1
|
|
2
|
Belakavadi M, Saunders J, Weisleder N, Raghava PS, Fondell JD. Repression of cardiac phospholamban gene expression is mediated by thyroid hormone receptor-{alpha}1 and involves targeted covalent histone modifications. Endocrinology 2010; 151:2946-56. [PMID: 20392835 PMCID: PMC2875831 DOI: 10.1210/en.2009-1241] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Phospholamban (PLB) is a critical regulator of Ca(2+) cycling in heart muscle cells, and its gene expression is markedly down-regulated by T(3). Nonetheless, little is known about the molecular mechanisms of T(3)-dependent gene silencing in cardiac muscle, and it remains unclear whether thyroid hormone receptors (TRs) directly bind at the PLB gene in vivo and facilitate transcriptional repression. To investigate the regulatory role of TRs in PLB transcription, we used a physiological murine heart muscle cell line (HL-1) that retains cardiac electrophysiological properties, expresses both TRalpha1 and TRbeta1 subtypes, and exhibits T(3)-dependent silencing of PLB expression. By performing RNA interference assays with HL-1 cells, we found that TRalpha1, but not TRbeta1, is essential for T(3)-dependent PLB gene repression. Interestingly, a PLB reporter gene containing only the core promoter sequences -156 to +64 displayed robust T(3)-dependent silencing in HL-1 cells, thus suggesting that transcriptional repression is facilitated by TRalpha1 via the PLB core promoter, a regulatory region highly conserved in mammals. Consistent with this notion, chromatin immunoprecipitation and in vitro binding assays show that TRalpha1 directly binds at the PLB core promoter region. Furthermore, addition of T(3) triggered alterations in covalent histone modifications at the PLB promoter that are associated with gene silencing, namely a pronounced decrease in both histone H3 acetylation and histone H3 lysine 4 methylation. Taken together, our data reveal that T(3)-dependent repression of PLB in cardiac myocytes is directly facilitated by TRalpha1 and involves the hormone-dependent recruitment of histone-modifying enzymes associated with transcriptional silencing.
Collapse
Affiliation(s)
- Madesh Belakavadi
- Department of Physiology and Biophysics, Robert Wood Johnson Medical School, University of Medicine and Dentistry of New Jersey, Piscataway, New Jersey 08854, USA
| | | | | | | | | |
Collapse
|
3
|
Toischer K, Kögler H, Tenderich G, Grebe C, Seidler T, Van PN, Jung K, Knöll R, Körfer R, Hasenfuss G. Elevated afterload, neuroendocrine stimulation, and human heart failure increase BNP levels and inhibit preload-dependent SERCA upregulation. Circ Heart Fail 2008; 1:265-71. [PMID: 19808301 DOI: 10.1161/circheartfailure.108.785279] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND In heart failure, brain-type natriuretic peptide (BNP) is elevated and the sarcoplasmic reticulum Ca(2+)-ATPase (SERCA) downregulated. We previously showed that preload-induced SERCA-upregulation is suppressed by exogenous BNP. METHODS AND RESULTS Here we tested the hypothesis that afterload and neurohumoral activation would counterregulate preload-dependent SERCA upregulation through BNP, which finally results in decreased SERCA levels. We studied the effects of 6 hours preload, afterload, and isoproterenol stimulation on BNP and SERCA mRNA expression in rabbit and human failing muscles strips. Preload resulted in a pronounced upregulation of SERCA by 149% (isotonic versus slack, P<0.01). This upregulation was largely suppressed in afterloaded muscles (isometric versus slack: +32%; P<0.05). Similarly, presence of isoproterenol prevented SERCA upregulation in isotonic muscles. Afterload and isoproterenol resulted in a pronounced increase in BNP expression compared with slack by 225% (P<0.05) and 198% (P<0.01), respectively. Isoproterenol also increased expression of phospholamban by 84% (P<0.01). SERCA upregulation in preloaded muscles is associated with frequency-dependent potentiation of contractile force, which is absent in afterloaded muscles. In failing human myocardium, BNP expression was upregulated compared with nonfailing (+631%; P<0.05). Neither unloading nor preload or afterload induced a change in SERCA or BNP expression after 6 hours. CONCLUSIONS Afterload and neuroendocrine stimulation increase BNP expression thereby causing inhibition of preload-dependent SERCA upregulation. In failing human myocardium, high BNP expression may underlie the loss of preload-dependent upregulation of SERCA. BNP may thus contribute to adverse myocardial remodelling in heart failure.
