1
|
An J, Shang N, Liu W, Niu Y, Liang Q, Jiang J, Zheng Y. A yeast surface display platform for screening of non-enzymatic protein secretion in Kluyveromyces lactis. Appl Microbiol Biotechnol 2024; 108:503. [PMID: 39500795 PMCID: PMC11538148 DOI: 10.1007/s00253-024-13342-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 09/23/2024] [Accepted: 10/22/2024] [Indexed: 11/08/2024]
Abstract
Enhancing the secretion of recombinant proteins, particularly non-enzymatic proteins that predominate in food and pharmaceutic protein products, remains a significant challenge due to limitations in high-throughput screening methods. This study addresses this bottleneck by establishing a yeast surface display system in the food-grade microorganism Kluyveromyces lactis, enabling efficient display of model target proteins on the yeast cell surface. To assess its potential as a universal high-throughput screening tool for enhanced non-enzymatic protein secretion, we evaluated the consistency between protein display levels and secretion efficiency under the influence of various genetic factors. Our results revealed a strong correlation between these two properties. Furthermore, screening in a random mutagenesis library successfully identified a mutant with improved secretion. These findings demonstrate the potential of the K. lactis surface display system as a powerful and universal tool for high-throughput screening of strains with superior non-enzymatic protein secretion capacity. We believe this study could pave the way for efficient large-scale production of heterologous food and therapeutic proteins in industries. KEY POINTS: • A YSD (yeast surface display) system was established in Kluyveromyces lactis • This system enables high-throughput screening of non-enzymatic protein secretion • This technology assists industrial production of food and therapeutic proteins.
Collapse
Affiliation(s)
- Jiyi An
- Department of Microbiology and Biotechnology, College of Life Sciences, Northeast Agricultural University, No. 600 Changjiang Road, Xiangfang District, Harbin, 150030, China
- Department of Strategic and Integrative Research, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
| | - Na Shang
- Department of Strategic and Integrative Research, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
- National Center of Technology Innovation for Synthetic Biology, Tianjin, 300308, China
| | - Wenting Liu
- Department of Strategic and Integrative Research, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
- National Center of Technology Innovation for Synthetic Biology, Tianjin, 300308, China
| | - Yuanyuan Niu
- Department of Strategic and Integrative Research, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
- National Center of Technology Innovation for Synthetic Biology, Tianjin, 300308, China
| | - Qingling Liang
- Department of Strategic and Integrative Research, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
- National Center of Technology Innovation for Synthetic Biology, Tianjin, 300308, China
| | - Juquan Jiang
- Department of Microbiology and Biotechnology, College of Life Sciences, Northeast Agricultural University, No. 600 Changjiang Road, Xiangfang District, Harbin, 150030, China.
| | - Yingying Zheng
- Department of Strategic and Integrative Research, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China.
- National Center of Technology Innovation for Synthetic Biology, Tianjin, 300308, China.
| |
Collapse
|
2
|
Customized yeast cell factories for biopharmaceuticals: from cell engineering to process scale up. Microb Cell Fact 2021; 20:124. [PMID: 34193127 PMCID: PMC8246677 DOI: 10.1186/s12934-021-01617-z] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 06/22/2021] [Indexed: 02/06/2023] Open
Abstract
The manufacture of recombinant therapeutics is a fastest-developing section of therapeutic pharmaceuticals and presently plays a significant role in disease management. Yeasts are established eukaryotic host for heterologous protein production and offer distinctive benefits in synthesising pharmaceutical recombinants. Yeasts are proficient of vigorous growth on inexpensive media, easy for gene manipulations, and are capable of adding post translational changes of eukaryotes. Saccharomyces cerevisiae is model yeast that has been applied as a main host for the manufacture of pharmaceuticals and is the major tool box for genetic studies; nevertheless, numerous other yeasts comprising Pichia pastoris, Kluyveromyces lactis, Hansenula polymorpha, and Yarrowia lipolytica have attained huge attention as non-conventional partners intended for the industrial manufacture of heterologous proteins. Here we review the advances in yeast gene manipulation tools and techniques for heterologous pharmaceutical protein synthesis. Application of secretory pathway engineering, glycosylation engineering strategies and fermentation scale-up strategies in customizing yeast cells for the synthesis of therapeutic proteins has been meticulously described.
Collapse
|
3
|
Over-expression of a protein disulfide isomerase gene from Methanothermobacter thermautotrophicus, enhances heat stress tolerance in rice. Gene 2018; 684:124-130. [PMID: 30367983 DOI: 10.1016/j.gene.2018.10.064] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 09/25/2018] [Accepted: 10/22/2018] [Indexed: 11/20/2022]
Abstract
High temperature (HT) stress is a major environmental stress that limits agricultural production worldwide. Discovery and application of genes promoting high temperature tolerance is essential to enhance crop tolerance to heat stress. Proteins associated with chaperone and protein folding plays an important role in the high temperature stress response of plants. MTH1745 (MtPDI), a disulfide isomerase-like protein (PDI) with a chaperone function and disulfide isomerase activity from Methanothermobacter thermautotrophicus delta H, was selected for studying the heat stress tolerance using an ectopic expression method in rice. Through molecular identification via quantitative real-time PCR and western blot, we demonstrated that the MtPDI gene was expressed stably in transgenic rice. Heat stress tolerance and survival ratio were significantly improved in seedling transgenic rice. At the same time, proline content, superoxide dismutase (SOD) and peroxidase (POD) activities were increased in MtPDI transgenic rice with a reduced malondialdehyde (MDA) content. Moreover, increased content of thiols group was discovered in transgenic plants. These results indicate that heterologous expression of MtPDI from extremophiles could confer heat stress tolerance of transgenic rice through the accumulation of proline content, the synergistic increase of the antioxidant enzymes activity and elevated production of more thiols group, which finally ameliorated the oxidative damage.
Collapse
|
4
|
Yun CR, Kong JN, Chung JH, Kim MC, Kong KH. Improved Secretory Production of the Sweet-Tasting Protein, Brazzein, in Kluyveromyces lactis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2016; 64:6312-6316. [PMID: 27465609 DOI: 10.1021/acs.jafc.6b02446] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Brazzein is an intensely sweet protein with high stability over a wide range of pH values and temperatures, due to its four disulfide bridges. Recombinant brazzein production through secretory expression in Kluyveromyces lactis is reported, but is inefficient due to incorrect disulfide formation, which is crucial for achieving the final protein structure and stability. Protein disulfide bond formation requires protein disulfide isomerase (PDI) and Ero1p. Here, we overexpressed KlPDI in K. lactis or treated the cells with dithiothreitol to overexpress KlERO1 and improve brazzein secretion. KlPDI and KlERO1 overexpression independently increased brazzein secretion in K. lactis by 1.7-2.2- and 1.3-1.6-fold, respectively. Simultaneous overexpression of KlPDI and KlERO1 accelerated des-pE1M-brazzein secretion by approximately 2.6-fold compared to the previous system. Moreover, intracellular misfolded/unfolded recombinant des-pE1M-brazzein was significantly decreased. In conclusion, increased KlPDI and KlERO1 expression favors brazzein secretion, suggesting that correct protein folding may be crucial to brazzein secretion in K. lactis.
