1
|
Chen Y, Zhang Z, Chen Y, Liu P, Yi S, Fan C, Zhao W, Liu J. Investigating the shared genetic links between hypothyroidism and psychiatric disorders: a large-scale genomewide cross-trait analysis. J Affect Disord 2025; 369:312-320. [PMID: 39353512 DOI: 10.1016/j.jad.2024.08.202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 07/17/2024] [Accepted: 08/29/2024] [Indexed: 10/04/2024]
Abstract
BACKGROUND Associations between thyroid diseases and psychiatric disorders have been mainly described before. However, the genetic mechanism behind hypothyroidism and psychiatric disorders remains unexplained. METHODS We examined the genetic architecture of hypothyroidism and 8 psychiatric disorders. Firstly, the global and local genetic relationship between the paired traits was explored. Secondly, cross-trait analysis was performed to investigate the genomic loci and genes between psychiatric disorders and hypothyroidism. Thirdly, the significant expression of these genes and the causal relationships were investigated. Lastly, enrichment analysis was conducted on these genes to explore their biological mechanisms. RESULTS We observed significant positive genetic correlations between psychiatric disorders and hypothyroidism. The cross-trait meta-analysis identified 62 shared genetic loci between hypothyroidism and psychiatric disorders. The colocalization analysis additionally revealed 15 potential pleiotropic loci with a posterior probabilities.H4 (PP·H4) value >0.7. We also found 2308 genes shared between both traits, which were highly enriched in biological pathways such as immune cell differentiation and autoimmune diseases, as well as in tissue structures like the frontal cortex and cerebral cortex. Especially, many pleiotropic genes were significantly expressed for multiple pairwise traits, such as BCL11B, RERE, and SUOX. Lastly, the Latent causal variable model (LCV) analysis did not find any causal components in the genetic structure between them. LIMITATIONS The limitations of this study include that the conclusions were drawn from a European population. CONCLUSIONS These findings not only deepens our understanding of their biological mechanisms but also has significant implications for the intervention and treatment of these diseases.
Collapse
Affiliation(s)
- Yanjing Chen
- Department of Radiology, Second Xiangya Hospital, Central South University, 139#, Central Renmin Road, Changsha, Hunan Province 410011, People's Republic of China.
| | - Zhiyi Zhang
- Fujian University of Traditional Chinese Medicine, 1#, Qiuyang Road, Fuzhou, Fujian Province 350122, People's Republic of China.
| | - Yongyi Chen
- Clinical Research Center for Medical Imaging in Hunan Province, 139#, Central Renmin Road, Changsha, Hunan Province 410011, People's Republic of China.
| | - Ping Liu
- Department of Radiology, Second Xiangya Hospital, Central South University, 139#, Central Renmin Road, Changsha, Hunan Province 410011, People's Republic of China.
| | - Sijie Yi
- Department of Radiology, Second Xiangya Hospital, Central South University, 139#, Central Renmin Road, Changsha, Hunan Province 410011, People's Republic of China.
| | - Chunhua Fan
- Department of Radiology, Second Xiangya Hospital, Central South University, 139#, Central Renmin Road, Changsha, Hunan Province 410011, People's Republic of China.
| | - Wei Zhao
- Department of Radiology, Second Xiangya Hospital, Central South University, 139#, Central Renmin Road, Changsha, Hunan Province 410011, People's Republic of China; Clinical Research Center for Medical Imaging in Hunan Province, 139#, Central Renmin Road, Changsha, Hunan Province 410011, People's Republic of China.
| | - Jun Liu
- Department of Radiology, Second Xiangya Hospital, Central South University, 139#, Central Renmin Road, Changsha, Hunan Province 410011, People's Republic of China; Clinical Research Center for Medical Imaging in Hunan Province, 139#, Central Renmin Road, Changsha, Hunan Province 410011, People's Republic of China.
| |
Collapse
|
2
|
Salomoni P, Flanagan AM, Cottone L. (B)On(e)-cohistones and the epigenetic alterations at the root of bone cancer. Cell Death Differ 2025; 32:66-77. [PMID: 37828086 PMCID: PMC11748643 DOI: 10.1038/s41418-023-01227-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 09/20/2023] [Accepted: 09/27/2023] [Indexed: 10/14/2023] Open
Abstract
Identification of mutations in histones in a number of human neoplasms and developmental syndromes represents the most compelling evidence to date for a causal role of epigenetic perturbations in human disease. In most cases, these mutations have gain of function properties that cause deviation from normal developmental processes leading to embryo defects and/or neoplastic transformation. These exciting discoveries represent a step-change in our understanding of the role of chromatin (dys)regulation in development and disease. However, the mechanisms of action of oncogenic histone mutations (oncohistones) remain only partially understood. Here, we critically assess existing literature on oncohistones focussing mainly on bone neoplasms. We show how it is possible to draw parallels with some of the cell-autonomous mechanisms of action described in paediatric brain cancer, although the functions of oncohistones in bone tumours remain under-investigated. In this respect, it is becoming clear that histone mutations targeting the same residues display, at least in part, tissue-specific oncogenic mechanisms. Furthermore, it is emerging that cancer cells carrying oncohistones can modify the surrounding microenvironment to support growth and/or alter differentiation trajectories. A better understanding of oncohistone function in different neoplasms provide potential for identification of signalling that could be targeted therapeutically. Finally, we discuss some of the main concepts and future directions in this research area, while also drawing possible connections and parallels with other cancer epigenetic mechanisms.
Collapse
Affiliation(s)
- Paolo Salomoni
- Nuclear Function Group, German Center for Neurodegenerative Diseases (DZNE), 53127, Bonn, Germany.
| | - Adrienne M Flanagan
- Department of Histopathology, Royal National Orthopaedic Hospital, Stanmore, Middlesex, HA7 4LP, UK
- Department of Pathology, UCL Cancer Institute, University College London, London, WC1E 6BT, UK
| | - Lucia Cottone
- Department of Pathology, UCL Cancer Institute, University College London, London, WC1E 6BT, UK.
| |
Collapse
|
3
|
Burkert M, Blanc E, Thiessen N, Weber C, Toedling J, Monti R, Dombrowe VM, Stella de Biase M, Kaufmann TL, Haase K, Waszak SM, Eggert A, Beule D, Schulte JH, Ohler U, Schwarz RF. Copy-number dosage regulates telomere maintenance and disease-associated pathways in neuroblastoma. iScience 2024; 27:110918. [PMID: 39635126 PMCID: PMC11615189 DOI: 10.1016/j.isci.2024.110918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 07/12/2024] [Accepted: 09/06/2024] [Indexed: 12/07/2024] Open
Abstract
Telomere maintenance in neuroblastoma is linked to poor outcome and caused by either telomerase reverse transcriptase (TERT) activation or through alternative lengthening of telomeres (ALT). In contrast to TERT activation, commonly caused by genomic rearrangements or MYCN amplification, ALT is less well understood. Alterations at the ATRX locus are key drivers of ALT but only present in ∼50% of ALT tumors. To identify potential new pathways to telomere maintenance, we investigate allele-specific gene dosage effects from whole genomes and transcriptomes in 115 primary neuroblastomas. We show that copy-number dosage deregulates telomere maintenance, genomic stability, and neuronal pathways and identify upregulation of variants of histone H3 and H2A as a potential alternative pathway to ALT. We investigate the interplay between TERT activation, overexpression and copy-number dosage and reveal loss of imprinting at the RTL1 gene associated with poor clinical outcome. These results highlight the importance of gene dosage in key oncogenic mechanisms in neuroblastoma.
Collapse
Affiliation(s)
- Martin Burkert
- Department of Biology, Humboldt University, Berlin, Germany
- Berlin Institute for Medical Systems Biology, Max-Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Eric Blanc
- Core Unit Bioinformatics, Berlin Institute of Health at Charité–Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, Berlin, Germany
| | - Nina Thiessen
- Core Unit Bioinformatics, Berlin Institute of Health at Charité–Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, Berlin, Germany
| | | | - Joern Toedling
- Department of Pediatric Oncology/Hematology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Remo Monti
- Berlin Institute for Medical Systems Biology, Max-Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Victoria M. Dombrowe
- Berlin Institute for Medical Systems Biology, Max-Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Maria Stella de Biase
- Department of Biology, Humboldt University, Berlin, Germany
- Berlin Institute for Medical Systems Biology, Max-Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Tom L. Kaufmann
- Berlin Institute for Medical Systems Biology, Max-Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
- BIFOLD - Berlin Institute for the Foundations of Learning and Data, Berlin, Germany
- Department of Electrical Engineering & Computer Science, Technische Universität Berlin, Marchstr. 23, 10587 Berlin, Germany
| | - Kerstin Haase
- Department of Pediatric Oncology/Hematology, Charité-Universitätsmedizin Berlin, Berlin, Germany
- German Cancer Consortium (DKTK), partner site Berlin, and German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Sebastian M. Waszak
- Centre for Molecular Medicine Norway (NCMM), Nordic EMBL Partnership, University of Oslo and Oslo University Hospital, Oslo, Norway
- Department of Pediatric Research, Division of Pediatric and Adolescent Medicine, Rikshospitalet, Oslo University Hospital, Oslo, Norway
- Department of Neurology, University of California, San Francisco, San Francisco, CA, USA
| | - Angelika Eggert
- Department of Pediatric Oncology/Hematology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Dieter Beule
- Core Unit Bioinformatics, Berlin Institute of Health at Charité–Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, Berlin, Germany
| | - Johannes H. Schulte
- Department of Pediatric Oncology/Hematology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Uwe Ohler
- Department of Biology, Humboldt University, Berlin, Germany
- Berlin Institute for Medical Systems Biology, Max-Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Roland F. Schwarz
- Berlin Institute for Medical Systems Biology, Max-Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
- BIFOLD - Berlin Institute for the Foundations of Learning and Data, Berlin, Germany
- Institute for Computational Cancer Biology (ICCB), Center for Integrated Oncology (CIO), Cancer Research Center Cologne Essen (CCCE), Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| |
Collapse
|
4
|
Layo-Carris DE, Lubin EE, Sangree AK, Clark KJ, Durham EL, Gonzalez EM, Smith S, Angireddy R, Wang XM, Weiss E, Toutain A, Mendoza-Londono R, Dupuis L, Damseh N, Velasco D, Valenzuela I, Codina-Solà M, Ziats C, Have J, Clarkson K, Steel D, Kurian M, Barwick K, Carrasco D, Dagli AI, Nowaczyk MJM, Hančárová M, Bendová Š, Prchalova D, Sedláček Z, Baxová A, Nowak CB, Douglas J, Chung WK, Longo N, Platzer K, Klöckner C, Averdunk L, Wieczorek D, Krey I, Zweier C, Reis A, Balci T, Simon M, Kroes HY, Wiesener A, Vasileiou G, Marinakis NM, Veltra D, Sofocleous C, Kosma K, Traeger Synodinos J, Voudris KA, Vuillaume ML, Gueguen P, Derive N, Colin E, Battault C, Au B, Delatycki M, Wallis M, Gallacher L, Majdoub F, Smal N, Weckhuysen S, Schoonjans AS, Kooy RF, Meuwissen M, Cocanougher BT, Taylor K, Pizoli CE, McDonald MT, James P, Roeder ER, Littlejohn R, Borja NA, Thorson W, King K, Stoeva R, Suerink M, Nibbeling E, Baskin S, L E Guyader G, Kaplan J, Muss C, Carere DA, Bhoj EJK, Bryant LM. Expanded phenotypic spectrum of neurodevelopmental and neurodegenerative disorder Bryant-Li-Bhoj syndrome with 38 additional individuals. Eur J Hum Genet 2024; 32:928-937. [PMID: 38678163 PMCID: PMC11291762 DOI: 10.1038/s41431-024-01610-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 03/27/2024] [Accepted: 04/09/2024] [Indexed: 04/29/2024] Open
Abstract
Bryant-Li-Bhoj syndrome (BLBS), which became OMIM-classified in 2022 (OMIM: 619720, 619721), is caused by germline variants in the two genes that encode histone H3.3 (H3-3A/H3F3A and H3-3B/H3F3B) [1-4]. This syndrome is characterized by developmental delay/intellectual disability, craniofacial anomalies, hyper/hypotonia, and abnormal neuroimaging [1, 5]. BLBS was initially categorized as a progressive neurodegenerative syndrome caused by de novo heterozygous variants in either H3-3A or H3-3B [1-4]. Here, we analyze the data of the 58 previously published individuals along 38 unpublished, unrelated individuals. In this larger cohort of 96 people, we identify causative missense, synonymous, and stop-loss variants. We also expand upon the phenotypic characterization by elaborating on the neurodevelopmental component of BLBS. Notably, phenotypic heterogeneity was present even amongst individuals harboring the same variant. To explore the complex phenotypic variation in this expanded cohort, the relationships between syndromic phenotypes with three variables of interest were interrogated: sex, gene containing the causative variant, and variant location in the H3.3 protein. While specific genotype-phenotype correlations have not been conclusively delineated, the results presented here suggest that the location of the variants within the H3.3 protein and the affected gene (H3-3A or H3-3B) contribute more to the severity of distinct phenotypes than sex. Since these variables do not account for all BLBS phenotypic variability, these findings suggest that additional factors may play a role in modifying the phenotypes of affected individuals. Histones are poised at the interface of genetics and epigenetics, highlighting the potential role for gene-environment interactions and the importance of future research.
