1
|
Eor JY, Tan PL, Son YJ, Lee CS, Kim SH. Milk products fermented by
Lactobacillus
strains modulate the gut–bone axis in an ovariectomised murine model. INT J DAIRY TECHNOL 2020. [DOI: 10.1111/1471-0307.12708] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Ju Young Eor
- College of Life Sciences and Biotechnology Korea University Seoul 02841 South Korea
- Institute of Life Science and Natural Resources Korea University Seoul136‐713South Korea
| | - Pei Lei Tan
- College of Life Sciences and Biotechnology Korea University Seoul 02841 South Korea
| | - Yoon Ji Son
- College of Life Sciences and Biotechnology Korea University Seoul 02841 South Korea
- Institute of Life Science and Natural Resources Korea University Seoul136‐713South Korea
| | - Chul Sang Lee
- College of Life Sciences and Biotechnology Korea University Seoul 02841 South Korea
| | - Sae Hun Kim
- College of Life Sciences and Biotechnology Korea University Seoul 02841 South Korea
- Institute of Life Science and Natural Resources Korea University Seoul136‐713South Korea
| |
Collapse
|
2
|
Abstract
Multiple binding and transport proteins facilitate many aspects of retinoid biology through effects on retinoid transport, cellular uptake, metabolism, and nuclear delivery. These include the serum retinol binding protein sRBP (aka Rbp4), the plasma membrane sRBP receptor Stra6, and the intracellular retinoid binding-proteins such as cellular retinol-binding proteins (CRBP) and cellular retinoic acid binding-proteins (CRABP). sRBP transports the highly lipophilic retinol through an aqueous medium. The major intracellular retinol-binding protein, CRBP1, likely enhances efficient retinoid use by providing a sink to facilitate retinol uptake from sRBP through the plasma membrane or via Stra6, delivering retinol or retinal to select enzymes that generate retinyl esters or retinoic acid, and protecting retinol/retinal from excess catabolism or opportunistic metabolism. Intracellular retinoic acid binding-proteins (CRABP1 and 2, and FABP5) seem to have more diverse functions distinctive to each, such as directing retinoic acid to catabolism, delivering retinoic acid to specific nuclear receptors, and generating non-canonical actions. Gene ablation of intracellular retinoid binding-proteins does not cause embryonic lethality or gross morphological defects. Metabolic and functional defects manifested in knockouts of CRBP1, CRBP2 and CRBP3, however, illustrate their essentiality to health, and in the case of CRBP2, to survival during limited dietary vitamin A. Future studies should continue to address the specific molecular interactions that occur between retinoid binding-proteins and their targets and their precise physiologic contributions to retinoid homeostasis and function.
Collapse
Affiliation(s)
- Joseph L Napoli
- Graduate Program in Metabolic Biology, Department of Nutritional Sciences and Toxicology, University of California, 119 Morgan Hall, 94720, Berkeley, CA, USA.
| |
Collapse
|
3
|
Shannon SR, Moise AR, Trainor PA. New insights and changing paradigms in the regulation of vitamin A metabolism in development. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2017; 6. [PMID: 28207193 DOI: 10.1002/wdev.264] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Revised: 11/14/2016] [Accepted: 11/24/2016] [Indexed: 12/17/2022]
Abstract
Vitamin A and its active metabolite retinoic acid are essential for embryonic development and adult homeostasis. Surprisingly, excess or deficiency of vitamin A and retinoic acid can cause similar developmental defects. Therefore, strict feedback and other mechanisms exist to regulate the levels of retinoic acid within a narrow physiological range. The oxidation of vitamin A to retinal has recently been established as a critical nodal point in the synthesis of retinoic acid, and over the past decade, RDH10 and DHRS3 have emerged as the predominant enzymes that regulate this reversible reaction. Together they form a codependent complex that facilitates negative feedback maintenance of retinoic acid levels and thus guard against the effects of dysregulated vitamin A metabolism and retinoic acid synthesis. This review focuses on advances in our understanding of the roles of Rdh10 and Dhrs3 and their impact on development and disease. WIREs Dev Biol 2017, 6:e264. doi: 10.1002/wdev.264 For further resources related to this article, please visit the WIREs website.
Collapse
Affiliation(s)
- Stephen R Shannon
- Stowers Institute for Medical Research, Kansas City, MO, USA.,Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, KS, USA
| | - Alexander R Moise
- Department of Pharmacology and Toxicology, School of Pharmacy, University of Kansas, Lawrence, KS, USA
| | - Paul A Trainor
- Stowers Institute for Medical Research, Kansas City, MO, USA.,Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, KS, USA
| |
Collapse
|
4
|
Kinetic characterization and regulation of the human retinaldehyde dehydrogenase 2 enzyme during production of retinoic acid. Biochem J 2016; 473:1423-31. [PMID: 27001866 DOI: 10.1042/bcj20160101] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Accepted: 03/21/2016] [Indexed: 11/17/2022]
Abstract
Retinoic acid (RA) is an important regulator of embryogenesis and tissue homoeostasis. Perturbation of RA signalling causes developmental disorders, osteoarthritis, schizophrenia and several types of tumours. RA is produced by oxidation of retinaldehyde from vitamin A. The main enzyme producing RA in the early embryo is retinaldehyde dehydrogenase 2 (RALDH2, ALDH1A2). In the present study we describe in depth the kinetic properties and regulation of the human RALDH2 (hRALDH2) enzyme. We show that this enzyme produces RA using in vivo and in vitro assays. We studied the naturally occurring all-trans-, 9-cis- and 13-cis-retinaldehyde isomers as substrates of hRALDH2. Based on the values measured for the Michaelis-Menten constant Km and the maximal rate Vmax, in vitro hRALDH2 displays the same catalytic efficiency for their oxidation. We characterized two known inhibitors of the vertebrate RALDH2 and determined their kinetic parameters on hRALDH2. In addition, RA was studied as a possible inhibitor of hRALDH2 and a regulator of its activity. We show that hRALDH2 is not inhibited by its oxidation product, all-trans-RA, suggesting the absence of a negative feedback regulatory loop. Expression of the Raldh2 gene is known to be regulated by RA itself, suggesting that the main regulation of the hRALDH2 activity level is transcriptional.
Collapse
|
5
|
Abstract
Retinoic acid (RA) was identified as the biologically active form of vitamin A almost 70 years ago and work on its function and mechanism of action is still of major interest both from a scientific and a clinical perspective. The currently accepted model postulates that RA is produced in two sequential oxidative steps: first, retinol is oxidized reversibly to retinaldehyde, and then retinaldehyde is oxidized irreversibly to RA. Excess RA is inactivated by conversion to hydroxylated derivatives. Much is left to learn, especially about retinoid binding proteins and the trafficking of the hydrophobic retinoid substrates between membrane bound and cytosolic enzymes. Here, background on development of the field and an update on recent advances in our understanding of the enzymatic pathways and mechanisms that control the rate of RA production and degradation are presented with a focus on the many questions that remain unanswered.
Collapse
|
6
|
Ito K, Zolfaghari R, Hao L, Ross AC. Inflammation rapidly modulates the expression of ALDH1A1 (RALDH1) and vimentin in the liver and hepatic macrophages of rats in vivo. Nutr Metab (Lond) 2014; 11:54. [PMID: 25926859 PMCID: PMC4414379 DOI: 10.1186/1743-7075-11-54] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2014] [Accepted: 11/16/2014] [Indexed: 12/21/2022] Open
Abstract
Background Members of the ALDH1 protein family, known as retinal dehydrogenases (RALDH), produce retinoic acid (RA), a metabolite of vitamin A, and may also oxidize other lipid aldehydes. Of three related ALDH1 genes, ALDH1A1 is most highly expressed in liver. ALDH1A1 is also rapidly gaining importance as a stem cell marker. We hypothesized that ALDH1A1 may have a broad cellular distribution in the liver, and that its expression may be regulated by RA and perturbed by inflammation. Methods Studies were conducted in vitamin A-deficient and –adequate rats that were further treated with all-trans-RA or lipopolysaccharide (LPS) to induce a state of moderate inflammation. RALDH1A1 expression was determined by quantitative PCR and RALDH1, as well as marker gene expression, was determined by immunocytochemical methods. Results Inflammation reduced ALDH1A1 mRNA in whole liver regardless of the level of vitamin A in the diet (P < 0.05), while treatment with RA reduced ALDH1A1 expression only in chow-fed rats. ALDH1A1 protein exhibited diffuse staining in hepatocytes, with greater intensity in the periportal region including surrounding bile ducts. Six h after administration of LPS, portal region macrophages were more numerous and some of these cells contained ALDH1A1. Vimentin, which was used as a marker for stellate cells and fibroblasts, was increased by LPS, P = 0.011 vs. without LPS, in both ED1 (CD68)-positive macrophages and fibroblastic stellate-like cells in the parenchyma as well as portal regions. Alpha-smooth muscle actin staining was intense around blood vessels, but did not change after LPS or RA, nor overlap with staining for vimentin. Conclusions Acute inflammation rapidly downregulates ALDH1A1 expression in whole liver while increasing its expression in periportal macrophages. Changes in ALDH1A1 expression appear to be part of the early acute-phase inflammatory response, which has been shown to alter the expression of other retinoid homeostatic genes. In addition, the rapid strong response of vimentin expression after treatment with LPS suggests that increased vimentin may be a useful marker of early hepatic inflammation.