Collapse
Affiliation(s)
- Cho-Rong Yun
- Laboratory of Biomolecular Chemistry, Department of Chemistry, College of Natural Sciences, Chung-Ang University , 221 Huksuk-Dong, Dongjak-Ku, Seoul 156-756, Korea
| | - Ji-Na Kong
- Department of Neuroscience and Regenerative Medicine, Medical College of George, Augusta University , Augusta, Georgia 30912, United States
| | - Ju-Hee Chung
- Laboratory of Biomolecular Chemistry, Department of Chemistry, College of Natural Sciences, Chung-Ang University , 221 Huksuk-Dong, Dongjak-Ku, Seoul 156-756, Korea
| | - Myung-Chul Kim
- Laboratory of Biomolecular Chemistry, Department of Chemistry, College of Natural Sciences, Chung-Ang University , 221 Huksuk-Dong, Dongjak-Ku, Seoul 156-756, Korea
| | - Kwang-Hoon Kong
- Laboratory of Biomolecular Chemistry, Department of Chemistry, College of Natural Sciences, Chung-Ang University , 221 Huksuk-Dong, Dongjak-Ku, Seoul 156-756, Korea
| |
Collapse
|
5
|
Madhavan A, Sukumaran RK. Secreted expression of an active human interferon‐beta (HuIFNβ) in
Kluyveromyces lactis. Eng Life Sci 2016. [DOI: 10.1002/elsc.201500120] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Affiliation(s)
- Aravind Madhavan
- Centre for Biofuels, Biotechnology Division CSIR‐National Institute for Interdisciplinary Science and Technology Trivandrum India
| | - Rajeev Kumar Sukumaran
- Centre for Biofuels, Biotechnology Division CSIR‐National Institute for Interdisciplinary Science and Technology Trivandrum India
| |
Collapse
|
6
|
Bae JH, Sung BH, Kim HJ, Park SH, Lim KM, Kim MJ, Lee CR, Sohn JH. An Efficient Genome-Wide Fusion Partner Screening System for Secretion of Recombinant Proteins in Yeast. Sci Rep 2015. [PMID: 26195161 PMCID: PMC4508530 DOI: 10.1038/srep12229] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
To produce rarely secreted recombinant proteins in the yeast Saccharomyces cerevisiae, we developed a novel genome-wide optimal translational fusion partner (TFP) screening system that involves recruitment of an optimal secretion signal and fusion partner. A TFP library was constructed from a genomic and truncated cDNA library by using the invertase-based signal sequence trap technique. The efficiency of the system was demonstrated using two rarely secreted proteins, human interleukin (hIL)-2 and hIL-32. Optimal TFPs for secretion of hIL-2 and hIL-32 were easily selected, yielding secretion of these proteins up to hundreds of mg/L. Moreover, numerous uncovered yeast secretion signals and fusion partners were identified, leading to efficient secretion of various recombinant proteins. Selected TFPs were found to be useful for the hypersecretion of other recombinant proteins at yields of up to several g/L. This screening technique could provide new methods for the production of various types of difficult-to-express proteins.
Collapse
Affiliation(s)
- Jung-Hoon Bae
- Bioenergy and Biochemical Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 305-806, Republic of Korea
| | - Bong Hyun Sung
- Bioenergy and Biochemical Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 305-806, Republic of Korea
| | - Hyun-Jin Kim
- Bioenergy and Biochemical Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 305-806, Republic of Korea
| | - Soon-Ho Park
- Bioenergy and Biochemical Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 305-806, Republic of Korea
| | - Kwang-Mook Lim
- Bioenergy and Biochemical Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 305-806, Republic of Korea
| | - Mi-Jin Kim
- Bioenergy and Biochemical Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 305-806, Republic of Korea
| | - Cho-Ryong Lee
- 1] Bioenergy and Biochemical Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 305-806, Republic of Korea [2] Biosystems and Bioengineering Program, University of Science and Technology (UST), Daejeon 305-350, Republic of Korea
| | - Jung-Hoon Sohn
- 1] Bioenergy and Biochemical Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 305-806, Republic of Korea [2] Biosystems and Bioengineering Program, University of Science and Technology (UST), Daejeon 305-350, Republic of Korea
| |
Collapse
|
7
|
Kim H, Yoo SJ, Kang HA. Yeast synthetic biology for the production of recombinant therapeutic proteins. FEMS Yeast Res 2015; 15:1-16. [PMID: 25130199 DOI: 10.1111/1567-1364.12195] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 05/12/2014] [Accepted: 08/05/2014] [Indexed: 11/29/2022] Open
Abstract
The production of recombinant therapeutic proteins is one of the fast-growing areas of molecular medicine and currently plays an important role in treatment of several diseases. Yeasts are unicellular eukaryotic microbial host cells that offer unique advantages in producing biopharmaceutical proteins. Yeasts are capable of robust growth on simple media, readily accommodate genetic modifications, and incorporate typical eukaryotic post-translational modifications. Saccharomyces cerevisiae is a traditional baker's yeast that has been used as a major host for the production of biopharmaceuticals; however, several nonconventional yeast species including Hansenula polymorpha, Pichia pastoris, and Yarrowia lipolytica have gained increasing attention as alternative hosts for the industrial production of recombinant proteins. In this review, we address the established and emerging genetic tools and host strains suitable for recombinant protein production in various yeast expression systems, particularly focusing on current efforts toward synthetic biology approaches in developing yeast cell factories for the production of therapeutic recombinant proteins.