Collapse
Affiliation(s)
- Karl Toischer
- Abteilung Kardiologie und Pneumologie, Georg-August-Universität, Robert-Koch-Strasse 40, Göttingen, Germany.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
4
|
Haghighi K, Chen G, Sato Y, Fan GC, He S, Kolokathis F, Pater L, Paraskevaidis I, Jones WK, Dorn GW, Kremastinos DT, Kranias EG. A human phospholamban promoter polymorphism in dilated cardiomyopathy alters transcriptional regulation by glucocorticoids. Hum Mutat 2008; 29:640-7. [PMID: 18241046 DOI: 10.1002/humu.20692] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Depressed calcium handling by the sarcoplasmic reticulum (SR) Ca-ATPase and its regulator phospholamban (PLN) is a key characteristic of human and experimental heart failure. Accumulating evidence indicates that increases in the relative levels of PLN to Ca-ATPase in failing hearts and resulting inhibition of Ca sequestration during diastole, impairs contractility. Here, we identified a genetic variant in the PLN promoter region, which increases its expression and may serve as a genetic modifier in dilated cardiomyopathy (DCM). The variant AF177763.1:g.203A>C (at position -36 bp relative to the PLN transcriptional start site) was found only in the heterozygous form in 1 out of 296 normal subjects and in 22 out of 381 cardiomyopathy patients (heart failure at age of 18-44 years, ejection fraction=22+/-9%). In vitro analysis, using luciferase as a reporter gene in rat neonatal cardiomyocytes, indicated that the PLN-variant increased activity by 24% compared to the wild type. Furthermore, the g.203A>C substitution altered the specific sequence of the steroid receptor for the glucocorticoid nuclear receptor (GR)/transcription factor in the PLN promoter, resulting in enhanced binding to the mutated DNA site. These findings suggest that the g.203A>C genetic variant in the human PLN promoter may contribute to depressed contractility and accelerate functional deterioration in heart failure.
Collapse
Affiliation(s)
- Kobra Haghighi
- Department of Pharmacology and Cell Biophysics, University of Cincinnati, College of Medicine, Cincinnati, Ohio 45267-0575, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Gao MH, Tang T, Guo T, Sun SQ, Feramisco JR, Hammond HK. Adenylyl cyclase type VI gene transfer reduces phospholamban expression in cardiac myocytes via activating transcription factor 3. J Biol Chem 2004; 279:38797-802. [PMID: 15231818 DOI: 10.1074/jbc.m405701200] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Cardiac-directed expression of adenylyl cyclase type VI (AC(VI)) increases stimulated cAMP production, improves heart function, and increases survival in cardiomyopathy. In contrast, pharmacological agents that increase intracellular levels of cAMP have detrimental effects on cardiac function and survival. We wondered whether effects that are independent of cAMP might be responsible for these salutary outcomes associated with AC(VI) expression. We therefore conducted a series of experiments focused on how gene transcription is influenced by AC(VI) in cultured neonatal rat cardiac myocytes, with a particular focus on genes that might influence cardiac function. We found that overexpression of AC(VI) down-regulated mRNA and protein expression of phospholamban, an inhibitor of the sarcoplasmic reticulum Ca(2+)-ATPase. We determined that the cAMP-responsive-like element in the phospholamban (PLB) promoter was critical for down-regulation by AC(VI). Overexpression of AC(VI) did not alter the expression of CREB, CREM, ATF1, ATF2, or ATF4 proteins. In contrast, overexpression of AC(VI) increased expression of ATF3 protein, a suppressor of transcription. Following AC(VI) gene transfer, when cardiac myocytes were stimulated with isoproterenol or NKH477, a water-soluble forskolin analog that directly stimulates AC, expression of ATF3 protein was increased even more, which correlated with reduced expression of PLB. We then showed that AC(VI)-induced ATF3 protein binds to the cAMP-responsive-like element on the PLB promoter and that overexpression of ATF3 in cardiac myocytes inhibits PLB promoter activity. These findings indicate that AC(VI) has effects on gene transcription that are not directly dependent on cAMP generation.