Collapse
Affiliation(s)
- Kyoko Ito
- Department of Nutritional Sciences, The Pennsylvania State University, University Park, PA 16802 USA
| | - Reza Zolfaghari
- Department of Nutritional Sciences, The Pennsylvania State University, University Park, PA 16802 USA
| | - Lei Hao
- Department of Nutritional Sciences, The Pennsylvania State University, University Park, PA 16802 USA ; Graduate Program in Nutrition, The Pennsylvania State University, University Park, PA 16802 USA
| | - A Catharine Ross
- Department of Nutritional Sciences, The Pennsylvania State University, University Park, PA 16802 USA ; Center for Immunology and Infectious Disease, Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA 16802 USA ; Huck Institutes for Life Sciences and Department of Nutritional Sciences, Pennsylvania State University, 110 Chandlee Laboratory, University Park, PA 16803 USA
| |
Collapse
|
7
|
Kedishvili NY. Enzymology of retinoic acid biosynthesis and degradation. J Lipid Res 2013; 54:1744-60. [PMID: 23630397 PMCID: PMC3679379 DOI: 10.1194/jlr.r037028] [Citation(s) in RCA: 146] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2013] [Revised: 04/17/2013] [Indexed: 12/18/2022] Open
Abstract
All-trans-retinoic acid is a biologically active derivative of vitamin A that regulates numerous physiological processes. The concentration of retinoic acid in the cells is tightly regulated, but the exact mechanisms responsible for this regulation are not completely understood, largely because the enzymes involved in the biosynthesis of retinoic acid have not been fully defined. Recent studies using in vitro and in vivo models suggest that several members of the short-chain dehydrogenase/reductase superfamily of proteins are essential for retinoic acid biosynthesis and the maintenance of retinoic acid homeostasis. However, the exact roles of some of these recently identified enzymes are yet to be characterized. The properties of the known contributors to retinoid metabolism have now been better defined and allow for more detailed understanding of their interactions with retinoid-binding proteins and other retinoid enzymes. At the same time, further studies are needed to clarify the interactions between the cytoplasmic and membrane-bound proteins involved in the processing of hydrophobic retinoid metabolites. This review summarizes current knowledge about the roles of various biosynthetic and catabolic enzymes in the regulation of retinoic acid homeostasis and outlines the remaining questions in the field.
Collapse
Affiliation(s)
- Natalia Y Kedishvili
- Department of Biochemistry and Molecular Genetics, Schools of Medicine and Dentistry, University of Alabama at Birmingham, Birmingham, AL 35294, USA.
| |
Collapse
|
8
|
Napoli JL. Physiological insights into all-trans-retinoic acid biosynthesis. BIOCHIMICA ET BIOPHYSICA ACTA 2012; 1821:152-67. [PMID: 21621639 PMCID: PMC3179567 DOI: 10.1016/j.bbalip.2011.05.004] [Citation(s) in RCA: 257] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/15/2011] [Revised: 05/05/2011] [Accepted: 05/12/2011] [Indexed: 01/25/2023]
Abstract
All-trans-retinoic acid (atRA) provides essential support to diverse biological systems and physiological processes. Epithelial differentiation and its relationship to cancer, and embryogenesis have typified intense areas of interest into atRA function. Recently, however, interest in atRA action in the nervous system, the immune system, energy balance and obesity has increased considerably, especially concerning postnatal function. atRA action depends on atRA biosynthesis: defects in retinoid-dependent processes increasingly relate to defects in atRA biogenesis. Considerable evidence indicates that physiological atRA biosynthesis occurs via a regulated process, consisting of a complex interaction of retinoid binding-proteins and retinoid recognizing enzymes. An accrual of biochemical, physiological and genetic data have identified specific functional outcomes for the retinol dehydrogenases, RDH1, RDH10, and DHRS9, as physiological catalysts of the first step in atRA biosynthesis, and for the retinal dehydrogenases RALDH1, RALDH2, and RALDH3, as catalysts of the second and irreversible step. Each of these enzymes associates with explicit biological processes mediated by atRA. Redundancy occurs, but seems limited. Cumulative data support a model of interactions among these enzymes with retinoid binding-proteins, with feedback regulation and/or control by atRA via modulating gene expression of multiple participants. The ratio apo-CRBP1/holo-CRBP1 participates by influencing retinol flux into and out of storage as retinyl esters, thereby modulating substrate to support atRA biosynthesis. atRA biosynthesis requires the presence of both an RDH and an RALDH: conversely, absence of one isozyme of either step does not indicate lack of atRA biosynthesis at the site. This article is part of a Special Issue entitled: Retinoid and Lipid Metabolism.
Collapse
|
9
|
Xiao T, Shoeb M, Siddiqui MS, Zhang M, Ramana KV, Srivastava SK, Vasiliou V, Ansari NH. Molecular cloning and oxidative modification of human lens ALDH1A1: implication in impaired detoxification of lipid aldehydes. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2009; 72:577-84. [PMID: 19296407 PMCID: PMC5645793 DOI: 10.1080/15287390802706371] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Earlier studies showed that human lens ALDH1A1 plays a critical role in protection against oxidative stress-induced cytotoxicity in human lens epithelial cells (HLEC), and opacification of rat and mouse lens. The complete coding sequence of ALDH1A1 was cloned from human lens cDNA library by using PCR methods and expressed it in Escherichia coli. The cloned human lens ALDH1A1 cDNA encodes a 501-amino-acid protein (molecular mass = 54.8 kD) that is 100% identical to human liver ALDH1A1 and shares significant identity with the same isozyme from other tissues and species. The purified recombinant human lens ALDH1A1 exhibited optimal catalytic activity at pH 8 and preferred NAD(+) as cofactor and specifically catalyzed the oxidation of toxic lipid aldehydes such as 4-hydroxynonenal (HNE; K(m) = 4.8 microM) and malonaldehyde (K(m) MDA = 3.5 microM). Citral, disulfiram, and cyanamide were found to inhibit human lens ALDH1A1 at IC50 values of 55, 101, and 22610 microM, respectively, whereas diethylstilbestrol (DES) was found to be an activator (EC(50), 1.3 microM). Further, modification of recombinant human lens ALDH1A1 with nitric oxide donors such as S-nitroso-N-acetylpenicillamine (SNAP) and S-nitrosoglutathione (GSNO) significantly inhibited the enzyme activity. It therefore appears that activation of ALDH1A1, which efficiently catalyzes the detoxification of lipid-derived toxic aldehydes, and/or prevention of its oxidative modification may be novel therapeutic interventions against oxidative stress-induced lens pathologies.
Collapse
Affiliation(s)
- Tianlin Xiao
- Departments of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, Texas
| | - Mohammad Shoeb
- Departments of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, Texas
| | | | - Min Zhang
- Departments of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, Texas
| | - Kota V. Ramana
- Departments of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, Texas
| | - Satish K. Srivastava
- Departments of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, Texas
| | - Vasilis Vasiliou
- Molecular Toxicology and Environmental Health Sciences Program, Department of Pharmaceutical Sciences, University of Colorado Health Sciences Center, Denver, Colorado, USA
| | - Naseem H. Ansari
- Departments of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, Texas
| |
Collapse
|
10
|
Zhang M, Hu P, Krois CR, Kane MA, Napoli JL. Altered vitamin A homeostasis and increased size and adiposity in the rdh1-null mouse. FASEB J 2007; 21:2886-96. [PMID: 17435174 DOI: 10.1096/fj.06-7964com] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Rat RoDH performs efficiently (V(m)/K(m)) in a pathway of all-trans-retinoic acid biosynthesis in cells and recognizes the physiological form of vitamin A, i.e., retinol bound with cellular retinol binding-protein, type I. Here we report that mouse embryo (e7.5 to e18.5) and liver (e12.5 to P2M) display inversely related mRNA expression of an Rodh ortholog, rdh1, and a major retinoic acid catabolic enzyme, cyp26a1, suggesting coordinate modulation of retinoic acid homeostasis. Rdh1 inactivation by homologous recombination produces mice with decreased liver cyp26a1 mRNA and protein and increased liver and kidney retinoid stores, when fed vitamin A-restricted diets. Thus, null mice autocompensate by down-regulating cyp26a1 and sparing retinoids, indicating that rdh1 metabolizes retinoids in vivo. Surprisingly, rdh1-null mice grow longer than wild type, with increased weight and adiposity, when restricted in vitamin A. Liver, kidney, and multiple fat pads increase in weight. Some differences reflect the larger sizes of rdh1-null mice, but mesentery, femoral, and inguinal fat pads grow disproportionately larger. These data reveal an unexpected contribution of Rdh1 to size and adiposity and provide the first genetic evidence of a candidate retinol dehydrogenase affecting either vitamin A-related homeostasis physiologically or vitamin A-related gene expression or biological function in vivo.