Collapse
Affiliation(s)
- Hyunah Kim
- Department of Life Science, Chung-Ang University, Seoul, Korea
| | - Su Jin Yoo
- Department of Life Science, Chung-Ang University, Seoul, Korea
| | - Hyun Ah Kang
- Department of Life Science, Chung-Ang University, Seoul, Korea
| |
Collapse
|
8
|
Delic M, Göngrich R, Mattanovich D, Gasser B. Engineering of protein folding and secretion-strategies to overcome bottlenecks for efficient production of recombinant proteins. Antioxid Redox Signal 2014; 21:414-37. [PMID: 24483278 DOI: 10.1089/ars.2014.5844] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
SIGNIFICANCE Recombinant protein production has developed into a huge market with enormous positive implications for human health and for the future direction of a biobased economy. Limitations in the economic and technical feasibility of production processes are often related to bottlenecks of in vivo protein folding. RECENT ADVANCES Based on cell biological knowledge, some major bottlenecks have been overcome by the overexpression of molecular chaperones and other folding related proteins, or by the deletion of deleterious pathways that may lead to misfolding, mistargeting, or degradation. CRITICAL ISSUES While important success could be achieved by this strategy, the list of reported unsuccessful cases is disappointingly long and obviously dependent on the recombinant protein to be produced. Singular engineering of protein folding steps may not lead to desired results if the pathway suffers from several limitations. In particular, the connection between folding quality control and proteolytic degradation needs further attention. FUTURE DIRECTIONS Based on recent understanding that multiple steps in the folding and secretion pathways limit productivity, synergistic combinations of the cell engineering approaches mentioned earlier need to be explored. In addition, systems biology-based whole cell analysis that also takes energy and redox metabolism into consideration will broaden the knowledge base for future rational engineering strategies.
Collapse
Affiliation(s)
- Marizela Delic
- 1 Department of Biotechnology, University of Natural Resources and Life Sciences (BOKU) , Vienna, Austria
| | | | | | | |
Collapse
|
9
|
Construction of a Kluyveromyces lactis ku80 − Host Strain for Recombinant Protein Production: Extracellular Secretion of Pectin Lyase and a Streptavidin–Pectin Lyase Chimera. Mol Biotechnol 2014; 56:319-28. [DOI: 10.1007/s12033-013-9711-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
10
|
Production of recombinant proteins by yeast cells. Biotechnol Adv 2012; 30:1108-18. [DOI: 10.1016/j.biotechadv.2011.09.011] [Citation(s) in RCA: 234] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2011] [Revised: 09/12/2011] [Accepted: 09/17/2011] [Indexed: 01/14/2023]
|
11
|
Idiris A, Tohda H, Kumagai H, Takegawa K. Engineering of protein secretion in yeast: strategies and impact on protein production. Appl Microbiol Biotechnol 2010; 86:403-17. [DOI: 10.1007/s00253-010-2447-0] [Citation(s) in RCA: 195] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2009] [Revised: 01/07/2010] [Accepted: 01/09/2010] [Indexed: 01/08/2023]
|
12
|
SOD1, a new Kluyveromyces lactis helper gene for heterologous protein secretion. Appl Environ Microbiol 2008; 74:7130-7. [PMID: 18836000 DOI: 10.1128/aem.00955-08] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Bottlenecks in protein expression and secretion often limit the development of industrial processes. By manipulating chaperone and foldase levels, improvements in yeast secretion were found for a number of proteins. Recently, sustained endoplasmic reticulum stress, occurring due to recombinant protein production, was reported to cause oxidative stress in yeast. Saccharomyces cerevisiae cells are able to trigger an adaptive response to oxidative-stress conditions, resulting in the upregulation of both primary and secondary antioxidant defenses. SOD1 encodes for a superoxide dismutase that catalyzes the dismutation of superoxide anions (O(2)(-)) into oxygen and hydrogen peroxide. It is a Cu(2+)/Zn(2+) metalloenzyme and represents an important antioxidant defense in nearly all aerobic and aerotolerant organisms. We found that overexpression of the Kluyveromyces lactis SOD1 (KlSOD1) gene was able to increase the production of two different heterologous proteins, human serum albumin (HSA) and glucoamylase from Arxula adeninivorans. In addition, KlSOD1 overexpression led to a significant decrease in the amount of reactive oxygen species (ROS) that originated during protein production. The yield of HSA also increased when K. lactis cells were grown in the presence of the antioxidant agent ascorbic acid and decreased when cells were challenged with menadione, a ROS generator compound. Moreover, we observed that, in high-osmolarity medium, cells overexpressing KlSOD1 showed higher growth rates than control cells. Our results thus further support the notion that the production of some heterologous proteins may be improved by manipulating genes involved in general stress responses.
Collapse
|
13
|
Havenga MJE, Holterman L, Melis I, Smits S, Kaspers J, Heemskerk E, van der Vlugt R, Koldijk M, Schouten GJ, Hateboer G, Brouwer K, Vogels R, Goudsmit J. Serum-free transient protein production system based on adenoviral vector and PER.C6 technology: high yield and preserved bioactivity. Biotechnol Bioeng 2008; 100:273-83. [PMID: 18512821 PMCID: PMC7161845 DOI: 10.1002/bit.21757] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Stable E1 transformed cells, like PER.C6, are able to grow at scale and to high cell densities. E1-deleted adenoviruses replicate to high titer in PER.C6 cells whereas subsequent deletion of E2A from the vector results in absence of replication in PER.C6 cells and drastically lowers the expression of adenovirus proteins in such cells. We therefore considered the use of an DeltaE1/DeltaE2 type 5 vector (Ad5) to deliver genes to PER.C6 cells growing in suspension with the aim to achieve high protein yield. To evaluate the utility of this system we constructed DeltaE1/DeltaE2 vector carrying different classes of protein, that is, the gene coding for spike protein derived from the Coronavirus causing severe acute respiratory syndrome (SARS-CoV), a gene coding for the SARS-CoV receptor or the genes coding for an antibody shown to bind and neutralize SARS-CoV (SARS-AB). The DeltaE1/DeltaE2A-vector backbones were rescued on a PER.C6 cell line engineered to constitutively over express the Ad5 E2A protein. Exposure of PER.C6 cells to low amounts (30 vp/cell) of DeltaE1/DeltaE2 vectors resulted in highly efficient (>80%) transduction of PER.C6 cells growing in suspension. The efficient cell transduction resulted in high protein yield (up to 60 picogram/cell/day) in a 4 day batch production protocol. FACS and ELISA assays demonstrated the biological activity of the transiently produced proteins. We therefore conclude that DeltaE1/DeltaE2 vectors in combination with the PER.C6 technology may provide a viable answer to the increasing demand for high quality, high yield recombinant protein.
