1
|
Bose I. Gene Silencing via RNA Interference in Cryptococcus. Methods Mol Biol 2024; 2775:91-106. [PMID: 38758313 DOI: 10.1007/978-1-0716-3722-7_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2024]
Abstract
RNA interference (RNAi) is a molecular biology technique for silencing specific eukaryotic genes without altering the DNA sequence in the genome. The silencing effect occurs because of decreased levels of mRNA that then result in decreased protein levels for the gene. The specificity of the silencing is dependent upon the presence of sequence-specific double-stranded RNA (dsRNA) that activates the cellular RNAi machinery. This chapter describes the process of silencing a specific target gene in Cryptococcus using a dual promoter vector. The plasmid, pIBB103, was designed with two convergent GAL7 promoters flanking a ura5 fragment that acts as a reporter for efficient RNAi. The target gene fragment is inserted between the promoters to be transcribed from both directions leading to the production of dsRNA in cells that activate the RNAi pathway.
Collapse
Affiliation(s)
- Indrani Bose
- Department of Biology, Western Carolina University, Cullowhee, NC, USA.
| |
Collapse
|
2
|
Snelders E, Moyrand F, Sturny-Leclère A, Vernel-Pauillac F, Volant S, Janbon G, Alanio A. The role of glycosylphosphatidylinositol (gpi) anchored proteins in Cryptococcus neoformans. Microbes Infect 2022; 24:105016. [DOI: 10.1016/j.micinf.2022.105016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 04/25/2022] [Accepted: 05/20/2022] [Indexed: 10/31/2022]
|
3
|
Wang P. Genetic Transformation in Cryptococcus Species. J Fungi (Basel) 2021; 7:56. [PMID: 33467426 PMCID: PMC7829943 DOI: 10.3390/jof7010056] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 01/11/2021] [Accepted: 01/13/2021] [Indexed: 12/26/2022] Open
Abstract
Genetic transformation plays an imperative role in our understanding of the biology in unicellular yeasts and filamentous fungi, such as Saccharomyces cerevisiae, Aspergillus nidulans, Cryphonectria parasitica, and Magnaporthe oryzae. It also helps to understand the virulence and drug resistance mechanisms of the pathogenic fungus Cryptococcus that causes cryptococcosis in health and immunocompromised individuals. Since the first attempt at DNA transformation in this fungus by Edman in 1992, various methods and techniques have been developed to introduce DNA into this organism and improve the efficiency of homology-mediated gene disruption. There have been many excellent summaries or reviews covering the subject. Here we highlight some of the significant achievements and additional refinements in the genetic transformation of Cryptococcus species.
Collapse
Affiliation(s)
- Ping Wang
- Department of Microbiology, Immunology, and Parasitology, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA
| |
Collapse
|
4
|
Zhang N, Park YD, Williamson PR. New technology and resources for cryptococcal research. Fungal Genet Biol 2015; 78:99-107. [PMID: 25460849 PMCID: PMC4433448 DOI: 10.1016/j.fgb.2014.11.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2014] [Revised: 11/02/2014] [Accepted: 11/06/2014] [Indexed: 11/26/2022]
Abstract
Rapid advances in molecular biology and genome sequencing have enabled the generation of new technology and resources for cryptococcal research. RNAi-mediated specific gene knock down has become routine and more efficient by utilizing modified shRNA plasmids and convergent promoter RNAi constructs. This system was recently applied in a high-throughput screen to identify genes involved in host-pathogen interactions. Gene deletion efficiencies have also been improved by increasing rates of homologous recombination through a number of approaches, including a combination of double-joint PCR with split-marker transformation, the use of dominant selectable markers and the introduction of Cre-Loxp systems into Cryptococcus. Moreover, visualization of cryptococcal proteins has become more facile using fusions with codon-optimized fluorescent tags, such as green or red fluorescent proteins or, mCherry. Using recent genome-wide analytical tools, new transcriptional factors and regulatory proteins have been identified in novel virulence-related signaling pathways by employing microarray analysis, RNA-sequencing and proteomic analysis.
Collapse
Affiliation(s)
- Nannan Zhang
- Laboratory of Clinical Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institution of Health, Bethesda, MD, United States
| | - Yoon-Dong Park
- Laboratory of Clinical Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institution of Health, Bethesda, MD, United States
| | - Peter R Williamson
- Laboratory of Clinical Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institution of Health, Bethesda, MD, United States.
