1
|
Chand R, Kumar P, Kumar A, Ahmad SF, Singh P, Kumar A, Haritha P, Gaitri N, Murugasamy R, Kumar S, Chauhan A, Dutt T. Comparison of ddRAD derived genome-wide SSR markers in outbred and inbred Swiss albino mice. Gene 2025; 961:149559. [PMID: 40350065 DOI: 10.1016/j.gene.2025.149559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Revised: 03/29/2025] [Accepted: 05/08/2025] [Indexed: 05/14/2025]
Abstract
Genetic monitoring of inbred laboratory animal populations, developed at any laboratory, is one of the key elements of quality control and their colony management. The present study aimed to mine microsatellite (or SSR) markers from double digest restriction-site associated DNA (ddRAD) sequencing data of outbred foundation stock and F9 inbred generation of Swiss albino mice. Genomic DNA (12 F0 outbred and 12 F9 inbred) was isolated from tail tissue samples of F0 outbred and F9 inbred Swiss albino mice and processed for genotyping by sequencing using ddRAD platform. Double digestion of DNA was done using EcoR1 and Mse1 enzymes, and ddRAD data was subsequently analysed to identify and characterize microsatellite markers at genome-wide level. The analysis involved three key steps: pre-processing of reads, single sequence repeat (SSR) mining, and primer designing using different software i.e., PEAR, stacks and QDD. A total of 508 and 353 SSR motifs were identified in the outbred and inbred groups, respectively. Additionally, 828 and 551 primer sets were designed for the outbred and inbred groups, respectively. Furthermore, SSR loci specific to the outbred and inbred groups were also identified. Among these, eight SSR motifs (three each specific to the outbred and inbred groups, and two common) were validated using PCR amplification and gel electrophoresis. The designed primer sets successfully amplified respective SSR loci and produced reproducible bands on gel electrophoresis. The validated microsatellites were mapped to specific chromosomal locations using NCBI BLASTN with Mus musculus as the reference genome. In conclusion, the present study reports mining of SSR loci in outbred and inbred mice population. SSR loci were found to be more abundant and diverse in outbred population as compared to the inbred population. The unique SSRs identified for outbred and inbred groups will be helpful in checking the strain purity, marker assisted selection, and breeding programs without need for repeating the ddRAD sequencing in other laboratory animal population.
Collapse
Affiliation(s)
- Roshni Chand
- Division of Animal Genetics, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly 243122 Uttar Pradesh, India
| | - Pushpendra Kumar
- Division of Animal Genetics, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly 243122 Uttar Pradesh, India.
| | - Amit Kumar
- Livestock Production Management Section, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly 243122 Uttar Pradesh, India
| | - Sheikh Firdous Ahmad
- Division of Animal Genetics, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly 243122 Uttar Pradesh, India; Livestock Production Management Section, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly 243122 Uttar Pradesh, India
| | - Parul Singh
- Division of Animal Genetics, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly 243122 Uttar Pradesh, India
| | - Amit Kumar
- Division of Animal Genetics, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly 243122 Uttar Pradesh, India
| | - Pala Haritha
- Division of Animal Genetics, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly 243122 Uttar Pradesh, India
| | - Nitish Gaitri
- Division of Animal Genetics, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly 243122 Uttar Pradesh, India
| | - Rudhreshwaran Murugasamy
- Division of Veterinary Biotechnology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly 243122 Uttar Pradesh, India
| | - Subodh Kumar
- Livestock Production Management Section, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly 243122 Uttar Pradesh, India
| | - Anuj Chauhan
- Livestock Production Management Section, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly 243122 Uttar Pradesh, India
| | - Triveni Dutt
- Livestock Production Management Section, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly 243122 Uttar Pradesh, India
| |
Collapse
|
2
|
Gorges DM, Filippin-Monteiro FB. Genetic variants in the LRP5 gene associated with gain and loss of bone mineral density. In Silico Pharmacol 2025; 13:61. [PMID: 40255261 PMCID: PMC12003225 DOI: 10.1007/s40203-025-00341-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Accepted: 03/17/2025] [Indexed: 04/22/2025] Open
Abstract
The low-density lipoprotein receptor-related protein 5 (LRP5) plays a pivotal role in bone formation, influencing the proliferation and differentiation of osteoblasts and thereby impacting overall bone mass. Genetic variations stemming from non-synonymous single nucleotide polymorphisms (nsSNPs) within the LRP5 gene can lead to either enhanced or diminished function of the resultant protein, culminating in distinct phenotypic expressions such as osteoporosis-pseudoglioma syndrome (OPPG) and high bone mass (HBM). Through in silico analysis of 17 identified nsSNPs, it was observed that 14 of these variants induced damage at highly conserved sites, resulting in the destabilization of both protein function and structure. Notably, the functional alteration, be it a gain or loss, is primarily dictated by the interaction between the molecule and LRP5, rather than the specific amino acid substitution. This research offers an identification of detrimental nsSNPs within the LRP5 protein and serves as a foundation for population-based investigations into the phenotypic repercussions on a broader scale.
Collapse
Affiliation(s)
- Daphany Marah Gorges
- Department of Clinical Analysis, Health Sciences Center, Federal University of Santa Catarina, Florianópolis, SC 88040900 Brazil
| | - Fabíola Branco Filippin-Monteiro
- Department of Clinical Analysis, Health Sciences Center, Federal University of Santa Catarina, Florianópolis, SC 88040900 Brazil
| |
Collapse
|
3
|
Liu J, Zhou A, Liu Q, Gao Y, Xu S, Lu Y. Genomic Insights into Vector-Pathogen Adaptation in Haemaphysalis longicornis and Rhipicephalus microplus. Pathogens 2025; 14:306. [PMID: 40333071 PMCID: PMC12030188 DOI: 10.3390/pathogens14040306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2025] [Revised: 03/07/2025] [Accepted: 03/19/2025] [Indexed: 05/09/2025] Open
Abstract
As crucial vectors that transmit pathogens to humans and livestock, ticks pose substantial global health threats and economic burdens. We analyzed 328 tick genomes to explore the population's genetic structure and the adaptive evolution of H. longicornis and R. microplus, two tick species with distinct life cycle characteristics. We observed distinct genetic structures in H. longicornis and R. microplus. Gene flow estimation revealed a closer genetic connection in R. microplus than H. longicornis, which was facilitated by geographical proximity. Notably, we identified a set of candidate genes associated with possible adaptations. Specifically, the immune-related gene DUOX and the iron transport gene ACO1 showed significant signals of natural selection in R. microplus. Similarly, H. longicornis exhibited selection in pyridoxal-phosphate-dependent enzyme genes associated with heme synthesis. Moreover, we observed significant correlations between the abundance of pathogens, such as Rickettsia and Francisella, and specific tick genotypes, which highlights the role of R. microplus in maintaining these pathogens and its adaptations that influence immune responses and iron metabolism, suggesting potential coevolution between vectors and pathogens. Our study highlights the vital genes involved in tick blood feeding and immunity, and it provides insights into the coevolution of ticks and tick-borne pathogens.
Collapse
Affiliation(s)
- Jin Liu
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, School of Life Sciences, Fudan University, Shanghai 200438, China; (J.L.); (Y.G.); (S.X.)
| | - An Zhou
- Center for Evolutionary Biology, Ministry of Education Key Laboratory of Contemporary Anthropology, Fudan University, Shanghai 200438, China;
| | - Qi Liu
- Department of Liver Surgery and Transplantation Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai 201203, China;
| | - Yang Gao
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, School of Life Sciences, Fudan University, Shanghai 200438, China; (J.L.); (Y.G.); (S.X.)
| | - Shuhua Xu
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, School of Life Sciences, Fudan University, Shanghai 200438, China; (J.L.); (Y.G.); (S.X.)
- Center for Evolutionary Biology, Ministry of Education Key Laboratory of Contemporary Anthropology, Fudan University, Shanghai 200438, China;
- Department of Liver Surgery and Transplantation Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai 201203, China;
| | - Yan Lu
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, School of Life Sciences, Fudan University, Shanghai 200438, China; (J.L.); (Y.G.); (S.X.)
- Center for Evolutionary Biology, Ministry of Education Key Laboratory of Contemporary Anthropology, Fudan University, Shanghai 200438, China;
| |
Collapse
|
4
|
Yang H, Zhang L, Kang X, Si Y, Song P, Su X. Reaction Pathway Differentiation Enabled Fingerprinting Signal for Single Nucleotide Variant Detection. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2412680. [PMID: 39903775 PMCID: PMC11948007 DOI: 10.1002/advs.202412680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 01/17/2025] [Indexed: 02/06/2025]
Abstract
Accurate identification of single-nucleotide variants (SNVs) is paramount for disease diagnosis. Despite the facile design of DNA hybridization probes, their limited specificity poses challenges in clinical applications. Here, a differential reaction pathway probe (DRPP) based on a dynamic DNA reaction network is presented. DRPP leverages differences in reaction intermediate concentrations between SNV and WT groups, directing them into distinct reaction pathways. This generates a strong pulse-like signal for SNV and a weak unidirectional increase signal for wild-type (WT). Through the application of machine learning to fluorescence kinetic data analysis, the classification of SNV and WT signals is automated with an accuracy of 99.6%, significantly exceeding the 80.7% accuracy of conventional methods. Additionally, sensitivity for variant allele frequency (VAF) is enhanced down to 0.1%, representing a ten-fold improvement over conventional approaches. DRPP accurately identified D614G and N501Y SNVs in the S gene of SARS-CoV-2 variants in patient swab samples with accuracy over 99% (n = 82). It determined the VAF of ovarian cancer-related mutations KRAS-G12R, NRAS-G12C, and BRAF-V600E in both tissue and blood samples (n = 77), discriminating cancer patients and healthy individuals with significant difference (p < 0.001). The potential integration of DRPP into clinical diagnostics, along with rapid amplification techniques, holds promise for early disease diagnostics and personalized diagnostics.