Collapse
Affiliation(s)
- Dana E Layo-Carris
- Department of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Emily E Lubin
- Department of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Annabel K Sangree
- Department of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Kelly J Clark
- Department of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Emily L Durham
- Department of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Elizabeth M Gonzalez
- Department of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Sarina Smith
- Department of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Rajesh Angireddy
- Department of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Xiao Min Wang
- Department of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Erin Weiss
- Department of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Annick Toutain
- Service de Génétique, CHU de Tours, Tours, France
- UMR1253, iBrain, Inserm, University of Tours, Tours, France
| | - Roberto Mendoza-Londono
- Division of Clinical and Metabolic Genetics, Hospital for Sick Children, University of Toronto, Toronto, ON, Canada
| | - Lucie Dupuis
- Division of Clinical and Metabolic Genetics, Hospital for Sick Children, University of Toronto, Toronto, ON, Canada
| | - Nadirah Damseh
- Division of Clinical and Metabolic Genetics, Hospital for Sick Children, University of Toronto, Toronto, ON, Canada
| | - Danita Velasco
- Children's Nebraska, University of Nebraska Medical Center, Omaha, NE, USA
| | - Irene Valenzuela
- Department of Clinical and Molecular Genetics and Rare Disease Unit Hospital Vall d'Hebron, Barcelona, Spain
- Medicine Genetics Group, Vall Hebron Research Institute, Barcelona, Spain
| | - Marta Codina-Solà
- Department of Clinical and Molecular Genetics and Rare Disease Unit Hospital Vall d'Hebron, Barcelona, Spain
- Medicine Genetics Group, Vall Hebron Research Institute, Barcelona, Spain
| | | | - Jaclyn Have
- Shodair Children's Hospital, Helena, MT, USA
| | | | - Dora Steel
- UCL Great Ormond Street Institute of Child Health, London, UK
| | - Manju Kurian
- UCL Great Ormond Street Institute of Child Health, London, UK
| | - Katy Barwick
- UCL Great Ormond Street Institute of Child Health, London, UK
| | - Diana Carrasco
- Department of Clinical Genetics, Cook Children's Hospital, Fort Worth, TX, USA
| | - Aditi I Dagli
- Orlando Health, Arnold Palmer Hospital For Children, Orlando, FL, USA
| | - M J M Nowaczyk
- McMaster University Medical Centre, Hamilton, ON, Canada
| | - Miroslava Hančárová
- Charles University Second Faculty of Medicine and University Hospital Motol, Prague, Czech Republic
| | - Šárka Bendová
- Charles University Second Faculty of Medicine and University Hospital Motol, Prague, Czech Republic
| | - Darina Prchalova
- Charles University Second Faculty of Medicine and University Hospital Motol, Prague, Czech Republic
| | - Zdeněk Sedláček
- Charles University Second Faculty of Medicine and University Hospital Motol, Prague, Czech Republic
| | - Alica Baxová
- Charles University First Faculty of Medicine and General University Hospital, Prague, Czech Republic
| | - Catherine Bearce Nowak
- Division of Genetics and Metabolism, Massachusetts General Hospital for Children, Boston, MA, USA
| | | | - Wendy K Chung
- Harvard Medical School, Boston, MA, USA
- Boston Children's Hospital, Boston, MA, USA
| | | | - Konrad Platzer
- Institute of Human Genetics, University of Leipzig Medical Center, Leipzig, Germany
| | - Chiara Klöckner
- Institute of Human Genetics, University of Leipzig Medical Center, Leipzig, Germany
| | - Luisa Averdunk
- Institute of Human Genetics, Heinrich-Heine-University Düsseldorf, Medical Faculty, Düsseldorf, Germany
| | - Dagmar Wieczorek
- Institute of Human Genetics, Heinrich-Heine-University Düsseldorf, Medical Faculty, Düsseldorf, Germany
| | - Ilona Krey
- Institute of Human Genetics, University of Leipzig Medical Center, Leipzig, Germany
| | - Christiane Zweier
- Institute of Human Genetics, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054, Erlangen, Germany
- Department of Human Genetics, Inselspital Bern, University of Bern, Bern, Switzerland
| | - Andre Reis
- Institute of Human Genetics, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054, Erlangen, Germany
| | - Tugce Balci
- University of Western Ontario, London, ON, Canada
| | - Marleen Simon
- Department of Genetics, University Medical Center, Utrecht, Netherlands
| | - Hester Y Kroes
- Department of Genetics, University Medical Center, Utrecht, Netherlands
| | - Antje Wiesener
- Department of Genetics, University Medical Center, Utrecht, Netherlands
| | - Georgia Vasileiou
- Department of Genetics, University Medical Center, Utrecht, Netherlands
| | - Nikolaos M Marinakis
- Laboratory of Medical Genetics, St. Sophia's Children's Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Danai Veltra
- Laboratory of Medical Genetics, St. Sophia's Children's Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Christalena Sofocleous
- Laboratory of Medical Genetics, St. Sophia's Children's Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Konstantina Kosma
- Laboratory of Medical Genetics, St. Sophia's Children's Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Joanne Traeger Synodinos
- Laboratory of Medical Genetics, St. Sophia's Children's Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Konstantinos A Voudris
- Second Department of Paediatrics, University of Athens, 'P & A Kyriakou' Children's Hospital, Athens, Greece
| | - Marie-Laure Vuillaume
- Service de Génétique, CHU de Tours, Tours, France
- UMR1253, iBrain, Inserm, University of Tours, Tours, France
- Laboratoire de Biologie Médicale Multi-Sites SeqOIA, Paris, France
| | - Paul Gueguen
- Service de Génétique, CHU de Tours, Tours, France
- UMR1253, iBrain, Inserm, University of Tours, Tours, France
- Laboratoire de Biologie Médicale Multi-Sites SeqOIA, Paris, France
| | - Nicolas Derive
- Laboratoire de Biologie Médicale Multi-Sites SeqOIA, Paris, France
| | - Estelle Colin
- Service de Génétique Médicale, CHU d'Angers, Angers, France
| | | | - Billie Au
- University of Calgary, Calgary, AB, Canada
| | - Martin Delatycki
- Victorian Clinical Genetics Services, Murdoch Children's Research Institute, Parkville, VIC, Australia
- Department of Paediatrics, University of Melbourne, Melbourne, VIC, Australia
| | - Mathew Wallis
- Tasmanian Clinical Genetics Service, Tasmanian Health Service, Hobart, TAS, Australia
- School of Medicine and Menzies Institute for Medical Research, University of Tasmania, Hobart, TAS, Australia
| | - Lyndon Gallacher
- Victorian Clinical Genetics Services, Murdoch Children's Research Institute, Parkville, VIC, Australia
- Department of Paediatrics, University of Melbourne, Melbourne, VIC, Australia
| | - Fatma Majdoub
- Applied and Translational Neurogenomics Group, VIB Center for Molecular Neurology, Antwerp, Belgium
- Applied and Translational Neurogenomics Group, Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
- Medical Genetics Department, University Hedi Chaker Hospital of Sfax, Sfax, Tunisia
| | - Noor Smal
- Applied and Translational Neurogenomics Group, VIB Center for Molecular Neurology, Antwerp, Belgium
- Applied and Translational Neurogenomics Group, Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | - Sarah Weckhuysen
- Applied and Translational Neurogenomics Group, VIB Center for Molecular Neurology, Antwerp, Belgium
- Applied and Translational Neurogenomics Group, Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
- Department of Pediatric Neurology, University Hospital Antwerp, Antwerp, Belgium
- Translational Neurosciences, Faculty of Medicine and Health Science, University of Antwerp, Antwerp, Belgium
- NEURO Research Centre of Excellence, University of Antwerp, Antwerp, Belgium
| | - An-Sofie Schoonjans
- Department of Pediatric Neurology, University Hospital Antwerp, Antwerp, Belgium
- Department of Pediatrics, Duke University Hospital, Durham, NC, USA
| | - R Frank Kooy
- Center of Medical Genetics, Antwerp University Hospital/University of Antwerp, Edegem, Belgium
| | - Marije Meuwissen
- Department of Pediatrics, Duke University Hospital, Durham, NC, USA
- Center of Medical Genetics, Antwerp University Hospital/University of Antwerp, Edegem, Belgium
| | | | - Kathryn Taylor
- Division of Pediatric Neurology, Duke University Hospital, Durham, NC, USA
| | - Carolyn E Pizoli
- Division of Pediatric Neurology, Duke University Hospital, Durham, NC, USA
| | - Marie T McDonald
- Division of Medical Genetics, Duke University Hospital, Durham, NC, USA
| | - Philip James
- DMG Children's Rehabilitative Services, Phoenix, AZ, USA
| | - Elizabeth R Roeder
- Department of Pediatrics, Baylor College of Medicine, San Antonio, TX, USA
| | - Rebecca Littlejohn
- Department of Pediatrics, Baylor College of Medicine, San Antonio, TX, USA
| | - Nicholas A Borja
- John T. Macdonald Foundation Department of Human Genetics, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Willa Thorson
- John T. Macdonald Foundation Department of Human Genetics, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Kristine King
- Genetics Department, Mary Bridge Children's Hospital, Multicare Health System, Tacoma, WA, USA
| | - Radka Stoeva
- Medical genetics department, Centre Hospitalier, Le Mans, France
| | - Manon Suerink
- Department of Clinical Genetics, Leiden University Medical Center (LUMC), Leiden, The Netherlands
| | - Esther Nibbeling
- Department of Clinical Genetics, Leiden University Medical Center (LUMC), Leiden, The Netherlands
| | - Stephanie Baskin
- Department of Pediatrics, Baylor College of Medicine, San Antonio, TX, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Gwenaël L E Guyader
- Service de Génétique médicale, Centre Labellisé Anomalies du Développement-Ouest Site, Poitiers, France
| | | | | | | | - Elizabeth J K Bhoj
- Department of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, PA, USA.
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| | - Laura M Bryant
- Department of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children's Hospital, Columbus, OH, USA
| |
Collapse
|
5
|
Klein RH, Knoepfler PS. Knockout tales: the versatile roles of histone H3.3 in development and disease. Epigenetics Chromatin 2023; 16:38. [PMID: 37814296 PMCID: PMC10563256 DOI: 10.1186/s13072-023-00512-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 10/04/2023] [Indexed: 10/11/2023] Open
Abstract
Histone variant H3.3 plays novel roles in development as compared to canonical H3 proteins and is the most commonly mutated histone protein of any kind in human disease. Here we discuss how gene targeting studies of the two H3.3-coding genes H3f3a and H3f3b have provided important insights into H3.3 functions including in gametes as well as brain and lung development. Knockouts have also provided insights into the important roles of H3.3 in maintaining genomic stability and chromatin organization, processes that are also affected when H3.3 is mutated in human diseases such as pediatric tumors and neurodevelopmental syndromes. Overall, H3.3 is a unique histone linking development and disease via epigenomic machinery.
Collapse
Affiliation(s)
- Rachel H Klein
- Department of Cell Biology and Human Anatomy, University of California Davis, Davis, CA, 95616, USA
- Institute for Pediatric Regenerative Medicine, Shriners Hospital for Children Northern California, Sacramento, CA, 95817, USA
- Genome Center, University of California Davis, Davis, CA, 95616, USA
| | - Paul S Knoepfler
- Department of Cell Biology and Human Anatomy, University of California Davis, Davis, CA, 95616, USA.
- Institute for Pediatric Regenerative Medicine, Shriners Hospital for Children Northern California, Sacramento, CA, 95817, USA.
- Genome Center, University of California Davis, Davis, CA, 95616, USA.
| |
Collapse
|
6
|
Kirkiz E, Meers O, Grebien F, Buschbeck M. Histone Variants and Their Chaperones in Hematological Malignancies. Hemasphere 2023; 7:e927. [PMID: 37449197 PMCID: PMC10337764 DOI: 10.1097/hs9.0000000000000927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 06/13/2023] [Indexed: 07/18/2023] Open
Abstract
Epigenetic regulation occurs on the level of compacting DNA into chromatin. The functional unit of chromatin is the nucleosome, which consists of DNA wrapped around a core of histone proteins. While canonical histone proteins are incorporated into chromatin through a replication-coupled process, structural variants of histones, commonly named histone variants, are deposited into chromatin in a replication-independent manner. Specific chaperones and chromatin remodelers mediate the locus-specific deposition of histone variants. Although histone variants comprise one of the least understood layers of epigenetic regulation, it has been proposed that they play an essential role in directly regulating gene expression in health and disease. Here, we review the emerging evidence suggesting that histone variants have a role at different stages of hematopoiesis, with a particular focus on the histone variants H2A, H3, and H1. Moreover, we discuss the current knowledge on how the dysregulation of histone variants can contribute to hematopoietic malignancies.