| |
Collapse
|
5
|
Lin X, Chacko N, Wang L, Pavuluri Y. Generation of stable mutants and targeted gene deletion strains in Cryptococcus neoformans through electroporation. Med Mycol 2014; 53:225-34. [PMID: 25541555 DOI: 10.1093/mmy/myu083] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Cryptococcus neoformans is the etiologic agent of cryptococcal meningitis that causes more than half a million deaths worldwide each year. This capsulated basidiomycetous yeast also serves as a model for micropathogenic studies. The ability to make stable mutants, either via ectopic integration or homologous recombination, has been accomplished using biolistic transformation. This technical advance has greatly facilitated the research on the basic biology and pathogenic mechanisms of this pathogen in the past two decades. However, biolistic transformation is costly, and its reproducibility varies widely. Here we found that stable ectopic integration or targeted gene deletion via homologous replacement could be accomplished through electroporative transformation. The stability of the transformants obtained through electroporation and the frequency of homologous replacement is highly dependent on the selective marker. A frequency of homologous recombination among the stable transformants obtained by electroporation is comparable to those obtained by biolistic transformation (∼10%) when dominant drug selection markers are used, which is much higher than what has been previously reported for electroporation when auxotrophic markers were used (0.001% to 0.1%). Furthermore, disruption of the KU80 gene or generation of gene deletion constructs using the split marker strategy, two approaches known to increase homologous replacement among transformants obtained through biolistic transformation, also increase the frequency of homologous replacement among transformants obtained through electroporation. Therefore, electroporation provides a low cost alternative for mutagenesis in Cryptococcus.
Collapse
Affiliation(s)
- Xiaorong Lin
- Department of Biology, Texas A&M University, College Station, Texas, USA
| | - Nadia Chacko
- Department of Biology, Texas A&M University, College Station, Texas, USA
| | - Linqi Wang
- Department of Biology, Texas A&M University, College Station, Texas, USA
| | - Yashwant Pavuluri
- Department of Biology, Texas A&M University, College Station, Texas, USA
| |
Collapse
|
6
|
The role of the de novo pyrimidine biosynthetic pathway in Cryptococcus neoformans high temperature growth and virulence. Fungal Genet Biol 2014; 70:12-23. [PMID: 25011011 DOI: 10.1016/j.fgb.2014.06.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2014] [Revised: 06/09/2014] [Accepted: 06/14/2014] [Indexed: 11/21/2022]
Abstract
Fungal infections are often difficult to treat due to the inherent similarities between fungal and animal cells and the resulting host toxicity from many antifungal compounds. Cryptococcus neoformans is an opportunistic fungal pathogen of humans that causes life-threatening disease, primarily in immunocompromised patients. Since antifungal therapy for this microorganism is limited, many investigators have explored novel drug targets aim at virulence factors, such as the ability to grow at mammalian physiological temperature (37°C). To address this issue, we used the Agrobacterium tumefaciens gene delivery system to create a random insertion mutagenesis library that was screened for altered growth at elevated temperatures. Among several mutants unable to grow at 37°C, we explored one bearing an interruption in the URA4 gene. This gene encodes dihydroorotase (DHOase) that is involved in the de novo synthesis of pyrimidine ribonucleotides. Loss of the C. neoformans Ura4 protein, by targeted gene interruption, resulted in an expected uracil/uridine auxotrophy and an unexpected high temperature growth defect. In addition, the ura4 mutant displayed phenotypic defects in other prominent virulence factors (melanin, capsule and phospholipase) and reduced stress response compared to wild type and reconstituted strains. Accordingly, this mutant had a decreased survival rate in macrophages and attenuated virulence in a murine model of cryptococcal infection. Quantitative PCR analysis suggests that this biosynthetic pathway is induced during the transition from 30°C to 37°C, and that transcriptional regulation of de novo and salvage pyrimidine pathway are under the control of the Ura4 protein.
Collapse
|
7
|
Srikanta D, Santiago-Tirado FH, Doering TL. Cryptococcus neoformans: historical curiosity to modern pathogen. Yeast 2014; 31:47-60. [PMID: 24375706 PMCID: PMC3938112 DOI: 10.1002/yea.2997] [Citation(s) in RCA: 98] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2013] [Revised: 12/06/2013] [Accepted: 12/10/2013] [Indexed: 12/22/2022] Open
Abstract
The importance of the Basidiomycete Cryptococcus neoformans to human health has stimulated its development as an experimental model for both basic physiology and pathogenesis. We briefly review the history of this fascinating and versatile fungus, some notable aspects of its biology that contribute to virulence, and current tools available for its study.