Collapse
Affiliation(s)
- Huixiao Yang
- State Key Laboratory of Organic‐Inorganic CompositesBeijing Key Laboratory of BioprocessBeijing Advanced Innovation Center for Soft Matter Science and EngineeringCollege of Life Science and TechnologyBeijing University of Chemical TechnologyBeijing100029China
| | - Linghao Zhang
- State Key Laboratory of Organic‐Inorganic CompositesBeijing Key Laboratory of BioprocessBeijing Advanced Innovation Center for Soft Matter Science and EngineeringCollege of Life Science and TechnologyBeijing University of Chemical TechnologyBeijing100029China
| | - Xinmiao Kang
- State Key Laboratory of Organic‐Inorganic CompositesBeijing Key Laboratory of BioprocessBeijing Advanced Innovation Center for Soft Matter Science and EngineeringCollege of Life Science and TechnologyBeijing University of Chemical TechnologyBeijing100029China
| | - Yunpei Si
- School of Biomedical EngineeringZhangjiang Institute for Advanced Study and National Center for Translational MedicineShanghai Jiao Tong UniversityShanghai200240China
| | - Ping Song
- School of Biomedical EngineeringZhangjiang Institute for Advanced Study and National Center for Translational MedicineShanghai Jiao Tong UniversityShanghai200240China
| | - Xin Su
- State Key Laboratory of Organic‐Inorganic CompositesBeijing Key Laboratory of BioprocessBeijing Advanced Innovation Center for Soft Matter Science and EngineeringCollege of Life Science and TechnologyBeijing University of Chemical TechnologyBeijing100029China
- State Key Laboratory of Natural and Biomimetic DrugsPeking UniversityBeijing100191China
| |
Collapse
|
5
|
Kumar N, Selvaraj K, Gopalshami LK, Baddireddi R, Thiruvengadam K, Lakshmi BS. Diabesity: New Candidate Genes and Structural and Functional Effects of Non-Synonymous Single Nucleotide Polymorphisms Identified by Computational Biology. OMICS : A JOURNAL OF INTEGRATIVE BIOLOGY 2025; 29:96-104. [PMID: 39927874 DOI: 10.1089/omi.2024.0184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/11/2025]
Abstract
Diabesity is a comorbidity of type 2 diabetes mellitus and obesity. Diabesity is a major global epidemic and a veritable planetary health burden. With diabesity, several clinical signs are present such as excess accumulation of fat, altered lipid metabolism, chronic inflammation, insulin resistance, disordered pancreatic β-cell metabolism, and hyperglycemia. We report here new potential candidate genes for diabesity, and the structural and functional effects of non-synonymous single nucleotide polymorphisms (nsSNPs) in these genes using a computational biology approach. A protein-protein interaction (PPI) network was constructed using Human Integrated Protein-Protein Interaction rEference (HIPPIE') data for 186 diabesity-associated genes from the Disease Gene Network (DisGeNET). Subsequently, the top 2% of nine centrality-ranked genes were identified as hub genes. Gene ontology enrichment analysis was performed with the same gene list using the Gene Ontology enRIchment anaLysis and visuaLizAtion (GORILLA) tool, and importantly, 63 enriched hub genes with no prior disease association were selected and their differential expressions in adipose, skeletal, and hepatic tissues were analyzed using Gene Expression Omnibus (GEO) profiles. Finally, the nsSNPs in the top five prioritized genes (EGFR, SRC, SQSTM1, CCND1, and RELA) were retrieved from Database of Single Nucleotide Polymorphisms (dbSNP) and subjected to deleterious variant analysis. The significant variants were subjected to structural prediction using AlphaFold, stability analysis, and molecular dynamics simulation using GROningen MAchine for Chemical Simulations (GROMACS). Taken together, the present computational biology research reports new molecular insights on diabesity candidate genes and the role of nsSNPs that may potentially contribute to diabesity. As diabesity and diabetes continue to be major planetary health challenges, these findings warrant further in vitro and clinical translation research with an eye to precision medicine and therapeutics innovation. Understanding the differences between wild type and variant proteins is crucial for developing interventions aimed at stabilizing these proteins in the prevention and treatment of diabesity.
Collapse
Affiliation(s)
- Naveenn Kumar
- Structural Informatics and Chemical Biology Laboratory, Department of Biotechnology, Anna University, Chennai, India
| | - Karthiga Selvaraj
- Structural Informatics and Chemical Biology Laboratory, Department of Biotechnology, Anna University, Chennai, India
| | | | - Riitvek Baddireddi
- Department of Biochemistry and Biophysics, Oregon State University, Corvallis, Oregon, USA
| | - Kothai Thiruvengadam
- Structural Informatics and Chemical Biology Laboratory, Department of Biotechnology, Anna University, Chennai, India
| | - Baddireddi Subhadra Lakshmi
- Structural Informatics and Chemical Biology Laboratory, Department of Biotechnology, Anna University, Chennai, India
| |
Collapse
|
6
|
Snedeker JL, Peck MA, Russell DA, Holmes AS, Neal CM, Reedy CR, Hughes SR, Houston RM. An investigation of downstream processing methods for challenging skeletal samples. Forensic Sci Int Genet 2025; 76:103209. [PMID: 39721344 DOI: 10.1016/j.fsigen.2024.103209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 12/10/2024] [Accepted: 12/11/2024] [Indexed: 12/28/2024]
Abstract
While skeletal remains are known for their resilience and often serve as the final source of information for unidentified human remains (UHRs), the traditional downstream processing of these samples is challenging due to their low template nature, DNA degradation, and the presence of PCR inhibitors, typically resulting in limited probative information. To address this issue, advanced genotyping methods can be explored to retrieve additional genetic information from these challenging samples to maximize investigative leads. Therefore, this study investigated the effectiveness of three advanced genotyping methods and assessed their suitability with compromised skeletal samples: 1) targeted next generation sequencing (NGS) of both STRs and SNPs using the ForenSeq® DNA Signature Prep chemistry, 2) targeted NGS of SNPs using the ForenSeq® Kintelligence kit, and 3) SNP genotyping using a microarray via the Infinium Global Screening Array. The genotype recovery and added investigative leads were compared across all methods. All three approaches demonstrated success with the challenging skeletal samples used in this study. Specifically, the ForenSeq® DNA Signature Prep chemistry outperformed traditional STR typing by improving the recovery of CODIS core loci. Additionally, the ForenSeq® Kintelligence kit and Infinium Global Screening Array provided eligible results for forensic investigative genetic genealogy (FIGG) searching. Based on these successes, we have developed a proposed workflow for downstream processing of challenging skeletal samples. Following the guidelines of the US Department of Justice, the recovery of the CODIS core loci should be attempted through traditional CE-based methods or a NDIS-approved NGS chemistry, such as ForenSeq® DNA Signature Prep. Alternatively, a mitochondrial DNA profile may be uploaded to CODIS for comparisons in UHR cases. However, if no probative information is developed from the forensic profile uploaded to CODIS, then FIGG methods can be implemented using the Infinium Global Screening Array for high-quality skeletal samples (DNA concentrations ≥ 0.5 ng/µL) or the ForenSeq® Kintelligence chemistry for low-template skeletal remains (DNA concentration ≤ 0.5 ng/µL). These findings provide valuable insight into the suitability and efficacy of advanced genotyping methods, offering promising opportunities for enhancing the investigation of cases involving UHRs.
Collapse
Affiliation(s)
- Jennifer L Snedeker
- Department of Forensic Science, College of Criminal Justice, Sam Houston State University, Huntsville, TX, USA.
| | | | | | - Amy S Holmes
- Signature Science, LLC, Charlottesville, VA, USA
| | | | | | - Sheree R Hughes
- Department of Forensic Science, College of Criminal Justice, Sam Houston State University, Huntsville, TX, USA
| | - Rachel M Houston
- Department of Forensic Science, College of Criminal Justice, Sam Houston State University, Huntsville, TX, USA
| |
Collapse
|
7
|
Nii-Nakayama S, Katsumoto M, Ishitani S, Narasaki Y, Seko C, Yamasaki M, Ohminami H, Ohnishi K, Masuda M, Yamanaka-Okumura H, Yamamoto H, Taketani Y. Association of the single nucleotide polymorphism rs1697421 with an increased postprandial serum phosphorus level. Clin Exp Nephrol 2025:10.1007/s10157-025-02644-5. [PMID: 40019722 DOI: 10.1007/s10157-025-02644-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Accepted: 02/14/2025] [Indexed: 03/01/2025]
Abstract
BACKGROUND A high serum phosphorus (P) level is a risk factor for cardiovascular disease (CVD) and mortality in patients with chronic kidney disease (CKD). Moreover, increased postprandial serum P levels after high dietary P intake impair vascular endothelial function. Therefore, management of postprandial serum P levels is important in CKD patients. Recently, a genome-wide association study identified single nucleotide polymorphisms (SNPs) associated with fasting serum P levels in individuals of European ancestry. However, the effects of these SNPs on postprandial serum P levels and vascular endothelial function remain unclear. METHODS A randomized, single-blind, crossover study in 99 healthy Japanese was performed to determine the association between SNPs and postprandial serum P levels, flow-mediated dilation (FMD) or alkaline phosphatase activity. The impact of SNP on gene transcriptional activity was also analyzed using in vitro experiment. RESULTS The participants who were TT homozygotes of SNP rs1697421 (located near the tissue nonspecific alkaline phosphatase [TNAP] gene) had higher postprandial serum P levels than C allele carriers. FMD was more significantly impaired in the TT homozygotes than in the CC homozygotes in men. In the in vitro experiment, TNAP transcriptional activity was significantly lower in TT homozygotes than in the others. CONCLUSION These results suggest that in TT homozygotes of SNP rs1697421, hepatic P uptake is affected through changes in serum TNAP levels, leading to high postprandial serum P levels and impairment of FMD. The present findings can contribute to the development of gene-based therapeutic approaches for the management of serum P levels.