Collapse
Affiliation(s)
- Min Zhang
- Nutritional Science and Toxicology, University of California, Berkeley, CA 94720-3104, USA
| | | | | | | | | |
Collapse
|
11
|
Moise AR, Isken A, Domínguez M, de Lera AR, von Lintig J, Palczewski K. Specificity of zebrafish retinol saturase: formation of all-trans-13,14-dihydroretinol and all-trans-7,8- dihydroretinol. Biochemistry 2007; 46:1811-20. [PMID: 17253779 PMCID: PMC2561287 DOI: 10.1021/bi062147u] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Metabolism of vitamin A, all-trans-retinol, leads to the formation of 11-cis-retinaldehyde, the visual chromophore, and all-trans-retinoic acid, which is involved in the regulation of gene expression through the retinoic acid receptor. Enzymes and binding proteins involved in retinoid metabolism are highly conserved across species. We previously described a novel mammalian enzyme that saturates the 13-14 double bond of all-trans-retinol to produce all-trans-13,14-dihydroretinol, which then follows the same metabolic fate as that of all-trans-retinol. Specifically, all-trans-13,14-dihydroretinol is transiently oxidized to all-trans-13,14-dihydroretinoic acid before being oxidized further by Cyp26 enzymes. Here, we report the identification of two putative RetSat homologues in zebrafish, one of which, zebrafish RetSat A (zRetSat A), also had retinol saturase activity, whereas zebrafish RetSat B (zRetSat B) was inactive under similar conditions. Unlike mouse RetSat (mRetSat), zRetSat A had an altered bond specificity saturating either the 13-14 or 7-8 double bonds of all-trans-retinol to produce either all-trans-13,14-dihydroretinol or all-trans-7,8-dihydroretinol, respectively. zRetSat A also saturated the 13-14 or 7-8 double bonds of all-trans-3,4-didehydroretinol (vitamin A2), a second endogenous form of vitamin A in zebrafish. The dual enzymatic activity of zRetSat A displays a newly acquired specificity for the 13-14 double bond retained in higher vertebrates and also the evolutionarily preserved activity of bacterial phytoene desaturases and plant carotenoid isomerases. Expression of zRetSat A was restricted to the liver and intestine of hatchlings and adult zebrafish, whereas zRetSat B was expressed in the same tissues but at earlier developmental stages. Exogenous all-trans-retinol, all-trans-13,14-dihydroretinol, or all-trans-7,8-dihydroretinol led to the strong induction of the expression of the retinoic acid-metabolizing enzyme, Cyp26A1, arguing for an active signaling function of dihydroretinoid metabolites in zebrafish. These findings point to a conserved function but altered specificity of RetSat in vertebrates, leading to the generation of various dihydroretinoid compounds, some of which could have signaling functions.
Collapse
Affiliation(s)
- Alexander R. Moise
- * To whom correspondence should be addressed. Phone: 216-368-4631. Fax: 216-368-1300. E-mail: (A.R.M.); (K.P.)
| | | | | | | | | | - Krzysztof Palczewski
- * To whom correspondence should be addressed. Phone: 216-368-4631. Fax: 216-368-1300. E-mail: (A.R.M.); (K.P.)
| |
Collapse
|
12
|
Asson-Batres MA, Smith WB. Localization of retinaldehyde dehydrogenases and retinoid binding proteins to sustentacular cells, glia, Bowman's gland cells, and stroma: potential sites of retinoic acid synthesis in the postnatal rat olfactory organ. J Comp Neurol 2006; 496:149-71. [PMID: 16538685 PMCID: PMC2562045 DOI: 10.1002/cne.20904] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Work from our laboratory suggests that retinoic acid (RA) influences neuron development in the postnatal olfactory epithelium (OE). The studies reported here were carried out to identify and localize retinaldehyde dehydrogenase (RALDH) expression in postnatal rat OE to gain a better understanding of potential in vivo RA synthesis sites in this continuously regenerating tissue. RALDH 1, 2, and 3 mRNAs were detected in postnatal rat olfactory tissue by RT-PCR analysis, but RALDH 1 and 2 transcripts were predominant. RALDH 1 immunoreactivity was localized to sustentacular cells in the OE and to Bowman's gland cells, and GFAP(+)/p75(-) olfactory ensheathing cells (OECs) in the underlying lamina propria (LP). RALDH 2 did not colocalize with RALDH 1, but appeared to be expressed in GFAP(-)/RALDH 1(-) OECs as well as in unidentified structures in the LP. Cellular RA binding protein (CRABP II) colocalized with RALDH 1. Cellular retinol/retinaldehyde binding protein (CRBP I) was localized to RALDH 1(+) sites in the OE and LP and RALDH 2(+) sites, primarily surrounding nerve fiber bundles in the LP. Vitamin A deficiency altered RALDH 1, but not RALDH 2 protein expression. The isozymes and binding proteins exhibited random variability in levels and areas of expression both within and between animals. These findings support the hypothesis that RA is synthesized in the postnatal OE (catalyzed by RALDH 1) and underlying LP (differentially catalyzed by RALDH 1 and RALDH 2) at sites that could influence the development, maturation, targeting, and/or turnover of olfactory receptor neurons throughout the olfactory organ.
Collapse
Affiliation(s)
- Mary Ann Asson-Batres
- Department of Biological Sciences, Tennessee State University, Nashville, Tennessee 37209, USA.
| | | |
Collapse
|
13
|
Loudig O, Maclean G, Dore N, Luu L, Petkovich M. Transcriptional co-operativity between distant retinoic acid response elements in regulation of Cyp26A1 inducibility. Biochem J 2006; 392:241-8. [PMID: 16053444 PMCID: PMC1317683 DOI: 10.1042/bj20050874] [Citation(s) in RCA: 104] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Cyp26A1 encodes an RA (retinoic acid)-catabolizing CYP (cytochrome P450) protein that plays a critical role in regulating RA distribution in vivo. Cyp26A1 expression is inducible by RA, and the locus has previously been shown to contain a RARE (RA response element), R1, within the minimal promoter [Loudig, Babichuk, White, Abu-Abed, Mueller and Petkovich (2000) Mol. Endocrinol. 14, 1483-1497]. In the present study, we report the identification of a second functional RARE (R2) located 2.0 kb upstream of the Cyp26A1 transcriptional start site. Constructs containing murine sequences encompassing both R1 and R2 showed that these elements work together to generate higher transcriptional activity upon treatment with RA than those containing R1 alone. Inclusion of R2 also dramatically enhanced the sensitivity of reporter constructs to RA, as even treatment with 10(-8) M RA resulted in a 5-fold induction of reporter activity. Mutational analysis identified R2 as the functional element responsible for the increased RA inducibility of promoter constructs. The element was shown to bind RARgamma (RA receptor gamma)/RXRalpha (retinoid X receptor alpha) heterodimers in vitro, and inclusion of nuclear receptors in transfections boosted the transcriptional response. A construct containing both R1 and R2 was used to generate a stable luciferase reporter cell line that can be used as a tool to identify factors regulating Cyp26A1 expression. The analysis of R1 and R2 has led to the proposal that the two elements work synergistically to provide a maximal response to RA and that R2 is an upstream enhancer.
Collapse
Affiliation(s)
- Olivier Loudig
- *Department of Biochemistry, Division of Cancer Biology and Genetics, Cancer Research Institute, Queen's University, Kingston, ON, Canada K7L 3N6
| | - Glenn A. Maclean
- †Department of Pathology, Division of Cancer Biology and Genetics, Cancer Research Institute, Queen's University, Kingston, ON, Canada K7L 3N6
| | - Naomi L. Dore
- †Department of Pathology, Division of Cancer Biology and Genetics, Cancer Research Institute, Queen's University, Kingston, ON, Canada K7L 3N6
| | - Luong Luu
- *Department of Biochemistry, Division of Cancer Biology and Genetics, Cancer Research Institute, Queen's University, Kingston, ON, Canada K7L 3N6
| | - Martin Petkovich
- *Department of Biochemistry, Division of Cancer Biology and Genetics, Cancer Research Institute, Queen's University, Kingston, ON, Canada K7L 3N6
- †Department of Pathology, Division of Cancer Biology and Genetics, Cancer Research Institute, Queen's University, Kingston, ON, Canada K7L 3N6
- To whom correspondence should be addressed (email )
| |
Collapse
|
14
|
Shiraishi-Yokoyama H, Yokoyama H, Matsumoto M, Imaeda H, Hibi T. Acetaldehyde inhibits the formation of retinoic acid from retinal in the rat esophagus. Scand J Gastroenterol 2006; 41:80-86. [PMID: 16373280 DOI: 10.1080/00365520510023936] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
OBJECTIVE It has already been demonstrated that the rat esophagus produces retinoic acid from retinol. In this study, this process is further characterized and the effect of acetaldehyde examined to elucidate the possible mechanisms behind the epidemiological evidence that the incidence of esophageal cancer is higher in alcoholics. MATERIAL AND METHODS Rat esophageal samples were incubated with all-trans retinal and newly formed all-trans retinoic acid (ATRA) was quantified using high-performance liquid chromatography (HPLC). Furthermore, beta-nicotinamide adenine dinucleotide (NAD)-dependent acetaldehyde oxidation by the rat esophagus was examined by tracing NAD reduction using a spectrophotometer. RESULTS Rat esophageal samples produced ATRA from all-trans retinal in a NAD-dependent manner and the potential was significantly attenuated by phenetyl isothiocynate, an ALDH inhibitor, or acetaldehyde depending on the concentration used. Rat esophageal samples also oxidized acetaldehyde of various concentrations NAD dependently. The ATRA formation potential that was temporarily inhibited by acetaldehyde was recovered to the control level by dialysis when the specimen was incubated with up to 50 microM of acetaldehyde. CONCLUSIONS The rat esophagus produces retinoic acid from retinal. An ALDH isoform(s) is responsible for this process and physiological concentration of acetaldehyde hampers the process, probably in a competitive manner. Since the disturbance of retinoic acid supply has been implicated in carcinogenicity, this finding may, at least in part, explain the high incidence of esophageal cancer in alcoholics, especially in those with inactive ALDH 2 whose blood acetaldehyde levels become higher than those with active ALDH 2.