Collapse
Affiliation(s)
- Ecem Kirkiz
- Institute for Medical Biochemistry, University of Veterinary Medicine, Vienna, Austria
| | - Oliver Meers
- Cancer and Leukaemia Epigenetics and Biology Program, Josep Carreras Leukaemia Research Institute (IJC), Campus Can Ruti, Badalona, Spain
- PhD Programme in Biomedicine, University of Barcelona, Spain
| | - Florian Grebien
- Institute for Medical Biochemistry, University of Veterinary Medicine, Vienna, Austria
- St. Anna Children’s Cancer Research Institute (CCRI), Vienna, Austria
| | - Marcus Buschbeck
- Cancer and Leukaemia Epigenetics and Biology Program, Josep Carreras Leukaemia Research Institute (IJC), Campus Can Ruti, Badalona, Spain
- Germans Trias i Pujol Research Institute (IGTP), Badalona, Spain
| |
Collapse
|
7
|
Wu R, Wu X, Weng X, Xiu Y, Xu G, Liu X, Liu X. Giant cell tumor of bone with H3F3B mutation: A case report. Medicine (Baltimore) 2023; 102:e32995. [PMID: 36800629 PMCID: PMC9936042 DOI: 10.1097/md.0000000000032995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 01/27/2023] [Indexed: 02/19/2023] Open
Abstract
RATIONALE Giant cell tumor of bone is a locally aggressive and rarely metastasizing neoplasm that typically affects the ends of long bones or the axial skeleton of young to middle-aged adults. As many as 69% to 100% of giant cell tumors harbor H3F3A gene mutations, while H3F3B gene mutations have rarely been reported. PATIENT CONCERNS A 53-year-old male patient who underwent right distal femoral tumor resection. DIAGNOSES Preoperative CT plain scan indicated giant cell tumor of bone with pathological fracture. Laboratory findings were as follows: serum calcium was 2.23 mmol/L (reference range: 2.1-2.55 mmol/L) and serum phosphorus was 1.35 mmol/L (reference range: 0.81-1.45 mmol/L). INTERVENTIONS The histological morphology showed the typical features of a conventional GCT. The immunoprecipitation analysis results were as follows: H3.3G34W(-), H3.3G34R(-), H3.3G34V(-), and H3K36M(-). Sanger sequencing showed that the H3F3A and H3F3B gene mutations were wild type. The high-throughput gene sequencing results revealed the H3F3B gene mutations H3.3p.Gly35Trp and H3.3p.Val36Leu. OUTCOMES The patient was stable with no recurrence in 12 months follow-up. LESSONS Giant cell tumor of bone with H3F3B gene mutations is extremely rare. In the pathological diagnosis of bone tumors, we need to analyze clinical presentation, imaging features, histology, immunophenotype, and cytogenetic/molecular alterations, in order to get a correct diagnosis.
Collapse
Affiliation(s)
- Ruinuan Wu
- Department of Pathology, Shenzhen Second People’s Hospital, Shenzhen, China
| | - Xikang Wu
- Department of Pathology, Shenzhen Second People’s Hospital, Shenzhen, China
| | - Xin Weng
- Department of Pathology, Shenzhen Second People’s Hospital, Shenzhen, China
| | - Yingjie Xiu
- Department of Pathology, Shenzhen Second People’s Hospital, Shenzhen, China
| | - Gang Xu
- Department of Diagnostic Bone Oncology, Shenzhen Second People’s Hospital, Shenzhen, China
| | - Xiajing Liu
- Department of Diagnostic Imaging, Shenzhen Second People’s Hospital, Shenzhen, China
| | - Xia Liu
- Department of Pathology, Shenzhen Second People’s Hospital, Shenzhen, China
| |
Collapse
|
8
|
Wen T, Chen QY. Dynamic Activity of Histone H3-Specific Chaperone Complexes in Oncogenesis. Front Oncol 2022; 11:806974. [PMID: 35087762 PMCID: PMC8786718 DOI: 10.3389/fonc.2021.806974] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 12/15/2021] [Indexed: 11/30/2022] Open
Abstract
Canonical histone H3.1 and variant H3.3 deposit at different sites of the chromatin via distinct histone chaperones. Histone H3.1 relies on chaperone CAF-1 to mediate replication-dependent nucleosome assembly during S-phase, while H3.3 variant is regulated and incorporated into the chromatin in a replication-independent manner through HIRA and DAXX/ATRX. Current literature suggests that dysregulated expression of histone chaperones may be implicated in tumor progression. Notably, ectopic expression of CAF-1 can promote a switch between canonical H3.1 and H3 variants in the chromatin, impair the chromatic state, lead to chromosome instability, and impact gene transcription, potentially contributing to carcinogenesis. This review focuses on the chaperone proteins of H3.1 and H3.3, including structure, regulation, as well as their oncogenic and tumor suppressive functions in tumorigenesis.
Collapse
Affiliation(s)
- Ting Wen
- Department of Cell Biology and Genetics, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, China
| | - Qiao Yi Chen
- Department of Cell Biology and Genetics, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
9
|
Abstract
H3F3A and H3F3B genes are located at 1q42.12 and 17q25.1, respectively, and encode identical H3.3 core histone proteins which form part of the histone hetero-octamer complex. Histones function by packaging DNA into small units, the nucleosome, and are highly susceptible to epigenetic post-translational modification. H3 K27 mutations have been shown to inhibit the polycomb repressive complex 2, which is normally involved in epigenetic gene silencing. Mutations in H3F3A and H3F3B are increasingly recognised in a variety of solid tumours. Point mutations in H3F3A have been described in giant cell tumour of bone and paediatric-type diffuse high-grade gliomas. Mutations in H3F3B have been described in chondroblastoma. Loss of trimethylation of H3 K27 is characteristic of most sporadic and radiation-associated malignant peripheral nerve sheath tumours. Immunohistochemistry with a variety of novel antibodies directed against specific mutations, as well as loss of H3K27me3 staining, may be useful in specific settings and in diagnostically challenging cases.
Collapse
Affiliation(s)
- Alessandro Pietro Aldera
- Anatomical Pathology, JDW Pathology Inc, Cape Town, South Africa .,Division of Anatomical Pathology, University of Cape Town, Cape Town, South Africa
| | - Dhirendra Govender
- Division of Anatomical Pathology, University of Cape Town, Cape Town, South Africa.,Anatomical Pathology, Pathcare, Cape Town, South Africa
| |
Collapse
|
10
|
Morrison O, Thakur J. Molecular Complexes at Euchromatin, Heterochromatin and Centromeric Chromatin. Int J Mol Sci 2021; 22:6922. [PMID: 34203193 PMCID: PMC8268097 DOI: 10.3390/ijms22136922] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 06/23/2021] [Accepted: 06/24/2021] [Indexed: 01/19/2023] Open
Abstract
Chromatin consists of a complex of DNA and histone proteins as its core components and plays an important role in both packaging DNA and regulating DNA metabolic pathways such as DNA replication, transcription, recombination, and chromosome segregation. Proper functioning of chromatin further involves a network of interactions among molecular complexes that modify chromatin structure and organization to affect the accessibility of DNA to transcription factors leading to the activation or repression of the transcription of target DNA loci. Based on its structure and compaction state, chromatin is categorized into euchromatin, heterochromatin, and centromeric chromatin. In this review, we discuss distinct chromatin factors and molecular complexes that constitute euchromatin-open chromatin structure associated with active transcription; heterochromatin-less accessible chromatin associated with silencing; centromeric chromatin-the site of spindle binding in chromosome segregation.
Collapse
Affiliation(s)
| | - Jitendra Thakur
- Department of Biology, Emory University, 1510 Clifton Rd #2006, Atlanta, GA 30322, USA;
| |
Collapse
|
11
|
Rashid M, Shah SG, Verma T, Chaudhary N, Rauniyar S, Patel VB, Gera PB, Smoot D, Ashaktorab H, Dalal SN, Gupta S. Tumor-specific overexpression of histone gene, H3C14 in gastric cancer is mediated through EGFR-FOXC1 axis. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2021; 1864:194703. [PMID: 33727172 DOI: 10.1016/j.bbagrm.2021.194703] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 02/15/2021] [Accepted: 03/07/2021] [Indexed: 02/08/2023]
Abstract
Incorporation of different H3 histone isoforms/variants have been reported to differentially regulate gene expression via alteration in chromatin organization during diverse cellular processes. However, the differential expression of highly conserved histone H3.2 genes, H3C14 and H3C13 in human cancer has not been delineated. In this study, we investigated the expression of H3.2 genes in primary human gastric, brain, breast, colon, liver, and head and neck cancer tissues and tumor cell lines. The data showed overexpression of H3.2 transcripts in tumor samples and cell lines with respect to normal counterparts. Furthermore, TCGA data of individual and TCGA PANCAN cohort also showed significant up-regulation of H3.2 genes. Further, overexpressed H3C14 gene coding for H3.2 protein was regulated by FOXC1 transcription factor and G4-cassette in gastric cancer cell lines. Elevated expression of FOXC1 protein and transcripts were also observed in human gastric cancer samples and cell lines. Further, FOXC1 protein was predominantly localized in the nuclei of neoplastic gastric cells compared to normal counterpart. In continuation, studies with EGF induction, FOXC1 knockdown, and ChIP-qPCR for the first time identified a novel axis, EGFR-FOXC1-H3C14 for regulation of H3C14 gene overexpression in gastric cancer. Therefore, the changes the epigenomic landscape due to incorporation of differential expression H3 variant contributes to change in gene expression pattern and thereby contributing to pathogenesis of cancer.
Collapse
Affiliation(s)
- Mudasir Rashid
- KS313, Epigenetics and Chromatin Biology Group, Gupta Lab, Advanced Centre for Treatment, Research and Education in Cancer, Tata Memorial Centre, Kharghar, Navi Mumbai 410210, MH, India; Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai, MH, India
| | - Sanket Girish Shah
- KS313, Epigenetics and Chromatin Biology Group, Gupta Lab, Advanced Centre for Treatment, Research and Education in Cancer, Tata Memorial Centre, Kharghar, Navi Mumbai 410210, MH, India; Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai, MH, India
| | - Tripti Verma
- KS313, Epigenetics and Chromatin Biology Group, Gupta Lab, Advanced Centre for Treatment, Research and Education in Cancer, Tata Memorial Centre, Kharghar, Navi Mumbai 410210, MH, India; Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai, MH, India
| | - Nazia Chaudhary
- KS216, Advanced Centre for Treatment, Research and Education in Cancer, Tata Memorial Centre, Kharghar, Navi Mumbai 410210, MH, India; Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai, MH, India
| | - Sukanya Rauniyar
- KS313, Epigenetics and Chromatin Biology Group, Gupta Lab, Advanced Centre for Treatment, Research and Education in Cancer, Tata Memorial Centre, Kharghar, Navi Mumbai 410210, MH, India; Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai, MH, India
| | - Vidisha Bhavesh Patel
- KS313, Epigenetics and Chromatin Biology Group, Gupta Lab, Advanced Centre for Treatment, Research and Education in Cancer, Tata Memorial Centre, Kharghar, Navi Mumbai 410210, MH, India
| | - Poonam B Gera
- Biorepository, Advanced Centre for Treatment, Research and Education in Cancer, Tata Memorial Centre, Kharghar, Navi Mumbai 410210, MH, India
| | - Duane Smoot
- Department of Medicine, Meharry Medical Center, Nashville, TN 37208, United States
| | - Hassan Ashaktorab
- Department of Medicine and Cancer Center, College of Medicine, Howard University, Washington DC, WA 20060, United States
| | - Sorab N Dalal
- KS216, Advanced Centre for Treatment, Research and Education in Cancer, Tata Memorial Centre, Kharghar, Navi Mumbai 410210, MH, India; Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai, MH, India
| | - Sanjay Gupta
- KS313, Epigenetics and Chromatin Biology Group, Gupta Lab, Advanced Centre for Treatment, Research and Education in Cancer, Tata Memorial Centre, Kharghar, Navi Mumbai 410210, MH, India; Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai, MH, India.
| |
Collapse
|
12
|
Wang XF, Tian Q, Qin WB, Yin Y, Zeng L, Tang YG, Su P, Zhou LQ. Histone H3 methylation orchestrates transcriptional program in mouse spermatogenic cell line. J Reprod Dev 2020; 66:223-230. [PMID: 32051348 PMCID: PMC7297638 DOI: 10.1262/jrd.2019-139] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Changes in histone modifications always correlate with altered transcriptional activities of genes. Recent studies have shown that the mutation of certain lysine residues to
methionine in the histone variant H3.3 can act as a valuable tool to reduce specific H3 methylation levels. In our study, we used the mouse spermatogenic cell line GC-2 as a model
to generate cells stably expressing H3.3 K4, H3.3 K9, H3.3 K27, and H3.3 K36M. The expression of these H3.3 K-to-M mutants influenced the expression of different subsets of genes,
and a total of 891 differentially expressed genes were identified through global gene expression profiling. Moreover, the H3.3 K-to-M transgenes, especially H3.3 K36M, impacted the
expression of endogenous retrovirus ERVK. This study gives a global view of how different H3 modifications regulate transcriptomes in spermatogenic cell lines, and identifies
potential targets of H3 modifications in male germ line.
Collapse
Affiliation(s)
- Xiao-Fei Wang
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Hubei 430030, China
| | - Qing Tian
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Hubei 430030, China
| | - Wei-Bing Qin
- NHC Key Laboratory of Male Reproduction and Genetics, Family Planning Research Institute of Guangdong Province, Guangzhou 510600, China
| | - Ying Yin
- School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Hubei 430030, China
| | - Ling Zeng
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Hubei 430030, China
| | - Yun-Ge Tang
- NHC Key Laboratory of Male Reproduction and Genetics, Family Planning Research Institute of Guangdong Province, Guangzhou 510600, China
| | - Ping Su
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Hubei 430030, China
| | - Li-Quan Zhou
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Hubei 430030, China
| |
Collapse
|
13
|
Lowe BR, Maxham LA, Hamey JJ, Wilkins MR, Partridge JF. Histone H3 Mutations: An Updated View of Their Role in Chromatin Deregulation and Cancer. Cancers (Basel) 2019; 11:E660. [PMID: 31086012 PMCID: PMC6562757 DOI: 10.3390/cancers11050660] [Citation(s) in RCA: 89] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 05/03/2019] [Accepted: 05/06/2019] [Indexed: 01/27/2023] Open
Abstract
In this review, we describe the attributes of histone H3 mutants identified in cancer. H3 mutants were first identified in genes encoding H3.3, in pediatric high-grade glioma, and subsequently in chondrosarcomas and giant cell tumors of bone (GCTB) in adolescents. The most heavily studied are the lysine to methionine mutants K27M and K36M, which perturb the target site for specific lysine methyltransferases and dominantly perturb methylation of corresponding lysines in other histone H3 proteins. We discuss recent progress in defining the consequences of these mutations on chromatin, including a newly emerging view of the central importance of the disruption of H3K36 modification in many distinct K to M histone mutant cancers. We also review new work exploring the role of H3.3 G34 mutants identified in pediatric glioma and GCTB. G34 is not itself post-translationally modified, but G34 mutation impinges on the modification of H3K36. Here, we ask if G34R mutation generates a new site for methylation on the histone tail. Finally, we consider evidence indicating that histone mutations might be more widespread in cancer than previously thought, and if the perceived bias towards mutation of H3.3 is real or reflects the biology of tumors in which the histone mutants were first identified.