Collapse
Affiliation(s)
- Sachi Nii-Nakayama
- Department of Clinical Nutrition and Food Management, Institute of Biomedical Sciences, Tokushima University Graduate School, 3-18-15 Kuramoto-Cho, Tokushima, 770-8503, Japan
| | - Misaki Katsumoto
- Department of Clinical Nutrition and Food Management, Institute of Biomedical Sciences, Tokushima University Graduate School, 3-18-15 Kuramoto-Cho, Tokushima, 770-8503, Japan
| | - Satono Ishitani
- Department of Clinical Nutrition and Food Management, Institute of Biomedical Sciences, Tokushima University Graduate School, 3-18-15 Kuramoto-Cho, Tokushima, 770-8503, Japan
| | - Yoko Narasaki
- Department of Clinical Nutrition and Food Management, Institute of Biomedical Sciences, Tokushima University Graduate School, 3-18-15 Kuramoto-Cho, Tokushima, 770-8503, Japan
- Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, 11301 Wilshire Blvd, Los Angeles, CA, 90073, USA
| | - Chihiro Seko
- Department of Clinical Nutrition and Food Management, Institute of Biomedical Sciences, Tokushima University Graduate School, 3-18-15 Kuramoto-Cho, Tokushima, 770-8503, Japan
| | - Michiyo Yamasaki
- Department of Clinical Nutrition and Food Management, Institute of Biomedical Sciences, Tokushima University Graduate School, 3-18-15 Kuramoto-Cho, Tokushima, 770-8503, Japan
| | - Hirokazu Ohminami
- Department of Clinical Nutrition and Food Management, Institute of Biomedical Sciences, Tokushima University Graduate School, 3-18-15 Kuramoto-Cho, Tokushima, 770-8503, Japan
| | - Kohta Ohnishi
- Department of Clinical Nutrition and Food Management, Institute of Biomedical Sciences, Tokushima University Graduate School, 3-18-15 Kuramoto-Cho, Tokushima, 770-8503, Japan
| | - Masashi Masuda
- Department of Clinical Nutrition and Food Management, Institute of Biomedical Sciences, Tokushima University Graduate School, 3-18-15 Kuramoto-Cho, Tokushima, 770-8503, Japan
| | - Hisami Yamanaka-Okumura
- Department of Clinical Nutrition and Food Management, Institute of Biomedical Sciences, Tokushima University Graduate School, 3-18-15 Kuramoto-Cho, Tokushima, 770-8503, Japan
- Department of Food Science and Nutrition, Doshisha Women's College of Liberal Arts, Teramachi Nishi-Iru, Imadegawa-Dori, Kamigyo-Ku, Kyoto, 602-0893, Japan
| | - Hironori Yamamoto
- Department of Clinical Nutrition and Food Management, Institute of Biomedical Sciences, Tokushima University Graduate School, 3-18-15 Kuramoto-Cho, Tokushima, 770-8503, Japan
- Department of Health and Nutrition, Faculty of Human Life, Jin-Ai University, Ohde-Cho 3-1-1, Echizen City, Fukui, 915-8586, Japan
| | - Yutaka Taketani
- Department of Clinical Nutrition and Food Management, Institute of Biomedical Sciences, Tokushima University Graduate School, 3-18-15 Kuramoto-Cho, Tokushima, 770-8503, Japan.
| |
Collapse
|
8
|
Bhatia T, Sharma S. Drug Repurposing: Insights into Current Advances and Future Applications. Curr Med Chem 2025; 32:468-510. [PMID: 37946344 DOI: 10.2174/0109298673266470231023110841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 09/04/2023] [Accepted: 09/11/2023] [Indexed: 11/12/2023]
Abstract
Drug development is a complex and expensive process that involves extensive research and testing before a new drug can be approved for use. This has led to a limited availability of potential therapeutics for many diseases. Despite significant advances in biomedical science, the process of drug development remains a bottleneck, as all hypotheses must be tested through experiments and observations, which can be timeconsuming and costly. To address this challenge, drug repurposing has emerged as an innovative strategy for finding new uses for existing medications that go beyond their original intended use. This approach has the potential to speed up the drug development process and reduce costs, making it an attractive option for pharmaceutical companies and researchers alike. It involves the identification of existing drugs or compounds that have the potential to be used for the treatment of a different disease or condition. This can be done through a variety of approaches, including screening existing drugs against new disease targets, investigating the biological mechanisms of existing drugs, and analyzing data from clinical trials and electronic health records. Additionally, repurposing drugs can lead to the identification of new therapeutic targets and mechanisms of action, which can enhance our understanding of disease biology and lead to the development of more effective treatments. Overall, drug repurposing is an exciting and promising area of research that has the potential to revolutionize the drug development process and improve the lives of millions of people around the world. The present review provides insights on types of interaction, approaches, availability of databases, applications and limitations of drug repurposing.
Collapse
Affiliation(s)
- Trisha Bhatia
- School of Pharmacy, National Forensic Sciences University, Gandhinagar, Gujarat, 382007, India
| | - Shweta Sharma
- School of Pharmacy, National Forensic Sciences University, Gandhinagar, Gujarat, 382007, India
| |
Collapse
|
9
|
Bıçakçı B, Cięszczyk P, Humińska-Lisowska K. Genetic Determinants of Endurance: A Narrative Review on Elite Athlete Status and Performance. Int J Mol Sci 2024; 25:13041. [PMID: 39684752 PMCID: PMC11641144 DOI: 10.3390/ijms252313041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 11/19/2024] [Accepted: 11/29/2024] [Indexed: 12/18/2024] Open
Abstract
This narrative review explores the relationship between genetics and elite endurance athletes, summarizes the current literature, highlights some novel findings, and provides a physiological basis for understanding the mechanistic effects of genetics in sport. Key genetic markers include ACTN3 R577X (muscle fiber composition), ACE I/D (cardiovascular efficiency), and polymorphisms in PPARA, VEGFA, and ADRB2, influencing energy metabolism, angiogenesis, and cardiovascular function. This review underscores the benefits of a multi-omics approach to better understand the complex interactions between genetic polymorphisms and physiological traits. It also addresses long-standing issues such as small sample sizes in studies and the heterogeneity in heritability estimates influenced by factors like sex. Understanding the mechanistic relationship between genetics and endurance performance can lead to personalized training strategies, injury prevention, and improved health outcomes. Future studies should focus on standardized classification of sports, replication studies involving diverse populations, and establishing solid physiological associations between polymorphisms and endurance traits to advance the field of sports genetics.
Collapse
Affiliation(s)
| | | | - Kinga Humińska-Lisowska
- Faculty of Physical Education, Gdansk University of Physical Education and Sport, 80-336 Gdańsk, Poland; (B.B.); (P.C.)
| |
Collapse
|
10
|
Nimbs MJ, Glasby TM, Sinclair EA, Swadling D, Davis TR, Coleman MA. A Donor Registry: Genomic Analyses of Posidonia australis Seagrass Meadows Identifies Adaptive Genotypes for Future-Proofing. Ecol Evol 2024; 14:e70667. [PMID: 39650543 PMCID: PMC11622155 DOI: 10.1002/ece3.70667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 11/13/2024] [Accepted: 11/14/2024] [Indexed: 12/11/2024] Open
Abstract
Globally, anthropogenic climate change has caused declines of seagrass ecosystems necessitating proactive restoration approaches that would ideally anticipate future climate scenarios, such as marine warming. In eastern Australia, estuaries with meadows of the endangered seagrass Posidonia australis have warmed and acidified over the past decade, and seagrass communities have declined in some estuaries. Securing these valuable habitats will require proactive conservation and restoration efforts that could be augmented with restoration focussed on boosting resilience to future climate. Understanding patterns of selection and where seagrass meadows are adapted to particular environmental conditions is key for identifying optimal donor material for restoration. We used single nucleotide polymorphisms and genotype by environment analyses to identify candidate loci under putative selection to environmental stressors and assess genomic variation and allelic turnover along stressor gradients. The most important physicochemical variables driving selection were associated with temperature, water turbidity, and pH. We developed a preliminary 'donor registry' of pre-adapted P. australis genotypes by mapping the distribution of alleles to visualise allelic composition of each sampled seagrass meadow. The registry could be used as a first step to select source material for future-proofing restoration projects. A next step is to establish manipulative experiments that will be required to test whether pre-adapted genotypes confer increased resistance to multiple environmental stressors.