Collapse
Affiliation(s)
- M J E Havenga
- Crucell Holland BV, PO Box 2048, 2301CA Leiden, The Netherlands.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Gasser B, Saloheimo M, Rinas U, Dragosits M, Rodríguez-Carmona E, Baumann K, Giuliani M, Parrilli E, Branduardi P, Lang C, Porro D, Ferrer P, Tutino ML, Mattanovich D, Villaverde A. Protein folding and conformational stress in microbial cells producing recombinant proteins: a host comparative overview. Microb Cell Fact 2008; 7:11. [PMID: 18394160 PMCID: PMC2322954 DOI: 10.1186/1475-2859-7-11] [Citation(s) in RCA: 241] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2007] [Accepted: 04/04/2008] [Indexed: 11/17/2022] Open
Abstract
Different species of microorganisms including yeasts, filamentous fungi and bacteria have been used in the past 25 years for the controlled production of foreign proteins of scientific, pharmacological or industrial interest. A major obstacle for protein production processes and a limit to overall success has been the abundance of misfolded polypeptides, which fail to reach their native conformation. The presence of misfolded or folding-reluctant protein species causes considerable stress in host cells. The characterization of such adverse conditions and the elicited cell responses have permitted to better understand the physiology and molecular biology of conformational stress. Therefore, microbial cell factories for recombinant protein production are depicted here as a source of knowledge that has considerably helped to picture the extremely rich landscape of in vivo protein folding, and the main cellular players of this complex process are described for the most important cell factories used for biotechnological purposes.
Collapse
Affiliation(s)
- Brigitte Gasser
- University of Natural Resources and Applied Life Sciences Vienna, Department of Biotechnology, Vienna, Austria
| | | | - Ursula Rinas
- Helmholtz Center for Infection Research, Braunschweig, Germany
| | - Martin Dragosits
- University of Natural Resources and Applied Life Sciences Vienna, Department of Biotechnology, Vienna, Austria
| | - Escarlata Rodríguez-Carmona
- Autonomous University of Barcelona, Institute for Biotechnology and Biomedicine, Department of Genetics and Microbiology, and CIBER-BBN Network in Bioengineering, Biomaterials and Nanomedicine, Barcelona, Spain
| | - Kristin Baumann
- Autonomous University of Barcelona, Department of Chemical Engineering, Barcelona, Spain
| | - Maria Giuliani
- University of Naples Federico II, School of Biotechnological Sciences, Naples, Italy
| | - Ermenegilda Parrilli
- University of Naples Federico II, School of Biotechnological Sciences, Naples, Italy
| | - Paola Branduardi
- University of Milano-Bicocca, Department of Biotechnology and Bioscience, Milan, Italy
| | - Christine Lang
- Technical University Berlin, Faculty III, Institute for Microbiology and Genetics, Berlin, Germany
| | - Danilo Porro
- University of Milano-Bicocca, Department of Biotechnology and Bioscience, Milan, Italy
| | - Pau Ferrer
- Autonomous University of Barcelona, Department of Chemical Engineering, Barcelona, Spain
| | - Maria Luisa Tutino
- University of Naples Federico II, School of Biotechnological Sciences, Naples, Italy
| | - Diethard Mattanovich
- University of Natural Resources and Applied Life Sciences Vienna, Department of Biotechnology, Vienna, Austria
| | - Antonio Villaverde
- Autonomous University of Barcelona, Institute for Biotechnology and Biomedicine, Department of Genetics and Microbiology, and CIBER-BBN Network in Bioengineering, Biomaterials and Nanomedicine, Barcelona, Spain
| |
Collapse
|
15
|
Böer E, Steinborn G, Kunze G, Gellissen G. Yeast expression platforms. Appl Microbiol Biotechnol 2007; 77:513-23. [PMID: 17924105 DOI: 10.1007/s00253-007-1209-0] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2007] [Revised: 09/13/2007] [Accepted: 09/16/2007] [Indexed: 11/29/2022]
Abstract
Yeasts provide attractive expression platforms. They combine ease of genetic manipulations and the option for a simple fermentation design of a microbial organism with the capabilities of an eukaryotic organism to secrete and to modify a protein according to a general eukaryotic scheme. For platform applications, a range of yeast species has been developed during the last decades. We present in the following review a selection of established and newly defined expression systems. The review is concluded by the description of a wide-range vector system that allows the assessment of the selected organisms in parallel for criteria like secretion or appropriate processing and modification in a given case.
Collapse
Affiliation(s)
- Erik Böer
- Leibniz-Institut für Pflanzengenetik und Kulturpflanzenforschung, Corrensstr. 3, 06466, Gatersleben, Germany
| | | | | | | |
Collapse
|
16
|
Gasser B, Sauer M, Maurer M, Stadlmayr G, Mattanovich D. Transcriptomics-based identification of novel factors enhancing heterologous protein secretion in yeasts. Appl Environ Microbiol 2007; 73:6499-507. [PMID: 17766460 PMCID: PMC2075068 DOI: 10.1128/aem.01196-07] [Citation(s) in RCA: 127] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Efficient production of heterologous proteins with yeasts and other eukaryotic hosts is often hampered by inefficient secretion of the product. Limitation of protein secretion has been attributed to a low folding rate, and a rational solution is the overexpression of proteins supporting folding, like protein disulfide isomerase (Pdi), or the unfolded protein response transcription factor Hac1. Assuming that other protein factors which are not directly involved in protein folding may also support secretion of heterologous proteins, we set out to analyze the differential transcriptome of a Pichia pastoris strain overexpressing human trypsinogen versus that of a nonexpressing strain. Five hundred twenty-four genes were identified to be significantly regulated. Excluding those genes with totally divergent functions (like, e.g., core metabolism), we reduced this number to 13 genes which were upregulated in the expression strain having potential function in the secretion machinery and in stress regulation. The respective Saccharomyces cerevisiae homologs of these genes, including the previously characterized secretion helpers PDI1, ERO1, SSO2, KAR2/BiP, and HAC1 as positive controls, were cloned and overexpressed in a P. pastoris strain expressing a human antibody Fab fragment. All genes except one showed a positive effect on Fab fragment secretion, as did the controls. Six out of these novel secretion helper factors, more precisely Bfr2 and Bmh2 (involved in protein transport), the chaperones Ssa4 and Sse1, the vacuolar ATPase subunit Cup5, and Kin2 (a protein kinase connected to exocytosis), proved their benefits for practical application in laboratory-scale production processes by increasing both specific production rates and the volumetric productivity of an antibody fragment up to 2.5-fold in fed-batch fermentations of P. pastoris.