Collapse
Affiliation(s)
- Deepa. Srikanta
- Department of Molecular Microbiology, Washington University School of Medicine
| | | | - Tamara L. Doering
- Department of Molecular Microbiology, Washington University School of Medicine
| |
Collapse
|
8
|
Fang W, Price MS, Toffaletti DL, Tenor J, Betancourt-Quiroz M, Price JL, Pan WH, Liao WQ, Perfect JR. Pleiotropic effects of deubiquitinating enzyme Ubp5 on growth and pathogenesis of Cryptococcus neoformans. PLoS One 2012; 7:e38326. [PMID: 22719877 PMCID: PMC3375289 DOI: 10.1371/journal.pone.0038326] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2012] [Accepted: 05/03/2012] [Indexed: 12/16/2022] Open
Abstract
Ubiquitination is a reversible protein modification that influences various cellular processes in eukaryotic cells. Deubiquitinating enzymes remove ubiquitin, maintain ubiquitin homeostasis and regulate protein degradation via the ubiquitination pathway. Cryptococcus neoformans is an important basidiomycete pathogen that causes life-threatening meningoencephalitis primarily in the immunocompromised population. In order to understand the possible influence deubiquitinases have on growth and virulence of the model pathogenic yeast Cryptococcus neoformans, we generated deletion mutants of seven putative deubiquitinase genes. Compared to other deubiquitinating enzyme mutants, a ubp5Δ mutant exhibited severely attenuated virulence and many distinct phenotypes, including decreased capsule formation, hypomelanization, defective sporulation, and elevated sensitivity to several external stressors (such as high temperature, oxidative and nitrosative stresses, high salts, and antifungal agents). Ubp5 is likely the major deubiquitinating enzyme for stress responses in C. neoformans, which further delineates the evolutionary divergence of Cryptococcus from the model yeast S. cerevisiae, and provides an important paradigm for understanding the potential role of deubiquitination in virulence by other pathogenic fungi. Other putative deubiquitinase mutants (doa4Δ and ubp13Δ) share some phenotypes with the ubp5Δ mutant, illustrating functional overlap among deubiquitinating enzymes in C. neoformans. Therefore, deubiquitinating enzymes (especially Ubp5) are essential for the virulence composite of C. neoformans and provide an additional yeast survival and propagation advantage in the host.
Collapse
Affiliation(s)
- Wei Fang
- Shanghai Key Laboratory of Molecular Medical Mycology, PLA Key Laboratory of Mycosis, Institute of Dermatology and Mycosis of Changzheng Hospital, Second Military Medical University, Shanghai, China
- Department of Medicine, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Michael S. Price
- Department of Medicine, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Dena L. Toffaletti
- Department of Medicine, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Jennifer Tenor
- Department of Medicine, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Marisol Betancourt-Quiroz
- Department of Medicine, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Jennifer L. Price
- Department of Medicine, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Wei-hua Pan
- Shanghai Key Laboratory of Molecular Medical Mycology, PLA Key Laboratory of Mycosis, Institute of Dermatology and Mycosis of Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Wan-qing Liao
- Shanghai Key Laboratory of Molecular Medical Mycology, PLA Key Laboratory of Mycosis, Institute of Dermatology and Mycosis of Changzheng Hospital, Second Military Medical University, Shanghai, China
- * E-mail: (JRP); (W-QL)
| | - John R. Perfect
- Department of Medicine, Duke University Medical Center, Durham, North Carolina, United States of America
- * E-mail: (JRP); (W-QL)
| |
Collapse
|
9
|
Abstract
RNA interference (RNAi) is an experimental technique used to suppress individual gene expression in eukaryotic cells in a sequence-dependent manner. The process relies on double-stranded RNA (dsRNA) to target complementary messenger RNA for degradation. Here, we describe two plasmid-based strategies we have developed for RNAi in Cryptococcus neoformans. The pFrame vector utilizes the ACT1 promoter to enable the constitutive synthesis of hairpin RNA (hpRNA), the stem of which constitutes the dsRNA trigger. The pIBB103 vector relies on convergent, inducible GAL7 promoters to independently drive the synthesis of the sense and antisense strands of the interfering sequence; these strands anneal to form the initiating dsRNA molecule. Both vectors are designed to co-silence a "sentinel" gene with an easily scored phenotype to help identify clones in which RNAi is most effective. We provide guidelines for selecting a suitable interfering sequence to trigger RNAi in C. neoformans and describe the steps for subcloning into either vector, transforming C. neoformans by electroporation, screening clones for RNAi-related phenotypes, and evaluating the efficacy and specificity of gene silencing by RNAi.
