1
|
Chowdhury T, Saha A, Saha A, Chakraborty A, Das N. NeuralCodOpt: Codon optimization for the development of DNA vaccines. Comput Biol Chem 2025; 116:108377. [PMID: 39954612 DOI: 10.1016/j.compbiolchem.2025.108377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 01/08/2025] [Accepted: 02/05/2025] [Indexed: 02/17/2025]
Abstract
Inefficient gene translation, driven by organisms' codon preferences, is an emerging research area since this results in sluggish processes and diminished protein yields. Our research culminates in deriving efficient, optimized codon sequences by considering organism-specific Relative Codon Adaptiveness (RCA) ranges. In this research work, we have developed a novel algorithm, Neural Codon Optimization (NeuralCodOpt), to automate the process of codon optimization tailored to a specific organism and input sequence. Our algorithm has two main parts: the target Codon Adaptation Index generation using K-Means and the automation of sequence optimization using reinforcement learning. This algorithm has been tested across a set of 130 species, yielding highly optimal results that are quite significant compared to the previous works. NeuralCodOpt has shown a high accuracy of 86.7%, which would substantially contribute to Deoxyribonucleic Acid (DNA) vaccines by improving the efficiency of DNA expression vectors. These vectors are crucial in DNA vaccination and gene therapy as they enhance protein expression levels. By further incorporating it into plasmid construction, the translational efficiency of DNA vaccines will be significantly improved.
Collapse
Affiliation(s)
- Tapan Chowdhury
- Department of Computer Science and Engineering, Techno Main Salt Lake, EM-4/1, Sector V, Salt Lake, Kolkata, 700091, West Bengal, India.
| | - Aishwarya Saha
- Department of Computer Science and Engineering, Techno Main Salt Lake, EM-4/1, Sector V, Salt Lake, Kolkata, 700091, West Bengal, India.
| | - Ananya Saha
- Department of Computer Science and Engineering, Techno Main Salt Lake, EM-4/1, Sector V, Salt Lake, Kolkata, 700091, West Bengal, India.
| | - Arnab Chakraborty
- Department of Computer Science and Engineering, Techno Main Salt Lake, EM-4/1, Sector V, Salt Lake, Kolkata, 700091, West Bengal, India.
| | - Nibir Das
- Department of Computer Science and Engineering, Techno Main Salt Lake, EM-4/1, Sector V, Salt Lake, Kolkata, 700091, West Bengal, India.
| |
Collapse
|
2
|
Zhang W, Guo J, Miao G, Chen J, Xu Y, Lai P, Zhang L, Han Y, Lam SM, Shui G, Wang Y, Huang W, Xian X. Fat-1 Ameliorates Metabolic Dysfunction-Associated Fatty Liver Disease and Atherosclerosis through Promoting the Nuclear Localization of PPARα in Hamsters. RESEARCH (WASHINGTON, D.C.) 2025; 8:0577. [PMID: 40052160 PMCID: PMC11884683 DOI: 10.34133/research.0577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 12/16/2024] [Accepted: 12/20/2024] [Indexed: 03/09/2025]
Abstract
Fat-1, an enzyme encoded by the fat-1 gene, is responsible for the conversion of endogenous omega-6 polyunsaturated fatty acids into omega-3 polyunsaturated fatty acids in Caenorhabditis elegans. To better investigate whether the expression of Fat-1 will exert a beneficial function in dyslipidemia and metabolic dysfunction-associated fatty liver disease (MAFLD), we established an adeno-associated virus 9 expressing Fat-1. We found that adeno-associated-virus-mediated expression of Fat-1 markedly reduced the levels of plasma triglycerides and total cholesterol but increased high-density lipoprotein levels in male wild-type hamsters on both chow diet and high-fat diet as well as in chow-diet-fed male LDLR-/- hamsters. Fat-1 ameliorated diet-induced MAFLD in wild-type hamsters by enhancing fatty acid oxidation through the hepatic peroxisome proliferator-activated receptor α (PPARα)-dependent pathway. Mechanistically, Fat-1 increased the levels of multiple lipid derivatives as ligands for PPARα and simultaneously facilitated the nuclear localization of PPARα. Our results provide new insights into the multiple therapeutic potentials of Fat-1 to treat dyslipidemia, MAFLD, and atherosclerosis.
Collapse
Affiliation(s)
- Wenxi Zhang
- Institute of Cardiovascular Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, School of Basic Medical Sciences,
Peking University, Beijing 100191, China
| | - Jiabao Guo
- Institute of Cardiovascular Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, School of Basic Medical Sciences,
Peking University, Beijing 100191, China
| | - Guolin Miao
- Institute of Cardiovascular Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, School of Basic Medical Sciences,
Peking University, Beijing 100191, China
| | - Jingxuan Chen
- Institute of Cardiovascular Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, School of Basic Medical Sciences,
Peking University, Beijing 100191, China
| | - Yitong Xu
- Institute of Cardiovascular Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, School of Basic Medical Sciences,
Peking University, Beijing 100191, China
| | - Pingping Lai
- Institute of Cardiovascular Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, School of Basic Medical Sciences,
Peking University, Beijing 100191, China
| | - Lianxin Zhang
- Institute of Cardiovascular Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, School of Basic Medical Sciences,
Peking University, Beijing 100191, China
| | - Yufei Han
- Institute of Cardiovascular Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, School of Basic Medical Sciences,
Peking University, Beijing 100191, China
| | - Sin Man Lam
- State Key Laboratory of Molecular Developmental Biology,
Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
- LipidALL Technologies Company Limited, Changzhou 213022, Jiangsu Province, China
| | - Guanghou Shui
- State Key Laboratory of Molecular Developmental Biology,
Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yuhui Wang
- Institute of Cardiovascular Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, School of Basic Medical Sciences,
Peking University, Beijing 100191, China
| | - Wei Huang
- Institute of Cardiovascular Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, School of Basic Medical Sciences,
Peking University, Beijing 100191, China
| | - Xunde Xian
- Institute of Cardiovascular Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, School of Basic Medical Sciences,
Peking University, Beijing 100191, China
- Beijing Key Laboratory of Cardiovascular Receptors Research,
Peking University Third Hospital, Beijing 100191, China
| |
Collapse
|
3
|
Fang Y, Chen X, Sun Z, Yan X, Shi L, Jin C. Discovery and investigation of the truncation of the (GGGGS)n linker and its effect on the productivity of bispecific antibodies expressed in mammalian cells. Bioprocess Biosyst Eng 2025; 48:159-170. [PMID: 39488806 DOI: 10.1007/s00449-024-03100-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 10/22/2024] [Indexed: 11/04/2024]
Abstract
Protein engineering is a powerful tool for designing or modifying therapeutic proteins for enhanced efficacy, increased safety, reduced immunogenicity, and improved delivery. Fusion proteins are an important group of therapeutic compounds that often require an ideal linker to combine diverse domains to fulfill the desired function. GGGGS [(G4S)n] linkers are commonly used during the engineering of proteins because of their flexibility and resistance to proteases. However, unexpected truncation was observed in the linker of a bispecific antibody, which presented challenges in terms of production and quality. In this work, a bispecific antibody containing 5*G4S was investigated, and the truncation position of the linkers was confirmed. Our investigation revealed that codon optimization, which can overcome the negative influence of a high repetition rate and high GC content in the (G4S)n linker, may reduce the truncation rate from 5-10% to 1-5%. Moreover, the probability of truncation when a shortened 3* or 4*G4S linker was used was much lower than that when a 5*G4S linker was used in mammalian cells. In the case of expressing a bispecific antibody, the bioactivity and purity of the product containing a shorter G4S linker were further investigated and are discussed.
Collapse
Affiliation(s)
- Yan Fang
- Department of Chemistry Manufacturing and Controls, Shanghai Qilu Pharmaceutical R&D Center Limited, 576 Libing Road, Shanghai, 310115, China.
| | - Xi Chen
- Department of Chemistry Manufacturing and Controls, Shanghai Qilu Pharmaceutical R&D Center Limited, 576 Libing Road, Shanghai, 310115, China
| | - Zhen Sun
- Department of Chemistry Manufacturing and Controls, Shanghai Qilu Pharmaceutical R&D Center Limited, 576 Libing Road, Shanghai, 310115, China
| | - Xiaodan Yan
- Department of Chemistry Manufacturing and Controls, Shanghai Qilu Pharmaceutical R&D Center Limited, 576 Libing Road, Shanghai, 310115, China
| | - Lani Shi
- Department of Chemistry Manufacturing and Controls, Shanghai Qilu Pharmaceutical R&D Center Limited, 576 Libing Road, Shanghai, 310115, China
| | - Congcong Jin
- Department of Chemistry Manufacturing and Controls, Shanghai Qilu Pharmaceutical R&D Center Limited, 576 Libing Road, Shanghai, 310115, China
| |
Collapse
|
4
|
Kalakenger S, Yildiz Arslan S, Turhan F, Acar M, Solak K, Mavi A, Unver Y. Heterologous Expression of Codon-Optimized Azurin Transferred by Magnetofection Method in MCF-10A Cells. Mol Biotechnol 2024; 66:1434-1445. [PMID: 37378861 DOI: 10.1007/s12033-023-00798-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 06/15/2023] [Indexed: 06/29/2023]
Abstract
Transfection efficiency of the immortalized human breast epithelial cell line MCF-10A remains an issue that needs to be resolved. In this study, it was aimed to deliver a recombinant DNA (pCMV-Azu-GFP) to the MCF-10A cells by the magnetofection method using magnetic nanoparticles (MNPs) and a simple magnet to accelerate the DNA delivery. Surface positively modified silica-coated iron oxide MNPs (MSNP-NH2) were produced and characterized via TEM, FTIR, and DLS analyses. The recombinant DNA (rDNA) was obtained by the integration of codon-optimized azurin to produce a fusion protein. Then, rDNA cloned in Escherichia coli cells was validated by sequence analysis. The electrostatically conjugated rDNA on MSNP-NH2 with an enhancer polyethyleneimine (PEI) was studied by agarose gel electrophoresis and the optimum conditions were determined to apply to the cell. A dose-dependent statistical difference was observed on treated cells based on the MTS test. The expression of the fusion protein after magnetofection was determined using laser scanning confocal microscope imaging and western blot analysis. It was observed that the azurin gene could be transferred to MCF-10A cells by magnetofection. Thus, when the azurin gene is used as a breast cancer treatment agent, it can be expressed in healthy cells without toxic effects.