Collapse
MESH Headings
- Activating Transcription Factor 3
- Adenylyl Cyclases/genetics
- Animals
- Binding Sites
- Blotting, Northern
- Blotting, Western
- Calcium-Binding Proteins/biosynthesis
- Calcium-Transporting ATPases/metabolism
- Cell Nucleus/metabolism
- Cells, Cultured
- Cloning, Molecular
- Colforsin/analogs & derivatives
- Colforsin/pharmacology
- Cyclic AMP/metabolism
- Down-Regulation
- Gene Transfer Techniques
- Isoproterenol/pharmacology
- Luciferases/metabolism
- Mice
- Microscopy, Fluorescence
- Mutagenesis, Site-Directed
- Myocytes, Cardiac/metabolism
- Oligonucleotide Array Sequence Analysis
- Plasmids/metabolism
- Promoter Regions, Genetic
- RNA, Messenger/metabolism
- Rats
- Sarcoplasmic Reticulum Calcium-Transporting ATPases
- Transcription Factors/metabolism
- Transcription, Genetic
- Transfection
Collapse
Affiliation(s)
- Mei Hua Gao
- Department of Medicine, University of California, San Diego, USA
| | | | | | | | | | | |
Collapse
|
6
|
Watanuki S, Matsuda N, Sakuraya F, Jesmin S, Hattori Y. Protein kinase C modulation of the regulation of sarcoplasmic reticular function by protein kinase A-mediated phospholamban phosphorylation in diabetic rats. Br J Pharmacol 2003; 141:347-59. [PMID: 14691046 PMCID: PMC1574184 DOI: 10.1038/sj.bjp.0705455] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
1. The goal of this study was to elucidate the possible mechanisms by which protein kinase A (PKA)-mediated regulation of the sarcoplasmic reticulum (SR) via phospholambin protein phosphorylation is functionally impaired in streptozotocin-induced diabetic rats. 2. Phospholamban (PLB) protein and mRNA levels were 1.3-fold higher in diabetic than in control hearts, while protein expression of cardiac SR Ca(2+)-ATPase (SERCA2a) was unchanged. 3. Basal and isoprenaline-stimulated phosphorylation of PLB at Ser(16) or Thr(17) was unchanged in diabetic hearts. However, stronger immunoreactivity was observed at the basal level in diabetic hearts when antiphosphoserine antibody was used. 4. Basal (32)P incorporation into PLB was significantly higher in diabetic than in control SR vesicles, but the extent of the PKA-mediated increase in PLB phosphorylation was the same in the two groups of vesicles. 5. Stimulation of Ca(2+) uptake by PKA-catalyzed PLB phosphorylation was weaker in diabetic than in control SR vesicles. The PKA-induced increase in Ca(2+) uptake was attenuated when control SR vesicles were preincubated with protein kinase C (PKC). 6. PKC activities were increased by more than two-fold in the membranous fractions from diabetic hearts in comparison with control values, regardless of whether Ca(2+) was present. This was associated with increases in the protein content of PKCdelta, PKCeta, PKCiota, and PKClambda in diabetic membranous fractions. 7. The changes observed in diabetic rats were reversed by insulin therapy. 8. These results suggest that PKA-dependent phosphorylation may incompletely counteract the function of PLB as an inhibitor of SERCA2a activity in diabetes in which PKC expression and activity are enhanced.