Collapse
|
15
|
Moise AR, Kuksa V, Blaner WS, Baehr W, Palczewski K. Metabolism and transactivation activity of 13,14-dihydroretinoic acid. J Biol Chem 2005; 280:27815-25. [PMID: 15911617 PMCID: PMC1352314 DOI: 10.1074/jbc.m503520200] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The metabolism of vitamin A is a highly regulated process that generates essential mediators involved in the development, cellular differentiation, immunity, and vision of vertebrates. Retinol saturase converts all-trans-retinol to all-trans-13,14-dihydroretinol (Moise, A. R., Kuksa, V., Imanishi, Y., and Palczewski, K. (2004) J. Biol. Chem. 279, 50230-50242). Here we demonstrate that the enzymes involved in oxidation of retinol to retinoic acid and then to oxidized retinoic acid metabolites are also involved in the synthesis and oxidation of all-trans-13,14-dihydroretinoic acid. All-trans-13,14-dihydroretinoic acid can activate retinoic acid receptor/retinoid X receptor heterodimers but not retinoid X receptor homodimers in reporter cell assays. All-trans-13,14-dihydroretinoic acid was detected in vivo in Lrat-/- mice supplemented with retinyl palmitate. Thus, all-trans-13,14-dihydroretinoic acid is a naturally occurring retinoid and a potential ligand for nuclear receptors. This new metabolite can also be an intermediate in a retinol degradation pathway or it can serve as a precursor for the synthesis of bioactive 13,14-dihydroretinoid metabolites.
Collapse
Affiliation(s)
| | | | - William S. Blaner
- Department of Medicine and Institute of Human Nutrition, Columbia University, New York, New York 10032
| | - Wolfgang Baehr
- Departments of Ophthalmology and Visual Sciences
- Biology, and
- Neurobiology and Anatomy, University of Utah, Salt Lake City, Utah 84112, and the
| | - Krzysztof Palczewski
- From the Departments of Ophthalmology
- Pharmacology, and
- Chemistry, University of Washington, Seattle, Washington 98195, the
- ¶¶ To whom correspondence should be addressed: Dept. of Ophthalmology, University of Washington, Box 356485, Seattle, WA 98195-6485. Tel.: 206-543-9074; Fax: 206-221-6784; E-mail:
| |
Collapse
|
16
|
Moise AR, Kuksa V, Imanishi Y, Palczewski K. Identification of all-trans-retinol:all-trans-13,14-dihydroretinol saturase. J Biol Chem 2004; 279:50230-42. [PMID: 15358783 PMCID: PMC2665716 DOI: 10.1074/jbc.m409130200] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Retinoids carry out essential functions in vertebrate development and vision. Many of the retinoid processing enzymes remain to be identified at the molecular level. To expand the knowledge of retinoid biochemistry in vertebrates, we studied the enzymes involved in plant metabolism of carotenoids, a related group of compounds. We identified a family of vertebrate enzymes that share significant similarity and a putative phytoene desaturase domain with a recently described plant carotenoid isomerase (CRTISO), which isomerizes prolycopene to all-trans-lycopene. Comparison of heterologously expressed mouse and plant enzymes indicates that unlike plant CRTISO, the CRTISO-related mouse enzyme is inactive toward prolycopene. Instead, the CRTISO-related mouse enzyme is a retinol saturase carrying out the saturation of the 13-14 double bond of all-trans-retinol to produce all-trans-13,14-dihydroretinol. The product of mouse retinol saturase (RetSat) has a shifted UV absorbance maximum, lambda(max) = 290 nm, compared with the parent compound, all-trans-retinol (lambda(max) = 325 nm), and its MS analysis (m/z = 288) indicates saturation of a double bond. The product was further identified as all-trans-13,14-dihydroretinol, since its characteristics were identical to those of a synthetic standard. Mouse RetSat is membrane-associated and expressed in many tissues, with the highest levels in liver, kidney, and intestine. All-trans-13,14-dihydroretinol was also detected in several tissues of animals maintained on a normal diet. Thus, saturation of all-trans-retinol to all-trans-13,14-dihydroretinol by RetSat produces a new metabolite of yet unknown biological function.
Collapse
Affiliation(s)
- Alexander R. Moise
- Department of Ophthalmology, University of Washington, Seattle, Washington 98195
- To whom correspondence may be addressed: Dept. of Ophthalmology, University of Washington, Box 356485, Seattle, WA 98195-6485. Tel.: 206-543-9074; Fax: 206-221-6784; E-mail:
| | - Vladimir Kuksa
- Department of Ophthalmology, University of Washington, Seattle, Washington 98195
| | - Yoshikazu Imanishi
- Department of Ophthalmology, University of Washington, Seattle, Washington 98195
| | - Krzysztof Palczewski
- Department of Ophthalmology, University of Washington, Seattle, Washington 98195
- Department of Pharmacology, University of Washington, Seattle, Washington 98195
- Department of Chemistry, University of Washington, Seattle, Washington 98195
- To whom correspondence may be addressed: Dept. of Ophthalmology, University of Washington, Box 356485, Seattle, WA 98195-6485. Tel.: 206-543-9074; Fax: 206-221-6784; E-mail:
| |
Collapse
|
17
|
Ogura Y, Suruga K, Mochizuki H, Yamamoto T, Takase S, Goda T. Postnatal changes in gene expression of retinal dehydrogenase and retinoid receptors in liver of rats. Life Sci 2004; 74:1519-28. [PMID: 14729401 DOI: 10.1016/j.lfs.2003.08.020] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Retinoic acid (RA) plays important roles in cellular differentiation and proliferation in various tissues including the liver. To explore a possible role of RA in the postnatal development of hepatic function, we analyzed RA-generation enzyme activity and the RA-related hepatic gene expressions in the suckling and weaning rats. At 5 days after birth, retinal dehydrogenase (RALDH) activity in the liver was relatively high. Its activity decreased by 70% until day 17, and then it gradually increased to a high level by the completion of weaning period. Northern blot analysis showed that RALDH2 mRNA levels decreased in the suckling period, whereas RALDH1 mRNA levels increased in the weaning period. Retinoid X receptor alpha (RXRalpha) mRNA levels increased in the suckling period and attained to a higher level at 17 days after birth. Retinoic acid receptor alpha (RARalpha) mRNA level showed only a slight and temporary increase on day 13. The mRNA levels of hepatocyte nuclear factors (HNF-4 and HNF-1alpha) exhibited parallel increases around suckling-weaning period, and the transcript levels of albumin, a typical target gene of the hepatocyte nuclear factors, increased during the suckling-weaning transition period. Electrophoretic mobility shift assay using a putative nuclear receptor-binding element on rat HNF-1 alpha gene revealed that HNF-4 homodimer, but not RXRalpha homodimer, bound to this element. These results suggest that postnatal expressions of hepatocyte-specific genes might be up-regulated by retinoid receptors, which may be related with the alterations of RALDH expression during postnatal development in the liver.
Collapse
Affiliation(s)
- Yuko Ogura
- Laboratory of Nutritional Physiology and COE Program in the 21st Century, University of Shizuoka School of Food and Nutritional Sciences, 52-1 Yada, Shizuoka-shi, Shizuoka 422-8526, Japan
| | | | | | | | | | | |
Collapse
|
18
|
Perrotta S, Nobili B, Rossi F, Di Pinto D, Cucciolla V, Borriello A, Oliva A, Della Ragione F. Vitamin A and infancy. Biochemical, functional, and clinical aspects. VITAMINS AND HORMONES 2003; 66:457-591. [PMID: 12852263 DOI: 10.1016/s0083-6729(03)01013-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Vitamin A is a very intriguing natural compound. The molecule not only has a complex array of physiological functions, but also represents the precursor of promising and powerful new pharmacological agents. Although several aspects of human retinol metabolism, including absorption and tissue delivery, have been clarified, the type and amounts of vitamin A derivatives that are intracellularly produced remain quite elusive. In addition, their precise function and targets still need to be identified. Retinoic acids, undoubtedly, play a major role in explaining activities of retinol, but, recently, a large number of physiological functions have been attributed to different retinoids and to vitamin A itself. One of the primary roles this vitamin plays is in embryogenesis. Almost all steps in organogenesis are controlled by retinoic acids, thus suggesting that retinol is necessary for proper development of embryonic tissues. These considerations point to the dramatic importance of a sufficient intake of vitamin A and explain the consequences if intake of retinol is deficient. However, hypervitaminosis A also has a number of remarkable negative consequences, which, in same cases, could be fatal. Thus, the use of large doses of retinol in the treatment of some human diseases and the use of megavitamin therapy for certain chronic disorders as well as the growing tendency toward vitamin faddism should alert physicians to the possibility of vitamin overdose.
Collapse
Affiliation(s)
- Silverio Perrotta
- Department of Pediatric, Medical School, Second University of Naples, Naples, Italy
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Lin M, Zhang M, Abraham M, Smith SM, Napoli JL. Mouse retinal dehydrogenase 4 (RALDH4), molecular cloning, cellular expression, and activity in 9-cis-retinoic acid biosynthesis in intact cells. J Biol Chem 2003; 278:9856-61. [PMID: 12519776 DOI: 10.1074/jbc.m211417200] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
This study describes cDNA cloning and characterization of mouse RALDH4. The 2.3-kb cDNA encodes an aldehyde dehydrogenase of 487 amino acid residues, about two-orders of magnitude more active in vitro with 9-cis-retinal than with all-trans-retinal. RALDH4 recognizes as substrate 9-cis-retinal generated in transfected cells by the short-chain dehydrogenases CRAD1, CRAD3, or RDH1, to reconstitute a path of 9-cis-retinoic acid biosynthesis in situ. Northern blot analysis showed expression of RALDH4 mRNA in adult mouse liver and kidney. In situ hybridization revealed expression of RALDH4 in liver on embryo day 14.5, in adult hepatocytes, and kidney cortex. Immunohistochemistry confirmed RALDH4 expression in hepatocytes and showed that hepatocytes also express RALDH1, RALDH2, and RALDH3. Kidney expresses the RALDH4 protein primarily in the proximal and distal convoluted tubules of the cortex but not in the glomeruli or the medulla. Kidney expresses RALDH2 in the proximal convoluted tubules of the cortex but not in the distal convoluted tubules or glomeruli. Kidney expresses RALDH1 and RALDH2 in the medulla. The enzymatic characteristics of RALDH4, its expression in fetal liver, and its unique expression pattern in adult kidney compared with RALDH1, -2, and -3 suggest that it could meet specific needs for 9-cis-retinoic acid biosynthesis.