Collapse
Affiliation(s)
- Matt J. Nimbs
- Fisheries Research, New South Wales Department of Primary Industries and Regional DevelopmentNational Marine Science CentreCoffs HarbourNew South WalesAustralia
- National Marine Science CentreSouthern Cross UniversityCoffs HarbourNew South WalesAustralia
| | - Tim M. Glasby
- Fisheries Research, New South Wales Department of Primary Industries and Regional DevelopmentPort Stephens Fisheries Research InstituteTaylors BeachNew South WalesAustralia
| | - Elizabeth A. Sinclair
- School of Biological Science and Oceans InstituteThe University of Western AustraliaNedlandsWestern AustraliaAustralia
| | - Daniel Swadling
- Fisheries Research, New South Wales Department of Primary Industries and Regional DevelopmentPort Stephens Fisheries Research InstituteTaylors BeachNew South WalesAustralia
| | - Tom R. Davis
- National Marine Science CentreSouthern Cross UniversityCoffs HarbourNew South WalesAustralia
- Fisheries Research, New South Wales Department of Primary Industries and Regional DevelopmentPort Stephens Fisheries Research InstituteTaylors BeachNew South WalesAustralia
| | - Melinda A. Coleman
- Fisheries Research, New South Wales Department of Primary Industries and Regional DevelopmentNational Marine Science CentreCoffs HarbourNew South WalesAustralia
- National Marine Science CentreSouthern Cross UniversityCoffs HarbourNew South WalesAustralia
| |
Collapse
|
11
|
Sagi-Dain L, Levy M, Matar R, Kahana S, Agmon-Fishman I, Klein C, Gurevitch M, Basel-Salmon L, Maya I. Exploring the human genomic landscape: patterns of common homozygosity regions in a large middle eastern cohort. Hum Mol Genet 2024; 33:1908-1915. [PMID: 39222050 DOI: 10.1093/hmg/ddae123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 08/05/2024] [Accepted: 08/12/2024] [Indexed: 09/04/2024] Open
Abstract
Regions of Homozygosity (ROH) typically reflect normal demographic history of a human population, but may also relate to cryptic consanguinity, and, additionally, have been associated with specific medical conditions. The objective of this study was to investigate the location, size, and prevalence of common ROH segments in a Middle Eastern cohort. This retrospective study included 13 483 samples collected from all Chromosomal Microarray analyses (CMA) performed using Single Nucleotide Polymorphism (SNP) arrays at the genetic clinical laboratory of Rabin Medical Center between 2017-2023 (primary data set). An additional replication cohort including 100 842 samples from another SNP array platform, obtained from Maccabi Health Organization, was analyzed. Common ROH locations were defined as those ROH locations involving 1% or more of the samples. A total of 66 710 ROH segments, involving 13 035 samples (96.7%) were identified in the primary data set. Of the 4069 cytogenetic ROH locations, 68 were identified as common. The prevalence of non-common ROH was relatively high in affected individuals, and for acrocentric chromosomes, chromosomes associated with common trisomies, and non-imprinted chromosomes. In addition, differences in common ROH locations were observed between the primary and the replication cohorts. Our findings highlight the need for population-specific guidelines in determining ROH reporting cutoffs, considering factors such as population-specific prevalence and testing platform differences. Future research with larger, varied cohorts is essential to advance understanding of ROH's associations with medical conditions and to improve clinical practices accordingly.
Collapse
Affiliation(s)
- Lena Sagi-Dain
- Genetics Institute, Carmel Medical Center, affiliated to the Ruth and Bruce Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa 3200003, Israel
| | - Michal Levy
- Recanati Genetics Institute, Beilinson Hospital, Rabin Medical Center, Petach Tikva 4941492, Israel
| | - Reut Matar
- Recanati Genetics Institute, Beilinson Hospital, Rabin Medical Center, Petach Tikva 4941492, Israel
| | - Sarit Kahana
- Recanati Genetics Institute, Beilinson Hospital, Rabin Medical Center, Petach Tikva 4941492, Israel
| | - Ifaat Agmon-Fishman
- Recanati Genetics Institute, Beilinson Hospital, Rabin Medical Center, Petach Tikva 4941492, Israel
| | - Cochava Klein
- Recanati Genetics Institute, Beilinson Hospital, Rabin Medical Center, Petach Tikva 4941492, Israel
| | - Merav Gurevitch
- Recanati Genetics Institute, Beilinson Hospital, Rabin Medical Center, Petach Tikva 4941492, Israel
| | - Lina Basel-Salmon
- Recanati Genetics Institute, Beilinson Hospital, Rabin Medical Center, Petach Tikva 4941492, Israel
- School of Medicine, Faculty of Medical and Health sciences, Tel Aviv University, Tel Aviv 6997801, Israel
- Pediatric Genetics Unit, Schneider Children's Medical Center of Israel, Petah Tikva 4920235, Israel
| | - Idit Maya
- Recanati Genetics Institute, Beilinson Hospital, Rabin Medical Center, Petach Tikva 4941492, Israel
- School of Medicine, Faculty of Medical and Health sciences, Tel Aviv University, Tel Aviv 6997801, Israel
| |
Collapse
|
12
|
Ye J, Liang Q, Tan Q, Chai M, Cheng W, Fan M, Zhang Y, Zhan J, Wang Y, Wen J, Zhang Y, Zhao X, Zhang D. A bulged-type enzyme-free recognition strategy designed for single nucleotide polymorphisms integrating with label-free electrochemical biosensor. Biosens Bioelectron 2024; 263:116601. [PMID: 39053148 DOI: 10.1016/j.bios.2024.116601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 07/14/2024] [Accepted: 07/22/2024] [Indexed: 07/27/2024]
Abstract
Compared to conventional nucleic acid detection methods, label-free single nucleotide polymorphism (SNP) detection presents challenging due to the necessity of discerning single base mismatches, especially in the field of enzyme-free detection. In this study, we introduce a novel bulged-type DNA duplex probe designed to significantly amplify single-base differences. This probe is integrated with programmable DNA-based nanostructures to develop a sensitive, label-free biosensor for nonenzymatic SNP detection. The duplex probe with one bulge could selectively identify wild-typed DNA (WT) and mutant-type DNA (MT) based on a competitive strand displacement reaction mechanism. The hyperbranched HCR (HHCR) by incorporating of hairpin DNA into the DNA tetrahedron and surface-tethering on the portable screen printing electrode (SPCE) significantly favor the formation of negatively charged DNA nanostructure. We harnessed strong repulsion of DNA nanostructure towards the electroactive [Fe(CN)₆]³⁻/⁴⁻ in combination with electrochemical technique to create a label-free biosensor. This simple, enzyme-free and label-free biosensor could detect MT with a detection limit of 56 aM, even in multiple sequence backgrounds. The study served as the proof-of-concept for the integration of enzyme-free competitive mechanism and label-free strategy, which can be extended as a powerful tool to various fields.
Collapse
Affiliation(s)
- Jing Ye
- Research Center for Intelligent Sensing Systems, Zhejiang Laboratory, Hangzhou, 311121, China
| | - Qi Liang
- College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou, 310018, China
| | - Qianglong Tan
- Research Center for Intelligent Sensing Systems, Zhejiang Laboratory, Hangzhou, 311121, China
| | - Mengyao Chai
- Research Center for Intelligent Sensing Systems, Zhejiang Laboratory, Hangzhou, 311121, China
| | - Wendai Cheng
- Research Center for Intelligent Sensing Systems, Zhejiang Laboratory, Hangzhou, 311121, China
| | - Minzhi Fan
- Research Center for Intelligent Sensing Systems, Zhejiang Laboratory, Hangzhou, 311121, China
| | - Yunshan Zhang
- Research Center for Intelligent Sensing Systems, Zhejiang Laboratory, Hangzhou, 311121, China
| | - Jie Zhan
- New Materials Computing Center, Zhejiang Laboratory, Hangzhou, 311121, China
| | - Yaxin Wang
- College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou, 310018, China
| | - Jiahong Wen
- The College of Electronics and Information, Hangzhou Dianzi University, Hangzhou, 310018, China
| | - Yongjun Zhang
- College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou, 310018, China
| | - Xiaoyu Zhao
- College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou, 310018, China.
| | - Diming Zhang
- Research Center for Intelligent Sensing Systems, Zhejiang Laboratory, Hangzhou, 311121, China.
| |
Collapse
|
13
|
Curtis M, Colodro-Conde L, Medland SE, Gordon S, Martin NG, Wade TD, Cohen-Woods S. Anorexia nervosa polygenic risk, beyond diagnoses: relationship with adolescent disordered eating and behaviors in an Australian female twin population. Psychol Med 2024; 54:1-9. [PMID: 39439302 PMCID: PMC11536114 DOI: 10.1017/s0033291724001727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 04/05/2024] [Accepted: 06/21/2024] [Indexed: 10/25/2024]
Abstract
BACKGROUND It is well established that there is a substantial genetic component to eating disorders (EDs). Polygenic risk scores (PRSs) can be used to quantify cumulative genetic risk for a trait at an individual level. Recent studies suggest PRSs for anorexia nervosa (AN) may also predict risk for other disordered eating behaviors, but no study has examined if PRS for AN can predict disordered eating as a global continuous measure. This study aimed to investigate whether PRS for AN predicted overall levels of disordered eating, or specific lifetime disordered eating behaviors, in an Australian adolescent female population. METHODS PRSs were calculated based on summary statistics from the largest Psychiatric Genomics Consortium AN genome-wide association study to date. Analyses were performed using genome-wide complex trait analysis to test the associations between AN PRS and disordered eating global scores, avoidance of eating, objective bulimic episodes, self-induced vomiting, and driven exercise in a sample of Australian adolescent female twins recruited from the Australian Twin Registry (N = 383). RESULTS After applying the false-discovery rate correction, the AN PRS was significantly associated with all disordered eating outcomes. CONCLUSIONS Findings suggest shared genetic etiology across disordered eating presentations and provide insight into the utility of AN PRS for predicting disordered eating behaviors in the general population. In the future, PRSs for EDs may have clinical utility in early disordered eating risk identification, prevention, and intervention.