Collapse
Affiliation(s)
- Saadet Kalakenger
- Department of Molecular Biology and Genetics, Graduate School of Natural and Applied Sciences, Atatürk University, Erzurum, Turkey
| | - Seyda Yildiz Arslan
- Department of Molecular Biology and Genetics, Graduate School of Natural and Applied Sciences, Atatürk University, Erzurum, Turkey
| | - Fatma Turhan
- Department of Nanoscience and Nanoengineering, Graduate School of Natural and Applied Sciences, Atatürk University, Erzurum, Turkey
| | - Melek Acar
- Department of Molecular Biology and Genetics, Graduate School of Natural and Applied Sciences, Atatürk University, Erzurum, Turkey
| | - Kubra Solak
- Department of Nanoscience and Nanoengineering, Graduate School of Natural and Applied Sciences, Atatürk University, Erzurum, Turkey
| | - Ahmet Mavi
- Department of Nanoscience and Nanoengineering, Graduate School of Natural and Applied Sciences, Atatürk University, Erzurum, Turkey
- Department of Mathematics and Science Education, Education Faculty of Kazım Karabekir, Atatürk University, Erzurum, Turkey
| | - Yagmur Unver
- Department of Molecular Biology and Genetics, Faculty of Science, Atatürk University, Erzurum, Turkey.
| |
Collapse
|
5
|
The potential of RNA-based therapy for kidney diseases. Pediatr Nephrol 2023; 38:327-344. [PMID: 35507149 PMCID: PMC9066145 DOI: 10.1007/s00467-021-05352-w] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 10/29/2021] [Accepted: 10/29/2021] [Indexed: 01/10/2023]
Abstract
Inherited kidney diseases (IKDs) are a large group of disorders affecting different nephron segments, many of which progress towards kidney failure due to the absence of curative therapies. With the current advances in genetic testing, the understanding of the molecular basis and pathophysiology of these disorders is increasing and reveals new potential therapeutic targets. RNA has revolutionized the world of molecular therapy and RNA-based therapeutics have started to emerge in the kidney field. To apply these therapies for inherited kidney disorders, several aspects require attention. First, the mRNA must be combined with a delivery vehicle that protects the oligonucleotides from degradation in the blood stream. Several types of delivery vehicles have been investigated, including lipid-based, peptide-based, and polymer-based ones. Currently, lipid nanoparticles are the most frequently used formulation for systemic siRNA and mRNA delivery. Second, while the glomerulus and tubules can be reached by charge- and/or size-selectivity, delivery vehicles can also be equipped with antibodies, antibody fragments, targeting peptides, carbohydrates or small molecules to actively target receptors on the proximal tubule epithelial cells, podocytes, mesangial cells or the glomerular endothelium. Furthermore, local injection strategies can circumvent the sequestration of RNA formulations in the liver and physical triggers can also enhance kidney-specific uptake. In this review, we provide an overview of current and potential future RNA-based therapies and targeting strategies that are in development for kidney diseases, with particular interest in inherited kidney disorders.
Collapse
|
6
|
Daya T, Jeje O, Maake R, Aloke C, Khoza T, Achilonu I. Expression, Purification, and Biophysical Characterization of Klebsiella Pneumoniae Nicotinate Nucleotide Adenylyltransferase. Protein J 2022; 41:141-156. [DOI: 10.1007/s10930-021-10037-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/20/2021] [Indexed: 10/19/2022]
|
7
|
Gupta A, Andresen JL, Manan RS, Langer R. Nucleic acid delivery for therapeutic applications. Adv Drug Deliv Rev 2021; 178:113834. [PMID: 34492233 DOI: 10.1016/j.addr.2021.113834] [Citation(s) in RCA: 170] [Impact Index Per Article: 42.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 05/25/2021] [Accepted: 06/11/2021] [Indexed: 02/07/2023]
Abstract
Recent medical advances have exploited the ability to address a given disease at the underlying level of transcription and translation. These treatment paradigms utilize nucleic acids - including short interfering RNA (siRNA), microRNA (miRNA), antisense oligonucleotides (ASO), and messenger RNA (mRNA) - to achieve a desired outcome ranging from gene knockdown to induced expression of a selected target protein. Towards this end, numerous strategies for encapsulation or stabilization of various nucleic acid structures have been developed in order to achieve intracellular delivery. In this review, we discuss several therapeutic applications of nucleic acids directed towards specific diseases and tissues of interest, in particular highlighting recent technologies which have reached late-stage clinical trials and received FDA approval.
Collapse
Affiliation(s)
- Akash Gupta
- David H Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 500 Main Street, Cambridge, MA 02139, USA
| | - Jason L Andresen
- David H Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 500 Main Street, Cambridge, MA 02139, USA; Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Rajith S Manan
- David H Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 500 Main Street, Cambridge, MA 02139, USA; Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Robert Langer
- David H Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 500 Main Street, Cambridge, MA 02139, USA; Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| |
Collapse
|
8
|
Fox DM, Branson KM, Walker RC. mRNA codon optimization with quantum computers. PLoS One 2021; 16:e0259101. [PMID: 34714834 PMCID: PMC8555812 DOI: 10.1371/journal.pone.0259101] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 10/12/2021] [Indexed: 11/19/2022] Open
Abstract
Reverse translation of polypeptide sequences to expressible mRNA constructs is a NP-hard combinatorial optimization problem. Each amino acid in the protein sequence can be represented by as many as six codons, and the process of selecting the combination that maximizes probability of expression is termed codon optimization. This work investigates the potential impact of leveraging quantum computing technology for codon optimization. A Quantum Annealer (QA) is compared to a standard genetic algorithm (GA) programmed with the same objective function. The QA is found to be competitive in identifying optimal solutions. The utility of gate-based systems is also evaluated using a simulator resulting in the finding that while current generations of devices lack the hardware requirements, in terms of both qubit count and connectivity, to solve realistic problems, future generation devices may be highly efficient.
Collapse
Affiliation(s)
- Dillion M. Fox
- Data and Computational Science, Medicinal Sciences and Technology, GlaxoSmithKline, Collegeville, Pennsylvania, United States of America
| | - Kim M. Branson
- Artificial Intelligence and Machine Learning, Medicinal Sciences and Technology, GlaxoSmithKline, Collegeville, Pennsylvania, United States of America
| | - Ross C. Walker
- Data and Computational Science, Medicinal Sciences and Technology, GlaxoSmithKline, Collegeville, Pennsylvania, United States of America
- Department of Chemistry and Biochemistry, University of California San Diego, San Diego, La Jolla, California, United States of America
| |
Collapse
|
9
|
Soluble Expression and Catalytic Properties of Codon-Optimized Recombinant Bromelain from MD2 Pineapple in Escherichia coli. Protein J 2021; 40:406-418. [PMID: 33713245 DOI: 10.1007/s10930-021-09974-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/03/2021] [Indexed: 01/15/2023]
Abstract
Bromelain, a member of cysteine proteases, is found abundantly in pineapple (Ananas comosus), and it has a myriad of versatile applications. However, attempts to produce recombinant bromelain for commercialization purposes are challenging due to its expressibility and solubility. This study aims to express recombinant fruit bromelain from MD2 pineapple (MD2Bro; accession no: OAY85858.1) in soluble and active forms using Escherichia coli host cell. The gene encoding MD2Bro was codon-optimized, synthesized, and subsequently ligated into pET-32b( +) for further transformation into Escherichia coli BL21-CodonPlus(DE3). Under this strategy, the expressed MD2Bro was in a fusion form with thioredoxin (Trx) tag at its N-terminal (Trx-MD2Bro). The result showed that Trx-MD2Bro was successfully expressed in fully soluble form. The protein was successfully purified using single-step Ni2+-NTA chromatography and confirmed to be in proper folds based on the circular dichroism spectroscopy analysis. The purified Trx-MD2Bro was confirmed to be catalytically active against N-carbobenzoxyglycine p-nitrophenyl ester (N-CBZ-Gly-pNP) with a specific activity of 6.13 ± 0.01 U mg-1 and inhibited by a cysteine protease inhibitor, E-64 (IC50 of 74.38 ± 1.65 nM). Furthermore, the catalytic efficiency (kcat/KM) Trx-MD2Bro was calculated to be at 5.64 ± 0.02 × 10-2 µM-1 s-1 while the optimum temperature and pH were at 50 °C and pH 6.0, respectively. Furthermore, the catalytic activity of Trx-MD2Bro was also affected by ethylenediaminetetraacetic acid (EDTA) or metal ions. Altogether it is proposed that the combination of codon optimization and the use of an appropriate vector are important in the production of a soluble and actively stable recombinant bromelain.
Collapse
|
10
|
Mc Cafferty S, De Temmerman J, Kitada T, Becraft JR, Weiss R, Irvine DJ, Devreese M, De Baere S, Combes F, Sanders NN. In Vivo Validation of a Reversible Small Molecule-Based Switch for Synthetic Self-Amplifying mRNA Regulation. Mol Ther 2020; 29:1164-1173. [PMID: 33186690 DOI: 10.1016/j.ymthe.2020.11.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 10/03/2020] [Accepted: 11/05/2020] [Indexed: 12/01/2022] Open
Abstract
Synthetic mRNA therapeutics have the potential to revolutionize healthcare, as they enable patients to produce therapeutic proteins inside their own bodies. However, convenient methods that allow external control over the timing and magnitude of protein production after in vivo delivery of synthetic mRNA are lacking. In this study, we validate the in vivo utility of a synthetic self-amplifying mRNA (RNA replicon) whose expression can be turned off using a genetic switch that responds to oral administration of trimethoprim (TMP), a US Food and Drug Administration (FDA)-approved small-molecule drug. After intramuscular electroporation, the engineered RNA replicon exhibited dose-dependent and reversible expression of its encoded protein upon TMP administration. The TMP serum level needed for maximal downregulation of protein translation was approximately 45-fold below that used in humans for therapeutic purposes. To demonstrate the therapeutic potential of the technology, we injected mice with a TMP-responsive RNA replicon encoding erythropoietin (EPO) and successfully controlled the timing and magnitude of EPO production as well as changes in hematocrit. This work demonstrates the feasibility of controlling mRNA kinetics in vivo, thereby broadly expanding the clinical versatility of mRNA therapeutics.