Collapse
Affiliation(s)
- Min Lin
- Department of Nutritional Sciences and Toxicology, University of California-Berkeley, Berkeley, California 94720, USA
| | | | | | | | | |
Collapse
|
20
|
Abstract
Mouse rdh1 encodes retinol dehydrogenase type 1 (RDH1), a short-chain dehydrogenase, which recognizes as substrates all-trans-retinol, 9-cis-retinol, 5alpha-androstan-3,17-diol and 5alpha-androstan-3-ol-17-one. RDH1 is the most efficient known mouse short-chain dehydrogenase that catalyzes dehydrogenation of all-trans-retinol, and contributes to a reconstituted path of all-trans-retinoic acid biosynthesis, when coexpressed in reporter cells with any one of three retinal dehydrogenases. Rdh1 shows widespread, if not ubiquitous, mRNA expression in the mouse beginning no later than embryo day 7. Here we report genomic organization, chromosomal localization and analysis of a minimum promoter of mouse rdh1. Rdh1 consists of four exons and three introns and spans approximately 14412 bp. Rdh1 is a single copy gene that maps to chromosome 10D3 with rdh5-9, but no known disorder maps precisely to rdh1. Rdh1 has three transcription start sites in kidney and one start site in liver. The rdh1 5'-region between -424 and +43 induces transcription maximally in COS7, mouse kidney RAG, and mouse liver NMu3Li cells. This section has no TATA box, but has a CCAAT box beginning 65 bp upstream of the major transcription start site, which is required for transcription of transfected reporter constructs. An AP1 binding site at -119 also activates transfected reporter constructs, and mediates 2-O-tetradecanoylphorbol-13-acetate (TPA) induced transcription. All-trans-retinoic acid antagonizes the TPA affect; however, no RARE or RXRE was found in the proximal promoter region, consistent with indirect regulation by all-trans-retinoic acid.
Collapse
Affiliation(s)
- Min Zhang
- Department of Nutritional Sciences and Toxicology, University of California, Berkeley, CA 94720, USA
| | | | | |
Collapse
|
21
|
Abstract
Since the late 1980s, there has been an explosion of information on the molecular mechanisms and functions of vitamin A. This review focuses on the essential role of vitamin A in female reproduction and embryonic development and the metabolism of vitamin A (retinol) that results in these functions. Evidence strongly supports that in situ-generated all-trans retinoic acid (atRA) is the functional form of vitamin A in female reproduction and embryonic development. This is supported by the ability to reverse most reproductive and developmental blocks found in vitamin A deficiency with atRA, the block in embryonic development that occurs in retinaldehyde dehydrogenase type 2 null mutant mice, and the essential roles of the retinoic acid receptors, at least in embryogenesis. Early studies of embryos from marginally vitamin A-deficient (VAD) pregnant rats revealed a collection of defects called the vitamin A-deficiency syndrome. The manipulation of all-trans retinoic acid (atRA) levels in the diet of VAD female rats undergoing a reproduction cycle has proved to be an important new tool in deciphering the points of atRA function in early embryos and has provided a means to generate large numbers of embryos at later stages of development with the vitamin A-deficiency syndrome. The essentiality of the retinoid receptors in mediating the activity of atRA is exemplified by the many compound null mutant embryos that now recapitulate both the original vitamin A-deficiency syndrome and exhibit a host of new defects, many of which can also be observed in the VAD-atRA-supported rat embryo model and in retinaldehyde dehydrogenase type 2 (RALDH2) mutant mice. A major task for the future is to elucidate the atRA-dependent pathways that are normally operational in vitamin A-sufficient animals and that are perturbed in deficiency, thus leading to the characteristic VAD phenotypes described above.
Collapse
Affiliation(s)
- Margaret Clagett-Dame
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA.
| | | |
Collapse
|
22
|
Soref CM, Di YP, Hayden L, Zhao YH, Satre MA, Wu R. Characterization of a novel airway epithelial cell-specific short chain alcohol dehydrogenase/reductase gene whose expression is up-regulated by retinoids and is involved in the metabolism of retinol. J Biol Chem 2001; 276:24194-202. [PMID: 11304534 DOI: 10.1074/jbc.m100332200] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Multiple retinoic acid responsive cDNAs were isolated from a high density cDNA microarray membrane, which was developed from a cDNA library of human tracheobronchial epithelial cells. Five selected cDNA clones encoded the sequence of the same novel gene. The predicted open reading frame of the novel gene encoded a protein of 319 amino acids. The deduced amino acid sequence contains four motifs that are conserved in the short-chain alcohol dehydrogenase/reductase (SDR) family of proteins. The novel gene shows the greatest homology to a group of dehydrogenases that can oxidize retinol (retinol dehydrogenases). The mRNA of the novel gene was found in trachea, colon, tongue, and esophagus. In situ hybridization of airway tissue sections demonstrated epithelial cell-specific gene expression, especially in the ciliated cell type. Both all-trans-retinoic acid and 9-cis-retinoic acid were able to elevate the expression of the novel gene in primary human tracheobronchial epithelial cells in vitro. This elevation coincided with an enhanced retinol metabolism in these cultures. COS cells transfected with an expression construct of the novel gene were also elevated in the metabolism of retinol. The results suggested that the novel gene represents a new member of the SDR family that may play a critical role in retinol metabolism in airway epithelia as well as in other epithelia of colon, tongue, and esophagus.
Collapse
Affiliation(s)
- C M Soref
- Center for Comparative Respiratory Biology and Medicine and the Department of Nutrition, University of California at Davis, 95616, USA
| | | | | | | | | | | |
Collapse
|
23
|
Chen Y, Pollet N, Niehrs C, Pieler T. Increased XRALDH2 activity has a posteriorizing effect on the central nervous system of Xenopus embryos. Mech Dev 2001; 101:91-103. [PMID: 11231062 DOI: 10.1016/s0925-4773(00)00558-x] [Citation(s) in RCA: 90] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Retinoic acid (RA) metabolizing enzymes play important roles in RA signaling during vertebrate embryogenesis. We have previously reported on a RA degrading enzyme, XCYP26, which appears to be critical for the anteroposterior patterning of the central nervous system (EMBO J. 17 (1998) 7361). Here, we report on the sequence, expression and function of its counterpart, XRALDH2, a RA generating enzyme in Xenopus. During gastrulation and neurulation, XRALDH2 and XCYP26 show non-overlapping, complementary expression domains. Upon misexpression, XRALDH2 is found to reduce the forebrain territory and to posteriorize the molecular identity of midbrain and individual hindbrain rhombomeres in Xenopus embryos. Furthermore, ectopic XRALDH2, in combination with its substrate, all-trans-retinal (ATR), can mimic the RA phenotype to result in microcephalic embryos. Taken together, our data support the notion that XRALDH2 plays an important role in RA homeostasis by the creation of a critical RA concentration gradient along the anteroposterior axis of early embryos, which is essential for proper patterning of the central nervous system in Xenopus.
Collapse
Affiliation(s)
- Y Chen
- Georg-August-Universität Göttingen, Institut für Biochemie und Molekulare Zellbiologie, Humboldtallee 23, D-37073, Göttingen, Germany
| | | | | | | |
Collapse
|
24
|
Zhai Y, Sperkova Z, Napoli JL. Cellular expression of retinal dehydrogenase types 1 and 2: effects of vitamin A status on testis mRNA. J Cell Physiol 2001; 186:220-32. [PMID: 11169459 DOI: 10.1002/1097-4652(200102)186:2<220::aid-jcp1018>3.0.co;2-n] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
We examined expression of retinal dehydrogenase (RALDH) types 1 and 2 in liver and lung, and the effect of vitamin A status on testis expression by in situ hybridization. Liver expressed RALDH1 and RALDH2 only in stellate cells and hepatocytes, respectively. Lung expressed RALDH1 and RALDH2 throughout the epithelia of the airways, from the principal bronchi to the respiratory bronchiole. Vitamin A-sufficient rats expressed RALDH1 in spermatocytes, with less intense expression in spermatogonia and spermatids, and expressed RALDH2 in interstitial cells, spermatogonia, and spermatocytes. Neither Sertoli nor peritubular cells showed detectable RALDH1 or RALDH2 mRNA. Vitamin A deficiency produced a sevenfold increase in RALDH1 and a 70-fold decrease in RALDH2 mRNA in testis. In each case, the net change reflected extensive loss of germ cells, increased intensity of expression in residual germ cells, and expression in Sertoli and peritubular cells. Low-dose RA relatively early during vitamin A depletion supported spermatogenesis and affected expression of both RALDHs, but did not reinstate "vitamin A normal" expression patterns. These results show that: RALDH1 and RALDH2 have distinct mRNA expression patterns in multiple cell types in three vitamin A target tissues; RALDH expression occurs in cell types that express cellular retinol-binding protein and retinol dehydrogenase isozymes (except stellate cells, for which retinol dehydrogenase expression remains unknown); vitamin A deficiency and RA supplementation affects the loci and intensity of RALDH mRNAs in testis; and low-dose RA does not substitute completely for retinol. Overall, these data provide insight into the unique functions of RALDH1 and RALDH2 in retinoid metabolism.