Collapse
Affiliation(s)
- Madeleine Curtis
- Discipline of Psychology, College of Education, Psychology, and Social Work, Flinders University, Adelaide, SA, Australia
- Blackbird Initiative, Flinders Institute for Mental Health and Wellbeing, Flinders University, Adelaide, SA, Australia
| | | | | | - Scott Gordon
- QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | | | - Tracey D. Wade
- Discipline of Psychology, College of Education, Psychology, and Social Work, Flinders University, Adelaide, SA, Australia
- Blackbird Initiative, Flinders Institute for Mental Health and Wellbeing, Flinders University, Adelaide, SA, Australia
| | - Sarah Cohen-Woods
- Discipline of Psychology, College of Education, Psychology, and Social Work, Flinders University, Adelaide, SA, Australia
- Blackbird Initiative, Flinders Institute for Mental Health and Wellbeing, Flinders University, Adelaide, SA, Australia
- Flinders Centre for Innovation in Cancer, College of Medicine and Public Health, Flinders University, Adelaide, SA, Australia
| |
Collapse
|
14
|
Tariq Z, Abusnana S, Mussa BM, Zakaria H. New insights on genetic background of major diabetic vascular complications. Diabetol Metab Syndr 2024; 16:243. [PMID: 39375805 PMCID: PMC11457557 DOI: 10.1186/s13098-024-01473-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Accepted: 09/21/2024] [Indexed: 10/09/2024] Open
Abstract
BACKGROUND By 2045, it is expected that 693 million individuals worldwide will have diabetes and with greater risk of morbidity, mortality, loss of vision, renal failure, and a decreased quality of life due to the devastating effects of macro- and microvascular complications. As such, clinical variables and glycemic control alone cannot predict the onset of vascular problems. An increasing body of research points to the importance of genetic predisposition in the onset of both diabetes and diabetic vascular complications. OBJECTIVES Purpose of this article is to review these approaches and narrow down genetic findings for Diabetic Mellitus and its consequences, highlighting the gaps in the literature necessary to further genomic discovery. MATERIAL AND METHODS In the past, studies looking for genetic risk factors for diabetes complications relied on methods such as candidate gene studies, which were rife with false positives, and underpowered genome-wide association studies, which were constrained by small sample sizes. RESULTS The number of genetic findings for diabetes and diabetic complications has over doubled due to the discovery of novel genomics data, including bioinformatics and the aggregation of global cohort studies. Using genetic analysis to determine whether diabetes individuals are at the most risk for developing diabetic vascular complications (DVC) might lead to the development of more accurate early diagnostic biomarkers and the customization of care plans. CONCLUSIONS A newer method that uses extensive evaluation of single nucleotide polymorphisms (SNP) in big datasets is Genome-Wide Association Studies (GWAS).
Collapse
Affiliation(s)
- Zuira Tariq
- Diabetes and Endocrinology Department, University Hospital Sharjah, P.O. Box: 27272, Sharjah, United Arab Emirates
| | - Salah Abusnana
- Diabetes and Endocrinology Department, University Hospital Sharjah, P.O. Box: 27272, Sharjah, United Arab Emirates.
- College of Medicine, University of Sharjah, Sharjah, United Arab Emirates.
| | - Bashair M Mussa
- College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
| | - Hala Zakaria
- College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
| |
Collapse
|
15
|
Acharya P, Singh US, Rajamannar V, Muniaraj M, Nayak B, Das A. Genome resequencing and genome-wide polymorphisms in mosquito vectors Aedes aegypti and Aedes albopictus from south India. Sci Rep 2024; 14:22931. [PMID: 39358370 PMCID: PMC11447132 DOI: 10.1038/s41598-024-71484-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 08/28/2024] [Indexed: 10/04/2024] Open
Abstract
Aedes aegypti and Aedes albopictus mosquitoes spread major vector-borne viral diseases in tropical and sub-tropical regions of the globe. In this study, we sequenced the genome of Indian Ae. aegypti and Ae. albopictus and mapped to their reference genomes. Comparative genomics were performed between our strain and the reference strains. A total of 14,416,484 single nucleotide polymorphisms (SNPs) and 156,487 insertions and deletions (InDels) were found in Ae. aegypti, and 28,940,433 SNPs and 188,987 InDels in Ae. albopictus. Particular emphasis was given to gene families involved in mosquito digestion, development, and innate immunity, which could be putative candidates for vector control. Serine protease cascades and their inhibitors called serpins, play a central role in these processes. We extracted high-impact variants in genes associated with serine proteases and serpins. This study reports for the first time a high coverage genome sequence data of an Indian Ae. albopictus mosquito. The results from this study will provide insights into Indian Aedes specific polymorphisms and the evolution of immune related genes in mosquitoes, which can serve as a resource for future comparative genomics and those pursuing the development of targeted biopesticides for effective mosquito control strategies.
Collapse
Affiliation(s)
- Preeti Acharya
- Sambalpur University, Jyoti Vihar, Sambalpur, Odisha, 768019, India
- ICMR-National Institute of Research in Tribal Health, Jabalpur, Madhya Pradesh, India
| | | | | | - Mayilsamy Muniaraj
- ICMR-Vector Control Research Centre Field Station, Madurai, Tamil Nadu, India
| | - Binata Nayak
- Sambalpur University, Jyoti Vihar, Sambalpur, Odisha, 768019, India.
| | - Aparup Das
- ICMR-National Institute of Research in Tribal Health, Jabalpur, Madhya Pradesh, India.
| |
Collapse
|
16
|
Geethanjali S, Kadirvel P, Periyannan S. Wheat improvement through advances in single nucleotide polymorphism (SNP) detection and genotyping with a special emphasis on rust resistance. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2024; 137:224. [PMID: 39283360 PMCID: PMC11405505 DOI: 10.1007/s00122-024-04730-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 08/24/2024] [Indexed: 09/22/2024]
Abstract
KEY MESSAGE Single nucleotide polymorphism (SNP) markers in wheat and their prospects in breeding with special reference to rust resistance. Single nucleotide polymorphism (SNP)-based markers are increasingly gaining momentum for screening and utilizing vital agronomic traits in wheat. To date, more than 260 million SNPs have been detected in modern cultivars and landraces of wheat. This rapid SNP discovery was made possible through the release of near-complete reference and pan-genome assemblies of wheat and its wild relatives, coupled with whole genome sequencing (WGS) of thousands of wheat accessions. Further, genotyping customized SNP sites were facilitated by a series of arrays (9 to 820Ks), a cost effective substitute WGS. Lately, germplasm-specific SNP arrays have been introduced to characterize novel traits and detect closely linked SNPs for marker-assisted breeding. Subsequently, the kompetitive allele-specific PCR (KASP) assay was introduced for rapid and large-scale screening of specific SNP markers. Moreover, with the advances and reduction in sequencing costs, ample opportunities arise for generating SNPs artificially through mutations and in combination with next-generation sequencing and comparative genomic analyses. In this review, we provide historical developments and prospects of SNP markers in wheat breeding with special reference to rust resistance where over 50 genetic loci have been characterized through SNP markers. Rust resistance is one of the most essential traits for wheat breeding as new strains of the Puccinia fungus, responsible for rust diseases, evolve frequently and globally.
Collapse
Affiliation(s)
- Subramaniam Geethanjali
- Centre for Plant Molecular Biology and Biotechnology, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, 641003, India
- Centre for Crop Health, University of Southern Queensland, Toowoomba, Queensland, 4350, Australia
| | - Palchamy Kadirvel
- Crop Improvement Section, Indian Council of Agricultural Research-Indian Institute of Oilseeds Research, Hyderabad, Telangana, 500030, India
| | - Sambasivam Periyannan
- Centre for Crop Health, University of Southern Queensland, Toowoomba, Queensland, 4350, Australia.
- School of Agriculture and Environmental Science, University of Southern Queensland, Toowoomba, Queensland, 4350, Australia.
| |
Collapse
|
17
|
Li S, Chen J, Zhou B. The clinical significance of endoplasmic reticulum stress related genes in non-small cell lung cancer and analysis of single nucleotide polymorphism for CAV1. Front Mol Biosci 2024; 11:1414164. [PMID: 39165641 PMCID: PMC11334084 DOI: 10.3389/fmolb.2024.1414164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 07/09/2024] [Indexed: 08/22/2024] Open
Abstract
In recent years, protein homeostasis imbalance caused by endoplasmic reticulum stress has become a major hallmark of cancer. Studies have shown that endoplasmic reticulum stress is closely related to the occurrence, development, and drug resistance of non-small cell lung cancer, however, the role of various endoplasmic reticulum stress-related genes in non-small cell lung cancer is still unclear. In this study, we established an endoplasmic reticulum stress scores based on the Cancer Genome Atlas for non-small cell lung cancer to reflect patient features and predict prognosis. Survival analysis showed significant differences in overall survival among non-small cell lung cancer patients with different endoplasmic reticulum stress scores. In addition, endoplasmic reticulum stress scores was significantly correlated with the clinical features of non-small cell lung cancer patients, and can be served as an independent prognostic indicator. A nomogram based on endoplasmic reticulum stress scores indicated a certain clinical net benefit, while ssGSEA analysis demonstrated that there was a certain immunosuppressive microenvironment in high endoplasmic reticulum stress scores. Gene Set Enrichment Analysis showed that scores was associated with cancer pathways and metabolism. Finally, weighted gene co-expression network analysis displayed that CAV1 was closely related to the occurrence of non-small cell lung cancer. Therefore, in order to further analyze the role of this gene, Chinese non-smoking females were selected as the research subjects to investigate the relationship between CAV1 rs3779514 and susceptibility and prognosis of non-small cell lung cancer. The results showed that the mutation of rs3779514 significantly reduced the risk of non-small cell lung cancer in Chinese non-smoking females, but no prognostic effect was found. In summary, we proposed an endoplasmic reticulum stress scores, which was an independent prognostic factor and indicated immune characteristics in the microenvironment of non-small cell lung cancer. We also validated the relationship between single nucleotide polymorphism locus of core genes and susceptibility to non-small cell lung cancer.