Collapse
Affiliation(s)
- Sean Mc Cafferty
- Laboratory of Gene Therapy, Department of Nutrition, Genetics and Ethology, Faculty of Veterinary Medicine, Ghent University, 9820 Merelbeke, Belgium; Cancer Research Institute Ghent (CRIG), Ghent University, 9000 Ghent, Belgium
| | - Joyca De Temmerman
- Laboratory of Gene Therapy, Department of Nutrition, Genetics and Ethology, Faculty of Veterinary Medicine, Ghent University, 9820 Merelbeke, Belgium; Cancer Research Institute Ghent (CRIG), Ghent University, 9000 Ghent, Belgium; Department of Pathology, Bacteriology and Poultry diseases, Faculty of Veterinary Medicine, Ghent University, 9820 Merelbeke, Belgium
| | | | | | - Ron Weiss
- Synthetic Biology Center, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Koch Institute for Integrative Cancer Research, Cambridge, MA 02139, USA
| | - Darrell J Irvine
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Koch Institute for Integrative Cancer Research, Cambridge, MA 02139, USA; Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139, USA; Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
| | - Mathias Devreese
- Laboratory of Pharmacology and Toxicology, Department of Pharmacology, Toxicology and Biochemistry, Faculty of Veterinary Medicine, Ghent University, 9820 Merelbeke, Belgium
| | - Siegrid De Baere
- Laboratory of Pharmacology and Toxicology, Department of Pharmacology, Toxicology and Biochemistry, Faculty of Veterinary Medicine, Ghent University, 9820 Merelbeke, Belgium
| | - Francis Combes
- Laboratory of Gene Therapy, Department of Nutrition, Genetics and Ethology, Faculty of Veterinary Medicine, Ghent University, 9820 Merelbeke, Belgium; Cancer Research Institute Ghent (CRIG), Ghent University, 9000 Ghent, Belgium
| | - Niek N Sanders
- Laboratory of Gene Therapy, Department of Nutrition, Genetics and Ethology, Faculty of Veterinary Medicine, Ghent University, 9820 Merelbeke, Belgium; Cancer Research Institute Ghent (CRIG), Ghent University, 9000 Ghent, Belgium.
| |
Collapse
|
11
|
Yang C, Tian W, Ma S, Guo M, Lin X, Gao F, Dong X, Gao M, Wang Y, Liu G, Xian X. AAV-Mediated ApoC2 Gene Therapy: Reversal of Severe Hypertriglyceridemia and Rescue of Neonatal Death in ApoC2-Deficient Hamsters. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2020; 18:692-701. [PMID: 32802915 PMCID: PMC7424175 DOI: 10.1016/j.omtm.2020.07.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Accepted: 07/10/2020] [Indexed: 11/25/2022]
Abstract
Apolipoprotein C2 (ApoC2) is a key activator of lipoprotein lipase for plasma triglyceride metabolism. ApoC2-deficient patients present with severe hypertriglyceridemia and recurrent acute pancreatitis, for whom the only effective treatment is the infusion of normal plasma containing ApoC2. However, since ApoC2 has a fast catabolic rate, a repeated infusion is required, which limits its clinical use. To explore a safe and efficient approach for ApoC2 deficiency, we herein established an adeno-associated virus expressing human ApoC2 (AAV-hApoC2) to evaluate the efficacy and safety of gene therapy in ApoC2-deficient hypertriglyceridemic hamsters. Administration of AAV-hApoC2 via jugular or orbital vein in adult and neonatal ApoC2-deficient hamsters, respectively, could prevent the neonatal death and effectively improve severe hypertriglyceridemia of ApoC2-deficient hamsters without side effects in a long-term manner. Our novel findings in the present study demonstrate that AAV-hApoC2-mediated gene therapy will be a promising therapeutic approach for clinical patients with severe hypertriglyceridemia caused by ApoC2 deficiency.
Collapse
Affiliation(s)
- Chun Yang
- Institute of Cardiovascular Sciences and Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, Peking University, Beijing 100191, China
| | - Wenhong Tian
- Beijing FivePlus Molecular Medicine Institute Co. Ltd., Beijing 100176, China
| | - Sisi Ma
- Beijing FivePlus Molecular Medicine Institute Co. Ltd., Beijing 100176, China
| | - Mengmeng Guo
- Institute of Cardiovascular Sciences and Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, Peking University, Beijing 100191, China
| | - Xiao Lin
- Institute of Cardiovascular Sciences and Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, Peking University, Beijing 100191, China
| | - Fengying Gao
- Institute of Cardiovascular Sciences and Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, Peking University, Beijing 100191, China
| | - Xiaoyan Dong
- Beijing FivePlus Molecular Medicine Institute Co. Ltd., Beijing 100176, China
| | - Mingming Gao
- Laboratory of Lipid Metabolism, Institute of Basic Medicine, Hebei Medical University, Shijiazhuang 050017, China
| | - Yuhui Wang
- Institute of Cardiovascular Sciences and Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, Peking University, Beijing 100191, China
| | - George Liu
- Institute of Cardiovascular Sciences and Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, Peking University, Beijing 100191, China
| | - Xunde Xian
- Institute of Cardiovascular Sciences and Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, Peking University, Beijing 100191, China
| |
Collapse
|
12
|
Shayesteh M, Ghasemi F, Tabandeh F, Yakhchali B, Shakibaie M. Design, construction, and expression of recombinant human interferon beta gene in CHO-s cell line using EBV-based expression system. Res Pharm Sci 2020; 15:144-153. [PMID: 32582354 PMCID: PMC7306247 DOI: 10.4103/1735-5362.283814] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 11/10/2019] [Accepted: 05/04/2020] [Indexed: 11/04/2022] Open
Abstract
Background and purpose Codon optimization has been considered as a powerful strategy to increase the expression level of protein therapeutics in mammalian cells. As an empirical approach to study the effects of the codon usage and GC content on heterologous gene expression in suspension adapted Chinese hamster ovary (CHO-s) cells, we redesigned the recombinant human interferon beta (rhIFN- β) gene based on the codon preference of the CHO cell in a way to increase the GC content in the third position of each codon. Experimental approach The nucleotide sequence of the codon-optimized rhIFN-β was synthesized in parallel with the wild-type and expressed transiently in CHO-s cells using Epstein-Bar virus (EBV)-based expression system. The protein expression of the rhIFN-β by codon-optimized and wild-type genes were quantified using ELISA test. Findings / Results The results indicated a 2.8-fold increase in the expression level of the biologically active form of the rhIFN-β by codon-optimized sequence. Conclusion and implications These results shed light on the capability of codon optimization to create a stable CHO cell for scaling up the production of recombinant therapeutics such as rhIFN-β.
Collapse
Affiliation(s)
- Mohadeseh Shayesteh
- Department of Industrial and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, I.R. Iran
| | - Fahimeh Ghasemi
- Department of Medical Biotechnology, Faculty of Medicine, Birjand University of Medical Sciences, Birjand, I.R. Iran
| | - Fatemeh Tabandeh
- Department of Industrial and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, I.R. Iran
| | - Bagher Yakhchali
- Department of Industrial and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, I.R. Iran
| | - Mehdi Shakibaie
- Department of Industrial and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, I.R. Iran
| |
Collapse
|
13
|
Rojas-Sánchez U, López-Calleja AC, Millán-Chiu BE, Fernández F, Loske AM, Gómez-Lim MA. Enhancing the yield of human erythropoietin in Aspergillus niger by introns and CRISPR-Cas9. Protein Expr Purif 2020; 168:105570. [DOI: 10.1016/j.pep.2020.105570] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 01/12/2020] [Accepted: 01/13/2020] [Indexed: 12/14/2022]
|
14
|
Hidden Aspects of Valency in Immune System Regulation. Trends Immunol 2019; 40:1082-1094. [PMID: 31734148 DOI: 10.1016/j.it.2019.10.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 10/10/2019] [Accepted: 10/16/2019] [Indexed: 02/08/2023]
Abstract
Valency can be defined as the number of discrete interactions a biomolecule can engage in. Valency can be critical for function, such as determining whether a molecule acts as a scaffold for assembling large supramolecular complexes or forms a functional dimer. Here, we highlight the importance of the role of valency in regulating immune responses, with a focus on innate immunity. We discuss some of the ways in which valency itself is regulated through transcriptional, post-transcriptional, and post-translational modifications. Finally, we propose that the valency model can be applied at the whole cell level to study differences in individual cell responses with relevance to putative therapeutic applications.
Collapse
|
15
|
Goh CKW, Silvester J, Wan Mahadi WNS, Chin LP, Ying LT, Leow TC, Kurahashi R, Takano K, Budiman C. Expression and characterization of functional domains of FK506-binding protein 35 from Plasmodium knowlesi. Protein Eng Des Sel 2018; 31:489-498. [PMID: 31120120 DOI: 10.1093/protein/gzz008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Revised: 12/24/2018] [Accepted: 04/06/2019] [Indexed: 11/13/2022] Open
Abstract
The FK506-binding protein of Plasmodium knowlesi (Pk-FKBP35) is considerably a viable antimalarial drug target, which belongs to the peptidyl-prolyl cis-trans isomerase (PPIase) protein family member. Structurally, this protein consists of an N-terminal FK506-binding domain (FKBD) and a C-terminal tetratricopeptide repeat domain (TPRD). This study aims to decipher functional properties of these domains as a platform for development of novel antimalarial drugs. Accordingly, full-length Pk-FKBP35 as well as its isolated domains, Pk-FKBD and Pk-TPRD were overexpressed, purified, and characterized. The results showed that catalytic PPIase activity was confined to the full-length Pk-FKBP35 and Pk-FKBD, suggesting that the catalytic activity is structurally regulated by the FKBD. Meanwhile, oligomerization analysis revealed that Pk-TPRD is essential for dimerization. Asp55, Arg60, Trp77 and Phe117 in the Pk-FKBD were considerably important for catalysis as underlined by significant reduction of PPIase activity upon mutations at these residues. Further, inhibition activity of Pk-FKBP35 towards calcineurin phosphatase activity revealed that the presence of FKBD is essential for the inhibitory property, while TPRD may be important for efficient binding to calcineurin. We then discussed possible roles of FKBP35 in Plasmodium cells and proposed mechanisms by which the immunosuppressive drug, FK506, interacts with the protein.