Collapse
Affiliation(s)
- Brandon R Lowe
- Department of Pathology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38112, USA.
| | - Lily A Maxham
- Department of Pathology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38112, USA.
| | - Joshua J Hamey
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Kensington, NSW 2052, Australia.
| | - Marc R Wilkins
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Kensington, NSW 2052, Australia.
| | - Janet F Partridge
- Department of Pathology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38112, USA.
| |
Collapse
|
14
|
Baumhoer D, Amary F, Flanagan AM. An update of molecular pathology of bone tumors. Lessons learned from investigating samples by next generation sequencing. Genes Chromosomes Cancer 2018; 58:88-99. [PMID: 30582658 DOI: 10.1002/gcc.22699] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 10/25/2018] [Accepted: 10/25/2018] [Indexed: 12/27/2022] Open
Abstract
The last decade has seen the majority of primary bone tumor subtypes become defined by molecular genetic alteration. Examples include giant cell tumour of bone (H3F3A p.G34W), chondroblastoma (H3F3B p.K36M), mesenchymal chondrosarcoma (HEY1-NCOA2), chondromyxoid fibroma (GRM1 rearrangements), aneurysmal bone cyst (USP6 rearrangements), osteoblastoma/osteoid osteoma (FOS/FOSB rearrangements), and synovial chondromatosis (FN1-ACVR2A and ACVR2A-FN1). All such alterations are mutually exclusive. Many of these have been translated into clinical service using immunohistochemistry or FISH. 60% of central chondrosarcoma is characterised by either isocitrate dehydrogenase (IDH) 1 or IDH2 mutations distinguishing them from other cartilaginous tumours. In contrast, recurrent alterations which are clinically helpful have not been found in high grade osteosarcoma. High throughput next generation sequencing has also proved valuable in identifying germ line alterations in a significant proportion of young patients with primary malignant bone tumors. These findings will play an increasing role in reaching a diagnosis and in patient management.
Collapse
Affiliation(s)
- Daniel Baumhoer
- Bone Tumour Reference Centre, Institute of Pathology, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Fernanda Amary
- Department of Pathology, The Royal National Orthopaedic Hospital, Stanmore, Middlesex, United Kingdom.,Department of Pathology, Cancer Institute, University College London, London, United Kingdom
| | - Adrienne M Flanagan
- Department of Pathology, The Royal National Orthopaedic Hospital, Stanmore, Middlesex, United Kingdom.,Department of Pathology, Cancer Institute, University College London, London, United Kingdom
| |
Collapse
|
15
|
Abbaszadegan MR, Moghbeli M. Genetic and molecular origins of colorectal Cancer among the Iranians: an update. Diagn Pathol 2018; 13:97. [PMID: 30579343 PMCID: PMC6303916 DOI: 10.1186/s13000-018-0774-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2018] [Accepted: 12/05/2018] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Colorectal cancer (CRC) is one the leading causes of cancer related deaths among Iranians. Despite the various progresses in new therapeutic methods, it has still a low rate of survival. This high ratio of mortality is mainly related to the late diagnosis, in which the patients refer for treatment in advanced stages of tumor. MAIN BODY: colorectal cancer progression is largely associated with molecular and genetic bases. Although Iran has a high ratio of CRC mortality, there is not an efficient genetic panel for detection and prognosis. Therefore, it is critical to introduce new diagnostic markers with ability to detect in early stages. CONCLUSION Present review summarizes all of the genetic and epigenetic factors which are reported in CRC until now among the Iranian patients to pave the way of incorporation of new ethnic specific markers into the clinical practice and development of new targeted therapeutic methods.
Collapse
Affiliation(s)
| | - Meysam Moghbeli
- Department of Modern Sciences and Technologies, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
16
|
Mendiratta S, Gatto A, Almouzni G. Histone supply: Multitiered regulation ensures chromatin dynamics throughout the cell cycle. J Cell Biol 2018; 218:39-54. [PMID: 30257851 PMCID: PMC6314538 DOI: 10.1083/jcb.201807179] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 09/05/2018] [Accepted: 09/12/2018] [Indexed: 12/14/2022] Open
Abstract
Mendiratta et al. review the interplay between the different regulatory layers that affect the transcription and dynamics of distinct histone H3 variants along the cell cycle. As the building blocks of chromatin, histones are central to establish and maintain particular chromatin states associated with given cell fates. Importantly, histones exist as distinct variants whose expression and incorporation into chromatin are tightly regulated during the cell cycle. During S phase, specialized replicative histone variants ensure the bulk of the chromatinization of the duplicating genome. Other non-replicative histone variants deposited throughout the cell cycle at specific loci use pathways uncoupled from DNA synthesis. Here, we review the particular dynamics of expression, cellular transit, assembly, and disassembly of replicative and non-replicative forms of the histone H3. Beyond the role of histone variants in chromatin dynamics, we review our current knowledge concerning their distinct regulation to control their expression at different levels including transcription, posttranscriptional processing, and protein stability. In light of this unique regulation, we highlight situations where perturbations in histone balance may lead to cellular dysfunction and pathologies.
Collapse
Affiliation(s)
- Shweta Mendiratta
- Institut Curie, Paris Sciences et Lettres Research University, Centre National de la Recherche Scientifique, UMR3664, Equipe Labellisée Ligue contre le Cancer, Paris, France.,Sorbonne Universités, Université Pierre et Marie Curie Paris 06, Centre National de la Recherche Scientifique, UMR3664, Paris, France
| | - Alberto Gatto
- Institut Curie, Paris Sciences et Lettres Research University, Centre National de la Recherche Scientifique, UMR3664, Equipe Labellisée Ligue contre le Cancer, Paris, France.,Sorbonne Universités, Université Pierre et Marie Curie Paris 06, Centre National de la Recherche Scientifique, UMR3664, Paris, France
| | - Genevieve Almouzni
- Institut Curie, Paris Sciences et Lettres Research University, Centre National de la Recherche Scientifique, UMR3664, Equipe Labellisée Ligue contre le Cancer, Paris, France .,Sorbonne Universités, Université Pierre et Marie Curie Paris 06, Centre National de la Recherche Scientifique, UMR3664, Paris, France
| |
Collapse
|
17
|
Shindo T, Doi S, Nakashima A, Sasaki K, Arihiro K, Masaki T. TGF-β1 promotes expression of fibrosis-related genes through the induction of histone variant H3.3 and histone chaperone HIRA. Sci Rep 2018; 8:14060. [PMID: 30232404 PMCID: PMC6145928 DOI: 10.1038/s41598-018-32518-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Accepted: 09/05/2018] [Indexed: 01/13/2023] Open
Abstract
Renal fibrosis is a histological manifestation that occurs in almost every type of chronic kidney disease. Histone variant H3.3 and its chaperone, histone cell cycle regulation defective homolog A (HIRA), serve as epigenetic marks that regulate transcriptional activity. In this study, we assessed the roles of histone H3.3 and HIRA in unilateral ureteral-obstruction (UUO) mice. In UUO mice, the levels of histone H3.3 and HIRA were significantly upregulated in the kidneys. These upregulated levels were decreased by a TGF-β1 neutralizing antibody. TGF-β1 induced histone H3.3 and HIRA expression in vitro via a Smad3-dependent pathway in normal rat kidney (NRK)-52E cells. Additionally, knockdown of HIRA expression decreased histone H3.3 expression and fibrogenesis in NRK-52E cells after TGF-β1 stimulation. Chromatin immunoprecipitation analysis revealed that promoters of fibrosis-related genes were immunoprecipitated with both histone H3.3 and HIRA in NRK-52E cells. Lastly, in human kidney biopsies from patients diagnosed with IgA nephropathy, histone H3.3 and HIRA immunostaining correlated positively with areas of fibrosis and estimated glomerular filtration rate. In conclusion, TGF-β1 induces expression of histone H3.3 and HIRA, which regulates expression of fibrosis-related genes.
Collapse
Affiliation(s)
- Toshihiro Shindo
- Department of Nephrology, Hiroshima University Hospital, Hiroshima, Japan
| | - Shigehiro Doi
- Department of Nephrology, Hiroshima University Hospital, Hiroshima, Japan.
| | - Ayumu Nakashima
- Department of Nephrology, Hiroshima University Hospital, Hiroshima, Japan
| | - Kensuke Sasaki
- Department of Nephrology, Hiroshima University Hospital, Hiroshima, Japan
| | - Koji Arihiro
- Department of Pathology, Hiroshima University Hospital, Hiroshima, Japan
| | - Takao Masaki
- Department of Nephrology, Hiroshima University Hospital, Hiroshima, Japan.
| |
Collapse
|
18
|
Kong Q, Banaszynski LA, Geng F, Zhang X, Zhang J, Zhang H, O'Neill CL, Yan P, Liu Z, Shido K, Palermo GD, Allis CD, Rafii S, Rosenwaks Z, Wen D. Histone variant H3.3-mediated chromatin remodeling is essential for paternal genome activation in mouse preimplantation embryos. J Biol Chem 2018; 293:3829-3838. [PMID: 29358330 DOI: 10.1074/jbc.ra117.001150] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Revised: 01/02/2018] [Indexed: 12/22/2022] Open
Abstract
Derepression of chromatin-mediated transcriptional repression of paternal and maternal genomes is considered the first major step that initiates zygotic gene expression after fertilization. The histone variant H3.3 is present in both male and female gametes and is thought to be important for remodeling the paternal and maternal genomes for activation during both fertilization and embryogenesis. However, the underlying mechanisms remain poorly understood. Using our H3.3B-HA-tagged mouse model, engineered to report H3.3 expression in live animals and to distinguish different sources of H3.3 protein in embryos, we show here that sperm-derived H3.3 (sH3.3) protein is removed from the sperm genome shortly after fertilization and extruded from the zygotes via the second polar bodies (PBII) during embryogenesis. We also found that the maternal H3.3 (mH3.3) protein is incorporated into the paternal genome as early as 2 h postfertilization and is detectable in the paternal genome until the morula stage. Knockdown of maternal H3.3 resulted in compromised embryonic development both of fertilized embryos and of androgenetic haploid embryos. Furthermore, we report that mH3.3 depletion in oocytes impairs both activation of the Oct4 pluripotency marker gene and global de novo transcription from the paternal genome important for early embryonic development. Our results suggest that H3.3-mediated paternal chromatin remodeling is essential for the development of preimplantation embryos and the activation of the paternal genome during embryogenesis.
Collapse
Affiliation(s)
- Qingran Kong
- From the Ronald O. Perelman and Claudia Cohen Center for Reproductive Medicine and.,Key Laboratory of Animal Cellular and Genetics Engineering of Heilongjiang Province, College of Life Science, Northeast Agricultural University, Harbin 150030, China, and
| | - Laura A Banaszynski
- Laboratory of Chromatin Biology and Epigenetics, Rockefeller University, New York, New York 10065
| | - Fuqiang Geng
- Department of Medicine, Weill Cornell Medical College, New York, New York 10065
| | - Xiaolei Zhang
- Key Laboratory of Animal Cellular and Genetics Engineering of Heilongjiang Province, College of Life Science, Northeast Agricultural University, Harbin 150030, China, and
| | - Jiaming Zhang
- Key Laboratory of Animal Cellular and Genetics Engineering of Heilongjiang Province, College of Life Science, Northeast Agricultural University, Harbin 150030, China, and
| | - Heng Zhang
- Key Laboratory of Animal Cellular and Genetics Engineering of Heilongjiang Province, College of Life Science, Northeast Agricultural University, Harbin 150030, China, and
| | - Claire L O'Neill
- From the Ronald O. Perelman and Claudia Cohen Center for Reproductive Medicine and
| | - Peidong Yan
- Key Laboratory of Animal Cellular and Genetics Engineering of Heilongjiang Province, College of Life Science, Northeast Agricultural University, Harbin 150030, China, and
| | - Zhonghua Liu
- Key Laboratory of Animal Cellular and Genetics Engineering of Heilongjiang Province, College of Life Science, Northeast Agricultural University, Harbin 150030, China, and
| | - Koji Shido
- Department of Medicine, Weill Cornell Medical College, New York, New York 10065
| | - Gianpiero D Palermo
- From the Ronald O. Perelman and Claudia Cohen Center for Reproductive Medicine and
| | - C David Allis
- Laboratory of Chromatin Biology and Epigenetics, Rockefeller University, New York, New York 10065
| | - Shahin Rafii
- Department of Medicine, Weill Cornell Medical College, New York, New York 10065
| | - Zev Rosenwaks
- From the Ronald O. Perelman and Claudia Cohen Center for Reproductive Medicine and
| | - Duancheng Wen
- From the Ronald O. Perelman and Claudia Cohen Center for Reproductive Medicine and
| |
Collapse
|
19
|
Quénet D. Histone Variants and Disease. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2018; 335:1-39. [DOI: 10.1016/bs.ircmb.2017.07.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
20
|
Mei Q, Huang J, Chen W, Tang J, Xu C, Yu Q, Cheng Y, Ma L, Yu X, Li S. Regulation of DNA replication-coupled histone gene expression. Oncotarget 2017; 8:95005-95022. [PMID: 29212286 PMCID: PMC5706932 DOI: 10.18632/oncotarget.21887] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Accepted: 09/20/2017] [Indexed: 12/21/2022] Open
Abstract
The expression of core histone genes is cell cycle regulated. Large amounts of histones are required to restore duplicated chromatin during S phase when DNA replication occurs. Over-expression and excess accumulation of histones outside S phase are toxic to cells and therefore cells need to restrict histone expression to S phase. Misregulation of histone gene expression leads to defects in cell cycle progression, genome stability, DNA damage response and transcriptional regulation. Here, we discussed the factors involved in histone gene regulation as well as the underlying mechanism. Understanding the histone regulation mechanism will shed lights on elucidating the side effects of certain cancer chemotherapeutic drugs and developing potential biomarkers for tumor cells.
