantly lower in SHR treated with imidapril (0.70 +/- 0.06 nmol/mg per h), but significantly higher in SHR treated with TCV-116 (1.62 +/- 0.04 nmol/mg per h) than in the untreated SHR (1.37 +/- 0.05 nmol/mg per h). CONCLUSIONS Chronic oral treatment with imidapril and TCV-116 may have divergent influences on the renin-angiotensin system within the brain stem. TCV-116, but not imidapril, abolishes the pressor effect of angiotensin II in the rostral ventrolateral medulla.
Collapse
Affiliation(s)
- T Tsuchihashi
- Second Department of Internal Medicine, Faculty of Medicine, Kyushu University, Fukuoka, Japan.
| | | | | | | | | |
Collapse
|
38
|
Abstract
Cholinergic neurons in numerous brain regions have been implicated in blood pressure regulation. One of the most important brain regions where cholinergic neurons play a role in the pathogenesis of hypertension is the rostral ventrolateral medulla (RVL), an essential source of efferent sympathetic activity. Pharmacological and biochemical studies have revealed that acetylcholine release in the RVL is increased in experimental hypertension regardless of its etiology and that this enhanced release of acetylcholine leads to hypertension. The lateral parabrachial nucleus, another important hindbrain area involved in blood pressure regulation, is responsible for the enhanced release of acetylcholine in the RVL of hypertensive animals. Moreover, recent studies have demonstrated the involvement of the hypothalamic defence area, an area believed to be involved in the hypertension induced by chronic stress, in the release of acetylcholine in the RVL and also have demonstrated the existence of direct projections from the hypothalamic structures to the lateral parabrachial nucleus. More studies about mechanisms of the enhanced release of acetylcholine in the RVL of experimentally hypertensive animals will provide important information for central mechanisms of hypertension.
Collapse
Affiliation(s)
- T Kubo
- Department of Pharmacology, Showa College of Pharmaceutical Sciences, Machida, Tokyo, Japan
| |
Collapse
|