Collapse
Affiliation(s)
- Brigitte Gasser
- Institute of Applied Microbiology, Department of Biotechnology, University of Natural Resources and Applied Life Sciences Vienna, Muthgasse 18, A-1190 Vienna, Austria
| | | | | | | | | |
Collapse
|
17
|
Klabunde J, Kleebank S, Piontek M, Hollenberg CP, Hellwig S, Degelmann A. Increase of calnexin gene dosage boosts the secretion of heterologous proteins by Hansenula polymorpha. FEMS Yeast Res 2007; 7:1168-80. [PMID: 17617219 PMCID: PMC2040192 DOI: 10.1111/j.1567-1364.2007.00271.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
The type I membrane protein calnexin is a conserved key component of the quality control mechanism in the endoplasmic reticulum. It functions as a molecular chaperone that monitors the folding state of nascent polypeptides entering the endoplasmic reticulum. Calnexin also behaves as a lectin, as its chaperoning activity involves binding of oligosaccharide moieties present on newly imported glycoproteins. We isolated the calnexin gene (HpCNE1) from the methylotrophic yeast Hansenula polymorpha, and used HpCNE1 expression plasmids for supertransformation of H. polymorpha strains secreting target proteins of biotechnological interest. The elevated dosage of HpCNE1 enhanced secretion of the four proteins tested: three glycoproteins and one unglycosylated product. Secretion of bacterial alginate epimerase AlgE1 was increased threefold on average, and secretion of both human interferon-γ and fungal consensus phytase twofold. With phytase and AlgE1 this improvement was all the more remarkable, as the secretion level was already high in the original strains (g L−1 range). The same approach improved secretion of human serum albumin, which lacks N-linked glycans, about twofold. Glycosylation of the pro-MFα1 leader may account for the effect of calnexin in this case. Our results argue that cooverexpression of calnexin can serve as a generally applicable tool for enhancing the secretion of all types of heterologous protein by H. polymorpha.
Collapse
Affiliation(s)
- Jens Klabunde
- ARTES Biotechnology GmbHErkrath, Germany
- Institut für Mikrobiologie, Heinrich-Heine-Universität DüsseldorfDüsseldorf, Germany
| | - Sebastian Kleebank
- Fraunhofer Institut für Molekularbiologie und Angewandte ÖkologieAachen, Germany
| | | | - Cornelis P Hollenberg
- Institut für Mikrobiologie, Heinrich-Heine-Universität DüsseldorfDüsseldorf, Germany
| | - Stephan Hellwig
- Fraunhofer Institut für Molekularbiologie und Angewandte ÖkologieAachen, Germany
| | | |
Collapse
|
18
|
Rodríguez ÁP, Leiro RF, Trillo MC, Cerdán ME, Siso MIG, Becerra M. Secretion and properties of a hybrid Kluyveromyces lactis-Aspergillus niger beta-galactosidase. Microb Cell Fact 2006; 5:41. [PMID: 17176477 PMCID: PMC1764428 DOI: 10.1186/1475-2859-5-41] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2006] [Accepted: 12/18/2006] [Indexed: 12/03/2022] Open
Abstract
BACKGROUND The beta-galactosidase from Kluyveromyces lactis is a protein of outstanding biotechnological interest in the food industry and milk whey reutilization. However, due to its intracellular nature, its industrial production is limited by the high cost associated to extraction and downstream processing. The yeast-system is an attractive method for producing many heterologous proteins. The addition of a secretory signal in the recombinant protein is the method of choice to sort it out of the cell, although biotechnological success is not guaranteed. The cell wall acting as a molecular sieve to large molecules, culture conditions and structural determinants present in the protein, all have a decisive role in the overall process. Protein engineering, combining domains of related proteins, is an alternative to take into account when the task is difficult. In this work, we have constructed and analyzed two hybrid proteins from the beta-galactosidase of K. lactis, intracellular, and its Aspergillus niger homologue that is extracellular. In both, a heterologous signal peptide for secretion was also included at the N-terminus of the recombinant proteins. One of the hybrid proteins obtained has interesting properties for its biotechnological utilization. RESULTS The highest levels of intracellular and extracellular beta-galactosidase were obtained when the segment corresponding to the five domain of K. lactis beta-galactosidase was replaced by the corresponding five domain of the A. niger beta-galactosidase. Taking into account that this replacement may affect other parameters related to the activity or the stability of the hybrid protein, a thoroughly study was performed. Both pH (6.5) and temperature (40 degrees C) for optimum activity differ from values obtained with the native proteins. The stability was higher than the corresponding to the beta-galactosidase of K. lactis and, unlike this, the activity of the hybrid protein was increased by the presence of Ni2+. The affinity for synthetic (ONPG) or natural (lactose) substrates was higher in the hybrid than in the native K. lactis beta-galactosidase. Finally, a structural-model of the hybrid protein was obtained by homology modelling and the experimentally determined properties of the protein were discussed in relation to it. CONCLUSION A hybrid protein between K. lactis and A. niger beta-galactosidases was constructed that increases the yield of the protein released to the growth medium. Modifications introduced in the construction, besides to improve secretion, conferred to the protein biochemical characteristics of biotechnological interest.
Collapse
Affiliation(s)
- Ángel Pereira Rodríguez
- Departamento de Bioloxía Celular e Molecular, Facultade de Ciencias, Universidade da Coruña, Campus da Zapateira, s/n 15071, A Coruña, Spain
| | - Rafael Fernández Leiro
- Departamento de Bioloxía Celular e Molecular, Facultade de Ciencias, Universidade da Coruña, Campus da Zapateira, s/n 15071, A Coruña, Spain
| | - M Cristina Trillo
- Departamento de Bioloxía Celular e Molecular, Facultade de Ciencias, Universidade da Coruña, Campus da Zapateira, s/n 15071, A Coruña, Spain
| | - M Esperanza Cerdán
- Departamento de Bioloxía Celular e Molecular, Facultade de Ciencias, Universidade da Coruña, Campus da Zapateira, s/n 15071, A Coruña, Spain
| | - M Isabel González Siso
- Departamento de Bioloxía Celular e Molecular, Facultade de Ciencias, Universidade da Coruña, Campus da Zapateira, s/n 15071, A Coruña, Spain
| | - Manuel Becerra
- Departamento de Bioloxía Celular e Molecular, Facultade de Ciencias, Universidade da Coruña, Campus da Zapateira, s/n 15071, A Coruña, Spain
| |
Collapse
|
19
|
Steinborn G, Böer E, Scholz A, Tag K, Kunze G, Gellissen G. Application of a wide-range yeast vector (CoMed) system to recombinant protein production in dimorphic Arxula adeninivorans, methylotrophic Hansenula polymorpha and other yeasts. Microb Cell Fact 2006; 5:33. [PMID: 17105649 PMCID: PMC1654170 DOI: 10.1186/1475-2859-5-33] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2006] [Accepted: 11/14/2006] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND Yeasts provide attractive expression platforms in combining ease of genetic manipulation and fermentation of a microbial organism with the capability to secrete and to modify proteins according to a general eukaryotic scheme. However, early restriction to a single yeast platform can result in costly and time-consuming failures. It is therefore advisable to assess several selected systems in parallel for the capability to produce a particular protein in desired amounts and quality. A suitable vector must contain a targeting sequence, a promoter element and a selection marker that function in all selected organisms. These criteria are fulfilled by a wide-range integrative yeast expression vector (CoMed) system based on A. adeninivorans- and H. polymorpha-derived elements that can be introduced in a modular way. RESULTS The vector system and a selection of modular elements for vector design are presented. Individual single vector constructs were used to transform a range of yeast species. Various successful examples are described. A vector with a combination of an rDNA sequence for genomic targeting, the E. coli-derived hph gene for selection and the A. adeninivorans-derived TEF1 promoter for expression control of a GFP (green fluorescent protein) gene was employed in a first example to transform eight different species including Hansenula polymorpha, Arxula adeninivorans and others. In a second example, a vector for the secretion of IL-6 was constructed, now using an A. adeninivorans-derived LEU2 gene for selection of recombinants in a range of auxotrophic hosts. In this example, differences in precursor processing were observed: only in A. adeninivorans processing of a MFalpha1/IL-6 fusion was performed in a faithful way. CONCLUSION rDNA targeting provides a tool to co-integrate up to 3 different expression plasmids by a single transformation step. Thus, a versatile system is at hand that allows a comparative assessment of newly introduced metabolic pathways in several organisms or a comparative co-expression of bottleneck genes in cases where production or secretion of a certain product is impaired.