Collapse
Affiliation(s)
| | | | - Baosen Zhou
- Department of Clinical Epidemiology and Center of Evidence-Based Medicine, The First Hospital of China Medical University, Shenyang, China
| |
Collapse
|
18
|
Xie H, Crawford L, Conard AM. Multioviz: an interactive platform for in silico perturbation and interrogation of gene regulatory networks. BMC Bioinformatics 2024; 25:249. [PMID: 39080561 PMCID: PMC11290168 DOI: 10.1186/s12859-024-05819-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 05/23/2024] [Indexed: 08/02/2024] Open
Abstract
In this paper, we aim to build a platform that will help bridge the gap between high-dimensional computation and wet-lab experimentation by allowing users to interrogate genomic signatures at multiple molecular levels and identify best next actionable steps for downstream decision making. We introduce Multioviz: a publicly accessible R package and web application platform to easily perform in silico hypothesis testing of generated gene regulatory networks. We demonstrate the utility of Multioviz by conducting an end-to-end analysis in a statistical genetics application focused on measuring the effect of in silico perturbations of complex trait architecture. By using a real dataset from the Wellcome Trust Centre for Human Genetics, we both recapitulate previous findings and propose hypotheses about the genes involved in the percentage of immune CD8+ cells found in heterogeneous stocks of mice. Source code for the Multioviz R package is available at https://github.com/lcrawlab/multio-viz and an interactive version of the platform is available at https://multioviz.ccv.brown.edu/ .
Collapse
Affiliation(s)
- Helen Xie
- Department of Computer Science, Brown University, Providence, RI, USA
| | - Lorin Crawford
- Center for Computational Molecular Biology, Brown University, Providence, RI, USA.
- Microsoft Research, Cambridge, MA, USA.
- Department of Biostatistics, Brown University, Providence, RI, USA.
| | - Ashley Mae Conard
- Department of Computer Science, Brown University, Providence, RI, USA.
- Center for Computational Molecular Biology, Brown University, Providence, RI, USA.
- Microsoft Research, Cambridge, MA, USA.
| |
Collapse
|
19
|
Laxmi, Golmei P, Srivastava S, Kumar S. Single nucleotide polymorphism-based biomarker in primary hypertension. Eur J Pharmacol 2024; 972:176584. [PMID: 38621507 DOI: 10.1016/j.ejphar.2024.176584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 03/19/2024] [Accepted: 04/11/2024] [Indexed: 04/17/2024]
Abstract
Primary hypertension is a multiplex and multifactorial disease influenced by various strong components including genetics. Extensive research such as Genome-wide association studies and candidate gene studies have revealed various single nucleotide polymorphisms (SNPs) related to hypertension, providing insights into the genetic basis of the condition. This review summarizes the current status of SNP research in primary hypertension, including examples of hypertension-related SNPs, their location, function, and frequency in different populations. The potential clinical implications of SNP research for primary hypertension management are also discussed, including disease risk prediction, personalized medicine, mechanistic understanding, and lifestyle modifications. Furthermore, this review highlights emerging technologies and methodologies that have the potential to revolutionize the vast understanding of the basis of genetics in primary hypertension. Gene editing holds the potential to target and correct any kind of genetic mutations that contribute to the development of hypertension or modify genes involved in blood pressure regulation to prevent or treat the condition. Advances in computational biology and machine learning enable researchers to analyze large datasets and identify complex genetic interactions contributing to hypertension risk. In conclusion, SNP research in primary hypertension is rapidly evolving with emerging technologies and methodologies that have the potential to transform the knowledge about genetic basis related to the condition. These advances hold promise for personalized prevention and treatment strategies tailored to an individual's genetic profile ultimately improving patient outcomes and reducing healthcare costs.
Collapse
Affiliation(s)
- Laxmi
- Department of Pharmacology, Delhi Institute of Pharmaceutical Sciences and Research, Delhi Pharmaceutical Sciences and Research University, Pushp Vihar, M B Road, New Delhi, 110017, India
| | - Pougang Golmei
- Department of Pharmacology, Delhi Institute of Pharmaceutical Sciences and Research, Delhi Pharmaceutical Sciences and Research University, Pushp Vihar, M B Road, New Delhi, 110017, India
| | - Shriyansh Srivastava
- Department of Pharmacology, Delhi Institute of Pharmaceutical Sciences and Research, Delhi Pharmaceutical Sciences and Research University, Pushp Vihar, M B Road, New Delhi, 110017, India
| | - Sachin Kumar
- Department of Pharmacology, Delhi Institute of Pharmaceutical Sciences and Research, Delhi Pharmaceutical Sciences and Research University, Pushp Vihar, M B Road, New Delhi, 110017, India.
| |
Collapse
|
20
|
Cherney LR, Kozlowski AJ, Domenighetti AA, Baliki MN, Kwasny MJ, Heinemann AW. Defining Trajectories of Linguistic, Cognitive-Communicative, and Quality of Life Outcomes in Aphasia: Longitudinal Observational Study Protocol. Arch Rehabil Res Clin Transl 2024; 6:100339. [PMID: 39006119 PMCID: PMC11240047 DOI: 10.1016/j.arrct.2024.100339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/16/2024] Open
Abstract
Objective To describe the trajectories of linguistic, cognitive-communicative, and health-related quality of life (HRQOL) outcomes after stroke in persons with aphasia. Design Longitudinal observational study from inpatient rehabilitation to 18 months after stroke. Setting Four US mid-west inpatient rehabilitation facilities (IRFs). Participants We plan to recruit 400 adult (older than 21 years) English speakers who meet the following inclusion criteria: (1) Diagnosis of aphasia after a left-hemisphere infarct confirmed by CT scan or magnetic resonance imaging (MRI); (2) first admission for inpatient rehabilitation due to a neurologic event; and (3) sufficient cognitive capacity to provide informed consent and participate in testing. Exclusion criteria include any neurologic condition other than stroke that could affect language, cognition or speech, such as Parkinson's disease, Alzheimer's disease, traumatic brain injury, or the presence of right-hemisphere lesions. Interventions Not applicable. Main Outcome Measures Subjects are administered a test battery of linguistic, cognitive-communicative, and HRQOL measures. Linguistic measures include the Western Aphasia Battery-Revised and the Apraxia of Speech Rating Scale. Cognitive-communicative measures include the Communication Participation Item Bank, Connor's Continuous Performance Test-3, the Communication Confidence Rating Scale for Aphasia, the Communication Effectiveness Index, the Neurological Quality of Life measurement system (Neuro-QoL) Communication short form, and the Neuro-QoL Cognitive Function short form. HRQOL measures include the 39-item Stroke & Aphasia Quality of Life Scale, Neuro-QoL Fatigue, Sleep Disturbance, Depression, Ability to Participate in Social Roles & Activities, and Satisfaction with Social Roles & Activities tests, and the Patient-Reported Outcome Measurement and Information System 10-item Global Health short form. The test battery is administered initially during inpatient rehabilitation, and at 3-, 6-, 12-, and 18-months post-IRF discharge. Biomarker samples are collected via saliva samples at admission and a subgroup of participants also undergo resting state fMRI scans. Results Not applicable. Conclusions This longitudinal observational study will develop trajectory models for recovery of clinically relevant linguistic, cognitive-communicative, and quality of life outcomes over 18 months after inpatient rehabilitation. Models will identify individual differences in the patterns of recovery based on variations in personal, genetic, imaging, and therapy characteristics. The resulting models will provide an unparalleled representation of recovery from aphasia resulting from stroke. This improved understanding of recovery will enable clinicians to better tailor and plan rehabilitation therapies to individual patient's needs.
Collapse
Affiliation(s)
- Leora R Cherney
- Shirley Ryan AbilityLab, Chicago, IL
- Department of Physical Medicine & Rehabilitation, Feinberg School of Medicine, Northwestern University, Chicago, IL
| | - Allan J Kozlowski
- John F. Butzer Center for Research and Innovation, Mary Free Bed Rehabilitation Hospital, Grand Rapids, MI
| | - Andrea A Domenighetti
- Shirley Ryan AbilityLab, Chicago, IL
- Department of Physical Medicine & Rehabilitation, Feinberg School of Medicine, Northwestern University, Chicago, IL
| | - Marwan N Baliki
- Shirley Ryan AbilityLab, Chicago, IL
- Department of Physical Medicine & Rehabilitation, Feinberg School of Medicine, Northwestern University, Chicago, IL
| | - Mary J Kwasny
- Department of Preventive Medicine, Division of Biostatistics, Feinberg School of Medicine, Northwestern University, Chicago, IL
| | - Allen W Heinemann
- Shirley Ryan AbilityLab, Chicago, IL
- Department of Physical Medicine & Rehabilitation, Feinberg School of Medicine, Northwestern University, Chicago, IL
| |
Collapse
|
21
|
Kladova OA, Tyugashev TE, Miroshnikov AA, Novopashina DS, Kuznetsov NA, Kuznetsova AA. SNP-Associated Substitutions of Amino Acid Residues in the dNTP Selection Subdomain Decrease Polβ Polymerase Activity. Biomolecules 2024; 14:547. [PMID: 38785954 PMCID: PMC11117729 DOI: 10.3390/biom14050547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 04/18/2024] [Accepted: 04/30/2024] [Indexed: 05/25/2024] Open
Abstract
In the cell, DNA polymerase β (Polβ) is involved in many processes aimed at maintaining genome stability and is considered the main repair DNA polymerase participating in base excision repair (BER). Polβ can fill DNA gaps formed by other DNA repair enzymes. Single-nucleotide polymorphisms (SNPs) in the POLB gene can affect the enzymatic properties of the resulting protein, owing to possible amino acid substitutions. For many SNP-associated Polβ variants, an association with cancer, owing to changes in polymerase activity and fidelity, has been shown. In this work, kinetic analyses and molecular dynamics simulations were used to examine the activity of naturally occurring polymorphic variants G274R, G290C, and R333W. Previously, the amino acid substitutions at these positions have been found in various types of tumors, implying a specific role of Gly-274, Gly-290, and Arg-333 in Polβ functioning. All three polymorphic variants had reduced polymerase activity. Two substitutions-G274R and R333W-led to the almost complete disappearance of gap-filling and primer elongation activities, a decrease in the deoxynucleotide triphosphate-binding ability, and a lower polymerization constant, due to alterations of local contacts near the replaced amino acid residues. Thus, variants G274R, G290C, and R333W may be implicated in an elevated level of unrepaired DNA damage.