Collapse
Affiliation(s)
- Qianyun Mei
- Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, College of Life Sciences, Hubei University, Wuhan, Hubei 430062, China
| | - Junhua Huang
- Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, College of Life Sciences, Hubei University, Wuhan, Hubei 430062, China
| | - Wanping Chen
- Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, College of Life Sciences, Hubei University, Wuhan, Hubei 430062, China.,Hubei Key Laboratory of Industrial Biotechnology, College of Life Sciences, Hubei University, Wuhan, Hubei 430062, China
| | - Jie Tang
- Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, College of Life Sciences, Hubei University, Wuhan, Hubei 430062, China
| | - Chen Xu
- Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, College of Life Sciences, Hubei University, Wuhan, Hubei 430062, China
| | - Qi Yu
- Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, College of Life Sciences, Hubei University, Wuhan, Hubei 430062, China
| | - Ying Cheng
- Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, College of Life Sciences, Hubei University, Wuhan, Hubei 430062, China
| | - Lixin Ma
- Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, College of Life Sciences, Hubei University, Wuhan, Hubei 430062, China.,Hubei Key Laboratory of Industrial Biotechnology, College of Life Sciences, Hubei University, Wuhan, Hubei 430062, China
| | - Xilan Yu
- Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, College of Life Sciences, Hubei University, Wuhan, Hubei 430062, China.,Hubei Key Laboratory of Industrial Biotechnology, College of Life Sciences, Hubei University, Wuhan, Hubei 430062, China
| | - Shanshan Li
- Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, College of Life Sciences, Hubei University, Wuhan, Hubei 430062, China.,Hubei Key Laboratory of Industrial Biotechnology, College of Life Sciences, Hubei University, Wuhan, Hubei 430062, China
| |
Collapse
|
21
|
Shi L, Wen H, Shi X. The Histone Variant H3.3 in Transcriptional Regulation and Human Disease. J Mol Biol 2017; 429:1934-1945. [PMID: 27894815 PMCID: PMC5446305 DOI: 10.1016/j.jmb.2016.11.019] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Revised: 11/17/2016] [Accepted: 11/17/2016] [Indexed: 01/19/2023]
Abstract
Histone proteins wrap around DNA to form nucleosomes, which further compact into the higher-order structure of chromatin. In addition to the canonical histones, there are also variant histones that often have pivotal roles in regulating chromatin dynamics and in the accessibility of the underlying DNA. H3.3 is the most common non-centromeric variant of histone H3 that differs from the canonical H3 by just 4-5 aa. Here, we discuss the current knowledge of H3.3 in transcriptional regulation and the recent discoveries and molecular mechanisms of H3.3 mutations in human cancer.
Collapse
Affiliation(s)
- Leilei Shi
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; Center for Cancer Epigenetics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Hong Wen
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; Center for Cancer Epigenetics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Xiaobing Shi
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; Center for Cancer Epigenetics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; The University of Texas Graduate School of Biomedical Sciences, Houston, TX 77030, USA.
| |
Collapse
|
22
|
Ayoubi HA, Mahjoubi F, Mirzaei R. Investigation of the human H3.3B ( H3F3B) gene expression as a novel marker in patients with colorectal cancer. J Gastrointest Oncol 2017; 8:64-69. [PMID: 28280610 DOI: 10.21037/jgo.2016.12.12] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
BACKGROUND H3.3 histone is a replacement histone subtype that is express in entire cell cycle phases and overexpress in transcriptionally active regions, promoter regions, and intergenic or intragenic regulatory elements. This histone encoded by two genes termed H3.3A (H3F3A) and H3.3B (H3F3B). Mutations of these two genes lead to some human cancers such as chondroblastoma, osteosarcoma, and epithelial ovarian cancer. The aims of this study were to quantitatively examine the expression of H3.3B gene in colorectal cancer (CRC) and to correlate their expression level with demographics and clinicopathological characteristics. METHODS We investigated H3.3B gene expression in CRC by relative quantitative real-time polymerase chain reaction (real-time PCR) technique for the first time. For this purpose, total RNA extracted, then cDNA synthesized and H3.3B gene expression was evaluated with specific primers by real-time PCR in tumoral tissues and adjacent normal tissues of 36 patients with CRC, then statistical analysis was performed using SPSS software. RESULTS The results of this study indicated that H3.3B gene significantly overexpressed in tumoral tissue than adjacent normal tissue. Furthermore, statistical analysis represented the significant correlation between the H3.3B gene expression and some of the clinicopathological characteristics. CONCLUSIONS Our study showed that H3.3B gene expression changes can be useful as a probable prognosis biomarker in the early stages of CRC before it metastasized.
Collapse
Affiliation(s)
- Habib Allah Ayoubi
- Department of Medical Genetic, Institute of Medical Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| | - Frouzandeh Mahjoubi
- Department of Medical Genetic, Institute of Medical Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| | - Rezvan Mirzaei
- Department of General Surgery, Hazrat-e-Rasoul Hospital, Tehran University of Medical Sciences and Health Services, Tehran, Iran
| |
Collapse
|
23
|
Rivera-Casas C, González-Romero R, Vizoso-Vazquez Á, Cheema MS, Cerdán ME, Méndez J, Ausió J, Eirin-Lopez JM. Characterization of mussel H2A.Z.2: a new H2A.Z variant preferentially expressed in germinal tissues from Mytilus. Biochem Cell Biol 2016; 94:480-490. [DOI: 10.1139/bcb-2016-0056] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Histones are the fundamental constituents of the eukaryotic chromatin, facilitating the physical organization of DNA in chromosomes and participating in the regulation of its metabolism. The H2A family displays the largest number of variants among core histones, including the renowned H2A.X, macroH2A, H2A.B (Bbd), and H2A.Z. This latter variant is especially interesting because of its regulatory role and its differentiation into 2 functionally divergent variants (H2A.Z.1 and H2A.Z.2), further specializing the structure and function of vertebrate chromatin. In the present work we describe, for the first time, the presence of a second H2A.Z variant (H2A.Z.2) in the genome of a non-vertebrate animal, the mussel Mytilus. The molecular and evolutionary characterization of mussel H2A.Z.1 and H2A.Z.2 histones is consistent with their functional specialization, supported on sequence divergence at promoter and coding regions as well as on varying gene expression patterns. More precisely, the expression of H2A.Z.2 transcripts in gonadal tissue and its potential upregulation in response to genotoxic stress might be mirroring the specialization of this variant in DNA repair. Overall, the findings presented in this work complement recent reports describing the widespread presence of other histone variants across eukaryotes, supporting an ancestral origin and conserved role for histone variants in chromatin.
Collapse
Affiliation(s)
- Ciro Rivera-Casas
- Chromatin Structure and Evolution (Chromevol) Group, Department of Biological Sciences, Florida International University, North Miami, FL 33181, USA
| | - Rodrigo González-Romero
- Chromatin Structure and Evolution (Chromevol) Group, Department of Biological Sciences, Florida International University, North Miami, FL 33181, USA
| | - Ángel Vizoso-Vazquez
- Exprela Group, Department of Cellular and Molecular Biology, University of A Coruña, A Coruña E15071, Spain
| | - Manjinder S. Cheema
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC V8W 3P6, Canada
| | - M. Esperanza Cerdán
- Exprela Group, Department of Cellular and Molecular Biology, University of A Coruña, A Coruña E15071, Spain
| | - Josefina Méndez
- Xenomar Group, Department of Cellular and Molecular Biology, University of A Coruña, A Coruña E15071, Spain
| | - Juan Ausió
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC V8W 3P6, Canada
| | - Jose M. Eirin-Lopez
- Chromatin Structure and Evolution (Chromevol) Group, Department of Biological Sciences, Florida International University, North Miami, FL 33181, USA
| |
Collapse
|
24
|
Konstantinov NK, Ulff-Møller CJ, Dimitrov S. Histone variants and melanoma: facts and hypotheses. Pigment Cell Melanoma Res 2016; 29:426-33. [DOI: 10.1111/pcmr.12467] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Accepted: 02/10/2016] [Indexed: 12/22/2022]
Affiliation(s)
| | | | - Stefan Dimitrov
- Institut Albert Bonniot; U823, INSERM/Université Joseph Fourier; Grenoble Cedex 9 France
| |
Collapse
|
25
|
Zhang H, Mo XB, Xu T, Lei SF, Zhang YH. Detecting novel genes for low-density lipoprotein cholesterol in European population using bioinformatics analysis. Per Med 2016; 13:225-231. [PMID: 29767610 DOI: 10.2217/pme.16.1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
AIM The aim of this study was to identify related genes for low-density lipoprotein cholesterol and evaluate the functional relevance to provide evidences for prioritizing these genes. MATERIALS & METHODS We performed a gene-based association study in about 188,578 individuals. Furthermore, we performed bioinformatics analyses to support the identified genes. RESULTS A total of 292 genes were found to be significant after Bonferroni correction (p < 2.3 × 10-6). Among these genes, 59 seemed to be associated with coronary artery disease (CAD). CONCLUSION The evidence obtained from the analyses of this study signified the importance of many genes, for example, LDLR, ABCG5, ABCG8, APOB, HNF1A, PTPN11, APOA5 and MCM6, which were also associated with CAD. The findings might provide more insights into the genetic basis of lipid metabolism and CAD.
Collapse
Affiliation(s)
- Huan Zhang
- Jiangsu Key Laboratory of Preventive & Translational Medicine for Geriatric Diseases, Soochow University, 199 Renai Road, Suzhou, Jiangsu 215123, PR China.,Department of Epidemiology, School of Public Health, Soochow University, 199 Renai Road, Suzhou, Jiangsu, Jiangsu 215123, PR China
| | - Xing-Bo Mo
- Jiangsu Key Laboratory of Preventive & Translational Medicine for Geriatric Diseases, Soochow University, 199 Renai Road, Suzhou, Jiangsu 215123, PR China.,Department of Epidemiology, School of Public Health, Soochow University, 199 Renai Road, Suzhou, Jiangsu, Jiangsu 215123, PR China.,Center for Genetic Epidemiology & Genomics, School of Public Health, Soochow University, 199 Renai Road, Suzhou, Jiangsu, Jiangsu 215123, PR China
| | - Tan Xu
- Jiangsu Key Laboratory of Preventive & Translational Medicine for Geriatric Diseases, Soochow University, 199 Renai Road, Suzhou, Jiangsu 215123, PR China.,Department of Epidemiology, School of Public Health, Soochow University, 199 Renai Road, Suzhou, Jiangsu, Jiangsu 215123, PR China
| | - Shu-Feng Lei
- Jiangsu Key Laboratory of Preventive & Translational Medicine for Geriatric Diseases, Soochow University, 199 Renai Road, Suzhou, Jiangsu 215123, PR China.,Department of Epidemiology, School of Public Health, Soochow University, 199 Renai Road, Suzhou, Jiangsu, Jiangsu 215123, PR China.,Center for Genetic Epidemiology & Genomics, School of Public Health, Soochow University, 199 Renai Road, Suzhou, Jiangsu, Jiangsu 215123, PR China
| | - Yong-Hong Zhang
- Jiangsu Key Laboratory of Preventive & Translational Medicine for Geriatric Diseases, Soochow University, 199 Renai Road, Suzhou, Jiangsu 215123, PR China.,Department of Epidemiology, School of Public Health, Soochow University, 199 Renai Road, Suzhou, Jiangsu, Jiangsu 215123, PR China
| |
Collapse
|
26
|
Turinetto V, Giachino C. Histone variants as emerging regulators of embryonic stem cell identity. Epigenetics 2016; 10:563-73. [PMID: 26114724 DOI: 10.1080/15592294.2015.1053682] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Dynamic regulation of chromatin structure is an important mechanism for balancing the pluripotency and cell fate decision in embryonic stem cells (ESCs). Indeed ESCs are characterized by unusual chromatin packaging, and a wide variety of chromatin regulators have been implicated in control of pluripotency and differentiation. Genome-wide maps of epigenetic factors have revealed a unique epigenetic signature in pluripotent ESCs and have contributed models to explain their plasticity. In addition to the well known epigenetic regulation through DNA methylation, histone posttranslational modifications, chromatin remodeling, and non-coding RNA, histone variants are emerging as important regulators of ESC identity. In this review, we summarize and discuss the recent progress that has highlighted the central role of histone variants in ESC pluripotency and ESC fate, focusing, in particular, on H1 variants, H2A variants H2A.X, H2A.Z and macroH2A and H3 variant H3.3.