Collapse
Affiliation(s)
- Carlmond Kah Wun Goh
- Biotechnology Research Institute, Universiti Malaysia Sabah, Kota Kinabalu, Sabah, Malaysia
| | - Jovi Silvester
- Biotechnology Research Institute, Universiti Malaysia Sabah, Kota Kinabalu, Sabah, Malaysia
| | | | - Lee Ping Chin
- Faculty of Science and Natural Resources, Universiti Malaysia Sabah, Kota Kinabalu, Sabah, Malaysia
| | - Lau Tiek Ying
- Biotechnology Research Institute, Universiti Malaysia Sabah, Kota Kinabalu, Sabah, Malaysia
| | - Thean Chor Leow
- Enzyme and Microbial Technology Research Center, Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Malaysia
| | - Ryo Kurahashi
- Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, Sakyo-ku, Kyoto, Japan
| | - Kazufumi Takano
- Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, Sakyo-ku, Kyoto, Japan
| | - Cahyo Budiman
- Biotechnology Research Institute, Universiti Malaysia Sabah, Kota Kinabalu, Sabah, Malaysia
| |
Collapse
|
16
|
Uddin A, Mazumder TH, Chakraborty S. Understanding molecular biology of codon usage in mitochondrial complex IV genes of electron transport system: Relevance to mitochondrial diseases. J Cell Physiol 2018; 234:6397-6413. [DOI: 10.1002/jcp.27375] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Accepted: 08/17/2018] [Indexed: 12/17/2022]
Affiliation(s)
- Arif Uddin
- Department of Zoology Moinul Hoque Choudhury Memorial Science College Hailakandi Assam India
| | | | | |
Collapse
|
17
|
Improving heterologous expression of porcine follicle-stimulating hormone in Pichia pastoris by integrating molecular strategies and culture condition optimization. Appl Microbiol Biotechnol 2018; 102:8867-8882. [PMID: 30136206 DOI: 10.1007/s00253-018-9260-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Revised: 07/14/2018] [Accepted: 07/18/2018] [Indexed: 10/28/2022]
Abstract
Porcine follicle-stimulating hormone (pFSH), comprising α and β subunits, is commonly used to induce superovulation in domestic animals in assisted reproduction technologies; however, the practical application of pFSH is inhibited by the limited efficiency of its production. Recombinant yeast-derived FSH offers a practical alternative; however, the heterologous expression efficiency remains disappointingly low. To improve FSH production in Pichia pastoris, a series of molecular strategies, together with fermentation optimization, were tested in the present study. By comparing clones of the Muts phenotype strain, it was observed that the yield of soluble pFSH increased by approximately 96% in clones of the Mut+ phenotype strain. The protein levels of soluble pFSHβ, which confers biological specificity, increased by approximately 143 and 22% after two kinds of codon optimization strategies, respectively. Moreover, compared with the production of soluble pFSHβ and SUMO-pFSHβ, the production of soluble protein HSA-pFSHβ was significantly improved. Furthermore, the optimum pH and methanol concentration for expressing soluble HSA-pFSH in strain H3-3 were determined as 5.0-6.0 and 1.5-2% in shake-flask, and the yield of soluble HSA-pFSH could reach 40.8 mg/l after purification. In vitro bioactivity assays showed that recombinant HSA-pFSH could efficiently stimulate cAMP synthesis in HEK293 cells expressing porcine FSHR. In conclusion, our results demonstrated that the application of phenotypic selection of aox1 mutants, combined with codon optimization, the choice of fusion partners, and fermentation optimization, considerably increased the yield of pFSH in supernatant of P. pastoris and thus provided a valuable reference for the large-scale recombinant expression of pFSH.
Collapse
|
18
|
Hu J, Chen X, Zhang X, Yuan X, Yang M, Dai H, Yang W, Zhou Q, Wen W, Wang Q, Qin W, Zhao A. A fusion-protein approach enabling mammalian cell production of tumor targeting protein domains for therapeutic development. Protein Sci 2018; 27:933-944. [PMID: 29500915 PMCID: PMC5916118 DOI: 10.1002/pro.3399] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Revised: 02/11/2018] [Accepted: 03/01/2018] [Indexed: 02/05/2023]
Abstract
A single chain Fv fragment (scFv) is a fusion of the variable regions of heavy (VH ) and light (VL ) chains of immunoglobulins. They are important elements of chimeric antigen receptors for cancer therapy. We sought to produce a panel of 16 extracellular protein domains of tumor markers for use in scFv yeast library screenings. A series of vectors comprising various combinations of expression elements was made, but expression was unpredictable and more than half of the protein domains could not be produced using any of the constructs. Here we describe a novel fusion expression system based on mouse TEM7 (tumor endothelial marker 7), which could facilitate protein expression. With this approach we could produce all but one of the tumor marker domains that could not otherwise be expressed. In addition, we demonstrated that the tumor associated antigen hFZD10 produced as a fusion protein with mTEM7 could be used to enrich scFv antibodies from a yeast display library. Collectively our study demonstrates the potential of specific fusion proteins based on mTEM7 in enabling mammalian cell production of tumor targeting protein domains for therapeutic development.
Collapse
Affiliation(s)
- Jia Hu
- Lung Cancer Research CenterWest China Hospital, Sichuan UniversityChengduChina
- Abramson Cancer Center, Perelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvania
| | - Xiang Chen
- Abramson Cancer Center, Perelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvania
| | - Xuhua Zhang
- Abramson Cancer Center, Perelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvania
- School of Life SciencesZhengzhou UniversityZhengzhouChina
| | - Xiaopeng Yuan
- Abramson Cancer Center, Perelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvania
- Zhujiang Hospital, SouthernMedical UniversityGuangzhouChina
| | - Mingjuan Yang
- Abramson Cancer Center, Perelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvania
| | - Hui Dai
- Xinjiang Karamay Central HospitalKaramay CityXinjiangChina
| | - Wei Yang
- Abramson Cancer Center, Perelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvania
| | - Qinghua Zhou
- Lung Cancer Research CenterWest China Hospital, Sichuan UniversityChengduChina
| | - Weihong Wen
- State Key Laboratory of Cancer Biology, Department of ImmunologyXijing Hospital, Fourth Military Medical UniversityChinaXi'an
| | - Qirui Wang
- Abramson Cancer Center, Perelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvania
- College of Traditional Chinese MedicineSouthernMedical UniversityGuang DongChina
| | - Weijun Qin
- Department of UrologyXijing Hospital, Fourth Military Medical UniversityChinaXi'an
| | - Aizhi Zhao
- Abramson Cancer Center, Perelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvania
| |
Collapse
|
19
|
Magistrelli G, Poitevin Y, Schlosser F, Pontini G, Malinge P, Josserand S, Corbier M, Fischer N. Optimizing assembly and production of native bispecific antibodies by codon de-optimization. MAbs 2017; 9:231-239. [PMID: 28001485 DOI: 10.1080/19420862.2016.1267088] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
When production of bispecific antibodies requires the co-expression and assembly of three or four polypeptide chains, low expression of one chain can significantly limit assembly and yield. κλ bodies, fully human bispecific antibodies with native IgG structure, are composed of a common heavy chain and two different light chains, one kappa and one lambda. No engineering is applied to force pairing of the chains, thus both monospecific and bispecific antibodies are secreted in the supernatant. In this context, stoichiometric expression of the two light chains allows for maximal assembly of the bispecific antibody. In this study, we selected a κλ body with suboptimal characteristics due to low kappa chain expression. Codon optimization to increase expression of the kappa chain did not improve bispecific yield. Surprisingly, progressive introduction of non-optimal codons into the sequence of the lambda chain resulted in lowering its expression for an optimal tuning of the relative distribution of monospecific and bispecific antibodies. This codon de-optimization led to doubling of the κλ body yield. These results indicate that assembly of different proteins into a recombinant complex is an interconnected process and that reducing the expression of one polypeptide can actually increase the overall yield.
Collapse
Affiliation(s)
| | - Yves Poitevin
- a Novimmune SA , Plan-les-Ouates , Geneva , Switzerland
| | | | | | | | | | - Marie Corbier
- a Novimmune SA , Plan-les-Ouates , Geneva , Switzerland
| | | |
Collapse
|
20
|
Presence of a Shared 5'-Leader Sequence in Ancestral Human and Mammalian Retroviruses and Its Transduction into Feline Leukemia Virus. J Virol 2017; 91:JVI.00829-17. [PMID: 28768854 DOI: 10.1128/jvi.00829-17] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Accepted: 07/24/2017] [Indexed: 12/13/2022] Open
Abstract
Recombination events induce significant genetic changes, and this process can result in virus genetic diversity or in the generation of novel pathogenicity. We discovered a new recombinant feline leukemia virus (FeLV) gag gene harboring an unrelated insertion, termed the X region, which was derived from Felis catus endogenous gammaretrovirus 4 (FcERV-gamma4). The identified FcERV-gamma4 proviruses have lost their coding capabilities, but some can express their viral RNA in feline tissues. Although the X-region-carrying recombinant FeLVs appeared to be replication-defective viruses, they were detected in 6.4% of tested FeLV-infected cats. All isolated recombinant FeLV clones commonly incorporated a middle part of the FcERV-gamma4 5'-leader region as an X region. Surprisingly, a sequence corresponding to the portion contained in all X regions is also present in at least 13 endogenous retroviruses (ERVs) observed in the cat, human, primate, and pig genomes. We termed this shared genetic feature the commonly shared (CS) sequence. Despite our phylogenetic analysis indicating that all CS-sequence-carrying ERVs are classified as gammaretroviruses, no obvious closeness was revealed among these ERVs. However, the Shannon entropy in the CS sequence was lower than that in other parts of the provirus genome. Notably, the CS sequence of human endogenous retrovirus T had 73.8% similarity with that of FcERV-gamma4, and specific signals were detected in the human genome by Southern blot analysis using a probe for the FcERV-gamma4 CS sequence. Our results provide an interesting evolutionary history for CS-sequence circulation among several distinct ancestral viruses and a novel recombined virus over a prolonged period.IMPORTANCE Recombination among ERVs or modern viral genomes causes a rapid evolution of retroviruses, and this phenomenon can result in the serious situation of viral disease reemergence. We identified a novel recombinant FeLV gag gene that contains an unrelated sequence, termed the X region. This region originated from the 5' leader of FcERV-gamma4, a replication-incompetent feline ERV. Surprisingly, a sequence corresponding to the X region is also present in the 5' portion of other ERVs, including human endogenous retroviruses. Scattered copies of the ERVs carrying the unique genetic feature, here named the commonly shared (CS) sequence, were found in each host genome, suggesting that ancestral viruses may have captured and maintained the CS sequence. More recently, a novel recombinant FeLV hijacked the CS sequence from inactivated FcERV-gamma4 as the X region. Therefore, tracing the CS sequences can provide unique models for not only the modern reservoir of new recombinant viruses but also the genetic features shared among ancient retroviruses.