Collapse
|
10
|
Cryptococcus neoformans requires a functional glycolytic pathway for disease but not persistence in the host. mBio 2011; 2:e00103-11. [PMID: 21652778 PMCID: PMC3110414 DOI: 10.1128/mbio.00103-11] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Cryptococcus neoformans is an important fungal pathogen of immunocompromised individuals, with a close relative, Cryptococcus gattii, emerging as a serious threat for the immunocompetent. During initial infection, C. neoformans colonizes the airspaces of the lungs, resulting in pneumonia, and subsequently migrates to the central nervous system (CNS). We sought to understand fungal carbon utilization during colonization of these fundamentally different niches within the host, in particular the roles of gluconeogenesis and glycolysis. We created mutants at key points in the gluconeogenesis/glycolysis metabolic pathways that are restricted for growth on lactate and glucose, respectively. A phosphoenolpyruvate carboxykinase mutant (the pck1∆ mutant), blocked for entry of 2- and 3-carbon substrates into gluconeogenesis and attenuated for virulence in a murine inhalation model, showed wild-type (WT) persistence in a rabbit cerebrospinal fluid (CSF) model of cryptococcosis. Conversely, both the pyruvate kinase (pyk1∆) and the hexose kinase I and II (hxk1∆/hxk2∆) mutants, which show impaired glucose utilization, exhibited severely attenuated virulence in the murine inhalation model of cryptococcosis and decreased persistence in the CNS in both the rabbit CSF and the murine inhalation models while displaying adequate persistence in the lungs of mice. These data suggest that glucose utilization is critical for virulence of C. neoformans and persistence of the yeast in the CNS. Cryptococcus neoformans is an emerging fungal pathogen of humans and is responsible for approximately 625,000 deaths annually among those suffering from HIV infection/AIDS. The ability of this fungus to persist in the host, coupled with its propensity to colonize the CNS, makes the understanding of nutrient acquisition in the host a primary concern. In this study, we report a requirement of glucose utilization for virulence of C. neoformans that is separate from its role in ATP production in the pathogen. Furthermore, we show that inhibition of glycolysis is a viable antifungal drug target, and impaired ATP production via the PYK1 deletion may serve as a model for dormant/chronic fungal infection in the host. Taken together, these results demonstrate the critical importance of understanding basic metabolic processes of the fungus in the context of host-pathogen interactions.
Collapse
|
11
|
Sengupta S, Chandra TS. Sequence analysis and structural characterization of a glyceraldehyde-3-phosphate dehydrogenase gene from the phytopathogenic fungus Eremothecium ashbyi. Mycopathologia 2010; 171:123-31. [PMID: 20820924 DOI: 10.1007/s11046-010-9357-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2009] [Accepted: 08/15/2010] [Indexed: 11/25/2022]
Abstract
Eremothecium ashbyi is a phytopathogenic fungus infesting cotton, soybeans and several other plants. This highly flavinogenic fungus has been phylogenetically characterized, but the genetic aspects of its central metabolic and riboflavin biosynthetic pathways are unknown. An ORF of 996 bp was obtained from E. ashbyi by using degenerate primers for glyceraldehyde-3-phosphate dehydrogenase (GPD) through reverse transcriptase polymerase chain reaction (RT-PCR) and 5'-3' rapid amplification of cDNA ends (RACE-PCR). This nucleotide sequence had a high similarity of 88% with GPD sequence of Ashbya gossypii. The putative GPD peptide of 331-aa had a high similarity of 85% with the GPD sequence from other ascomycetes. The ORF had an unusually strong codon bias with 5 amino acids showing strict preference of a single codon. The theoretical molecular weight for the putative peptide was 35.58 kDa with an estimated pI of 5.7. A neighbor-joining tree showed that the putative peptide from E. ashbyi displayed the highest similarity to GPD of A. gossypii. The gene sequence is available at the GenBank, accession number EU717696. Homology modeling done with Kluyveromyces marxianus GPD (PDB: 2I5P) as template indicated high structural similarity.
Collapse
Affiliation(s)
- Sudeshna Sengupta
- Department of Biotechnology, Indian Institute of Technology Madras, Chennai, 600 036, India
| | | |
Collapse
|
12
|
Willger SD, Ernst JF, Alspaugh JA, Lengeler KB. Characterization of the PMT gene family in Cryptococcus neoformans. PLoS One 2009; 4:e6321. [PMID: 19633715 PMCID: PMC2711527 DOI: 10.1371/journal.pone.0006321] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2009] [Accepted: 06/23/2009] [Indexed: 12/15/2022] Open
Abstract
Background Protein-O-mannosyltransferases (Pmt's) catalyze the initial step of protein-O-glycosylation, the addition of mannose residues to serine or threonine residues of target proteins. Methodology/Principal Findings Based on protein similarities, this highly conserved protein family can be divided into three subfamilies: the Pmt1 sub-family, the Pmt2 sub-family and the Pmt4 sub-family. In contrast to Saccharomyces cerevisiae and Candida albicans, but similar to filamentous fungi, three putative PMT genes (PMT1, PMT2, and PMT4) were identified in the genome of the human fungal pathogen Cryptococcus neoformans. Similar to Schizosaccharomyces pombe and C. albicans, C. neoformans PMT2 is an essential gene. In contrast, the pmt1 and pmt4 single mutants are viable; however, the pmt1/pmt4 deletions are synthetically lethal. Mutation of PMT1 and PMT4 resulted in distinct defects in cell morphology and cell integrity. The pmt1 mutant was more susceptible to SDS medium than wild-type strains and the mutant cells were enlarged. The pmt4 mutant grew poorly on high salt medium and demonstrated abnormal septum formation and defects in cell separation. Interestingly, the pmt1 and pmt4 mutants demonstrated variety-specific differences in the levels of susceptibility to osmotic and cell wall stress. Delayed melanin production in the pmt4 mutant was the only alteration of classical virulence-associated phenotypes. However, the pmt1 and pmt4 mutants showed attenuated virulence in a murine inhalation model of cryptococcosis. Conclusion/Significance These findings suggest that C. neoformans protein-O-mannosyltransferases play a crucial role in maintaining cell morphology, and that reduced protein-O-glycosylation leads to alterations in stress resistance, cell wall composition, cell integrity, and survival within the host.