Collapse
Affiliation(s)
- Satoko Watanuki
- Department of Pharmacology, Hokkaido University School of Medicine, N-15 W-7, Kita-ku, Sapporo, Hokkaido 060-8638, Japan
| | - Naoyuki Matsuda
- Department of Pharmacology, Hokkaido University School of Medicine, N-15 W-7, Kita-ku, Sapporo, Hokkaido 060-8638, Japan
- Department of Anesthesiology & Critical Care Medicine, Hokkaido University School of Medicine, N-15 W-7, Kita-ku, Sapporo, Hokkaido 060-8638, Japan
| | - Fumika Sakuraya
- Department of Anesthesiology & Critical Care Medicine, Hokkaido University School of Medicine, N-15 W-7, Kita-ku, Sapporo, Hokkaido 060-8638, Japan
| | - Subrina Jesmin
- Department of Cardiovascular Medicine, Hokkaido University School of Medicine, N-15 W-7, Kita-ku, Sapporo, Hokkaido 060-8638, Japan
| | - Yuichi Hattori
- Department of Pharmacology, Hokkaido University School of Medicine, N-15 W-7, Kita-ku, Sapporo, Hokkaido 060-8638, Japan
- Author for correspondence:
| |
Collapse
|
7
|
Kaasik A, Paju K, Minajeva A, Ohisalo J. Decreased expression of phospholamban is not associated with lower beta-adrenergic activation in rat atria. Mol Cell Biochem 2001; 223:109-15. [PMID: 11681711 DOI: 10.1023/a:1017945810355] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The aim of the study was to find out whether low phospholamban level in atria as compared with ventricles is associated with differences in sarcoplasmic reticular Ca2+-uptake and contractile performance. Relationship between phospholamban and beta-adrenergic stimulation in rat left atria and papillary muscles were examined by means of contractile measurements, sarcoplasmic reticular oxalate-supported Ca2+-uptake, and Western blotting of phosphorylated phospholamban. Phosphoprotein determination after beta-adrenergic stimulation demonstrated that the levels of Ser16 and Thr17 phosphorylated phospholamban in atria remained at about one-third of that in ventricles. However, comparison of sarcoplasmic reticular Ca2+-uptake in control and isoproterenol perfused preparations demonstrated that the effect of beta-adrenergic stimulation on sarcoplasmic reticular Ca2+-uptake was stronger in atrial preparations. Moreover, atria responded to isoproterenol with much larger increases in developed tension, contractility and relaxation rates than papillary muscles. Thus, despite lower level of phospholamban, the beta-adrenergic activation of sarcoplasmic reticular Ca2+-uptake and contractile indices are higher in atria.
Collapse
Affiliation(s)
- A Kaasik
- Department of Pharmacology, University of Tartu, Estonia
| | | | | | | |
Collapse
|
8
|
Virts EL, Raschke WC. The role of intron sequences in high level expression from CD45 cDNA constructs. J Biol Chem 2001; 276:19913-20. [PMID: 11389149 DOI: 10.1074/jbc.m100448200] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Consistent expression from CD45 cDNA constructs has proven difficult to achieve. Through the use of new CD45 cDNA constructs and reporter genes, the role 5', 3', and intron sequences play in CD45 expression was determined. The CD45 polyadenylation signal sequence was fully functional in a beta-galactosidase reporter construct. Furthermore, the CD45 3'-untranslated region and downstream sequences were shown to contain no negative regulatory elements. Several new CD45 cDNA constructs were designed that contain either the cytomegalovirus promoter, the leukocyte function-associated antigen (LFA-1; CD11a) promoter, or various CD45 5' regions. Neither the cytomegalovirus nor the LFA-1 promoter was capable of generating detectable levels of expression in constructs with CD45 cDNA. However, when CD45 intron sequences between exons 3 and 9 were inserted in the cDNA construct to generate a CD45 minigene, the LFA-1 promoter was able to drive reproducible, significant expression of CD45. CD45 minigenes using the CD45 5' sequences up to 19 kilobases upstream of the transcriptional start produced very little protein. The LFA-1 CD45 minigene construct produced correct cell type-specific isoforms when expressed in T and B lymphocyte lines. Therefore, we conclude that the regulation of CD45 expression and cell type-specific splicing requires elements within the intron sequences.