Collapse
|
21
|
Impact of different promoters, promoter mutation, and an enhancer on recombinant protein expression in CHO cells. Sci Rep 2017; 7:10416. [PMID: 28874794 PMCID: PMC5585415 DOI: 10.1038/s41598-017-10966-y] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Accepted: 08/17/2017] [Indexed: 11/09/2022] Open
Abstract
In the present study, six commonly used promoters, including cytomegalovirus major immediate-early (CMV), the CMV enhancer fused to the chicken beta-actin promoter (CAG), human elongation factor-1α (HEF-1α), mouse cytomegalovirus (mouse CMV), Chinese hamster elongation factor-1α (CHEF-1α), and phosphoglycerate kinase (PGK), a CMV promoter mutant and a CAG enhancer, were evaluated to determine their effects on transgene expression and stability in transfected CHO cells. The promoters and enhancer were cloned or synthesized, and mutation at C-404 in the CMV promoter was generated; then all elements were transfected into CHO cells. Stably transfected CHO cells were identified via screening under the selection pressure of G418. Flow cytometry, qPCR, and qRT-PCR were used to explore eGFP expression levels, gene copy number, and mRNA expression levels, respectively. Furthermore, the erythropoietin (EPO) gene was used to test the selected strong promoter. Of the six promoters, the CHEF-1α promoter yielded the highest transgene expression levels, whereas the CMV promoter maintained transgene expression more stably during long-term culture of cells. We conclude that CHEF-1α promoter conferred higher level of EPO expression in CHO cells, but the CMV promoter with its high levels of stability performs best in this vector system.
Collapse
|
22
|
Ghavim M, Abnous K, Arasteh F, Taghavi S, Nabavinia MS, Alibolandi M, Ramezani M. High level expression of recombinant human growth hormone in Escherichia coli: crucial role of translation initiation region. Res Pharm Sci 2017; 12:168-175. [PMID: 28515770 PMCID: PMC5385732 DOI: 10.4103/1735-5362.202462] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
For high-throughput production of recombinant protein in Escherichia coli (E. coli), besides important parameters such as efficient vector with strong promoter and compatible host, other important issues including codon usage, rare codons, and GC content specially at N-terminal region should be considered. In the current study, the effect of decreasing the percentage of GC nucleotides and optimizing codon usage at N-terminal region of human growth hormone (hGH) cDNA on the level of its expression in E. coli were investigated. Mutation in cDNA of hGH was performed through site-directed mutagenesis using PCR. Then, the mutant genes were amplified and cloned into the expression vector, pET-28a. The new constructs were transformed into the BL21(DE3) strain of E. coli and chemically induced for hGH expression. At the final stage, expressed proteins were analyzed by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE), scanning gel densitometry, and western blot. SDS-PAGE scanning gel densitometry assay and western blot analysis revealed higher expression level of hGH by using the two new expressions constructs (mutant genes vectors with decreasing GC content and optimized-codon usage at N-terminal of cDNA) in comparison with wild gene expression vector. Obtained results demonstrated that decreasing the GC nucleotide content and optimization of codon usage at N-terminal of the hGH cDNA could significantly enhance the expression of the target protein in E. coli. Our results highlight the important role of both 5´ region of the heterologous genes in terms of codon usage and also GC content on non-host protein expression in E. coli.
Collapse
Affiliation(s)
- Mahsa Ghavim
- Damghan Branch, Islamic Azad University, Damghan, I.R. Iran
| | - Khalil Abnous
- Pharmaceutical Research Center, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, I.R. Iran
| | - Fatemeh Arasteh
- Pharmaceutical Research Center, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, I.R. Iran.,Department of Pharmaceutical Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, I.R. Iran
| | - Sahar Taghavi
- Pharmaceutical Research Center, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, I.R. Iran
| | - Maryam Sadat Nabavinia
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, I.R. Iran
| | - Mona Alibolandi
- Pharmaceutical Research Center, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, I.R. Iran
| | - Mohammad Ramezani
- Pharmaceutical Research Center, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, I.R. Iran.,Department of Pharmaceutical Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, I.R. Iran.,Nanotechnology Research Center, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, I.R. Iran
| |
Collapse
|
23
|
Zucchelli S, Patrucco L, Persichetti F, Gustincich S, Cotella D. Engineering Translation in Mammalian Cell Factories to Increase Protein Yield: The Unexpected Use of Long Non-Coding SINEUP RNAs. Comput Struct Biotechnol J 2016; 14:404-410. [PMID: 27872686 PMCID: PMC5107644 DOI: 10.1016/j.csbj.2016.10.004] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Revised: 10/21/2016] [Accepted: 10/24/2016] [Indexed: 12/26/2022] Open
Abstract
Mammalian cells are an indispensable tool for the production of recombinant proteins in contexts where function depends on post-translational modifications. Among them, Chinese Hamster Ovary (CHO) cells are the primary factories for the production of therapeutic proteins, including monoclonal antibodies (MAbs). To improve expression and stability, several methodologies have been adopted, including methods based on media formulation, selective pressure and cell- or vector engineering. This review presents current approaches aimed at improving mammalian cell factories that are based on the enhancement of translation. Among well-established techniques (codon optimization and improvement of mRNA secondary structure), we describe SINEUPs, a family of antisense long non-coding RNAs that are able to increase translation of partially overlapping protein-coding mRNAs. By exploiting their modular structure, SINEUP molecules can be designed to target virtually any mRNA of interest, and thus to increase the production of secreted proteins. Thus, synthetic SINEUPs represent a new versatile tool to improve the production of secreted proteins in biomanufacturing processes.
Collapse
Affiliation(s)
- Silvia Zucchelli
- Department of Health Sciences, Università del Piemonte Orientale, Novara, Italy; Area of Neuroscience, SISSA, Trieste, Italy
| | - Laura Patrucco
- Department of Health Sciences, Università del Piemonte Orientale, Novara, Italy
| | | | - Stefano Gustincich
- Area of Neuroscience, SISSA, Trieste, Italy; Department of Neuroscience and Brain Technologies, Italian Institute of Technology (IIT), Genova, Italy
| | - Diego Cotella
- Department of Health Sciences, Università del Piemonte Orientale, Novara, Italy
| |
Collapse
|
24
|
Sjulson L, Cassataro D, DasGupta S, Miesenböck G. Cell-Specific Targeting of Genetically Encoded Tools for Neuroscience. Annu Rev Genet 2016; 50:571-594. [PMID: 27732792 DOI: 10.1146/annurev-genet-120215-035011] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Genetically encoded tools for visualizing and manipulating neurons in vivo have led to significant advances in neuroscience, in large part because of the ability to target expression to specific cell populations of interest. Current methods enable targeting based on marker gene expression, development, anatomical projection pattern, synaptic connectivity, and recent activity as well as combinations of these factors. Here, we review these methods, focusing on issues of practical implementation as well as areas for future improvement.
Collapse
Affiliation(s)
- Lucas Sjulson
- Department of Psychiatry, New York University School of Medicine, New York, NY 10016; .,Department of Neuroscience and Physiology, Smilow Neuroscience Program, and New York University Neuroscience Institute, New York, NY 10016
| | - Daniela Cassataro
- Department of Neuroscience and Physiology, Smilow Neuroscience Program, and New York University Neuroscience Institute, New York, NY 10016
| | - Shamik DasGupta
- Centre for Neural Circuits and Behaviour, University of Oxford, Oxford, OX1 3SR, United Kingdom; .,Present address: Tata Institute of Fundamental Research, Mumbai, 400005, India
| | - Gero Miesenböck
- Centre for Neural Circuits and Behaviour, University of Oxford, Oxford, OX1 3SR, United Kingdom;
| |
Collapse
|
25
|
Optimization of codon usage of the envelope protein E2 gene from various genotypes of hepatitis C virus to predict the expression level in Pichia pastoris. Genes Genomics 2016. [DOI: 10.1007/s13258-016-0442-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
26
|
Uddin A, Chakraborty S. Codon usage trend in mitochondrial CYB gene. Gene 2016; 586:105-14. [DOI: 10.1016/j.gene.2016.04.005] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Revised: 03/11/2016] [Accepted: 04/02/2016] [Indexed: 11/25/2022]
|
27
|
Güler-Gane G, Kidd S, Sridharan S, Vaughan TJ, Wilkinson TCI, Tigue NJ. Overcoming the Refractory Expression of Secreted Recombinant Proteins in Mammalian Cells through Modification of the Signal Peptide and Adjacent Amino Acids. PLoS One 2016; 11:e0155340. [PMID: 27195765 PMCID: PMC4873207 DOI: 10.1371/journal.pone.0155340] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Accepted: 04/27/2016] [Indexed: 11/18/2022] Open
Abstract
The expression and subsequent purification of mammalian recombinant proteins is of critical importance to many areas of biological science. To maintain the appropriate tertiary structure and post-translational modifications of such proteins, transient mammalian expression systems are often adopted. The successful utilisation of these systems is, however, not always forthcoming and some recombinant proteins prove refractory to expression in mammalian hosts. In this study we focussed on the role of different N-terminal signal peptides and residues immediately downstream, in influencing the level of secreted recombinant protein obtained from suspension HEK293 cells. Using secreted alkaline phosphatase (SEAP) as a model protein, we identified that the +1/+2 downstream residues flanking a heterologous signal peptide significantly affect secreted levels. By incorporating these findings we conducted a comparison of different signal peptide sequences and identified the most productive as secrecon, a computationally-designed sequence. Importantly, in the context of the secrecon signal peptide and SEAP, we also demonstrated a clear preference for specific amino acid residues at the +1 position (e.g. alanine), and a detrimental effect of others (cysteine, proline, tyrosine and glutamine). When proteins that naturally contain these “undesirable” residues at the +1 position were expressed with their native signal peptide, the heterologous secrecon signal peptide, or secrecon with an additional alanine at the +1 or +1 and +2 position, the level of expression differed significantly and in an unpredictable manner. For each protein, however, at least one of the panel of signal peptide/adjacent amino acid combinations enabled successful recombinant expression. In this study, we highlight the important interplay between a signal peptide and its adjacent amino acids in enabling protein expression, and we describe a strategy that could enable recombinant proteins that have so far proved refractory to expression in HEK293 cells, to be produced in sufficient quantities to answer important biological questions.