Collapse
Affiliation(s)
- Sven D Willger
- Institut für Mikrobiologie, Molekulare Mykologie, Heinrich-Heine-Universität, Düsseldorf, Germany.
| | | | | | | |
Collapse
|
13
|
Cramer KL, Gerrald QD, Nichols CB, Price MS, Alspaugh JA. Transcription factor Nrg1 mediates capsule formation, stress response, and pathogenesis in Cryptococcus neoformans. EUKARYOTIC CELL 2006; 5:1147-56. [PMID: 16835458 PMCID: PMC1489281 DOI: 10.1128/ec.00145-06] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2006] [Accepted: 05/22/2006] [Indexed: 11/20/2022]
Abstract
The Cryptococcus neoformans NRG1 gene was identified using gene microarrays to define putative transcription factor genes regulated by the cyclic AMP (cAMP) signal transduction pathway. Disruption of NRG1 results in delayed capsule formation and mating, two phenotypes that are directly controlled by cAMP signaling. Putative targets of the Nrg1 transcription factor were identified using a second genome microarray to define differences in the transcriptomes of the wild-type and nrg1 mutant strains. These experiments implicate Nrg1 in the transcriptional control of multiple genes involved in carbohydrate metabolism and substrate oxidation, as well as the UGD1 gene encoding a UDP-glucose dehydrogenase required for polysaccharide capsule production and cell wall integrity. In addition to being under transcriptional control of the cAMP pathway, Nrg1 contains a putative protein kinase A phosphorylation site; mutation of this motif results in reduced Nrg1 activity. Consistent with prior studies in hypocapsular mutants, the nrg1 mutant strain is attenuated in an animal model of disseminated cryptococcal disease.
Collapse
Affiliation(s)
- Kari L Cramer
- Department of Medicine and Molecular Genetics/Microbiology, Duke University Medical Center 3355, Durham, North Carolina 27710, USA
| | | | | | | | | |
Collapse
|
14
|
McClelland CM, Chang YC, Kwon-Chung KJ. High frequency transformation of Cryptococcus neoformans and Cryptococcus gattii by Agrobacterium tumefaciens. Fungal Genet Biol 2006; 42:904-13. [PMID: 16260158 DOI: 10.1016/j.fgb.2005.07.003] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2005] [Revised: 07/19/2005] [Accepted: 07/21/2005] [Indexed: 11/29/2022]
Abstract
Cryptococcus neoformans and Cryptococcus gattii are the caus-ative agents of cryptococcal meningoencephalitis and are amenable to genetic manipulations, making them important models of pathogenic fungi. To improve the efficiency of Agrobacterium tumefaciens mediated transformation (ATMT) in C. neoformans, we optimized various co-cultivation conditions including incubation time and temperature, and bacteria to yeast ratio. ATMT was also applied to both serotypes (B and C) of C. gattii. Transformation efficiency by ATMT in C. neoformans was comparable to either electroporation or biolistic transformation and gave superior efficiencies in serotypes B and C, but unlike Saccharomyces cerevisiae, adenine auxotrophy did not increase ATMT efficiency in C. neoformans or C. gattii. All transformants tested were stable, with a majority containing only a single T-DNA insertion; however, homologous recombination was not observed. Additionally, we isolated adenine auxotrophs containing a single T-DNA insertion in the ADE2 gene for representative serotype B and C strains.
Collapse
Affiliation(s)
- Carol M McClelland
- Laboratory of Clinical Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | |
Collapse
|
15
|
Kingsbury JM, Yang Z, Ganous TM, Cox GM, McCusker JH. Novel chimeric spermidine synthase-saccharopine dehydrogenase gene (SPE3-LYS9) in the human pathogen Cryptococcus neoformans. EUKARYOTIC CELL 2005; 3:752-63. [PMID: 15189996 PMCID: PMC420128 DOI: 10.1128/ec.3.3.752-763.2004] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The Cryptococcus neoformans LYS9 gene (encoding saccharopine dehydrogenase) was cloned and found to be part of an evolutionarily conserved chimera with SPE3 (encoding spermidine synthase). spe3-lys9, spe3-LYS9, and SPE3-lys9 mutants were constructed, and these were auxotrophic for lysine and spermidine, spermidine, and lysine, respectively. Thus, SPE3-LYS9 encodes functional spermidine synthase and saccharopine dehydrogenase gene products. In contrast to Saccharomyces cerevisiae spe3 mutants, the polyamine auxotrophy of C. neoformans spe3-LYS9 mutants was not satisfied by spermine. In vitro phenotypes of spe3-LYS9 mutants included reduced capsule and melanin production and growth rate, while SPE3-lys9 mutants grew slowly at 30 degrees C, were temperature sensitive in rich medium, and died upon lysine starvation. Consistent with the importance of saccharopine dehydrogenase and spermidine synthase in vitro, spe3-lys9 mutants were avirulent and unable to survive in vivo and both functions individually contributed to virulence. SPE3-LYS9 mRNA levels showed little evidence of being influenced by exogenous spermidine or lysine or starvation for spermidine or lysine; thus, any regulation is likely to be posttranscriptional. Expression in S. cerevisiae of the full-length C. neoformans SPE3-LYS9 cDNA complemented a lys9 mutant but not a spe3 mutant. However, expression in S. cerevisiae of a truncated gene product, consisting of only C. neoformans SPE3, complemented a spe3 mutant, suggesting possible modes of regulation. Therefore, we identified and describe a novel chimeric SPE3-LYS9 gene, which may link spermidine and lysine biosynthesis in C. neoformans.