Collapse
Affiliation(s)
- Valentina Turinetto
- a Department of Clinical and Biological Sciences; University of Turin ; Orbassano , Turin , Italy
| | | |
Collapse
|
27
|
Histone Variant H3.3: A versatile H3 variant in health and in disease. SCIENCE CHINA-LIFE SCIENCES 2016; 59:245-56. [DOI: 10.1007/s11427-016-5006-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Accepted: 08/26/2015] [Indexed: 01/24/2023]
|
28
|
Snyers L, Zupkovitz G, Almeder M, Fliesser M, Stoisser A, Weipoltshammer K, Schöfer C. Distinct chromatin signature of histone H3 variant H3.3 in human cells. Nucleus 2015; 5:449-61. [PMID: 25482197 PMCID: PMC4164487 DOI: 10.4161/nucl.36229] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Actively transcribed regions of the genome have been found enriched for the histone H3 variant H3.3. This variant is incorporated into nucleosomes throughout the cell cycle whereas the canonical isoforms are predominately deposited in association with replication. In order to obtain a global picture of the deposition pattern at the single cell level we expressed H3.3 in both normal and malignant human cells and analyzed nuclei using conventional and structured illumination imaging (SIM). We found that the distribution pattern of H3.3 in interphase differs from that of the canonical histone H3 variants and this difference is conveyed to mitotic chromosomes which display a distinct H3.3 banding pattern. Histone H3.3 localization positively correlated with markers for transcriptionally active chromatin and, notably, H3.3 was almost completely absent from the inactive X chromosome. Collectively, our data show that histone variant H3.3 occupies distinct intranuclear chromatin domains and that these genomic loci are associated with gene expression.
Collapse
Affiliation(s)
- Luc Snyers
- a Department for Cell and Developmental Biology; Medical Imaging Cluster; Medical University of Vienna; Vienna, Austria
| | | | | | | | | | | | | |
Collapse
|
29
|
Wen D, Banaszynski LA, Rosenwaks Z, Allis CD, Rafii S. H3.3 replacement facilitates epigenetic reprogramming of donor nuclei in somatic cell nuclear transfer embryos. Nucleus 2015; 5:369-75. [PMID: 25482190 DOI: 10.4161/nucl.36231] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Transfer of a somatic nucleus into an enucleated oocyte is the most efficient approach for somatic cell reprogramming. While this process is known to involve extensive chromatin remodeling of the donor nucleus, the maternal factors responsible and the underlying chromatin-based mechanisms remain largely unknown. Here we discuss our recent findings demonstrating that the histone variant H3.3 plays an essential role in reprogramming and is required for reactivation of key pluripotency genes in somatic cell nuclear transfer (SCNT) embryos. Maternal-derived H3.3 replaces H3 in the donor nucleus shortly after oocyte activation, with the amount of replacement directly related to the differentiation status of the donor nucleus in SCNT embryos. We provide additional evidence to suggest that de novo synthesized H3.3 replaces histone H3 carrying repressive modifications in the donor nuclei of SCNT embryos, and hypothesize that replacement may occur at specific loci that must be reprogrammed for gene reactivation.
Collapse
Affiliation(s)
- Duancheng Wen
- a Ronald O. Perleman and Claudia Cohen Center for Reproductive Medicine; New York, NY USA
| | | | | | | | | |
Collapse
|
30
|
Kallappagoudar S, Yadav RK, Lowe BR, Partridge JF. Histone H3 mutations--a special role for H3.3 in tumorigenesis? Chromosoma 2015; 124:177-89. [PMID: 25773741 PMCID: PMC4446520 DOI: 10.1007/s00412-015-0510-4] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2015] [Revised: 02/19/2015] [Accepted: 02/26/2015] [Indexed: 12/31/2022]
Abstract
Brain tumors are the most common solid tumors in children. Pediatric high-grade glioma (HGG) accounts for ∼8–12 % of these brain tumors and is a devastating disease as 70–90 % of patients die within 2 years of diagnosis. The failure to advance therapy for these children over the last 30 years is largely due to limited knowledge of the molecular basis for these tumors and a lack of disease models. Recently, sequencing of tumor cells revealed that histone H3 is frequently mutated in pediatric HGG, with up to 78 % of diffuse intrinsic pontine gliomas (DIPGs) carrying K27M and 36 % of non-brainstem gliomas carrying either K27M or G34R/V mutations. Although mutations in many chromatin modifiers have been identified in cancer, this was the first demonstration that histone mutations may be drivers of disease. Subsequent studies have identified high-frequency mutation of histone H3 to K36M in chondroblastomas and to G34W/L in giant cell tumors of bone, which are diseases of adolescents and young adults. Interestingly, the G34 mutations, the K36M mutations, and the majority of K27M mutations occur in genes encoding the replacement histone H3.3. Here, we review the peculiar characteristics of histone H3.3 and use this information as a backdrop to highlight current thinking about how the identified mutations may contribute to disease development.
Collapse
Affiliation(s)
- Satish Kallappagoudar
- Department of Pathology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN, 38105, USA
| | | | | | | |
Collapse
|
31
|
Wen D, Noh KM, Goldberg AD, Allis CD, Rosenwaks Z, Rafii S, Banaszynski LA. Genome editing a mouse locus encoding a variant histone, H3.3B, to report on its expression in live animals. Genesis 2014; 52:959-66. [PMID: 25262655 DOI: 10.1002/dvg.22827] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2014] [Revised: 09/23/2014] [Accepted: 09/24/2014] [Indexed: 12/28/2022]
Abstract
Chromatin remodeling via incorporation of histone variants plays a key role in the regulation of embryonic development. The histone variant H3.3 has been associated with a number of early events including formation of the paternal pronucleus upon fertilization. The small number of amino acid differences between H3.3 and its canonical counterparts (H3.1 and H3.2) has limited studies of the developmental significance of H3.3 deposition into chromatin due to difficulties in distinguishing the H3 isoforms. To this end, we used zinc-finger nuclease (ZFN) mediated gene editing to introduce a small C-terminal hemagglutinin (HA) tag to the endogenous H3.3B locus in mouse embryonic stem cells (ESCs), along with an internal ribosome entry site (IRES) and a separately translated fluorescent reporter of expression. This system will allow detection of expression driven by the reporter in cells, animals, and embryos, and will facilitate investigation of differential roles of paternal and maternal H3.3 protein during embryogenesis that would not be possible using variant-specific antibodies. Further, the ability to monitor endogenous H3.3 protein in various cell lineages will enhance our understanding of the dynamics of this histone variant over the course of development.
Collapse
Affiliation(s)
- Duancheng Wen
- Ansary Stem Cell Institute and Department of Medicine, Weill Cornell Medical College, New York, New York; Ronald O. Perelman and Claudia Cohen Center for Reproductive Medicine, Weill Cornell Medical College, New York, New York
| | | | | | | | | | | | | |
Collapse
|
32
|
Schoen K, Plendl J, Gabler C, Kaessmeyer S. Identification of stably expressed reference genes for RT-qPCR data normalization in defined localizations of cyclic bovine ovaries. Anat Histol Embryol 2014; 44:200-11. [PMID: 25092559 DOI: 10.1111/ahe.12128] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2013] [Accepted: 05/27/2014] [Indexed: 01/22/2023]
Abstract
Ovaries are highly complex organs displaying morphological, molecular and functional differences between their cortical zona parenchymatosa and medullary zona vasculosa, and also between the different cyclic luteal stages. Objective of the present study was to validate expression stability of twelve putative reference genes (RGs) in bovine ovaries, considering the intrinsic heterogeneity of bovine ovarian tissue with regard to different luteal stages and intra-ovarian localizations. The focus was on identifying RGs, which are suitable to normalize RT-qPCR results of ovaries collected from clinical healthy cattle, irrespective of localization and the hormonal stage. Expression profiles of twelve potential reference genes (GAPDH, ACTB, YWHAZ, HPRT1, SDHA, UBA52, POLR2C, RPS9, ACTG2, H3F3B, RPS18 and RPL19) were analysed. Evaluation of gene expression differences was performed using genorm, normfinder, and bestkeeper software. The most stably expressed genes according to genorm, normfinder and bestkeeper approaches contained the candidates H3F3B, RPS9, YWHAZ, RPS18, POLR2C and UBA52. Of this group, the genes YWHAZ, H3F3B and RPS9 could be recommended as best-suited RGs for normalization purposes on healthy bovine ovaries irrespective of the luteal stage or intra-ovarian localization.
Collapse
Affiliation(s)
- K Schoen
- Department of Veterinary Medicine, Institute of Veterinary Anatomy, Freie Universität Berlin, Koserstraße 20, 14195, Berlin, Germany
| | - J Plendl
- Department of Veterinary Medicine, Institute of Veterinary Anatomy, Freie Universität Berlin, Koserstraße 20, 14195, Berlin, Germany
| | - C Gabler
- Department of Veterinary Medicine, Institute of Veterinary Biochemistry, Freie Universität Berlin, Oertzenweg 19b, 14163, Berlin, Germany
| | - S Kaessmeyer
- Department of Veterinary Medicine, Institute of Veterinary Anatomy, Freie Universität Berlin, Koserstraße 20, 14195, Berlin, Germany
| |
Collapse
|
33
|
Histone variant H3.3 is an essential maternal factor for oocyte reprogramming. Proc Natl Acad Sci U S A 2014; 111:7325-30. [PMID: 24799717 DOI: 10.1073/pnas.1406389111] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Mature oocyte cytoplasm can reprogram somatic cell nuclei to the pluripotent state through a series of sequential events including protein exchange between the donor nucleus and ooplasm, chromatin remodeling, and pluripotency gene reactivation. Maternal factors that are responsible for this reprogramming process remain largely unidentified. Here, we demonstrate that knockdown of histone variant H3.3 in mouse oocytes results in compromised reprogramming and down-regulation of key pluripotency genes; and this compromised reprogramming for developmental potentials and transcription of pluripotency genes can be rescued by injecting exogenous H3.3 mRNA, but not H3.2 mRNA, into oocytes in somatic cell nuclear transfer embryos. We show that maternal H3.3, and not H3.3 in the donor nucleus, is essential for successful reprogramming of somatic cell nucleus into the pluripotent state. Furthermore, H3.3 is involved in this reprogramming process by remodeling the donor nuclear chromatin through replacement of donor nucleus-derived H3 with de novo synthesized maternal H3.3 protein. Our study shows that H3.3 is a crucial maternal factor for oocyte reprogramming and provides a practical model to directly dissect the oocyte for its reprogramming capacity.
Collapse
|
34
|
Chen P, Wang Y, Li G. Dynamics of histone variant H3.3 and its coregulation with H2A.Z at enhancers and promoters. Nucleus 2014; 5:21-7. [PMID: 24637397 DOI: 10.4161/nucl.28067] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
In eukaryotes, genomic DNA is hierarchically packaged into chromatin by histones. A defined organization of the genome into chromatin with specific patterns of epigenetic modifications is crucial for transcriptional regulation, cell fate determination, and maintenance, in which the histone variant incorporation has been characterized as one of the most key players. The diversity of histone variants results in structural plasticity of chromatin and highlights functionally distinct chromosomal domains. Here we focus on the role of histone variant H3.3 and its coregulation with H2A.Z in chromatin dynamics at enhancers and promoters and transcriptional regulation.
Collapse
Affiliation(s)
- Ping Chen
- National Laboratory of Biomacromolecules; Institute of Biophysics; Chinese Academy of Sciences; Beijing, China
| | - Yan Wang
- National Laboratory of Biomacromolecules; Institute of Biophysics; Chinese Academy of Sciences; Beijing, China; University of Chinese Academy of Sciences; Beijing, China
| | - Guohong Li
- National Laboratory of Biomacromolecules; Institute of Biophysics; Chinese Academy of Sciences; Beijing, China
| |
Collapse
|
35
|
Behjati S, Tarpey PS, Presneau N, Scheipl S, Pillay N, Van Loo P, Wedge DC, Cooke SL, Gundem G, Davies H, Nik-Zainal S, Martin S, McLaren S, Goodie V, Robinson B, Butler A, Teague JW, Halai D, Khatri B, Myklebost O, Baumhoer D, Jundt G, Hamoudi R, Tirabosco R, Amary MF, Futreal PA, Stratton MR, Campbell PJ, Flanagan AM. Distinct H3F3A and H3F3B driver mutations define chondroblastoma and giant cell tumor of bone. Nat Genet 2013; 45:1479-82. [PMID: 24162739 PMCID: PMC3839851 DOI: 10.1038/ng.2814] [Citation(s) in RCA: 613] [Impact Index Per Article: 51.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2013] [Accepted: 10/07/2013] [Indexed: 12/13/2022]
Abstract
It is recognized that some mutated cancer genes contribute to the development of many cancer types, whereas others are cancer type specific. For genes that are mutated in multiple cancer classes, mutations are usually similar in the different affected cancer types. Here, however, we report exquisite tumor type specificity for different histone H3.3 driver alterations. In 73 of 77 cases of chondroblastoma (95%), we found p.Lys36Met alterations predominantly encoded in H3F3B, which is one of two genes for histone H3.3. In contrast, in 92% (49/53) of giant cell tumors of bone, we found histone H3.3 alterations exclusively in H3F3A, leading to p.Gly34Trp or, in one case, p.Gly34Leu alterations. The mutations were restricted to the stromal cell population and were not detected in osteoclasts or their precursors. In the context of previously reported H3F3A mutations encoding p.Lys27Met and p.Gly34Arg or p.Gly34Val alterations in childhood brain tumors, a remarkable picture of tumor type specificity for histone H3.3 driver alterations emerges, indicating that histone H3.3 residues, mutations and genes have distinct functions.