Collapse
Affiliation(s)
- Y Zhai
- Department of Nutritional Sciences, University of California, Berkeley, CA 94720-3104, USA
| | | | | |
Collapse
|
25
|
Yamauchi K, Tata JR. Characterization of Xenopus cytosolic thyroid-hormone-binding protein (xCTBP) with aldehyde dehydrogenase activity. Chem Biol Interact 2001; 130-132:309-21. [PMID: 11306054 DOI: 10.1016/s0009-2797(00)00274-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Multiple cytosolic thyroid-hormone-binding proteins (CTBPs) with varying characteristics, depending on the species and tissue, have been reported. We first purified a 59-kDa CTBP from Xenopus liver (xCTBP), and found that it is responsible for major [125I]T(3)-binding activity in Xenopus liver cytosol. Amino acid sequencing of internal peptide fragments derived from xCTBP demonstrated high identity to the corresponding sequence of mammalian aldehyde dehydrogenases 1 (ALDH1). To confirm whether or not xCTBP is identical to xALDH1, we isolated cDNAs encoding xALDH1 from an adult Xenopus hepatic cDNA library. The amino acid sequences deduced from the two isolated xALDH1 cDNAs were very similar to those of mammalian ALDH1 enzymes. The recombinant xALDH1 protein exhibited both T(3)-binding activity and ALDH activity converting retinal to retinoic acid (RA), which were similar to those of xCTBP purified from liver cytosol. The T(3)-binding activity was inhibited by NAD, while the ALDH activity was inhibited by thyroid hormones. Our results demonstrate that xCTBP is identical to ALDH1 and suggest that this protein might modulate RA synthesis and intracellular concentration of free T(3). Communications between thyroid hormone and retinoid pathways are discussed.
Collapse
Affiliation(s)
- K Yamauchi
- Department of Biology, Faculty of Science, Shizuoka University, 836 Oya, 422-8529, Shizuoka, Japan.
| | | |
Collapse
|
26
|
Abstract
Biochemical studies indicate that alcohol dehydrogenase (ADH) metabolizes retinol to retinal, and that aldehyde dehydrogenase (ALDH) metabolizes retinal to retinoic acid, a molecule essential for growth and development. Summarized herein are several genetic studies supporting in vivo functions for ADH and ALDH in retinoic acid synthesis. Gene targeting was used to create knockout mice for either Adh1 or Adh4. Both knockout mice were viable and fertile without obvious defects. However, when wild-type and Adh4 knockout mice were subjected to vitamin A deficiency during gestation, the survival rate at birth was 3.3-fold lower for Adh4 knockout mice. When adult mice were examined for production of retinoic acid following retinol administration, Adh1 knockout mice exhibited 10-fold lower retinoic acid levels in liver compared with wild-type, whereas Adh4 knockout mice differed from wild-type by less than 2-fold. Thus, Adh1 plays a major role in the metabolism of a large dose of retinol to retinoic acid in adults, whereas Adh4 plays a role in maintaining sufficient retinol metabolism for development during retinol deficiency. ALDHs were examined by overexpression studies in frog embryos. Injection of mRNAs for either mouse Raldh1 or Raldh2 stimulated retinoic acid synthesis in frog embryos at the blastula stage when retinoic acid is normally undetectable. Overexpression of human ALDH2, human ALDH3, and mouse Aldh-pb did not stimulate retinoic acid production. In addition, Raldh2 knockout mice exhibit embryonic lethality with defects in retinoid-dependent tissues. Overall, these studies provide genetic evidence that Adh1, Adh4, Raldh1, and Raldh2 encode retinoid dehydrogenases involved in retinoic acid synthesis in vivo.
Collapse
Affiliation(s)
- G Duester
- Gene Regulation Program, Burnham Institute, 10901 North Torrey Pines Road, 92037, La Jolla, CA, USA.
| |
Collapse
|
27
|
Grün F, Hirose Y, Kawauchi S, Ogura T, Umesono K. Aldehyde dehydrogenase 6, a cytosolic retinaldehyde dehydrogenase prominently expressed in sensory neuroepithelia during development. J Biol Chem 2000; 275:41210-8. [PMID: 11013254 DOI: 10.1074/jbc.m007376200] [Citation(s) in RCA: 100] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We have isolated the chick and mouse homologs of human aldehyde dehydrogenase 6 (ALDH6) that encode a third cytosolic retinaldehyde-specific aldehyde dehydrogenase. In both chick and mouse embryos, strong expression is observed in the sensory neuroepithelia of the head. In situ hybridization analysis in chick shows compartmentalized expression primarily in the ventral retina, olfactory epithelium, and otic vesicle; additional sites of expression include the isthmus, Rathke's pouch, posterior spinal cord interneurons, and developing limbs. Recombinant chick ALDH6 has a K(0.5) = 0.26 microm, V(max) = 48.4 nmol/min/mg and exhibits strong positive cooperativity (H = 1.9) toward all-trans-retinaldehyde; mouse ALDH6 has similar kinetic parameters. Expression constructs can confer 1000-fold increased sensitivity to retinoic acid receptor-dependent signaling from retinol in transient transfections experiments. The localization of ALDH6 to the developing sensory neuroepithelia of the eye, nose, and ear and discreet sites within the CNS suggests a role for RA signaling during primary neurogenesis at these sites.
Collapse
Affiliation(s)
- F Grün
- Institute for Virus Research, Kyoto University, 53 Kawaramachi Shogoin, Kyoto, Japan
| | | | | | | | | |
Collapse
|
28
|
Lin M, Napoli JL. cDNA cloning and expression of a human aldehyde dehydrogenase (ALDH) active with 9-cis-retinal and identification of a rat ortholog, ALDH12. J Biol Chem 2000; 275:40106-12. [PMID: 11007799 DOI: 10.1074/jbc.m008027200] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
This report describes the isolation of a heretofore uncharacterized aldehyde dehydrogenase (ALDH) with retinal dehydrogenase activity from rat kidney and the cloning and expression of a cDNA that encodes its human ortholog, the previously unknown ALDH12. The human ALDH12 cDNA predicts a 487-residue protein with the 23 invariant amino acids, four conserved regions, cofactor binding motif (G(209)XGX(3)G), and active site cysteine residue (Cys(287)) that typify members of the ALDH superfamily. ALDH12 seems at least as efficient (V(m)/K(m)) in converting 9-cis-retinal into the retinoid X receptor ligand 9-cis-retinoic acid as two previously identified ALDHs with 9-cis-retinal dehydrogenase activity, rat retinal dehydrogenase (RALDH) 1 and RALDH2. ALDH12, however, has approximately 40-fold higher activity with 9-cis- retinal than with all-trans-retinal, whereas RALDH1 and RALDH2 have equivalent and approximately 4-fold less efficiencies for 9-cis-retinal versus all-trans-retinal, respectively. Therefore, ALDH12 is the first known ALDH to show a preference for 9-cis-retinal relative to all-trans-retinal. Evidence consistent with the possibility that ALDH12 could function in a pathway of 9-cis-retinoic acid biosynthesis in vivo includes biosynthesis of 9-cis-retinoic acid from 9-cis-retinol in cells co-transfected with cDNAs encoding ALDH12 and the 9-cis-retinol/androgen dehydrogenase, cis-retinoid/androgen dehydrogenase type 1. Intense ALDH12 mRNA expression in adult and fetal liver and kidney, two organs that reportedly have relatively high concentrations of 9-cis-retinol, reinforces this notion.
Collapse
Affiliation(s)
- M Lin
- Department of Nutritional Sciences and Toxicology, University of California, Berkeley, Berkeley, California 94720, USA
| | | |
Collapse
|
29
|
Vasiliou V, Pappa A, Petersen DR. Role of aldehyde dehydrogenases in endogenous and xenobiotic metabolism. Chem Biol Interact 2000; 129:1-19. [PMID: 11154732 DOI: 10.1016/s0009-2797(00)00211-8] [Citation(s) in RCA: 293] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Aldehydes are highly reactive molecules that are intermediates or products involved in a broad spectrum of physiologic, biologic and pharmacologic processes. Aldehydes are generated from chemically diverse endogenous and exogenous precursors and aldehyde-mediated effects vary from homeostatic and therapeutic to cytotoxic, and genotoxic. One of the most important pathways for aldehyde metabolism is their oxidation to carboxylic acids by aldehyde dehydrogenases (ALDHs). Oxidation of the carbonyl functional group is considered a general detoxification process in that polymorphisms of several human ALDHs are associated a disease phenotypes or pathophysiologies. However, a number of ALDH-mediated oxidation form products that are known to possess significant biologic, therapeutic and/or toxic activities. These include the retinoic acid, an important element for vertebrate development, gamma-aminobutyric acid (GABA), an important neurotransmitter, and trichloroacetic acid, a potential toxicant. This review summarizes the ALDHs with an emphasis on catalytic properties and xenobiotic substrates of these enzymes.