Collapse
Affiliation(s)
- Olga A. Kladova
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia; (T.E.T.); (D.S.N.); (N.A.K.)
| | - Timofey E. Tyugashev
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia; (T.E.T.); (D.S.N.); (N.A.K.)
| | | | - Daria S. Novopashina
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia; (T.E.T.); (D.S.N.); (N.A.K.)
| | - Nikita A. Kuznetsov
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia; (T.E.T.); (D.S.N.); (N.A.K.)
- Department of Natural Sciences, Novosibirsk State University, 630090 Novosibirsk, Russia;
| | - Aleksandra A. Kuznetsova
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia; (T.E.T.); (D.S.N.); (N.A.K.)
| |
Collapse
|
22
|
Kladova OA, Tyugashev TE, Yakimov DV, Mikushina ES, Novopashina DS, Kuznetsov NA, Kuznetsova AA. The Impact of SNP-Induced Amino Acid Substitutions L19P and G66R in the dRP-Lyase Domain of Human DNA Polymerase β on Enzyme Activities. Int J Mol Sci 2024; 25:4182. [PMID: 38673769 PMCID: PMC11050361 DOI: 10.3390/ijms25084182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 04/08/2024] [Accepted: 04/08/2024] [Indexed: 04/28/2024] Open
Abstract
Base excision repair (BER), which involves the sequential activity of DNA glycosylases, apurinic/apyrimidinic endonucleases, DNA polymerases, and DNA ligases, is one of the enzymatic systems that preserve the integrity of the genome. Normal BER is effective, but due to single-nucleotide polymorphisms (SNPs), the enzymes themselves-whose main function is to identify and eliminate damaged bases-can undergo amino acid changes. One of the enzymes in BER is DNA polymerase β (Polβ), whose function is to fill gaps in DNA. SNPs can significantly affect the catalytic activity of an enzyme by causing an amino acid substitution. In this work, pre-steady-state kinetic analyses and molecular dynamics simulations were used to examine the activity of naturally occurring variants of Polβ that have the substitutions L19P and G66R in the dRP-lyase domain. Despite the substantial distance between the dRP-lyase domain and the nucleotidyltransferase active site, it was found that the capacity to form a complex with DNA and with an incoming dNTP is significantly altered by these substitutions. Therefore, the lower activity of the tested polymorphic variants may be associated with a greater number of unrepaired DNA lesions.
Collapse
Affiliation(s)
- Olga A. Kladova
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of Russian Academy of Sciences, Novosibirsk 630090, Russia (N.A.K.)
| | - Timofey E. Tyugashev
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of Russian Academy of Sciences, Novosibirsk 630090, Russia (N.A.K.)
| | - Denis V. Yakimov
- Department of Natural Sciences, Novosibirsk State University, Novosibirsk 630090, Russia
| | - Elena S. Mikushina
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of Russian Academy of Sciences, Novosibirsk 630090, Russia (N.A.K.)
| | - Daria S. Novopashina
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of Russian Academy of Sciences, Novosibirsk 630090, Russia (N.A.K.)
| | - Nikita A. Kuznetsov
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of Russian Academy of Sciences, Novosibirsk 630090, Russia (N.A.K.)
- Department of Natural Sciences, Novosibirsk State University, Novosibirsk 630090, Russia
| | - Aleksandra A. Kuznetsova
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of Russian Academy of Sciences, Novosibirsk 630090, Russia (N.A.K.)
| |
Collapse
|
23
|
Sel FA, Oğuz FS. Can novel methods replace the gold standard chimerism method after allogeneic hematopoietic stem cell transplantation? Ann Hematol 2024; 103:1035-1047. [PMID: 37801085 DOI: 10.1007/s00277-023-05448-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 09/07/2023] [Indexed: 10/07/2023]
Abstract
After hematopoietic stem cell transplantation, chimerism assay is a useful approach to monitor the success of the transplant and to select the appropriate treatment strategy, such as donor leukocyte infusion or immunosuppressive drug dosage. Short tandem repeat PCR is the method that has been accepted as the gold standard for chimerism. However, it has not yet been sufficient to detect mixed chimerism in patients with minimal residual disease. Simultaneously, recent years have been marked by developing sensitive, high-throughput, and accurate molecular genetic assays. These novel methods have subsequently been adapted for the analysis of post-transplant chimerism. In this review, we discuss the technical features of both novel and conventional gold standard chimerism assays. We also discuss their advantages and disadvantages.
Collapse
Affiliation(s)
- Figen Abatay Sel
- Department of Biology, Istanbul University, Istanbul Faculty of Medicine, Istanbul, Turkey.
- Institute of Graduate Studies in Health Science, Istanbul University, Istanbul, Turkey.
| | - Fatma Savran Oğuz
- Department of Biology, Istanbul University, Istanbul Faculty of Medicine, Istanbul, Turkey
| |
Collapse
|
24
|
Laganà A, Visalli G, Di Pietro A, Facciolà A. Vaccinomics and adversomics: key elements for a personalized vaccinology. Clin Exp Vaccine Res 2024; 13:105-120. [PMID: 38752004 PMCID: PMC11091437 DOI: 10.7774/cevr.2024.13.2.105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 02/07/2024] [Accepted: 03/12/2024] [Indexed: 05/18/2024] Open
Abstract
Vaccines are one of the most important and effective tools in the prevention of infectious diseases and research about all the aspects of vaccinology are essential to increase the number of available vaccines more and more safe and effective. Despite the unquestionable value of vaccinations, vaccine hesitancy has spread worldwide compromising the success of vaccinations. Currently, the main purpose of vaccination campaigns is the immunization of whole populations with the same vaccine formulations and schedules for all individuals. A personalized vaccinology approach could improve modern vaccinology counteracting vaccine hesitancy and giving great benefits for human health. This ambitious purpose would be possible by facing and deepening the areas of vaccinomics and adversomics, two innovative areas of study investigating the role of a series of variables able to influence the immune response to vaccinations and the development of serious side effects, respectively. We reviewed the recent scientific knowledge about these innovative sciences focusing on genetic and non-genetic basis involved in the individual response to vaccines in terms of both immune response and side effects.
Collapse
Affiliation(s)
- Antonio Laganà
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Messina, Italy
- Istituto Clinico Polispecialistico C.O.T., Cure Ortopediche Traumatologiche S.P.A., Messina, Italy
| | - Giuseppa Visalli
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Messina, Italy
| | - Angela Di Pietro
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Messina, Italy
| | - Alessio Facciolà
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Messina, Italy
| |
Collapse
|
25
|
Karagöl T, Karagöl A, Zhang S. Structural bioinformatics studies of serotonin, dopamine and norepinephrine transporters and their AlphaFold2 predicted water-soluble QTY variants and uncovering the natural mutations of L->Q, I->T, F->Y and Q->L, T->I and Y->F. PLoS One 2024; 19:e0300340. [PMID: 38517879 PMCID: PMC10959339 DOI: 10.1371/journal.pone.0300340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Accepted: 02/26/2024] [Indexed: 03/24/2024] Open
Abstract
Monoamine transporters including transporters for serotonin, dopamine, and norepinephrine play key roles in monoaminergic synaptic signaling, involving in the molecular etiology of a wide range of neurological and physiological disorders. Despite being crucial drug targets, the study of transmembrane proteins remains challenging due to their localization within the cell membrane. To address this, we present the structural bioinformatics studies of 7 monoamine transporters and their water-soluble variants designed using the QTY code, by systematically replacing the hydrophobic amino acids leucine (L), valine (V), isoleucine (I) and phenylalanine (F) with hydrophilic amino acids (glutamine (Q), threonine (T) and tyrosine (Y). The resulting QTY variants, despite significant protein transmembrane sequence differences (44.27%-51.85%), showed similar isoelectric points (pI) and molecular weights. While their hydrophobic surfaces significantly reduced, this change resulted in a minimal structural alteration. Quantitatively, Alphafold2 predicted QTY variant structures displayed remarkable similarity with RMSD 0.492Å-1.619Å. Accompanied by the structural similarities of substituted amino acids in the context of 1.5Å electron density maps, our study revealed multiple QTY and reverse QTY variations in genomic databases. We further analyzed their phenotypical and topological characteristics. By extending evolutionary game theory to the molecular foundations of biology, we provided insights into the evolutionary dynamics of chemically distinct alpha-helices, their usage in different chemotherapeutic applications, and open possibilities of diagnostic medicine. Our study rationalizes that QTY variants of monoamine transporters may not only become distinct tools for medical, structural, and evolutionary research, but these transporters may also emerge as contemporary therapeutic targets, providing a new approach to treatment for several conditions.