Collapse
Affiliation(s)
- Joanne M Kingsbury
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, USA
| | | | | | | | | |
Collapse
|
16
|
Mylonakis E, Idnurm A, Moreno R, El Khoury J, Rottman JB, Ausubel FM, Heitman J, Calderwood SB. Cryptococcus neoformans Kin1 protein kinase homologue, identified through a Caenorhabditis elegans screen, promotes virulence in mammals. Mol Microbiol 2004; 54:407-19. [PMID: 15469513 DOI: 10.1111/j.1365-2958.2004.04310.x] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Cryptococcal infections are a global cause of significant morbidity and mortality. Recent studies support the hypothesis that virulence of Cryptococcus neoformans may have evolved via survival selection in environmental hosts, such as amoebae and free-living nematodes. We used killing of the nematode Caenorhabditis elegans by C. neoformans as an assay to screen a library of random C. neoformans insertion mutants. Of 350 mutants tested, seven were identified with attenuated virulence that persisted after crossing the mutation back into a wild-type strain. Genetic analysis of one strain revealed an insertion in a gene homologous to Saccharomyces cerevisiae KIN1, which encodes a serine/threonine protein kinase. C. neoformans kin1 mutants exhibited significant defects in virulence in murine inhalation and haematogenous infection models and displayed increased binding to alveolar and peritoneal macrophages. The kin1 mutant phenotypes were complemented by the wild-type KIN1 gene. These findings show that the C. neoformans Kin1 kinase homologue is required for full virulence in disparate hosts and that C. elegans can be used as a substitute host to identify novel factors involved in fungal pathogenesis in mammals.
Collapse
Affiliation(s)
- Eleftherios Mylonakis
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, MA 02114, USA
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Temporini ED, Alvarez ME, Mautino MR, Folco HD, Rosa AL. The Neurospora crassa cfp promoter drives a carbon source-dependent expression of transgenes in filamentous fungi. J Appl Microbiol 2004; 96:1256-64. [PMID: 15139917 DOI: 10.1111/j.1365-2672.2004.02249.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
AIMS The objective of the present study was to determine the potential of promoter sequences from the cfp gene of Neurospora crassa to drive the expression of transgenes in filamentous fungi. METHODS AND RESULTS Northern blot analyses showed that the mRNA levels of cfp were rapidly modified in response to either inducing or repressing culture conditions. The hygromycin phosphotransferase (hph) and S-adenosylmethionine synthetase (eth-1) genes were fused to a minimal cfp promoter fragment (Pcfp) and used as reporter genes. These constructs were highly expressed in transformant N. crassa strains grown in media containing glucose or sucrose and repressed in media containing ethanol or ethanol plus glucose. A gene fusion of the cfp promoter to the beta-glucuronidase gene (cfp-uidA) showed identical patterns of expression in the heterologous filamentous fungus Aspergillus nidulans. CONCLUSIONS Our results show that the levels of expression of the native cfp gene, as well as reporter genes driven by cfp promoter sequences, can be rapidly modified in response to different carbon sources. These modified levels of expression are maintained by continuous growth in the presence of the corresponding carbon source. SIGNIFICANCE AND IMPACT OF THE STUDY We propose that the cfp promoter can be used to control the expression of transgenes in filamentous fungi in a carbon source-dependent fashion.