Collapse
Affiliation(s)
- Gülin Güler-Gane
- Department of Antibody Discovery and Protein Engineering, MedImmune Ltd., Granta Park, Cambridge, United Kingdom
| | - Sara Kidd
- Department of Antibody Discovery and Protein Engineering, MedImmune Ltd., Granta Park, Cambridge, United Kingdom
| | - Sudharsan Sridharan
- Department of Antibody Discovery and Protein Engineering, MedImmune Ltd., Granta Park, Cambridge, United Kingdom
| | - Tristan J. Vaughan
- Department of Antibody Discovery and Protein Engineering, MedImmune Ltd., Granta Park, Cambridge, United Kingdom
| | - Trevor C. I. Wilkinson
- Department of Antibody Discovery and Protein Engineering, MedImmune Ltd., Granta Park, Cambridge, United Kingdom
| | - Natalie J. Tigue
- Department of Antibody Discovery and Protein Engineering, MedImmune Ltd., Granta Park, Cambridge, United Kingdom
- * E-mail:
| |
Collapse
|
28
|
Su X, Schmitz G, Zhang M, Mackie RI, Cann IKO. Heterologous gene expression in filamentous fungi. ADVANCES IN APPLIED MICROBIOLOGY 2016; 81:1-61. [PMID: 22958526 DOI: 10.1016/b978-0-12-394382-8.00001-0] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Filamentous fungi are critical to production of many commercial enzymes and organic compounds. Fungal-based systems have several advantages over bacterial-based systems for protein production because high-level secretion of enzymes is a common trait of their decomposer lifestyle. Furthermore, in the large-scale production of recombinant proteins of eukaryotic origin, the filamentous fungi become the vehicle of choice due to critical processes shared in gene expression with other eukaryotic organisms. The complexity and relative dearth of understanding of the physiology of filamentous fungi, compared to bacteria, have hindered rapid development of these organisms as highly efficient factories for the production of heterologous proteins. In this review, we highlight several of the known benefits and challenges in using filamentous fungi (particularly Aspergillus spp., Trichoderma reesei, and Neurospora crassa) for the production of proteins, especially heterologous, nonfungal enzymes. We review various techniques commonly employed in recombinant protein production in the filamentous fungi, including transformation methods, selection of gene regulatory elements such as promoters, protein secretion factors such as the signal peptide, and optimization of coding sequence. We provide insights into current models of host genomic defenses such as repeat-induced point mutation and quelling. Furthermore, we examine the regulatory effects of transcript sequences, including introns and untranslated regions, pre-mRNA (messenger RNA) processing, transcript transport, and mRNA stability. We anticipate that this review will become a resource for researchers who aim at advancing the use of these fascinating organisms as protein production factories, for both academic and industrial purposes, and also for scientists with general interest in the biology of the filamentous fungi.
Collapse
Affiliation(s)
- Xiaoyun Su
- Energy Biosciences Institute, University of Illinois, Urbana, IL, USA; Institute for Genomic Biology, University of Illinois, Urbana, IL, USA; Equal contribution
| | | | | | | | | |
Collapse
|
29
|
Ancestral Mutations Acquired in Refrex-1, a Restriction Factor against Feline Retroviruses, during its Cooption and Domestication. J Virol 2015; 90:1470-85. [PMID: 26581999 DOI: 10.1128/jvi.01904-15] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Accepted: 11/13/2015] [Indexed: 01/03/2023] Open
Abstract
UNLABELLED Endogenous retroviruses (ERVs) are remnants of ancestral retroviral infections of germ cells. Retroviral endogenization is an adaptation process for the host genome, and ERVs are gradually attenuated or inactivated by mutation. However, some ERVs that have been "domesticated" by their hosts eventually gain physiological functions, such as placentation or viral resistance. We previously reported the discovery of Refrex-1, a soluble antiretroviral factor in domestic cats that specifically inhibits infection by feline leukemia virus subgroup D (FeLV-D), a chimeric virus of FeLV, and a feline ERV, ERV-DC. Refrex-1 is a truncated envelope protein (Env) encoded by both ERV-DC7 and ERV-DC16 proviral loci. Here, we reconstituted ancestral and functional Env from ERV-DC7 and ERV-DC16 envelope genes (env) by inducing reverse mutations. Unexpectedly, ERV-DC7 and ERV-DC16 full-length Env (ERV-DC7 fl and ERV-DC16 fl), reconstructed by removing stop codons, did not produce infectious viral particles. ERV-DC7 fl and ERV-DC16 fl were highly expressed in cells but were not cleaved into surface subunits (SU) and transmembrane subunits, nor were they incorporated into virions. G407R/N427I-A429T and Y431D substitutions within the SU C-terminal domain of ERV-DC7 fl and ERV-DC16 fl, respectively, caused these dysfunctions. The residues glycine 407 and tyrosine 431 are relatively conserved among infectious gammaretroviruses, and their substitution causes the same dysfunctions as the tested retroviruses. Our results reveal that specific mutations within the SU C-terminal domain suppressed Env cleavage and incorporation into virions and indicate that these mutations contributed to the domestication of Refrex-1 through multistep events that occurred in the postintegration period. IMPORTANCE Domestic cats are colonized with various exogenous retroviruses (exRVs), such as feline leukemia virus (FeLV), and their genomes contain numerous ERVs, some of which are replication-competent proviruses. The feline hosts, exRVs, and ERVs have complicated genetic interactions and provide an interesting field model for triangular relationships: recombination between FeLV and ERV-DC, which is a feline ERV, generated FeLV-D, a chimeric virus, and FeLV-D is restricted by Refrex-1, an antiretroviral factor corresponding to truncated Env of ERV-DC7 and ERV-DC16. Here, we reconstructed ancestral, functional Env from ERV-DC7 and ERV-DC16 env by inducing reverse mutations to elucidate how Refrex-1 was generated from its ancestor. Our results reveal that they were repeatedly inactivated by mutations preventing Env maturation. Our results provide insights into how ERVs were "domesticated" by their hosts and identify the mutations that mediated these evolutions. Notably, experiments that restore inactivated ERVs might uncover previously unrecognized features or properties of retroviruses.
Collapse
|
30
|
Zhou P, Ye L, Xie W, Lv X, Yu H. Highly efficient biosynthesis of astaxanthin in Saccharomyces cerevisiae by integration and tuning of algal crtZ and bkt. Appl Microbiol Biotechnol 2015; 99:8419-28. [DOI: 10.1007/s00253-015-6791-y] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2015] [Revised: 03/02/2015] [Accepted: 06/23/2015] [Indexed: 10/23/2022]
|
31
|
Shukurov RR, Kazachenko KY, Kozlov DG, Nurbakov AA, Sautkina EN, Khamitov RA, Seryogin YA. Optimization of genetic constructs for high-level expression of the darbepoetin gene in mammalian cells. APPL BIOCHEM MICRO+ 2014. [DOI: 10.1134/s0003683814090051] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
32
|
Ershler MA, Olovnikova NI. Production of IgM monoclonal antibodies in DG44 cells. APPL BIOCHEM MICRO+ 2014. [DOI: 10.1134/s0003683814090026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
33
|
Refrex-1, a soluble restriction factor against feline endogenous and exogenous retroviruses. J Virol 2013; 87:12029-40. [PMID: 23966402 DOI: 10.1128/jvi.01267-13] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
The host defense against viral infection is acquired during the coevolution or symbiosis of the host and pathogen. Several cellular factors that restrict retroviral infection have been identified in the hosts. Feline leukemia virus (FeLV) is a gammaretrovirus that is classified into several receptor interference groups, including a novel FeLV-subgroup D (FeLV-D) that we recently identified. FeLV-D is generated by transduction of the env gene of feline endogenous gammaretrovirus of the domestic cat (ERV-DCs) into FeLV. Some ERV-DCs are replication competent viruses which are present and hereditary in cats. We report here the determination of new viral receptor interference groups and the discovery of a soluble antiretroviral factor, termed Refrex-1. Detailed analysis of FeLV-D strains and ERV-DCs showed two receptor interference groups that are distinct from other FeLV subgroups, and Refrex-1 specifically inhibited one of them. Refrex-1 is characterized as a truncated envelope protein of ERV-DC and includes the N-terminal region of surface unit, which is a putative receptor-binding domain, but lacks the transmembrane region. Refrex-1 is efficiently secreted from the cells and appears to cause receptor interference extracellularly. Two variants of Refrex-1 encoded by provirus loci, ERV-DC7 and DC16, are expressed in a broad range of feline tissues. The host retains Refrex-1 as an antiretroviral factor, which may potentially prevent reemergence of the ERVs and the emergence of novel ERV-related viruses in cats. Refrex-1 may have been acquired during endogenization of ERV-DCs and may play an important role in retroviral restriction and antiviral defense in cats.
Collapse
|
34
|
Chung BKS, Yusufi FNK, Yang Y, Lee DY. Enhanced expression of codon optimized interferon gamma in CHO cells. J Biotechnol 2013; 167:326-33. [PMID: 23876479 DOI: 10.1016/j.jbiotec.2013.07.011] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2013] [Revised: 07/06/2013] [Accepted: 07/10/2013] [Indexed: 11/18/2022]
Abstract
The human interferon-gamma (IFN-γ) is a potential drug candidate for treating various diseases due to its immunomodulatory properties. The efficient production of this protein can be achieved through a popular industrial host, Chinese hamster ovary (CHO) cells. However, recombinant expression of foreign proteins is typically suboptimal possibly due to the usage of non-native codon patterns within the coding sequence. Therefore, we demonstrated the application of a recently developed codon optimization approach to design synthetic IFN-γ coding sequences for enhanced heterologous expression in CHO cells. For codon optimization, earlier studies suggested to establish the target usage distribution pattern in terms of selected design parameters such as individual codon usage (ICU) and codon context (CC), mainly based on the host's highly expressed genes. However, our RNA-Seq based transcriptome profiling indicated that the ICU and CC distribution patterns of different gene expression classes in CHO cell are relatively similar, unlike other microbial expression hosts, Escherichia coli and Saccharomyces cerevisiae. This finding was further corroborated through the in vivo expression of various ICU and CC optimized IFN-γ in CHO cells. Interestingly, the CC-optimized genes exhibited at least 13-fold increase in expression level compared to the wild-type IFN-γ while a maximum of 10-fold increase was observed for the ICU-optimized genes. Although design criteria based on individual codons, such as ICU, have been widely used for gene optimization, our experimental results suggested that codon context is relatively more effective parameter for improving recombinant IFN-γ expression in CHO cells.