Collapse
Affiliation(s)
- Gerhard Steinborn
- Institut für Pflanzengenetik und Kulturpflanzenforschung, Corrensstr. 3, 06466 Gatersleben, Germany
| | - Erik Böer
- Institut für Pflanzengenetik und Kulturpflanzenforschung, Corrensstr. 3, 06466 Gatersleben, Germany
| | - Anja Scholz
- Institut für Pflanzengenetik und Kulturpflanzenforschung, Corrensstr. 3, 06466 Gatersleben, Germany
| | - Kristina Tag
- Institut für Pflanzengenetik und Kulturpflanzenforschung, Corrensstr. 3, 06466 Gatersleben, Germany
| | - Gotthard Kunze
- Institut für Pflanzengenetik und Kulturpflanzenforschung, Corrensstr. 3, 06466 Gatersleben, Germany
| | - Gerd Gellissen
- PharmedArtis GmbH, Forckenbeckstr. 6, D-52074 Aachen, Germany
| |
Collapse
|
20
|
Lodi T, Neglia B, Donnini C. Secretion of human serum albumin by Kluyveromyces lactis overexpressing KlPDI1 and KlERO1. Appl Environ Microbiol 2005; 71:4359-63. [PMID: 16085825 PMCID: PMC1183311 DOI: 10.1128/aem.71.8.4359-4363.2005] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The control of protein conformation during translocation through the endoplasmic reticulum is often a bottleneck for heterologous protein production. The core pathway of the oxidative folding machinery includes two conserved proteins: Pdi1p and Ero1p. We increased the dosage of the genes encoding these proteins in the yeast Kluyveromyces lactis and evaluated the secretion of heterologous proteins. KlERO1, an orthologue of Saccharomyces cerevisiae ERO1, was cloned by functional complementation of the ts phenotype of an Scero1 mutant. The expression of KlERO1 was induced by treatment of the cells with dithiothreitol and by overexpression of human serum albumin (HSA), a disulfide bond-rich protein. Duplication of either PDI1 or ERO1 led to a similar increase in HSA yield. Duplication of both genes accelerated the secretion of HSA and improved cell growth rate and yield. Increasing the dosage of KlERO1 did not affect the production of human interleukin 1beta, a protein that has no disulfide bridges. The results confirm that the ERO1 genes of S. cerevisiae and K. lactis are functionally similar even though portions of their coding sequence are quite different and the phenotypes of mutants overexpressing the genes differ. The marked effects of KlERO1 copy number on the expression of heterologous proteins with a high number of disulfide bridges suggests that control of KlERO1 and KlPDI1 is important for the production of high levels of heterologous proteins of this type.
Collapse
Affiliation(s)
- Tiziana Lodi
- Department of Genetics, Anthropology, and Evolution, University of Parma, Parco Area delle Scienze 11/A, I-43100 Parma, Italy
| | | | | |
Collapse
|
21
|
Salani F, Bianchi MM. Production of glucoamylase in pyruvate decarboxylase deletion mutants of the yeast Kluyveromyces lactis. Appl Microbiol Biotechnol 2005; 69:564-72. [PMID: 16175368 DOI: 10.1007/s00253-005-0148-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2005] [Revised: 08/18/2005] [Accepted: 08/19/2005] [Indexed: 10/25/2022]
Abstract
Yeasts are widely used as hosts for the production of diverse heterologous proteins ranging from laboratory scale to industrial scale. The aim of this work is to provide new tools for the production of heterologous proteins in the yeast Kluyveromyces lactis. The promoter of the single gene (KlPDC1) encoding pyruvate decarboxylase is strong, inducible, and responsive to the presence of fermentable sugars and anoxic conditions in this yeast. Expression of KlPDC1 is repressed by ethanol and by autoregulation, a mechanism that involves protein KlPdc1. We constructed a heterologous gene expression cassette for a secreted protein (glucoamylase, GAM) under the control of the KlPDC1 promoter on a stable multicopy plasmid. GAM production by wild-type transformed strains was compared with that of klpdc1-deleted transformants. We obtained higher GAM production in the latter strains, which was due to continued expression of the GAM gene during the stationary phase rather than due to GAM transcription levels higher than the wild-type strains during growth phase. This finding opens new perspectives on the physiology of the stationary phase in K. lactis and suggests the possibility of using high-cell-density approaches for the efficient production of heterologous proteins with this yeast.