Collapse
Affiliation(s)
- E D Temporini
- Instituto de Investigación Médica Mercedes y Martín Ferreyra, INIMEC-CONICET, and Departmento de Química Biológica, CIQUIBIC-CONICET, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Cordoba, Argentina
| | | | | | | | | |
Collapse
|
18
|
Heo JH, Hong WK, Cho EY, Kim MW, Kim JY, Kim CH, Rhee SK, Kang HA. Properties of the -derived constitutive promoter, assessed using an HSA reporter gene. FEMS Yeast Res 2003; 4:175-84. [PMID: 14613882 DOI: 10.1016/s1567-1356(03)00150-8] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
The glyceraldehyde-3-phosphate dehydrogenase promoter, P(GAP), was employed to direct the constitutive expression of recombinant human serum albumin (HSA) in Hansenula polymorpha. A set of integration vectors containing the HSA cDNA under the control of P(GAP) was constructed and the elemental parameters affecting the expression of HSA from P(GAP) were analyzed. The presence of a 5'-untranslated region derived from the HSA cDNA and the integration of the expression vector into the GAP locus were shown to improve the expression of HSA under P(GAP). Glycerol supported a higher level of HSA expression from P(GAP) along with a higher cell density than either glucose or methanol. The growth at high glycerol concentrations up to 12% did not cause any significant repression of the cell growth. A high cell density culture, up to 83 g l(-1) dry cell weight with a HSA production of 550 mg l(-1), was obtained in less than 32 h of cultivation in a fed-batch fermentation employing intermittent feeding with 12% glycerol. The GAP promoter-based HSA expression system showed a higher specific production rate and required a much simpler fermentation process than the MOX promoter-based system, demonstrating that P(GAP) can be a practical alternative of the MOX promoter in the large-scale production of HSA from H. polymorpha.
Collapse
Affiliation(s)
- Joo Hyung Heo
- Korea Research Institute of Bioscience and Biotechnology, Yusong P.O. Box 115, 305-600, Taejon, South Korea
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Posteraro B, Sanguinetti M, Sanglard D, La Sorda M, Boccia S, Romano L, Morace G, Fadda G. Identification and characterization of a Cryptococcus neoformans ATP binding cassette (ABC) transporter-encoding gene, CnAFR1, involved in the resistance to fluconazole. Mol Microbiol 2003; 47:357-71. [PMID: 12519188 DOI: 10.1046/j.1365-2958.2003.03281.x] [Citation(s) in RCA: 101] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Resistance to fluconazole is a possible event during prolonged suppressive drug therapy for cryptococ-cal meningitis, the most frequently encountered life-threatening manifestation of cryptococcosis. The knowledge of this resistance at the molecular level is important for management of cryptococcosis. In order to identify genes involved in azole resistance in Cryptococcus neoformans, a cDNA subtraction library technique was chosen as a strategy. First, a fluconazole-resistant mutant BPY22.17 was obtained from a susceptible clinical isolate BPY22 by in vitro exposure to the drug. Then, a subtractive hybridization procedure was used to compare gene expression between the obtained strains. We identified a cDNA overexpressed in the fluconazole-resistant strain BPY22.17 that was used as a probe to isolate the entire gene in a C. neoformans genomic library. Sequence analysis of this gene identified an ATP Binding Cassette (ABC) transporter-encoding gene called C. neoformans AntiFungal Resistance 1 (CnAFR1). Disruption of CnAFR1 gene in the resistant isolate (BPY22.17) resulted in an enhanced susceptibility of the knock-out mutant cnafr1 against fluconazole, whereas reintroduction of the gene in cnafr1 resulted in restoration of the resistance phenotype, thus confirming that CnAFR1 is involved in fluconazole resistance of C. neoformans. Our findings therefore reveal that an active drug efflux mechanism can be involved in the development of azole resistance in this important human pathogen.
Collapse
Affiliation(s)
- Brunella Posteraro
- Istituto Microbiologia, Università Cattolica del S. Cuore, L. go F. Vito, 1, 00168 Rome, Italy
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Waugh MS, Nichols CB, DeCesare CM, Cox GM, Heitman J, Alspaugh JA. Ras1 and Ras2 contribute shared and unique roles in physiology and virulence of Cryptococcus neoformans. MICROBIOLOGY (READING, ENGLAND) 2002; 148:191-201. [PMID: 11782511 DOI: 10.1099/00221287-148-1-191] [Citation(s) in RCA: 92] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The Ras1 signal transduction pathway controls the ability of the pathogenic fungus Cryptococcus neoformans to grow at high temperatures and to mate. A second RAS gene was identified in this organism. RAS2 is expressed at a very low level compared to RAS1, and a ras2 mutation caused no alterations in vegetative growth rate, differentiation or virulence factor expression. The ras2 mutant strain was equally virulent to the wild-type strain in the murine inhalational model of cryptococcosis. Although a ras1 ras2 double mutant strain is viable, mutation of both RAS genes results in a decreased growth rate at all temperatures compared to strains with either single mutation. Overexpression of the RAS2 gene completely suppressed the ras1 mutant mating defect and partially suppressed its high temperature growth defect. After prolonged incubation at a restrictive temperature, the ras1 mutant demonstrated actin polarity defects that were also partially suppressed by RAS2 overexpression. These studies indicate that the C. neoformans Ras1 and Ras2 proteins share overlapping functions, but also play distinct signalling roles. Our findings also suggest a mechanism by which Ras1 controls growth of this pathogenic fungus at 37 degrees C, supporting a conserved role for Ras homologues in microbial cellular differentiation, morphogenesis and virulence.