Collapse
Affiliation(s)
- Bevan Kai-Sheng Chung
- Bioprocessing Technology Institute, Agency for Science, Technology and Research-A*STAR, 20 Biopolis Way #06-01, Singapore 138668, Singapore
| | | | | | | |
Collapse
|
35
|
Strong purifying selection at synonymous sites in D. melanogaster. PLoS Genet 2013; 9:e1003527. [PMID: 23737754 PMCID: PMC3667748 DOI: 10.1371/journal.pgen.1003527] [Citation(s) in RCA: 151] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2013] [Accepted: 04/08/2013] [Indexed: 11/19/2022] Open
Abstract
Synonymous sites are generally assumed to be subject to weak selective constraint. For this reason, they are often neglected as a possible source of important functional variation. We use site frequency spectra from deep population sequencing data to show that, contrary to this expectation, 22% of four-fold synonymous (4D) sites in Drosophila melanogaster evolve under very strong selective constraint while few, if any, appear to be under weak constraint. Linking polymorphism with divergence data, we further find that the fraction of synonymous sites exposed to strong purifying selection is higher for those positions that show slower evolution on the Drosophila phylogeny. The function underlying the inferred strong constraint appears to be separate from splicing enhancers, nucleosome positioning, and the translational optimization generating canonical codon bias. The fraction of synonymous sites under strong constraint within a gene correlates well with gene expression, particularly in the mid-late embryo, pupae, and adult developmental stages. Genes enriched in strongly constrained synonymous sites tend to be particularly functionally important and are often involved in key developmental pathways. Given that the observed widespread constraint acting on synonymous sites is likely not limited to Drosophila, the role of synonymous sites in genetic disease and adaptation should be reevaluated.
Collapse
|
36
|
Watanabe S, Kawamura M, Odahara Y, Anai Y, Ochi H, Nakagawa S, Endo Y, Tsujimoto H, Nishigaki K. Phylogenetic and structural diversity in the feline leukemia virus env gene. PLoS One 2013; 8:e61009. [PMID: 23593376 PMCID: PMC3623909 DOI: 10.1371/journal.pone.0061009] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2012] [Accepted: 03/05/2013] [Indexed: 12/24/2022] Open
Abstract
Feline leukemia virus (FeLV) belongs to the genus Gammaretrovirus, and causes a variety of neoplastic and non-neoplastic diseases in cats. Alteration of viral env sequences is thought to be associated with disease specificity, but the way in which genetic diversity of FeLV contributes to the generation of such variants in nature is poorly understood. We isolated FeLV env genes from naturally infected cats in Japan and analyzed the evolutionary dynamics of these genes. Phylogenetic reconstructions separated our FeLV samples into three distinct genetic clusters, termed Genotypes I, II, and III. Genotype I is a major genetic cluster and can be further classified into Clades 1-7 in Japan. Genotypes were correlated with geographical distribution; Genotypes I and II were distributed within Japan, whilst FeLV samples from outside Japan belonged to Genotype III. These results may be due to geographical isolation of FeLVs in Japan. The observed structural diversity of the FeLV env gene appears to be caused primarily by mutation, deletion, insertion and recombination, and these variants may be generated de novo in individual cats. FeLV interference assay revealed that FeLV genotypes did not correlate with known FeLV receptor subgroups. We have identified the genotypes which we consider to be reliable for evaluating phylogenetic relationships of FeLV, which embrace the high structural diversity observed in our sample. Overall, these findings extend our understanding of Gammaretrovirus evolutionary patterns in the field, and may provide a useful basis for assessing the emergence of novel strains and understanding the molecular mechanisms of FeLV transmission in cats.
Collapse
Affiliation(s)
- Shinya Watanabe
- Laboratory of Molecular Immunology and Infectious Disease, The United Graduate School of Veterinary Science, Yamaguchi University, Yamaguchi, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
37
|
|
38
|
Lampson BL, Pershing NLK, Prinz JA, Lacsina JR, Marzluff WF, Nicchitta CV, MacAlpine DM, Counter CM. Rare codons regulate KRas oncogenesis. Curr Biol 2012; 23:70-5. [PMID: 23246410 DOI: 10.1016/j.cub.2012.11.031] [Citation(s) in RCA: 118] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2012] [Revised: 10/30/2012] [Accepted: 11/13/2012] [Indexed: 11/19/2022]
Abstract
Oncogenic mutations in the small Ras GTPases KRas, HRas, and NRas render the proteins constitutively GTP bound and active, a state that promotes cancer. Ras proteins share ~85% amino acid identity, are activated by and signal through the same proteins, and can exhibit functional redundancy. Nevertheless, manipulating expression or activation of each isoform yields different cellular responses and tumorigenic phenotypes, even when different ras genes are expressed from the same locus. We now report a novel regulatory mechanism hardwired into the very sequence of RAS genes that underlies how such similar proteins impact tumorigenesis differently. Specifically, despite their high sequence similarity, KRAS is poorly translated compared to HRAS due to enrichment in genomically underrepresented or rare codons. Converting rare to common codons increases KRas expression and tumorigenicity to mirror that of HRas. Furthermore, in a genome-wide survey, similar gene pairs with opposing codon bias were identified that not only manifest dichotomous protein expression but also are enriched in key signaling protein classes and pathways. Thus, synonymous nucleotide differences affecting codon usage account for differences between HRas and KRas expression and function and may represent a broader regulation strategy in cell signaling.
Collapse
Affiliation(s)
- Benjamin L Lampson
- Department of Pharmacology & Cancer Biology, Duke University Medical Center, Durham, NC 27710, USA
| | | | | | | | | | | | | | | |
Collapse
|
39
|
A comparative analysis on the synonymous codon usage pattern in viral functional genes and their translational initiation region of ASFV. Virus Genes 2012; 46:271-9. [PMID: 23161403 DOI: 10.1007/s11262-012-0847-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2012] [Accepted: 11/01/2012] [Indexed: 01/21/2023]
Abstract
The synonymous codon usage pattern of African swine fever virus (ASFV), the similarity degree of the synonymous codon usage between this virus and some organisms and the synonymous codon usage bias for the translation initiation region of viral functional genes in the whole genome of ASFV have been investigated by some simply statistical analyses. Although both GC12% (the GC content at the first and second codon positions) and GC3% (the GC content at the third codon position) of viral functional genes have a large fluctuation, the significant correlations between GC12 and GC3% and between GC3% and the first principal axis of principle component analysis on the relative synonymous codon usage of the viral functional genes imply that mutation pressure of ASFV plays an important role in the synonymous codon usage pattern. Turning to the synonymous codon usage of this virus, the codons with U/A end predominate in the synonymous codon family for the same amino acid and a weak codon usage bias in both leading and lagging strands suggests that strand compositional asymmetry does not take part in the formation of codon usage in ASFV. The interaction between the absolute codon usage bias and GC3% suggests that other selections take part in the formation of codon usage, except for the mutation pressure. It is noted that the similarity degree of codon usage between ASFV and soft tick is higher than that between the virus and the pig, suggesting that the soft tick plays a more important role than the pig in the codon usage pattern of ASFV. The translational initiation region of the viral functional genes generally have a strong tendency to select some synonymous codons with low GC content, suggesting that the synonymous codon usage bias caused by translation selection from the host takes part in modulating the translation initiation efficiency of ASFV functional genes.
Collapse
|
40
|
Impellizeri JA, Ciliberto G, Aurisicchio L. Electro-gene-transfer as a new tool for cancer immunotherapy in animals. Vet Comp Oncol 2012; 12:310-8. [PMID: 23095099 DOI: 10.1111/vco.12006] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2012] [Revised: 09/11/2012] [Accepted: 09/20/2012] [Indexed: 12/11/2022]
Abstract
The concept of vaccines based on the direct inoculation of plasmid DNA gained initial proof-of-concept in small rodent species. Further development was hampered by the difficulty to confirm immunogenicity and efficacy in large animal species and, most importantly, in human clinical trials. These negative findings led to the search of complementary technologies which, in combination with intradermal or intramuscular plasmid DNA injection would result in more robust delivery, decreased interindividual variability, clear evidence of clinical efficacy and which would eventually lead to market approval of new vaccine products. The use of high-pressure, needleless devices as an enhancing tool for plasmid DNA delivery led to recent approval by USDA of Oncept™, a therapeutic cancer vaccine directed against tyrosinase for the therapy of melanoma in dogs. An alternative approach to improve plasmid DNA delivery is electro-gene-transfer (EGT). In this article, we briefly review the principles of DNA-EGT and the evidences for efficacy of a telomerase reverse transcriptase vaccine in a dog clinical trial, and provide perspectives for the use of this technology for broader applications in pet animals.
Collapse
Affiliation(s)
- J A Impellizeri
- Department of Oncology, Veterinary Specialty Center of the Hudson Valley, Wappingers Falls, NY, USA
| | | | | |
Collapse
|
41
|
Koziolek EJ, Donoghue JF, Bentley JD, Lovrecz G, Dolezal O, Ward CW, Rothacker J, Nice EC, Burgess AW, Hafner M, Johns TG, Adams TE. A high-affinity ErbB4Fc fusion protein is a potent antagonist of heregulin-mediated receptor activation. Growth Factors 2012; 30:310-9. [PMID: 22856597 DOI: 10.3109/08977194.2012.709516] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Ligand-mediated activation of ErbB3 and ErbB4 is implicated in the pathogenesis of several human malignancies including cancer of the ovary and melanoma. We have used the broad ErbB ligand specificity of ErbB4 to assemble and express an ErbB4 fusion protein comprising the first 497 amino acids of the mature ErbB4 ectodomain fused to the human IgG Fc constant region. The purified fusion protein, designated sErbB4.497.Fc, binds the ErbB receptor ligands betacellulin and heregulin-β1 (HRG-β1) with high affinity (K(D) = 130 pM), an increase in affinity of 10- to 20-fold, respectively, compared with sErbB4.615.Fc. sErbB4.497.Fc inhibited ligand-stimulated phosphorylation of epidermal growth factor receptor and ErbB2, and blocked HRG-β1 activation of the IKB/MAP/JNK/AKT signalling pathways. sErbB4.497.Fc inhibited HRG-β1-stimulated proliferation in MCF7 cells. In a mouse tumour xenograft model, sErbB4.497.Fc as a monotherapy modestly inhibited the growth of MDA-MB-231 breast cancer cells. sErbB4.497.Fc may be useful in an adjuvant setting in combination with conventional therapeutic agents.
Collapse
Affiliation(s)
- Eva J Koziolek
- CSIRO Division of Materials Science and Engineering, 343 Royal Parade, Parkville, VIC 3052, Australia
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Aurisicchio L, Ciliberto G. Genetic cancer vaccines: current status and perspectives. Expert Opin Biol Ther 2012; 12:1043-58. [PMID: 22577875 DOI: 10.1517/14712598.2012.689279] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
INTRODUCTION The recent approval of the first therapeutic cancer vaccine by the US Regulatory Agency represents a breakthrough event in the history of cancer treatment. The past scepticism towards this type of therapeutic intervention is now replaced by great expectations. The field is now moving towards the development of alternative vaccination technologies, which are capable of generating stronger, more durable and efficient immune responses against specific tumour-associated antigens (TAAs) in combination with cheaper and more standardised manufacturing. AREAS COVERED In this context, genetic vaccines are emerging among the most promising methodologies. Several evidences point to combinations of different genetic immunisation modalities (heterologous prime/boost) as a powerful approach to induce superior immune responses and achieve greater clinical efficacy. In this review, we provide an overview of the current status of development of genetic cancer vaccines with particular emphasis on adenoviral vector prime/DNA boost vaccination schedules. EXPERT OPINION We believe that therapeutic genetic cancer vaccines have the strong potential to become an established therapeutic modality for cancer in next coming years, in a manner similar to what have now become monoclonal antibodies.