Collapse
Affiliation(s)
- Francesca Salani
- Centre of Excellence in Molecular Biology and Medicine, University of Rome La Sapienza, Rome, 00185, Italy
| | | |
Collapse
|
22
|
Iwata T, Tanaka R, Suetsugu M, Ishibashi M, Tokunaga H, Kikuchi M, Tokunaga M. Efficient secretion of human lysozyme from the yeast, Kluyveromyces lactis. Biotechnol Lett 2005; 26:1803-8. [PMID: 15672218 DOI: 10.1007/s10529-004-4614-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2004] [Accepted: 10/04/2004] [Indexed: 11/28/2022]
Abstract
Efficient secretion of human lysozyme from the yeast, Kluyveromyces lactis, was achieved by using more stable vectors in the order of S11 replication origin-containing episomal vector < full-length K. lactis plasmid pKD1-containing vector < centromeric vector < chromosome-integrated vectors. Cells containing a PGK (phosphoglycerate kinase) promoter-driven integration vector grown in non-selective rich medium achieved the highest level of secretion, approximately 100 microg lysozyme secretion ml(-1) culture: this level was approximately 10-fold higher than that achieved by episomal vectors. An additional copy of the protein disulfide isomerase gene further facilitated the secretion.
Collapse
Affiliation(s)
- Takako Iwata
- Laboratory of Applied and Molecular Microbiology, Faculty of Agriculture, Kagoshima University, 1-21-24 Korimoto, Kagoshima 890-0065, Japan
| | | | | | | | | | | | | |
Collapse
|
23
|
Vad R, Nafstad E, Dahl LA, Gabrielsen OS. Engineering of a Pichia pastoris expression system for secretion of high amounts of intact human parathyroid hormone. J Biotechnol 2005; 116:251-60. [PMID: 15707686 DOI: 10.1016/j.jbiotec.2004.12.004] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2004] [Revised: 11/19/2004] [Accepted: 12/06/2004] [Indexed: 10/25/2022]
Abstract
Human parathyroid hormone (hPTH) is involved in calcium metabolism, and the unique ability of this hormone to stimulate bone growth makes it a promising agent in the treatment of osteoporosis. We have engineered the methylotrophic yeast Pichia pastoris for the production of over 300 mg intact hPTH per liter growth medium. The presence of 10 mM EDTA in the culture medium was essential to obtain this high hormone yield, indicating that metallopeptidases are mainly responsible for the otherwise instability of hPTH. Furthermore, the secretion process of hPTH was considerably improved by coexpression of Saccharomyces cerevisiae protein disulphide isomerase (ScPDI). Since hPTH does not contain any cystein residues, this effect may be indirect or ascribed to the chaperone activity of PDI. Contrary to the situation in S. cerevisiae, use of a protease-deficient host strain provided no additional advantage. The hormone secreted by P. pastoris was not subjected to proteolytic processing by Kex2p in the two internal tribasic sites, nor were any C-terminal truncated hPTH forms detected. However, the P. pastoris hPTH producing transformants cosecreted ubiquitin to the culture medium, possibly as a result of a stress-related response.
Collapse
Affiliation(s)
- Randi Vad
- Department of Molecular Biosciences, University of Oslo, P.O. Box 1041 Blindern, N-0316 Oslo, Norway.
| | | | | | | |
Collapse
|
24
|
Mattanovich D, Gasser B, Hohenblum H, Sauer M. Stress in recombinant protein producing yeasts. J Biotechnol 2004; 113:121-35. [PMID: 15380652 DOI: 10.1016/j.jbiotec.2004.04.035] [Citation(s) in RCA: 193] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2003] [Revised: 04/07/2004] [Accepted: 04/16/2004] [Indexed: 11/27/2022]
Abstract
It is well established today that heterologous overexpression of proteins is connected with different stress reactions. The expression of a foreign protein at a high level may either directly limit other cellular processes by competing for their substrates, or indirectly interfere with metabolism, if their manufacture is blocked, thus inducing a stress reaction of the cell. Especially the unfolded protein response (UPR) in Saccharomyces cerevisiae (as well as some other yeasts) is well documented, and its role for the limitation of expression levels is discussed. One potential consequence of endoplasmatic reticulum folding limitations is the ER associated protein degradation (ERAD) involving retrotranslocation and decay in the cytosol. High cell density fermentation, the typical process design for recombinant yeasts, exerts growth conditions that deviate far from the natural environment of the cells. Thus, different environmental stresses may be exerted on the host. High osmolarity, low pH and low temperature are typical stress factors. Whereas the molecular pathways of stress responses are well characterized, there is a lack of knowledge concerning the impact of stress responses on industrial production processes. Accordingly, most metabolic engineering approaches conducted so far target at the improvement of protein folding and secretion, whereas only few examples of cell engineering against general stress sensitivity were published. Apart from discussing well-documented stress reactions of yeasts in the context of heterologous protein production, some more speculative topics like quorum sensing and apoptosis are addressed.
Collapse
Affiliation(s)
- Diethard Mattanovich
- Institute of Applied Microbiology, BOKU--University of Natural Resources and Applied Life Sciences, Muthgasse 18, A-1190 Vienna, Austria.
| | | | | | | |
Collapse
|
25
|
Bartkeviciūte D, Sasnauskas K. Disruption of the gene enhances protein secretion in and. FEMS Yeast Res 2004; 4:833-40. [PMID: 15450190 DOI: 10.1016/j.femsyr.2004.03.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2003] [Revised: 03/01/2004] [Accepted: 03/13/2004] [Indexed: 11/26/2022] Open
Abstract
Screening for genes affecting super-secreting phenotype of the over-secreting mutant of Kluyveromyces lactis resulted in isolation of the gene named KlMNN10, sharing high homology with Saccharomyces cerevisiae MNN10. The disruption of the KlMNN10 in Kluyveromyces lactis, as well as of MNN10 and MNN11 in Saccharomyces cerevisiae, conferred the super-secreting phenotype. MNN10 isolated from Saccharomyces cerevisiae suppressed the super-secretion phenotype in Kluyveromyces lactis klmnn10, as did the homologous KlMNN10. The genes MNN10 and MNN11 of Saccharomyces cerevisiae encode mannosyltransferases responsible for the majority of the alpha-1,6-polymerizing activity of the mannosyltransferase complex. These data agree with the view that the structure of glycoproteins in a yeast cell wall strongly influences the release of homologous and heterologous proteins in the medium. The set of genes namely the suppressors of the over-secreting phenotype, could be attractive for further analysis of gene functions, over-secreting mechanisms and for construction of new strains optimized for heterologous protein secretion. KlMNN10 has EMBL accession no. AJ575132.