Collapse
Affiliation(s)
- V Vasiliou
- Molecular Toxicology and Environmental Health Sciences Program, Department of Pharmaceutical Sciences, University of Colorado Health Sciences Center, 4200 East Ninth Avenue, Denver, CO 80262, USA.
| | | | | |
Collapse
|
30
|
Duester G. Families of retinoid dehydrogenases regulating vitamin A function: production of visual pigment and retinoic acid. EUROPEAN JOURNAL OF BIOCHEMISTRY 2000; 267:4315-24. [PMID: 10880953 DOI: 10.1046/j.1432-1327.2000.01497.x] [Citation(s) in RCA: 426] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Vitamin A (retinol) and provitamin A (beta-carotene) are metabolized to specific retinoid derivatives which function in either vision or growth and development. The metabolite 11-cis-retinal functions in light absorption for vision in chordate and nonchordate animals, whereas all-trans-retinoic acid and 9-cis-retinoic acid function as ligands for nuclear retinoic acid receptors that regulate gene expression only in chordate animals. Investigation of retinoid metabolic pathways has resulted in the identification of numerous retinoid dehydrogenases that potentially contribute to metabolism of various retinoid isomers to produce active forms. These enzymes fall into three major families. Dehydrogenases catalyzing the reversible oxidation/reduction of retinol and retinal are members of either the alcohol dehydrogenase (ADH) or short-chain dehydrogenase/reductase (SDR) enzyme families, whereas dehydrogenases catalyzing the oxidation of retinal to retinoic acid are members of the aldehyde dehydrogenase (ALDH) family. Compilation of the known retinoid dehydrogenases indicates the existence of 17 nonorthologous forms: five ADHs, eight SDRs, and four ALDHs, eight of which are conserved in both mouse and human. Genetic studies indicate in vivo roles for two ADHs (ADH1 and ADH4), one SDR (RDH5), and two ALDHs (ALDH1 and RALDH2) all of which are conserved between humans and rodents. For several SDRs (RoDH1, RoDH4, CRAD1, and CRAD2) androgens rather than retinoids are the predominant substrates suggesting a function in androgen metabolism as well as retinoid metabolism.
Collapse
Affiliation(s)
- G Duester
- Burnham Institute, La Jolla, CA 92037, USA.
| |
Collapse
|
31
|
Hsu LC, Chang WC, Yoshida A. Mouse type-2 retinaldehyde dehydrogenase (RALDH2): genomic organization, tissue-dependent expression, chromosome assignment and comparison to other types. BIOCHIMICA ET BIOPHYSICA ACTA 2000; 1492:289-93. [PMID: 10858567 DOI: 10.1016/s0167-4781(00)00108-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Retinaldehyde dehydrogenase (RALDH) isozymes catalyze the formation of an essential developmental modulator, retinoic acid. We determined the structural organization of mouse type-2 Raldh2 by isolation of overlapping genomic DNA clones from a phage library. The gene consists of 14 exons spanning more than 70 kb of genomic DNA. It was localized to mouse chromosome 6. Northern blot analysis revealed testis-specific expression. The RALDH genes belong to the aldehyde dehydrogenase (ALDH) multi-gene family. Three types of RALDH genes (e.g. human ALDH1/mouse Ahd2/rat RalDH(I), human ALDH11/mouse Raldh2/rat RalDH(II) and human ALDH6) are highly conserved during evolution, sharing about 70% identity at the amino acid level between any two gene types and 90% identity between any two mammalian genes of the same type. Different RALDH types show specific tissue and developmental expression patterns, suggesting (i) a regulatory mechanism of retinoic acid synthesis via different promoters of RALDH genes, and (ii) distinctive biological roles of different isozymes in embryogenesis and organogenesis.
Collapse
Affiliation(s)
- L C Hsu
- Division of Molecular Medicine, Beckman Research Institute of the City of Hope, 1450 E. Duarte Road, Duarte, CA 91010, USA.
| | | | | |
Collapse
|
32
|
Napoli JL. Retinoic acid: its biosynthesis and metabolism. PROGRESS IN NUCLEIC ACID RESEARCH AND MOLECULAR BIOLOGY 1999; 63:139-88. [PMID: 10506831 DOI: 10.1016/s0079-6603(08)60722-9] [Citation(s) in RCA: 138] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
This article presents a model that integrates the functions of retinoid-binding proteins with retinoid metabolism. One of these proteins, the widely expressed (throughout retinoid target tissues and in all vertebrates) and highly conserved cellular retinol-binding protein (CRBP), sequesters retinol in an internal binding pocket that segregates it from the intracellular milieu. The CRBP-retinol complex appears to be the quantitatively major form of retinol in vivo, and may protect the promiscuous substrate from nonenzymatic degradation and/or non-specific enzymes. For example, at least seven types of dehydrogenases catalyze retinal synthesis from unbound retinol in vitro (NAD+ vs. NADP+ dependent, cytosolic vs. microsomal, short-chain dehydrogenases/reductases vs. medium-chain alcohol dehydrogenases). But only a fraction of these (some of the short-chain de-hydrogenases/reductases) have the fascinating additional ability of catalyzing retinal synthesis from CRBP-bound retinol as well. Similarly, CRBP and/or other retinoid-binding proteins function in the synthesis of retinal esters, the reduction of retinal generated from intestinal beta-carotene metabolism, and retinoic acid metabolism. The discussion details the evidence supporting an integrated model of retinoid-binding protein/metabolism. Also addressed are retinoid-androgen interactions and evidence incompatible with ethanol causing fetal alcohol syndrome by competing directly with retinol dehydrogenation to impair retinoic acid biosynthesis.
Collapse
Affiliation(s)
- J L Napoli
- Department of Biochemistry, School of Medicine and Biomedical Sciences, State University of New York at Buffalo 14214, USA
| |
Collapse
|
33
|
Napoli JL. Interactions of retinoid binding proteins and enzymes in retinoid metabolism. BIOCHIMICA ET BIOPHYSICA ACTA 1999; 1440:139-62. [PMID: 10521699 DOI: 10.1016/s1388-1981(99)00117-1] [Citation(s) in RCA: 287] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Naturally occurring retinoids (vitamin A or retinol and its active metabolites) are vital for vision, controlling the differentiation program of epithelial cells in the digestive tract and respiratory system, skin, bone, the nervous system, the immune system, and for hematopoiesis. Retinoids are essential for growth, reproduction (conception and embryonic development), and resistance to and recovery from infection. The functions of retinoids in the embryo begin soon after conception and continue throughout the lifespan of all vertebrates. Both naturally occurring and synthetic retinoids are used in the therapy of various skin diseases, especially acne, for augmenting the treatment of diabetes, and as cancer chemopreventive agents. Retinol metabolites serve as ligands that activate specific transcription factors in the superfamily of steroid/retinoid/thyroid/vitamin D/orphan receptors and thereby control gene expression. Additionally, retinoids may also function through non-genomic actions. Various retinoid binding proteins serve as partners in retinoid function. These binding proteins show high specificity and affinity for specific retinoids and seem to control retinoid metabolism in vivo qualitatively and quantitatively by reducing 'free' retinoid concentrations, protecting retinoids from non-specific interactions, and chaperoning access of metabolic enzymes to retinoids. Implementation of the physiological effects of retinoids depends on the spatial-temporal expressions of binding proteins, receptors and metabolic enzymes. This review will discuss current understanding of the enzymes that catalyze retinol and retinoic acid metabolism and their unique and integral relationship to retinoid binding proteins.
Collapse
Affiliation(s)
- J L Napoli
- Department of Nutritional Sciences, 119 Morgan Hall, University of California, Berkeley, USA.
| |
Collapse
|
34
|
Molecular analysis of two closely related mouse aldehyde dehydrogenase genes: identification of a role for Aldh1, but not Aldh-pb, in the biosynthesis of retinoic acid. Biochem J 1999. [PMID: 10191271 DOI: 10.1042/0264-6021:3390387] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Mammalian class I aldehyde dehydrogenase (ALDH1) has been implicated as a retinal dehydrogenase in the biosynthesis of retinoic acid, a modulator of gene expression and cell differentiation. As the first step towards studying the regulation of ALDH1 and its physiological role in the biosynthesis of retinoic acid, mouse ALDH1 cDNA and genomic clones have been characterized. During the cloning process, an additional closely related gene was also isolated and named Aldh-pb, owing to its high amino acid sequence identity (92%) with the rat phenobarbitol-inducible ALDH protein (ALDH-PB). Aldh1 spans about 45 kb in length, whereas Aldh-pb spans about 35 kb. Both genes are composed of 13 exons, and the positions of all the exon/intron boundaries are conserved with those of human ALDH1. The promoter regions of Aldh1 and Aldh-pb demonstrate high sequence similarity with those of human ALDH1 and rat ALDH-PB. Expression of Aldh1 and Aldh-pb is tissue-specific, with mRNAs for both genes being found in the liver, lung and testis, but not in the heart, spleen or muscle. Expression of Aldh-pb, but not Aldh1, was also detected at high levels in the kidney. Aldh1 and Aldh-pb encode proteins of 501 amino acids with 90% positional identity. To examine the relative roles of these two enzymes in retinoic acid synthesis in vivo, Xenopus embryos were injected with mRNAs encoding these enzymes to assay the effect on conversion of endogenous retinal into retinoic acid. Injection of ALDH1, but not ALDH-PB, mRNA stimulated retinoic acid synthesis in Xenopus embryos at the blastula stage. Thus our results indicate that Aldh1 can function in retinoic acid synthesis under physiological conditions, but that the closely related Aldh-pb does not share this property.