Collapse
|
43
|
UU/UA dinucleotide frequency reduction in coding regions results in increased mRNA stability and protein expression. Mol Ther 2012; 20:954-9. [PMID: 22434136 PMCID: PMC3345983 DOI: 10.1038/mt.2012.29] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
UU and UA dinucleotides are rare in mammalian genes and may offer natural selection against endoribonuclease-mediated mRNA decay. This study hypothesized that reducing UU and UA (UW) dinucleotides in the mRNA-coding sequence, including the codons and the dicodon boundaries, may promote resistance to mRNA decay, thereby increasing protein production. Indeed, protein expression from UW-reduced coding regions of enhanced green fluorescent protein (EGFP), luciferase, interferon-α, and hepatitis B surface antigen (HBsAg) was higher when compared to the wild-type protein expression. The steady-state level of UW-reduced EGFP mRNA was higher and the mRNA half-life was also longer. Ectopic expression of the endoribonuclease, RNase L, did not reduce the wild type or UW-reduced mRNA. A mutant form of the mRNA decay-promoting protein, tristetraprolin (TTP/ZFP36), which has a point mutation in the zinc-finger domain (C124R), was used. The wild-type EGFP mRNA but not the UW-reduced mRNA responded to the dominant negative action of the C124R ZFP36/TTP mutant. The results indicate the efficacy of the described rational approach to formulate a general scheme for boosting recombinant protein production in mammalian cells.
Collapse
|
44
|
Increased erythropoiesis in mice injected with submicrogram quantities of pseudouridine-containing mRNA encoding erythropoietin. Mol Ther 2012; 20:948-53. [PMID: 22334017 PMCID: PMC3345990 DOI: 10.1038/mt.2012.7] [Citation(s) in RCA: 220] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Advances in the optimization of in vitro-transcribed mRNA are bringing mRNA-mediated therapy closer to reality. In cultured cells, we recently achieved high levels of translation with high-performance liquid chromatography (HPLC)-purified, in vitro-transcribed mRNAs containing the modified nucleoside pseudouridine. Importantly, pseudouridine rendered the mRNA non-immunogenic. Here, using erythropoietin (EPO)-encoding mRNA complexed with TransIT-mRNA, we evaluated this new generation of mRNA in vivo. A single injection of 100 ng (0.005 mg/kg) mRNA elevated serum EPO levels in mice significantly by 6 hours and levels were maintained for 4 days. In comparison, mRNA containing uridine produced 10–100-fold lower levels of EPO lasting only 1 day. EPO translated from pseudouridine-mRNA was functional and caused a significant increase of both reticulocyte counts and hematocrits. As little as 10 ng mRNA doubled reticulocyte numbers. Weekly injection of 100 ng of EPO mRNA was sufficient to increase the hematocrit from 43 to 57%, which was maintained with continued treatment. Even when a large amount of pseudouridine-mRNA was injected, no inflammatory cytokines were detectable in plasma. Using macaques, we could also detect significantly-increased serum EPO levels following intraperitoneal injection of rhesus EPO mRNA. These results demonstrate that HPLC-purified, pseudouridine-containing mRNAs encoding therapeutic proteins have great potential for clinical applications.
Collapse
|
45
|
Ng SK. Generation of high-expressing cells by methotrexate amplification of destabilized dihydrofolate reductase selection marker. Methods Mol Biol 2012; 801:161-172. [PMID: 21987253 DOI: 10.1007/978-1-61779-352-3_11] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
A method combining the use of a destabilized dihydrofolate reductase (DHFR) selection marker with methotrexate (MTX) amplification to generate high-expressing cells is described here. The selection marker expression is weakened with the use of the murine ornithine decarboxylase PEST region and AU-rich element to target the DHFR protein and mRNA, respectively, for degradation in the cell. Cells that produce higher levels of DHFR protein, and the adjoining recombinant protein gene, can compensate for the more rapid turnover of the DHFR protein and survive the selection process. This effect can complement MTX amplification to reduce the amount of MTX and shorten the time needed to generate a high-expressing clone. The gene of interest is first inserted into an expression vector that contains a destabilized DHFR selection marker. The resulting expression vector is then linearized and transfected into suspension CHO-DG44 cells. Selection is performed by culturing the cells in a selection medium lacking hypoxanthine and thymidine. Low concentrations of MTX are then used to amplify the transfected genes for increased protein expression. A single cell cloning protocol is also described. This can be used after each stage of MTX amplification to isolate high-expressing clones that are also consistent producers over longer culture periods.
Collapse
Affiliation(s)
- Say Kong Ng
- Bioprocessing Technology Institute, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore.
| |
Collapse
|
46
|
Ho SCL, Yap MGS, Yang Y. Post-transcriptional regulatory elements for enhancing transient gene expression levels in mammalian cells. Methods Mol Biol 2012; 801:125-35. [PMID: 21987251 DOI: 10.1007/978-1-61779-352-3_9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Low yield from transient gene expression in mammalian cells limits its application to areas where large amount of proteins are needed. One effective approach to enhance transient gene expression levels is to use post-transcriptional regulatory elements (PTREs). We have evaluated the effect of five PTREs on the transient gene expression of three proteins in two cell lines. Most of the elements increased expression but exhibited cell-specific and gene-specific effects. The tripartite leader sequence of human adenovirus mRNA linked with a major late promoter enhancer gave the most universal and highest enhancement of gene expression levels. It increased the expression of all three proteins in HEK293 cells and two proteins in CHO K1 cells by 3.6- to 7.6-fold. Combinations of multiple PTREs increased protein expression as much as 10.5-fold.
Collapse
|
47
|
MA FEI, ZHUANG YONGLONG, CHEN LIMING, LIN LUPING, LI YANDA, XU XIAOFENG, CHEN XUEPING. COMPARING SYNONYMOUS CODON USAGE OF ALTERNATIVELY SPLICED GENES WITH NON-ALTERNATIVELY SPLICED GENES IN HUMAN GENOME. J BIOL SYST 2011. [DOI: 10.1142/s021833900400104x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
It is becoming clear that alternative splicing plays an important role in expanding protein diversity. However, the previous studies on codons usage did not distinguish alternative splicing from non-alternative splicing. Do codon usage patterns hold distinctions between them? Thus, we attempted to systematically compare the differences of synonymous codon usage patterns between alternatively and non-alternatively spliced genes by analyzing the large datasets from human genome. The results indicated:(1) There are highly significant differences in the average Nc values between non-alternatively spliced genes and the longer isoform genes as well as the shorter isoform genes, and the level of codon usage bias of non-alternatively spliced genes is to some extent higher than that in alternatively spliced genes.(2) Very extensive heterogeneity of G+C content in silent third codon position (GC3s) was evident among these genes, and it could be also shown there are highly significant differences in the average GC3s values between non-alternatively spliced genes and the longer isoform genes as well as the shorter isoform genes.(3) The Nc-plots and correspondence analysis reveal that codon usage bias are mainly dominated by mutation bias, and no correlation between gene expression level and synonymous codon biased usage is found in human genes.(4) Overall codon usage data analysis indicated that the C-ending codons usage has a highly significant differences between the longer isoform genes and non-alternatively spliced genes as well as the shorter isoform genes, it further found out that there is no significant differences of C-ending codons usage between the shorter isoform genes and non-alternatively spliced genes.Finally, our results seem to imply that alternative splicing gene may originate from non-alternative splicing gene, and may be created by DNA mutation or gene fusion, and be retained through nature selection and adaptive evolution.
Collapse
Affiliation(s)
- FEI MA
- School of Life Science, Xiamen University, Xiamen 361005, China
- Institute of Bioinformatics, Tsinghua University, Beijing 100084, China
| | - YONGLONG ZHUANG
- Institute of Bioinformatics, Tsinghua University, Beijing 100084, China
| | - LIMING CHEN
- School of Life Science, Xiamen University, Xiamen 361005, China
| | - LUPING LIN
- School of Life Science, Xiamen University, Xiamen 361005, China
| | - YANDA LI
- Institute of Bioinformatics, Tsinghua University, Beijing 100084, China
| | - XIAOFENG XU
- Life Science College, Nanjing Normal University, Nanjing 210097, China
| | - XUEPING CHEN
- College of Economics and Technology, University of Science and Technology of China, Hefei 230052, China
| |
Collapse
|
48
|
Production of functional recombinant bovine trypsin in transgenic rice cell suspension cultures. Protein Expr Purif 2011; 76:121-6. [DOI: 10.1016/j.pep.2010.10.007] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2010] [Revised: 10/12/2010] [Accepted: 10/12/2010] [Indexed: 11/22/2022]
|
49
|
Mikula I, Mikula I. Characterization of ovine Toll-like receptor 9 protein coding region, comparative analysis, detection of mutations and maedi visna infection. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2011; 35:182-192. [PMID: 20875448 DOI: 10.1016/j.dci.2010.09.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2010] [Revised: 09/16/2010] [Accepted: 09/17/2010] [Indexed: 05/29/2023]
Abstract
One of the major roles of innate immunity system is the recognition and the determination of the nature of the antigen. This ability is encompassed by specific receptors as Toll-like receptors (TLRs). TLR9 recognizes bacterial and viral CpG motifs, while their potent immunostimulation effect seems to be promising for lentiviral therapies. Recent studies, however, show the presence of a big polymorphism within the TLR genes and the linkage between substitutions and susceptibility to various infections. Moreover, different recognition ability seems to be utilized by different species and possibly breeds. In this study, we characterized the protein coding region of ovine TLR9 gene. By using comparative analysis of two closely related species and humans, we suggest, which characteristics of protein could be responsible for altered recognition. Furthermore, analyzing the presence of the substitutions, we show the intraspecies polymorphism and its possible implications, while attempting to define the association of discovered substitutions with the maedi visna infection.
Collapse
Affiliation(s)
- Ivan Mikula
- Laboratory of Biomedical Microbiology and Immunology, University of Veterinary Medicine and Pharmacy, Komenskeho - 73, 041 81 Kosice, Slovakia.
| | | |
Collapse
|
50
|
|