Collapse
Affiliation(s)
- Sam Behjati
- Cancer Genome Project, Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridgeshire, CB10 1SA, UK
- Department of Paediatrics, University of Cambridge, Hills Road, Cambridge, CB2 2XY
| | - Patrick S Tarpey
- Cancer Genome Project, Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridgeshire, CB10 1SA, UK
| | - Nadège Presneau
- University College London Cancer Institute, Huntley Street, London, WC1E 6BT, UK
- Sarah Cannon / University College London Advanced Diagnostics Molecular Profiling Research Laboratories, Capper Street, London, WC1E 6JA, UK
| | - Susanne Scheipl
- University College London Cancer Institute, Huntley Street, London, WC1E 6BT, UK
- Universitätsklinik für Orthopädie und Orthopädische Chirurgie, Medizinische Universität, Graz, Austria
| | - Nischalan Pillay
- University College London Cancer Institute, Huntley Street, London, WC1E 6BT, UK
- Histopathology, Royal National Orthopaedic Hospital NHS Trust, Stanmore, Middlesex, HA7 4LP, UK
| | - Peter Van Loo
- Cancer Genome Project, Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridgeshire, CB10 1SA, UK
- Human Genome Laboratory, Department of Human Genetics, VIB and KU Leuven, Herestraat 49 box 602, B-3000 Leuven, Belgium
| | - David C Wedge
- Cancer Genome Project, Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridgeshire, CB10 1SA, UK
| | - Susanna L Cooke
- Cancer Genome Project, Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridgeshire, CB10 1SA, UK
| | - Gunes Gundem
- Cancer Genome Project, Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridgeshire, CB10 1SA, UK
| | - Helen Davies
- Cancer Genome Project, Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridgeshire, CB10 1SA, UK
| | - Serena Nik-Zainal
- Cancer Genome Project, Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridgeshire, CB10 1SA, UK
| | - Sancha Martin
- Cancer Genome Project, Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridgeshire, CB10 1SA, UK
| | - Stuart McLaren
- Cancer Genome Project, Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridgeshire, CB10 1SA, UK
| | - Victoria Goodie
- Cancer Genome Project, Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridgeshire, CB10 1SA, UK
| | - Ben Robinson
- Cancer Genome Project, Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridgeshire, CB10 1SA, UK
| | - Adam Butler
- Cancer Genome Project, Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridgeshire, CB10 1SA, UK
| | - Jon W Teague
- Cancer Genome Project, Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridgeshire, CB10 1SA, UK
| | - Dina Halai
- Histopathology, Royal National Orthopaedic Hospital NHS Trust, Stanmore, Middlesex, HA7 4LP, UK
| | - Bhavisha Khatri
- Histopathology, Royal National Orthopaedic Hospital NHS Trust, Stanmore, Middlesex, HA7 4LP, UK
| | - Ola Myklebost
- Department of Tumour Biology, Institute for Cancer Research, Oslo University Hospital, The Norwegian Radium Hospital, Oslo, Norway
| | - Daniel Baumhoer
- Bone Tumour Reference Centre, Institute of Pathology, University Hospital Basel, Basel, Switzerland
| | - Gernot Jundt
- Bone Tumour Reference Centre, Institute of Pathology, University Hospital Basel, Basel, Switzerland
| | - Rifat Hamoudi
- University College London Cancer Institute, Huntley Street, London, WC1E 6BT, UK
- Sarah Cannon / University College London Advanced Diagnostics Molecular Profiling Research Laboratories, Capper Street, London, WC1E 6JA, UK
| | - Roberto Tirabosco
- Histopathology, Royal National Orthopaedic Hospital NHS Trust, Stanmore, Middlesex, HA7 4LP, UK
| | - M Fernanda Amary
- Histopathology, Royal National Orthopaedic Hospital NHS Trust, Stanmore, Middlesex, HA7 4LP, UK
| | - P Andrew Futreal
- Cancer Genome Project, Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridgeshire, CB10 1SA, UK
| | - Michael R Stratton
- Cancer Genome Project, Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridgeshire, CB10 1SA, UK
| | - Peter J Campbell
- Cancer Genome Project, Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridgeshire, CB10 1SA, UK
- Department of Haematology, Addenbrooke's Hospital, Cambridge, UK
- Department of Haematology, University of Cambridge, Hills Road, Cambridge, CB2 2XY
| | - Adrienne M Flanagan
- University College London Cancer Institute, Huntley Street, London, WC1E 6BT, UK
- Sarah Cannon / University College London Advanced Diagnostics Molecular Profiling Research Laboratories, Capper Street, London, WC1E 6JA, UK
- Histopathology, Royal National Orthopaedic Hospital NHS Trust, Stanmore, Middlesex, HA7 4LP, UK
| |
Collapse
|
36
|
Vardabasso C, Hasson D, Ratnakumar K, Chung CY, Duarte LF, Bernstein E. Histone variants: emerging players in cancer biology. Cell Mol Life Sci 2013; 71:379-404. [PMID: 23652611 DOI: 10.1007/s00018-013-1343-z] [Citation(s) in RCA: 122] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2012] [Revised: 04/09/2013] [Accepted: 04/11/2013] [Indexed: 01/01/2023]
Abstract
Histone variants are key players in shaping chromatin structure, and, thus, in regulating fundamental cellular processes such as chromosome segregation and gene expression. Emerging evidence points towards a role for histone variants in contributing to tumor progression, and, recently, the first cancer-associated mutation in a histone variant-encoding gene was reported. In addition, genetic alterations of the histone chaperones that specifically regulate chromatin incorporation of histone variants are rapidly being uncovered in numerous cancers. Collectively, these findings implicate histone variants as potential drivers of cancer initiation and/or progression, and, therefore, targeting histone deposition or the chromatin remodeling machinery may be of therapeutic value. Here, we review the mammalian histone variants of the H2A and H3 families in their respective cellular functions, and their involvement in tumor biology.
Collapse
Affiliation(s)
- Chiara Vardabasso
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, 1425 Madison Avenue, New York, NY, 10029, USA
| | | | | | | | | | | |
Collapse
|
37
|
Endogenous mammalian histone H3.3 exhibits chromatin-related functions during development. Epigenetics Chromatin 2013; 6:7. [PMID: 23570311 PMCID: PMC3635903 DOI: 10.1186/1756-8935-6-7] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2013] [Accepted: 03/22/2013] [Indexed: 12/21/2022] Open
Abstract
Background The histone variant H3.3 plays key roles in regulating chromatin states and transcription. However, the role of endogenous H3.3 in mammalian cells and during development has been less thoroughly investigated. To address this gap, we report the production and phenotypic analysis of mice and cells with targeted disruption of the H3.3-encoding gene, H3f3b. Results H3f3b knockout (KO) mice exhibit a semilethal phenotype traceable at least in part to defective cell division and chromosome segregation. H3f3b KO cells have widespread ectopic CENP-A protein localization suggesting one possible mechanism for defective chromosome segregation. KO cells have abnormal karyotypes and cell cycle profiles as well. The transcriptome and euchromatin-related epigenome were moderately affected by loss of H3f3b in mouse embryonic fibroblasts (MEFs) with ontology most notably pointing to changes in chromatin regulatory and histone coding genes. Reduced numbers of H3f3b KO mice survive to maturity and almost all survivors from both sexes are infertile. Conclusions Taken together, our studies suggest that endogenous mammalian histone H3.3 has important roles in regulating chromatin and chromosome functions that in turn are important for cell division, genome integrity, and development.
Collapse
|
38
|
Maze I, Noh KM, Allis CD. Histone regulation in the CNS: basic principles of epigenetic plasticity. Neuropsychopharmacology 2013; 38:3-22. [PMID: 22828751 PMCID: PMC3521967 DOI: 10.1038/npp.2012.124] [Citation(s) in RCA: 108] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2012] [Revised: 05/07/2012] [Accepted: 05/08/2012] [Indexed: 12/25/2022]
Abstract
Postmitotic neurons are subject to a vast array of environmental influences that require the nuclear integration of intracellular signaling events to promote a wide variety of neuroplastic states associated with synaptic function, circuit formation, and behavioral memory. Over the last decade, much attention has been paid to the roles of transcription and chromatin regulation in guiding fundamental aspects of neuronal function. A great deal of this work has centered on neurodevelopmental and adulthood plasticity, with increased focus in the areas of neuropharmacology and molecular psychiatry. Here, we attempt to provide a broad overview of chromatin regulation, as it relates to central nervous system (CNS) function, with specific emphasis on the modes of histone posttranslational modifications, chromatin remodeling, and histone variant exchange. Understanding the functions of chromatin in the context of the CNS will aid in the future development of pharmacological therapeutics aimed at alleviating devastating neurological disorders.
Collapse
Affiliation(s)
- Ian Maze
- Laboratory of Chromatin Biology and Epigenetics, The Rockefeller University, New York, NY, USA
| | - Kyung-Min Noh
- Laboratory of Chromatin Biology and Epigenetics, The Rockefeller University, New York, NY, USA
| | - C David Allis
- Laboratory of Chromatin Biology and Epigenetics, The Rockefeller University, New York, NY, USA
| |
Collapse
|
39
|
Abstract
Histones are the protein components of chromatin and are important for its organization and compaction. Although core histones are exclusively expressed during S phase of the cell cycle, there exist variants of canonical histones that are expressed throughout the cell cycle. These histone variants are often deposited at defined regions of the genome and they play important roles in a variety of cellular processes, such as transcription regulation, heterochromatin formation and DNA repair. In this chapter, we will focus on several histone variants that have been linked to transcription regulation, and highlight their physical and functional features that facilitate their activities in this context.
Collapse
Affiliation(s)
- Cindy Law
- Ontario Cancer Institute, 610 University Avenue, Toronto, ON, M5G 2M9, Canada
| | | |
Collapse
|
40
|
Tang Y, Puri A, Ricketts MD, Rai TS, Hoffmann J, Hoi E, Adams PD, Schultz DC, Marmorstein R. Identification of an ubinuclein 1 region required for stability and function of the human HIRA/UBN1/CABIN1/ASF1a histone H3.3 chaperone complex. Biochemistry 2012; 51:2366-77. [PMID: 22401310 DOI: 10.1021/bi300050b] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The mammalian HIRA/UBN1/CABIN1/ASF1a (HUCA) histone chaperone complex deposits the histone H3 variant H3.3 into chromatin and is linked to gene activation, repression, and chromatin assembly in diverse cell contexts. We recently reported that a short N-terminal fragment of UBN1 containing amino acids 1-175 is necessary and sufficient for interaction with the WD repeats of HIRA and attributed this interaction to a region from residues 120-175 that is highly conserved with the yeast ortholog Hpc2 and so termed the HRD for Hpc2-related domain. In this report, through a more comprehensive and refined biochemical and mutational analysis, we identify a smaller and more moderately conserved region within residues 41-77 of UBN1, which we term the NHRD, that is essential for interaction with the HIRA WD repeats; we further demonstrate that the HRD is dispensable for this interaction. We employ analytical ultracentrifugation studies to demonstrate that the NHRD of UBN1 and the WD repeats of HIRA form a tight 1:1 complex with a dissociation constant in the nanomolar range. Mutagenesis experiments identify several key residues in the NHRD that are required for interaction with the HIRA WD repeat domain, stability of the HUCA complex in vitro and in vivo, and changes in chromatin organization in primary human cells. Together, these studies implicate the NHRD domain of UBN1 as being an essential region for HIRA interaction and chromatin organization by the HUCA complex.
Collapse
Affiliation(s)
- Yong Tang
- The Wistar Institute, Philadelphia, Pennsylvania 19104, United States
| | | | | | | | | | | | | | | | | |
Collapse
|
41
|
The human histone H3 complement anno 2011. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2011; 1809:577-86. [DOI: 10.1016/j.bbagrm.2011.07.002] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2011] [Revised: 07/05/2011] [Accepted: 07/06/2011] [Indexed: 11/17/2022]
|
42
|
Abstract
Histone proteins wrap DNA to form nucleosome particles that compact eukaryotic genomes while still allowing access for cellular processes such as transcription, replication and DNA repair. Histones exist as different variants that have evolved crucial roles in specialized functions in addition to their fundamental role in packaging DNA. H3.3--a conserved histone variant that is structurally very close to the canonical histone H3--has been associated with active transcription. Furthermore, its role in histone replacement at active genes and promoters is highly conserved and has been proposed to participate in the epigenetic transmission of active chromatin states. Unexpectedly, recent data have revealed accumulation of this specific variant at silent loci in pericentric heterochromatin and telomeres, raising questions concerning the actual function of H3.3. In this review, we describe the known properties of H3.3 and the current view concerning its incorporation modes involving particular histone chaperones. Finally, we discuss the functional significance of the use of this H3 variant, in particular during germline formation and early development in different species.
Collapse
|
43
|
Abstract
Embryonic development is regulated by both genetic and epigenetic mechanisms, with nearly all DNA-templated processes influenced by chromatin architecture. Sequence variations in histone proteins, core components of chromatin, provide a means to generate diversity in the chromatin structure, resulting in distinct and profound biological outcomes in the developing embryo. Emerging literature suggests that epigenetic contributions from histone variants play key roles in a number of developmental processes such as the initiation and maintenance of pericentric heterochromatin, X-inactivation, and germ cell differentiation. Here, we review the role of histone variants in the embryo with particular emphasis on early mammalian development.