Collapse
Affiliation(s)
- Michael S Waugh
- Howard Hughes Medical Institute, Duke University Medical Center, Durham, NC, USA5
- Department of Genetics, Duke University Medical Center, Durham, NC, USA2
- Department of Medicine, Duke University Medical Center, Durham, NC, USA1
| | - Connie B Nichols
- Howard Hughes Medical Institute, Duke University Medical Center, Durham, NC, USA5
- Department of Genetics, Duke University Medical Center, Durham, NC, USA2
| | - Cameron M DeCesare
- Department of Medicine, Duke University Medical Center, Durham, NC, USA1
| | - Gary M Cox
- Department of Microbiology, Duke University Medical Center, Durham, NC, USA3
- Department of Medicine, Duke University Medical Center, Durham, NC, USA1
| | - Joseph Heitman
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC, USA4
- Howard Hughes Medical Institute, Duke University Medical Center, Durham, NC, USA5
- Department of Medicine, Duke University Medical Center, Durham, NC, USA1
- Department of Genetics, Duke University Medical Center, Durham, NC, USA2
- Department of Microbiology, Duke University Medical Center, Durham, NC, USA3
| | - J Andrew Alspaugh
- Department of Medicine, Duke University Medical Center, Durham, NC, USA1
| |
Collapse
|
21
|
da Fonseca CA, Jesuino RS, Felipe MS, Cunha DA, Brito WA, Soares CM. Two-dimensional electrophoresis and characterization of antigens from Paracoccidioides brasiliensis. Microbes Infect 2001; 3:535-42. [PMID: 11418327 DOI: 10.1016/s1286-4579(01)01409-5] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Paracoccidioides brasiliensis is a fungal pathogen of humans. To identify antigens from P. brasiliensis we fractionated a crude preparation of proteins from the fungus and detected the IgG reactive proteins by immunoblot assays of yeast cellular extracts with sera of patients with paracoccidioidomycosis (PCM). We identified and characterized six new antigens by amino acid sequencing and homology search analyses with other proteins deposited in a database. The newly characterized antigens were highly homologous to catalase, fructose-1,6-biphosphate aldolase (aldolase), glyceraldehyde-3-phosphate dehydrogenase, malate dehydrogenase and triosephosphate isomerase from several sources. The characterized antigens presented preferential synthesis in yeast cells, the host fungus phase.
Collapse
Affiliation(s)
- C A da Fonseca
- Laboratório de Biologia Molecular, ICBII, UFG, Universidade Federal de Goiás, 74001-970, Go, Goiânia, Brazil
| | | | | | | | | | | |
Collapse
|
22
|
Abstract
During the past few decades, increasing attention has focused on pathogenic fungi both as fascinating research subjects and as the agents of serious illness in diverse patient populations. In particular, opportunistic fungi such as Cryptococcus neoformans command notice as the ranks of their immunocompromised victims grow. C. neoformans is unique among fungal pathogens for its major virulence factor, a complex polysaccharide capsule. In this article, our current understanding of the structure and biosynthesis of the capsule is reviewed, as are the many questions that remain to be answered about how Cryptococcus gets its coat.
Collapse
Affiliation(s)
- T L Doering
- Dept of Molecular Microbiology, Washington University School of Medicine, Campus 8230, 660 South Euclid Ave, MO 63110, USA.
| |
Collapse
|
23
|
Varma A, Kwon-Chung KJ. Characterization of the L41 gene in Cryptococcus neoformans: its application as a selectable transformation marker for cycloheximide resistance. Yeast 2000; 16:1397-403. [PMID: 11054820 DOI: 10.1002/1097-0061(200011)16:15<1397::aid-yea636>3.0.co;2-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
A transformation system using resistance to the antibiotic cycloheximide as a dominant selectable marker was developed for the pathogenic yeast Cryptococcus neoformans. A 3.5 kb DNA fragment containing a gene encoding the ribosomal protein L41 was cloned from a wild-type strain of C. neoformans which is sensitive to cycloheximide. The open reading frame of the L41 gene contains five introns and encodes a protein of 107 amino acids, which is similar to those reported for other yeasts. The cycloheximide resistance gene to be used as a marker was constructed by replacing a DNA segment of the wild-type L41 gene, which contained the amino acid proline at its 56th position with a homologous DNA segment from a mutant strain resistant to cycloheximide that contained leucine in that position. Cycloheximide resistant transformants were obtained by electroporation on YEPD plates, supplemented with 10-20 microg/ml cycloheximide, at a maximum efficiency of 300 transformants/microg plasmid DNA. While with other genes, most transformants of serotype D in C. neoformans maintain the transforming DNA as episomes, the cycloheximide-resistant transformants were all the result of ectopic genomic integration events.
Collapse
Affiliation(s)
- A Varma
- Molecular Microbiology Section, Laboratory of Clinical Investigation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | | |
Collapse
|