Collapse
Affiliation(s)
- E L Virts
- Sidney Kimmel Cancer Center, San Diego, California 92121, USA
| | | |
Collapse
|
9
|
Damiani E, Sacchetto R, Margreth A. Variation of phospholamban in slow-twitch muscle sarcoplasmic reticulum between mammalian species and a link to the substrate specificity of endogenous Ca(2+)-calmodulin-dependent protein kinase. BIOCHIMICA ET BIOPHYSICA ACTA 2000; 1464:231-41. [PMID: 10727610 DOI: 10.1016/s0005-2736(00)00153-x] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Systematic immunological and biochemical studies indicate that the level of expression of sarcoplasmic reticulum (SR) Ca(2+)-ATPase regulatory protein phospholamban (PLB) in mammalian slow-twitch fibers varies from zero, in the rat, to significant levels in the rabbit, and even higher in humans. The lack of PLB expression in the rat, at the mRNA level, is shown to be exclusive to slow-twitch skeletal muscle, and not to be shared by the heart, thus suggesting a tissue-specific, in addition to a species-specific regulation of PLB. A comparison of sucrose density-purified SR of rat and rabbit slow-twitch muscle, with regard to protein compositional and phosphorylation properties, demonstrates that the biodiversity is two-fold, i.e. (a) in PLB membrane density; and (b) in the ability of membrane-bound Ca(2+)-calmodulin (CaM)-dependent protein kinase II to phosphorylate both PLB and SERCA2a (slow-twitch isoform of Ca(2+)-ATPase). The basal phosphorylation state of PLB at Thr-17 in isolated SR vesicles from rabbit slow-twitch muscle, colocalization of CaM K II with PLB and SERCA2a at the same membrane domain, and the divergent subcellular distribution of PKA, taken together, seem to argue for a differential heterogeneity in the regulation of Ca(2+) transport between such muscle and heart muscle.
Collapse
Affiliation(s)
- E Damiani
- Department of Experimental Biomedical Sciences, National Research Council Unit for Muscle Biology and Physiopathology, University of Padua, viale G. Colombo 3, 35121, Padua, Italy
| | | | | |
Collapse
|
10
|
Eizema K, van Heugten HA, Bezstarosti K, van Setten MC, Lamers JM. Endothelin-1 responsiveness of a 1.4 kb phospholamban promoter fragment in rat cardiomyocytes transfected by the gene gun. J Mol Cell Cardiol 2000; 32:311-21. [PMID: 10722806 DOI: 10.1006/jmcc.1999.1076] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The transcriptional regulation of an isolated rat phospholamban (PL) promoter fragment in rat cardiomyocytes was analyzed by applying a new method to reach substantially higher transfection efficiencies: gene gun biolistics. The gene gun transfection method was optimized for application to primary cultures of rat neonatal cardiomyocytes. Cells, cultured at different densities (0.75-1.50x10(5)cells/cm(2)) in serum-free medium, were transfected with DNA coated gold particles. A transfection efficiency of up to 10% could be achieved (compared to <1% with other methods) by the gene gun as checked using a RSV- beta-Gal construct. Cardiomyocytes were stimulated by endothelin-1 (ET-1) (10(-8)M) to induce hypertrophy, thereby yielding the characteristic changes in gene expression (upregulation of Atrial Natriuretic Factor (ANF) and downregulation of PL). The basal activity of an ANF promoter fragment (increasing from the lowest to highest density 2.6-fold) and its ET-1 inducibility (only significant upregulation of 2.6-fold, at lowest density) appeared to be dependent on the plating density of the cardiomyocytes. A PL promoter fragment was isolated, sequenced and 1.4 kb was subcloned in a luciferase reporter vector. The basal activity of the PL promoter fragment was not dependent on the plating density. ET-1 did not downregulate the PL promoter, rather a significant upregulation (1.4-fold) was found at the highest plating density. In conclusion, plating density of the cardiomyocytes can influence promoter activity as shown with an ANF promoter fragment. A newly isolated and sequenced rat PL promoter fragment did not direct gene expression as expected on basis of downregulation of the PL gene by ET-1 observed in this model.