Collapse
|
35
|
Kitson KE, Blythe TJ. The hunt for a retinal-specific aldehyde dehydrogenase in sheep liver. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 1999; 463:213-21. [PMID: 10352688 DOI: 10.1007/978-1-4615-4735-8_26] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
Affiliation(s)
- K E Kitson
- Institute of Food, Nutrition, and Human Health, Massey University, Palmerston North, New Zealand
| | | |
Collapse
|
36
|
Abstract
All vertebrate embryos require retinoic acid (RA) for fulfilment of the developmental program encoded in the genome. In mammals, maternal homeostatic mechanisms minimize variation of retinoid levels reaching the embryo. Retinol is transported as a complex with retinol-binding protein (RBP): transplacental transfer of retinol and its uptake by the embryonic tissues involves binding to an RBP receptor at the cell surface. Embryonic tissues in which this receptor is present also contain the retinol-binding protein CRBP I and the enzymes involved in RA synthesis; the same tissues are particularly vulnerable to vitamin A deficiency. In the nucleus, the RA signal is transduced by binding to a heterodimeric pair of retinoid receptors (RAR/RXR). In general, the receptors show functional plasticity, disruption of one RAR or RXR gene having minor or no effects on embryogenesis. However, genetic studies indicate that RXR alpha is essential for normal development of the heart and eye. Excess RA causes abnormalities of many systems; altered susceptibility to RA excess in mice lacking RAR gamma or RXR alpha suggests that the teratogenic signal is transduced through different receptors compared with physiological RA function in the same tissue.
Collapse
Affiliation(s)
- G M Morriss-Kay
- Department of Human Anatomy and Genetics, University of Oxford, United Kingdom
| | | |
Collapse
|
37
|
Yamauchi K, Nakajima J, Hayashi H, Horiuchi R, Tata JR. Xenopus cytosolic thyroid hormone-binding protein (xCTBP) is aldehyde dehydrogenase catalyzing the formation of retinoic acid. J Biol Chem 1999; 274:8460-9. [PMID: 10085078 DOI: 10.1074/jbc.274.13.8460] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Amino acid sequencing of an internal peptide fragment derived from purified Xenopus cytosolic thyroid hormone-binding protein (xCTBP) demonstrates high similarity to the corresponding sequence of mammalian aldehyde dehydrogenase 1 (ALDH1) (Yamauchi, K., and Tata, J. R. (1994) Eur. J. Biochem. 225, 1105-1112). Here we show that xCTBP was co-purified with ALDH and 3,3',5-triiodo-L-thyronine (T3) binding activities. By photoaffinity labeling with [125I]T3, a T3-binding site in the xCTBP was estimated to reside in amino acid residues 93-114, which is distinct from the active site of the enzyme but present in the NAD+ binding domain. The amino acid sequences deduced from the two isolated xALDH1 cDNAs (xALDH1-I and xALDH1-II) were 94.6% identical to each other and very similar to those of mammalian ALDH1 enzymes. The two recombinant xALDH1 proteins exhibit both T3 binding activity and ALDH activity converting retinal to retinoic acid (RA), which are similar to those of xCTBP. The mRNAs were present abundantly in kidney and intestine of adult female Xenopus. Interestingly, their T3 binding activities were inhibited by NAD+ and NADH but not by NADP+ and NADPH, whereas NAD+ was required for their ALDH activities. Our results demonstrate that xCTBP is identical to ALDH1 and suggest that this protein might modulate RA synthesis and intracellular level of free T3.
Collapse
Affiliation(s)
- K Yamauchi
- Department of Biology, Faculty of Science, Shizuoka University, Shizuoka 422-8529, Japan
| | | | | | | | | |
Collapse
|
38
|
Moore SA, Baker HM, Blythe TJ, Kitson KE, Kitson TM, Baker EN. Sheep liver cytosolic aldehyde dehydrogenase: the structure reveals the basis for the retinal specificity of class 1 aldehyde dehydrogenases. Structure 1998; 6:1541-51. [PMID: 9862807 DOI: 10.1016/s0969-2126(98)00152-x] [Citation(s) in RCA: 169] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
BACKGROUND . Enzymes of the aldehyde dehydrogenase family are required for the clearance of potentially toxic aldehydes, and are essential for the production of key metabolic regulators. The cytosolic, or class 1, aldehyde dehydrogenase (ALDH1) of higher vertebrates has an enhanced specificity for all-trans retinal, oxidising it to the powerful differentiation factor all-trans retinoic acid. Thus, ALDH1 is very likely to have a key role in vertebrate development. RESULTS . The three-dimensional structure of sheep ALDH1 has been determined by X-ray crystallography to 2.35 A resolution. The overall tertiary and quaternary structures are very similar to those of bovine mitochondrial ALDH (ALDH2), but there are important differences in the entrance tunnel for the substrate. In the ALDH1 structure, the sidechain of the general base Glu268 is disordered and the NAD+ cofactor binds in two distinct modes. CONCLUSIONS . The submicromolar Km of ALDH1 for all-trans retinal, and its 600-fold enhanced affinity for retinal compared to acetaldehyde, are explained by the size and shape of the substrate entrance tunnel in ALDH1. All-trans retinal fits into the active-site pocket of ALDH1, but not into the pocket of ALDH2. Two helices and one surface loop that line the tunnel are likely to have a key role in defining substrate specificity in the wider ALDH family. The relative sizes of the tunnels also suggest why the bulky alcohol aversive drug disulfiram reacts more rapidly with ALDH1 than ALDH2. The disorder of Glu268 and the observation that NAD+ binds in two distinct modes indicate that flexibility is a key facet of the enzyme reaction mechanism.
Collapse
Affiliation(s)
- S A Moore
- Institute of Molecular Biosciences, Massey University, Private Bag, 11-222, Palmerston North, New Zealand
| | | | | | | | | | | |
Collapse
|
39
|
Chai X, Zhai Y, Napoli JL. cDNA cloning and characterization of a cis-retinol/3alpha-hydroxysterol short-chain dehydrogenase. J Biol Chem 1997; 272:33125-31. [PMID: 9407098 DOI: 10.1074/jbc.272.52.33125] [Citation(s) in RCA: 81] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
We report a mouse cDNA that encodes a 317-amino acid short-chain dehydrogenase which recognizes as substrates 9-cis-retinol, 11-cis-retinol, 5alpha-androstan-3alpha,17beta-diol, and 5alpha-androstan-3alpha-ol-17-one. This cis-retinol/androgen dehydrogenase (CRAD) shares closest amino acid similarity with mouse retinol dehydrogenase isozymes types 1 and 2 (86 and 91%, respectively). Recombinant CRAD uses NAD+ as its preferred cofactor and exhibits cooperative kinetics for cis-retinoids, but Michaelis-Menten kinetics for 3alpha-hydroxysterols. Unlike recombinant retinol dehydrogenase isozymes, recombinant CRAD was inhibited by 4-methylpyrazole, was not stimulated by ethanol, and did not require phosphatidylcholine for optimal activity. CRAD mRNA was expressed intensely in kidney and liver, in contrast to retinol dehydrogenase isozymes, which show strong mRNA expression only in liver. CRAD mRNA expression was widespread (relative abundance): kidney (100) > liver (92) > small intestine (9) = heart (9) > retinal pigment epithelium and sclera (4.5) > brain (2) > retina and vitreous (1.6) > spleen (0.7) > testis (0.6) > lung (0.4). CRAD may catalyze the first step in an enzymatic pathway from 9-cis-retinol to generate the retinoid X receptor ligand 9-cis-retinoic acid and/or may regenerate dihydrotestosterone from its catabolite 5alpha-androstan-3alpha,17beta-diol. These data also illustrate the multifunctional nature of short-chain dehydrogenases and provide a potential mechanism for androgen-retinoid interactions.
Collapse
Affiliation(s)
- X Chai
- Department of Biochemistry, School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, New York 14214, USA
| | | | | |
Collapse
|
40
|
Båvik C, Ward SJ, Ong DE. Identification of a mechanism to localize generation of retinoic acid in rat embryos. Mech Dev 1997; 69:155-67. [PMID: 9486538 DOI: 10.1016/s0925-4773(97)00167-6] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Vitamin A (retinol) is essential for normal mammalian development. However, its biological activity depends upon its conversion to retinoic acid (RA), a local mediator of cellular proliferation and differentiation. Previous studies have shown that embryonic RA is found specifically in tissues known to depend upon vitamin A for normal development and that its production follows uptake of maternal retinol. The aim of this study was to identify the mechanism for tissue-specific generation of RA in developing rat embryos. Here we show immunohistochemical localization of the retinol binding protein receptor, cellular retinol binding protein, retinol dehydrogenase and retinal dehydrogenase in rat embryos (presomitic to the 25-30 somite pair stage). These proteins are proposed to be responsible for cellular uptake of retinol, its intracellular transport and its conversion to RA. Thus, they potentially constitute the entire metabolic pathway from vitamin A to RA. All four proteins were detected specifically in tissues that are known to depend upon vitamin A for normal development including the yolk sac, heart, gut, notochord, somites, sensory placodes and the limb. Furthermore, our previous studies have demonstrated that uptake of retinol into the yolk sac depends upon a retinol binding protein receptor. Here we provide evidence that this mechanism functions also in the heart. Colocalization of cellular retinol binding protein, retinol and retinal dehydrogenase with the retinol binding protein receptor in tissues dependent upon vitamin A for normal development suggests that coordinate functioning of these proteins is responsible for cellular uptake of circulating retinol and its metabolism to RA. This is the first evidence of a tissue-specific mechanism for generation of RA from its precursor retinol in the developing embryo.
Collapse
Affiliation(s)
- C Båvik
- Department of Biochemistry, Vanderbilt University, Nashville, TN 37232, USA
| | | | | |
Collapse
|