Collapse
Affiliation(s)
| | - C. David Allis
- Laboratory of Chromatin Biology and Epigenetics, The Rockefeller University, 1230 York Avenue, New York, NY 10065
| | | |
Collapse
|
44
|
Chowdhary R, Bajic VB, Dong D, Wong L, Liu JS. Genome-wide analysis of regions similar to promoters of histone genes. BMC SYSTEMS BIOLOGY 2010; 4 Suppl 1:S4. [PMID: 20522254 PMCID: PMC2880410 DOI: 10.1186/1752-0509-4-s1-s4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Background The purpose of this study is to: i) develop a computational model of promoters of human histone-encoding genes (shortly histone genes), an important class of genes that participate in various critical cellular processes, ii) use the model so developed to identify regions across the human genome that have similar structure as promoters of histone genes; such regions could represent potential genomic regulatory regions, e.g. promoters, of genes that may be coregulated with histone genes, and iii/ identify in this way genes that have high likelihood of being coregulated with the histone genes. Results We successfully developed a histone promoter model using a comprehensive collection of histone genes. Based on leave-one-out cross-validation test, the model produced good prediction accuracy (94.1% sensitivity, 92.6% specificity, and 92.8% positive predictive value). We used this model to predict across the genome a number of genes that shared similar promoter structures with the histone gene promoters. We thus hypothesize that these predicted genes could be coregulated with histone genes. This hypothesis matches well with the available gene expression, gene ontology, and pathways data. Jointly with promoters of the above-mentioned genes, we found a large number of intergenic regions with similar structure as histone promoters. Conclusions This study represents one of the most comprehensive computational analyses conducted thus far on a genome-wide scale of promoters of human histone genes. Our analysis suggests a number of other human genes that share a high similarity of promoter structure with the histone genes and thus are highly likely to be coregulated, and consequently coexpressed, with the histone genes. We also found that there are a large number of intergenic regions across the genome with their structures similar to promoters of histone genes. These regions may be promoters of yet unidentified genes, or may represent remote control regions that participate in regulation of histone and histone-coregulated gene transcription initiation. While these hypotheses still remain to be verified, we believe that these form a useful resource for researchers to further explore regulation of human histone genes and human genome. It is worthwhile to note that the regulatory regions of the human genome remain largely un-annotated even today and this study is an attempt to supplement our understanding of histone regulatory regions.
Collapse
Affiliation(s)
- Rajesh Chowdhary
- Department of Statistics, Harvard University, Cambridge, MA 02138, USA.
| | | | | | | | | |
Collapse
|
45
|
Pulcrano G, Leonardo R, Piscopo M, Nargi E, Locascio A, Aniello F, Branno M, Fucci L. PLAUF binding to the 3′UTR of the H3.3 histone transcript affects mRNA stability. Gene 2007; 406:124-33. [PMID: 17825504 DOI: 10.1016/j.gene.2007.07.018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2007] [Revised: 07/18/2007] [Accepted: 07/19/2007] [Indexed: 11/30/2022]
Abstract
In P. lividus sea urchin the H3.3 histone variant is coded by an mRNA characterized by a long 3'UTR containing ARE (AU-Rich element) motifs. RNA stability assays performed in rabbit reticulocyte lysate showed that such 3'UTR affects the degradation rate of the transcripts. In fact, chimeric molecules containing the 3'UTR of H3.3 transcript, ligated to the coding region of the rabbit beta-globin transcript, were unstable whereas chimeric molecules containing mainly the coding region of the H3.3 transcript were stable as the wild-type globin mRNA. Three proteins (45kDa, 32kDa and 25kDa) that bind specifically the 3'UTR have been revealed in the whole protein extracts of embryos at different stages of development. PLAUF, a P. lividus RNA-binding protein similar to human and rodent AUF1 proteins, was identified as the 32kDa factor using anti-PLAUF antibody in Western blot and supershift mobility assays. Moreover the recombinant GST-PLAUF protein specifically binds part of the H3.3 3'UTR and in vitro affects the half-life of the transcript. In addition in situ hybridization experiments demonstrated that PLAUF and H3.3 histone mRNAs co-localize in embryos at different stages of development. In conclusion all the reported results suggest that PLAUF can bind in vivo the 3'UTR of the H3.3 histone mRNA and plays some role in the stability of the mRNA.
Collapse
Affiliation(s)
- G Pulcrano
- Department of Structural and Functional Biology, University of Naples Federico II, Complesso Universitario di Monte S. Angelo, Via Cinthia, Naples, Italy
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Blumenberg M, Gao S, Dickman K, Grollman AP, Bottinger EP, Zavadil J. Chromatin Structure Regulation in Transforming Growth Factor-β-Directed Epithelial-Mesenchymal Transition. Cells Tissues Organs 2007; 185:162-74. [PMID: 17587822 DOI: 10.1159/000101317] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Epithelial-mesenchymal transitions (EMTs) occur in organogenesis throughout embryonic development and are recapitulated during epithelial tissue injury and in carcinoma progression. EMTs are regulated by complex, precisely orchestrated cell signaling and gene expression networks, with the participation of key developmental pathways. Here we review context-dependent modules of gene regulation by hairy/enhancer-of-split-related (H/E(spl)) repressors downstream of transforming growth factor-beta (TGF-beta)/Smad and Notch signals in EMT and in other phenotype transitions such as differentiation and cancer. Based on multiple models of disease-related EMT, we propose that Polycomb group epigenetic silencers and histone-lysine methyl-transferases EZH1 and EZH2 are candidate targets of H/E(spl)-mediated transcriptional repression, in a process accompanied by replacement of modified core histone H3 with de novo synthesized histone variant H3.3B. Finally, we discuss the potential significance of this scenario for EMT in the light of recent findings on gene regulation by histone modifications and chromatin structure changes.
Collapse
Affiliation(s)
- Miroslav Blumenberg
- Department of Dermatology, New York University School of Medicine, New York, NY 10016, USA
| | | | | | | | | | | |
Collapse
|
47
|
Liu RH, Cheng SL, Ueng KC, Wu DJ, Chen ST, Sinchaikul S, Lee TH. Gene expression analysis in LLC-PK1 renal tubular cells by atrial natriuretic peptide (ANP): correlation of homologous human genes with renal response. J Biomed Sci 2007; 14:383-93. [PMID: 17334945 DOI: 10.1007/s11373-007-9152-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2006] [Accepted: 01/12/2007] [Indexed: 10/23/2022] Open
Abstract
We used human DNA microarray to explore the differential gene expression profiling of atrial natriuretic peptide (ANP)-stimulated renal tubular epithelial kidney cells (LLC-PK1) in order to understand the biological effect of ANP on renal kidney cell's response. Gene expression profiling revealed 807 differentially expressed genes, consisting of 483 up-regulated and 324 down-regulated genes. The bioinformatics tool was used to gain a better understanding of differentially expressed genes in porcine genome homologous with human genome and to search the gene ontology and category classification, such as cellular component, molecular function and biological process. Four up-regulated genes of ATP1B1, H3F3A, ITGB1 and RHO that were typically validated by real-time quantitative PCR (RT-qPCR) analysis serve important roles in the alleviation of renal hypertrophy as well as other related effects. Therefore, the human array can be used for gene expression analysis in pig kidney cells and we believe that our findings of differentially expressed genes served as genetic markers and biological functions can lead to a better understanding of ANP action on the renal protective system and may be used for further therapeutic application.
Collapse
Affiliation(s)
- Rosa Huang Liu
- Department of Life Sciences, National Chung Hsing University, 250, Kuo-Kuang Road, Taichung, 40227, Taiwan
| | | | | | | | | | | | | |
Collapse
|
48
|
Kisby GE, Olivas A, Standley M, Lu X, Pattee P, O’Malley J, Li X, Muniz J, Nagalla SR. Genotoxicants target distinct molecular networks in neonatal neurons. ENVIRONMENTAL HEALTH PERSPECTIVES 2006; 114:1703-12. [PMID: 17107856 PMCID: PMC1665395 DOI: 10.1289/ehp.9073] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
BACKGROUND Exposure of the brain to environmental agents during critical periods of neuronal development is considered a key factor underlying many neurologic disorders. OBJECTIVES In this study we examined the influence of genotoxicants on cerebellar function during early development by measuring global gene expression changes. METHODS We measured global gene expression in immature cerebellar neurons (i.e., granule cells) after treatment with two distinct alkylating agents, methylazoxymethanol (MAM) and nitrogen mustard (HN2). Granule cell cultures were treated for 24 hr with MAM (10-1,000 microM) or HN2 (0.1-20 microM) and examined for cell viability, DNA damage, and markers of apoptosis. RESULTS Neuronal viability was significantly reduced (p < 0.01) at concentrations > 500 microM for MAM and > 1.0 microM for HN2; this correlated with an increase in both DNA damage and markers of apoptosis. Neuronal cultures treated with sublethal concentrations of MAM (100 microM) or HN2 (1.0 microM) were then examined for gene expression using large-scale mouse cDNA microarrays (27,648). Gene expression results revealed that a) global gene expression was predominantly up-regulated by both genotoxicants; b) the number of down-regulated genes was approximately 3-fold greater for HN2 than for MAM; and c) distinct classes of molecules were influenced by MAM (i.e, neuronal differentiation, the stress and immune response, and signal transduction) and HN2 (i.e, protein synthesis and apoptosis). CONCLUSIONS These studies demonstrate that individual genotoxicants induce distinct gene expression signatures. Further study of these molecular networks may explain the variable response of the developing brain to different types of environmental genotoxicants.
Collapse
Affiliation(s)
- Glen E. Kisby
- Center for Research on Occupational and Environmental Toxicology (CROET), Oregon Health & Science University, Portland, Oregon
| | - Antoinette Olivas
- Center for Research on Occupational and Environmental Toxicology (CROET), Oregon Health & Science University, Portland, Oregon
| | - Melissa Standley
- Department of Pediatrics, School of Medicine, Oregon Health & Science University, Portland, Oregon
| | - Xinfang Lu
- Department of Pediatrics, School of Medicine, Oregon Health & Science University, Portland, Oregon
| | - Patrick Pattee
- Department of Pediatrics, School of Medicine, Oregon Health & Science University, Portland, Oregon
| | - Jean O’Malley
- Department of Pediatrics, School of Medicine, Oregon Health & Science University, Portland, Oregon
| | - Xiaorong Li
- Center for Research on Occupational and Environmental Toxicology (CROET), Oregon Health & Science University, Portland, Oregon
| | - Juan Muniz
- Center for Research on Occupational and Environmental Toxicology (CROET), Oregon Health & Science University, Portland, Oregon
| | - Srinavasa R. Nagalla
- Department of Pediatrics, School of Medicine, Oregon Health & Science University, Portland, Oregon
- Address correspondence to S. Nagalla, Department of Pediatrics, School of Medicine, Oregon Health & Science University, 3181 SW Sam Jackson Park Rd., Portland, OR 97239 USA. Telephone: (503) 494-1928. Fax: (503) 494-4821. E-mail:
| |
Collapse
|
49
|
Okada T, Singh MB, Bhalla PL. Histone H3 variants in male gametic cells of lily and H3 methylation in mature pollen. PLANT MOLECULAR BIOLOGY 2006; 62:503-12. [PMID: 16915513 DOI: 10.1007/s11103-006-9036-8] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2005] [Accepted: 06/21/2006] [Indexed: 05/08/2023]
Abstract
Histones are vital structural proteins of chromatin that influence its dynamics and function. The tissue-specific expression of histone variants has been shown to regulate the expression of specific genes and genomic stability in animal systems. Here we report on the characterization of five histone H3 variants expressed in Lilium generative cell. The gcH3 and leH3 variants show unique sequence diversity by lacking a conserved lysine residue at position 9 (H3K9). The gH3 shares conserved structural features with centromeric H3 of Arabidopsis. The gH3 variant gene is strongly expressed in generative cells and gH3 histone is incorporated in to generative cell chromatin. The lysine residue of H3 at position 4 (H3K4) is highly methylated in the nuclei of generative cells of mature pollen, while methylation of H3K4 is low in vegetative cell nuclei. Taken together, these results suggest that male gametic cells of Lilium have unique chromatin state and histone H3 variants and their methylation might be involved in gene regulation of male gametic cells.
Collapse
Affiliation(s)
- Takashi Okada
- Plant Molecular Biology and Biotechnology laboratory, Australian Research Council Centre of Excellence for Integrative Legume Research, The University of Melbourne, Parkville, Victoria 3010, Australia.
| | | | | |
Collapse
|
50
|
Poirier R, Lemaire I, Lemaire S. Characterization, localization and possible anti-inflammatory function of rat histone H4 mRNA variants. FEBS J 2006; 273:4360-73. [PMID: 16939626 DOI: 10.1111/j.1742-4658.2006.05444.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Two histone H4 mRNA variants, H4-v.1 and histogranin mRNAs, were detected in the rat genome and measured in various tissues and isolated alveolar macrophages. Medium to high levels of both mRNAs were present in the liver, adrenal glands, thymus, bone marrow and alveolar macrophages. H4-v.1 cDNA contained an open reading frame that coded for unmodified whole histone H4, whereas histogranin cDNA lacked the first ATG codon and contained an open reading frame that coded for modified (Thr89) H4-(84-102). The two genes displayed a sequence homologous (> 80%) to the open reading frame of core H4 somatic (H4s) and H4 germinal (H4g) and their variant nature was supported by the absence of histone consensus palindromic and purine-rich sequences in the proximal 3'UTR, and the presence of a polyadenylation signal in the distal 3'UTR and of specific upstream transcription factor-binding sites. H4-v.1 and histogranin transcripts, but not H4s transcript, were selectively induced by lipopolysaccharide and/or interferon gamma in alveolar macrophages. In vitro transcription/translation experiments with H4-v.1 and histogranin cDNA pCMV constructs produced peptides with the molecular mass (2 kDa) of the alternative histone H4 translation product which, like synthetic H4-(86-100) and [Thr89]H4-(86-100) or rat histogranin, inhibited lipopolysaccharide-induced prostaglandin E(2) release from rat alveolar macrophages. The synthetic peptides also inhibited the secretion of the CXC chemokine interleukin-8 (GRO/CINC-1) in response to lipopolysaccharide. The presence of H4-v.1 and histogranin mRNAs in tissues wherein immune reactions take place and the inhibitory effects of their translation products on prostaglandin E(2) and interkeukin-8 secretion by activated alveolar macrophages suggest an anti-inflammatory function.
Collapse
Affiliation(s)
- René Poirier
- Department of Cellular and Molecular Medicine, University of Ottawa, Canada
| | | | | |
Collapse
|