Collapse
Affiliation(s)
- K Eizema
- Department of Biochemistry, Erasmus University Rotterdam, Rotterdam, 3000 DR, Netherlands
| | | | | | | | | |
Collapse
|
11
|
McTiernan CF, Lemster BH, Frye CS, Johns DC, Feldman AM. Characterization of proximal transcription regulatory elements in the rat phospholamban promoter. J Mol Cell Cardiol 1999; 31:2137-53. [PMID: 10640442 DOI: 10.1006/jmcc.1999.1042] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Phospholamban is a major regulator of cardiac diastole, with alterations in expression associated with modified cardiac relaxation. To study transcriptional regulation of phospholamban expression, we made reporter constructs that expressed luciferase under control of putative promoter sequences from the rat phospholamban gene. When transfected into neonatal rat cardiomyocytes, constructs containing at least 159 nucleotides preceding the transcription start site were equally active, while truncation to -66/+64 removed all promoter activity. Constructs were more active in cardiomyocytes than in HeLa cells (which do not express phospholamban), but did not show absolute cell-type specificity of expression. Addition of sequences upstream to -4032, all of the intron (7.4 kb), or 3'UTR sequences (0. 8 kb) did not enhance cell-specific expression. To focus on the basal promoter region (-159/-66), a series of deletion constructs were made that identified a novel 35 bp region (-159/-125; Phospholamban Promoter Element 1, PPE1) required for promoter activity in cardiomyocytes. Site-specific mutations identified nucleotides -150/-133 as containing most of the promoter-enhancing activity. While the rat PPE1 is highly conserved (>70%) in four other mammalian phospholamban genes, it does not contain previously characterized regulatory elements. In cardiomyocytes the PPE1 sequence markedly enhanced activity of the SV40 early promoter. A conserved CCAAT element (-83/-79) was also required for promoter activity in both cardiomyocytes and HeLa cells. Exonuclease III footprinting identified protein/DNA interactions in both the extended CCAAT box and PPE1 domains. Gel shift studies identified the CCAAT elements as binding CBF/NF-Y.
Collapse
Affiliation(s)
- C F McTiernan
- Cardiovascular Institute, University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA
| | | | | | | | | |
Collapse
|
12
|
Simmerman HK, Jones LR. Phospholamban: protein structure, mechanism of action, and role in cardiac function. Physiol Rev 1998; 78:921-47. [PMID: 9790566 DOI: 10.1152/physrev.1998.78.4.921] [Citation(s) in RCA: 424] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
A comprehensive discussion is presented of advances in understanding the structure and function of phospholamban (PLB), the principal regulator of the Ca2+-ATPase of cardiac sarcoplasmic reticulum. Extensive historical studies are reviewed to provide perspective on recent developments. Phospholamban gene structure, expression, and regulation are presented in addition to in vitro and in vivo studies of PLB protein structure and activity. Applications of breakthrough experimental technologies in identifying PLB structure-function relationships and in defining its interaction with the Ca2+-ATPase are also highlighted. The current leading viewpoint of PLB's mechanism of action emerges from a critical examination of alternative hypotheses and the most recent experimental evidence. The potential physiological relevance of PLB function in human heart failure is also covered. The interest in PLB across diverse biochemical disciplines portends its continued intense scrutiny and its potential exploitation as a therapeutic target.
Collapse
|