Collapse
|
26
|
Farina F, Uccelletti D, Goffrini P, Butow RA, Abeijon C, Palleschi C. Alterations of O-glycosylation, cell wall, and mitochondrial metabolism in Kluyveromyces lactis cells defective in KlPmr1p, the Golgi Ca2+-ATPase. Biochem Biophys Res Commun 2004; 318:1031-8. [PMID: 15147977 DOI: 10.1016/j.bbrc.2004.04.127] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2004] [Indexed: 11/16/2022]
Abstract
In yeast the P-type Ca(2+)-ATPase of the Golgi apparatus, Pmr1p, is the most important player in calcium homeostasis. In Kluyveromyces lactis KlPMR1 inactivation leads to pleiotropic phenotypes, including reduced N-glycosylation and altered cell wall morphogenesis. To study the physiology of K. lactis when KlPMR1 was inactivated microarrays containing all Saccharomyces cerevisiae coding sequences were utilized. Alterations in O-glycosylation, consistent with the repression of KlPMT2, were found and a terminal N-acetylglucosamine in the O-glycans was identified. Klpmr1Delta cells showed increased expression of PIRs, proteins involved in cell wall maintenance, suggesting that responses to cell wall weakening take place in K. lactis. We found over-expression of KlPDA1 and KlACS2 genes involved in the Acetyl-CoA synthesis and down-regulation of KlIDP1, KlACO1, and KlSDH2 genes involved in respiratory metabolism. Increases in oxygen consumption and succinate dehydrogenase activity were also observed in mutant cells. The described approach highlighted the unexpected involvement of KlPMR1 in energy-yielding processes.
Collapse
Affiliation(s)
- Francesca Farina
- Department of Developmental and Cell Biology, University of Rome La Sapienza, Piazza Aldo Moro 5, 00185 Rome, Italy
| | | | | | | | | | | |
Collapse
|
27
|
Uccelletti D, Farina F, Mancini P, Palleschi C. KlPMR1 inactivation and calcium addition enhance secretion of non-hyperglycosylated heterologous proteins in Kluyveromyces lactis. J Biotechnol 2004; 109:93-101. [PMID: 15063617 DOI: 10.1016/j.jbiotec.2003.10.037] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2002] [Accepted: 10/14/2003] [Indexed: 11/17/2022]
Abstract
The Kluyveromyces lactis KlPMR1 gene is the functional homologue of Saccharomyces cerevisiae PMR1 which encodes a Ca(2+)-ATPase localized in the Golgi apparatus. We studied the effects of KlPMR1 inactivation on the glycosylation and secretion of native and heterologous proteins in K. lactis. We used acid phosphatase, recombinant human serum albumin and alpha-glucoamylase from Arxula adeninivorans as reporter proteins. The Klpmr1Delta strain showed enhanced secretion of the heterologous proteins analyzed; the improved rHSA production did not result from enhanced transcription but rather involved increased translation and/or secretion efficiency. The growth rate of mutant cells resulted slower as compared to that of wild-type strain. The addition of 10mM calcium to the culture medium, however, not only completely relieved the growth defect of the mutant cells but also improved the rate of heterologous proteins production. Moreover, the addition of this ion in the culture medium of K. lactis did not suppress the glycosylation defects; this is an important difference with respect to S. cerevisiae where the glycosylation is partially restored by Ca(2+) addition. The Klpmr1Delta strain as a host offers thus an additional advantage for those cases requiring that the produced recombinant protein would not result hyperglycosylated.
Collapse
Affiliation(s)
- D Uccelletti
- Department of Developmental and Cell Biology, University of Rome La Sapienza P.le A. Moro 5, 00185 Rome, Italy
| | | | | | | |
Collapse
|
28
|
Bartkeviciute D, Sasnauskas K. Studies of yeast Kluyveromyces lactis mutations conferring super-secretion of recombinant proteins. Yeast 2003; 20:1-11. [PMID: 12489121 DOI: 10.1002/yea.935] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We have isolated mutants responsible for a super-secretion phenotype in Kluyveromyces lactis using the gene coding for a Bacillus amyloliquefaciens alpha-amylase as a marker for secretion. These mutations defined two groups, dominant and recessive. The recessive mutant strain, which secreted the heterologous protein in five-fold excess compared to the wild-type strain, was used for the cloning of genes, restraining the super-secreting phenotype. In screening for genes affecting super-secreting phenotype, we found that multiple copies of 10 different independently isolated DNA sequences suppressed the super-secreting phenotype. The first among the genes characterized, named KlSEL1 ('secretion lowering') showed homology to Saccharomyces cerevisiae ORF YML013w. The KlSEL1 gene is predicted to encode a polypeptide of 620 amino acid residues containing a putative transmembrane domain and UBX domain, characteristic for the ubiquitin-regulatory proteins. We demonstrated that the disruption of the SEL1 orthologues in K. lactis and S. cerevisiae conferred the super-secreting phenotype. SEL1 isolated from S. cerevisiae suppressed the super-secretion phenotype in K. lactis klsel1 strain, likewise homologous KlSEL1. No other phenotypic features for strains lacking the SEL1 gene were noticed except for the S. cerevisiae mutant growth being notably slower than in a wt strain. No growth changes were observed in the K. lactis klsel1 mutant. The set of genes (suppressors of over-secreting phenotype) could be attractive for further analysis of gene functions, super-secreting mechanisms and construction of new strains. This collection could be useful for the expedient construction of reduced yeast genomes, optimized for heterologous protein secretion.
Collapse
|
29
|
Chuang VTG, Kragh-Hansen U, Otagiri M. Pharmaceutical strategies utilizing recombinant human serum albumin. Pharm Res 2002; 19:569-77. [PMID: 12069157 DOI: 10.1023/a:1015396825274] [Citation(s) in RCA: 198] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Gene manipulation techniques open up the possibility of making recombinant human serum albumin (rHSA) or mutants with desirable therapeutic properties and for protein fusion products. rHSA can serve as a carrier in synthetic heme protein, thus reversibly carrying oxygen. Myristoylation of insulin results in a prolonged half-life because of self aggregation and increased albumin binding. Preferential albumin uptake by tumor cells serves as the basis for albumin-anticancer drug conjugate formulation. Furthermore, drug targeting can be achieved by incorporating drugs into albumin microspheres whereas liver targeting can be achieved by conjugating drug with galactosylated or mannosylated albumin. Microspheres and nanoparticles of different sizes can, with or without drugs and/or radioisotopes, be used for drug delivery or diagnostic purposes. In vivo implantation of albumin fusion protein expressing cells encapsulated in HSA-alginate coated beads showed promising results compared to organoids in rats. Chimeric peptide strategy with cationized albumin as the transport can deliver drugs via receptor mediated transcytosis through the blood brain barrier. Gene bearing, albumin microbubbles containing ultrasound contrast agents can non-invasively deliver gene after destruction by ultrasound. Various site-directed mutants of HSA can be tailor made depending on the application required.
Collapse
|
30
|
Current awareness on yeast. Yeast 2002; 19:91-8. [PMID: 11754486 DOI: 10.1002/yea.819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|