Collapse
Affiliation(s)
- Taner Karagöl
- Istanbul University Istanbul Medical Faculty, Istanbul, Turkey
| | - Alper Karagöl
- Istanbul University Istanbul Medical Faculty, Istanbul, Turkey
| | - Shuguang Zhang
- Laboratory of Molecular Architecture, Media Lab, Massachusetts Institute of Technology, Cambridge, MA, United States of America
| |
Collapse
|
26
|
Yuan R, Cai B, Ma M, Zhao C, Xian Y, Nie Q, Zhang X, Zhang D. LncEDCH1 g.1703613 T>C regulates chicken carcass traits by targeting miR-196-2-3p. Poult Sci 2024; 103:103412. [PMID: 38198912 PMCID: PMC10825527 DOI: 10.1016/j.psj.2023.103412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 11/21/2023] [Accepted: 12/26/2023] [Indexed: 01/12/2024] Open
Abstract
Single nucleotide polymorphisms (SNPs) are valuable genetic markers that can provide insights into the genetic diversity and variation within chicken populations. In poultry breeding, SNP analysis is widely utilized to accelerate the selection of desirable traits, improving the efficiency and effectiveness of chicken breeding programs. In our previous research, we identified an association between LncEDCH1 and muscle development. To further investigate its specific mechanism, we conducted SNP detection and performed genotyping, linkage disequilibrium, and haplotype analysis. Our research findings indicate that 16 SNPs in the LncEDCH1. Among these SNPs, g.1703497 C>T and g.1704262 C>T were significantly associated with breast muscle weight percentage, g.1703497 C>T and g.1703613 T>C were significantly associated with leg weight percentage, and g.1703497 C>T, g.1703589 T>C, g.1703613 T>C, g.1703636 C>A, g.1703768 T>C, g.1704079 C>T, g.1704250 T>C, g.1704253 G>A were significantly associated with skin yellowness. Two haplotype blocks composed of 6 SNPs that were significantly associated with wing skin yellowness, breast skin yellowness, full-bore weight, and carcass weight percentage. Furthermore, through dual-luciferase reporter assays, biotin-coupled miRNA pull-down assays, 5-ethynyl-2'-deoxyuridine (EDU) assays, immunofluorescence, and quantitative real-time polymerase chain reaction (qPCR), it has been confirmed that miR-196-2-3p inhibits the expression of LncEDCH1 directly by binding to LncEDCH1 g.1703613T>C, thereby achieving indirect regulation of muscle development. These findings provide valuable molecular markers for chicken molecular breeding and broaden our understanding of the regulatory mechanisms.
Collapse
Affiliation(s)
- Rongshuai Yuan
- State Key Laboratory of Livestock and Poultry Breeding, Guangdong Laboratory for Lingnan Modern Agriculture, College of Animal Science, South China Agricultural University, Guangzhou, China; Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, National-Local Joint Engineering Research Center for Livestock Breeding, Guangzhou, China
| | - Bolin Cai
- State Key Laboratory of Livestock and Poultry Breeding, Guangdong Laboratory for Lingnan Modern Agriculture, College of Animal Science, South China Agricultural University, Guangzhou, China; Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, National-Local Joint Engineering Research Center for Livestock Breeding, Guangzhou, China
| | - Manting Ma
- State Key Laboratory of Livestock and Poultry Breeding, Guangdong Laboratory for Lingnan Modern Agriculture, College of Animal Science, South China Agricultural University, Guangzhou, China; Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, National-Local Joint Engineering Research Center for Livestock Breeding, Guangzhou, China
| | - Changbin Zhao
- State Key Laboratory of Livestock and Poultry Breeding, Guangdong Laboratory for Lingnan Modern Agriculture, College of Animal Science, South China Agricultural University, Guangzhou, China; Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, National-Local Joint Engineering Research Center for Livestock Breeding, Guangzhou, China
| | - Yuanrong Xian
- State Key Laboratory of Livestock and Poultry Breeding, Guangdong Laboratory for Lingnan Modern Agriculture, College of Animal Science, South China Agricultural University, Guangzhou, China; Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, National-Local Joint Engineering Research Center for Livestock Breeding, Guangzhou, China
| | - Qinghua Nie
- State Key Laboratory of Livestock and Poultry Breeding, Guangdong Laboratory for Lingnan Modern Agriculture, College of Animal Science, South China Agricultural University, Guangzhou, China; Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, National-Local Joint Engineering Research Center for Livestock Breeding, Guangzhou, China
| | - Xiquan Zhang
- State Key Laboratory of Livestock and Poultry Breeding, Guangdong Laboratory for Lingnan Modern Agriculture, College of Animal Science, South China Agricultural University, Guangzhou, China; Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, National-Local Joint Engineering Research Center for Livestock Breeding, Guangzhou, China
| | - Dexiang Zhang
- State Key Laboratory of Livestock and Poultry Breeding, Guangdong Laboratory for Lingnan Modern Agriculture, College of Animal Science, South China Agricultural University, Guangzhou, China; Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, National-Local Joint Engineering Research Center for Livestock Breeding, Guangzhou, China.
| |
Collapse
|
27
|
Ahmadi S, Surmava S, Kvaratskhelia D, Gogolashvili A, Kvaratskhelia E, Abzianidze E, Kankava K. Association Between Multiple Single Nucleotide Polymorphisms in Folate Metabolism Pathway and Breast Cancer Risk in Georgian Women: A Case-Control Study. Clin Med Insights Oncol 2024; 18:11795549241233693. [PMID: 38433849 PMCID: PMC10908228 DOI: 10.1177/11795549241233693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 02/01/2024] [Indexed: 03/05/2024] Open
Abstract
Background The folate metabolism pathway plays an integral part in DNA synthesis, methylation, and repair. Methylenetetrahydrofolate reductase (MTHFR) and methylenetetrahydrofolate dehydrogenase (MTHFD1) are both enzymes that are involved in this pathway, and the single nucleotide polymorphisms (SNPs) in genes coding for them have modulatory effects on DNA expression. This study aimed to investigate the relationship between MTHFR C677T (rs1801133) and MTHFD1 G1958A (rs2236225) polymorphisms and the risk of developing breast cancer in Georgian women. Methods A case-control study was performed examining the MTHFR C677T and MTHFD1 G1958A SNP in breast cancer-confirmed cases and healthy matched controls. Real time-polymerase chain reaction (PCR) was used to genotype SNPs. The case individuals' pathology reports were obtained following surgeries for cancer characteristic data. Statistical analysis was performed to investigate the significance of the acquired data. Results Statistical analysis of MTHFR C677T SNP revealed that the CT genotype increased the risk of breast cancer by 2.17 folds in the over-dominant model. Statistical analysis of MTHFD1 G1958A SNP showed that the GA genotype increased the risk of breast cancer by 4.12 folds in the codominant model and 2.41 folds in the over-dominant model. No statistically significant link was found between genotypes and lymph node status, however, patients with the CT genotype had higher percentages of proliferative activity. Conclusions Breast cancer seems to have a statistically significant association with the CT genotype in MTHFR C677T and the GA genotype in MTHFD1 G1958A in Georgian women.
Collapse
Affiliation(s)
- Saba Ahmadi
- Department of Molecular and Medical Genetics, Tbilisi State Medical University, Tbilisi, Georgia
| | - Sandro Surmava
- Department of Molecular and Medical Genetics, Tbilisi State Medical University, Tbilisi, Georgia
| | - Davit Kvaratskhelia
- Department of Molecular and Medical Genetics, Tbilisi State Medical University, Tbilisi, Georgia
| | - Ana Gogolashvili
- Department of Molecular and Medical Genetics, Tbilisi State Medical University, Tbilisi, Georgia
| | - Eka Kvaratskhelia
- Department of Molecular and Medical Genetics, Tbilisi State Medical University, Tbilisi, Georgia
- V. Bakhutashvili Institute of Medical Biotechnology, Tbilisi State Medical University, Tbilisi, Georgia
| | - Elene Abzianidze
- Department of Molecular and Medical Genetics, Tbilisi State Medical University, Tbilisi, Georgia
- Ivane Beritashvili Center Of Experimental Biomedicine, Tbilisi, Georgia
| | - Ketevani Kankava
- Department of Molecular and Medical Genetics, Tbilisi State Medical University, Tbilisi, Georgia
| |
Collapse
|
28
|
Romaniuk E, Vera B, Peraza P, Ciappesoni G, Damián JP, Van Lier E. Identification of Candidate Genes and Pathways Linked to the Temperament Trait in Sheep. Genes (Basel) 2024; 15:229. [PMID: 38397218 PMCID: PMC10887918 DOI: 10.3390/genes15020229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 01/05/2024] [Accepted: 01/10/2024] [Indexed: 02/25/2024] Open
Abstract
Temperament can be defined as the emotional variability among animals of the same species in response to the same stimulus, grouping animals by their reactivity as nervous, intermediate, or calm. Our goal was to identify genomic regions with the temperament phenotype measured by the Isolation Box Test (IBT) by single-step genome-wide association studies (ssGWAS). The database consisted of 4317 animals with temperament records, and 1697 genotyped animals with 38,268 effective Single Nucleotide Polymorphism (SNP) after quality control. We identified three genomic regions that explained the greatest percentage of the genetic variance, resulting in 25 SNP associated with candidate genes on chromosomes 6, 10, and 21. A total of nine candidate genes are reported for the temperament trait, which is: PYGM, SYVN1, CAPN1, FADS1, SYT7, GRID2, GPRIN3, EEF1A1 and FRY, linked to the energetic activity of the organism, synaptic transmission, meat tenderness, and calcium associated activities. This is the first study to identify these genetic variants associated with temperament in sheep, which could be used as molecular markers in future behavioral research.
Collapse
Affiliation(s)
- Estefanía Romaniuk
- Departamento de Producción Animal y Pasturas, Facultad de Agronomía, Universidad de la República, Avda. Garzón 780, Montevideo 12900, Uruguay;
- Estación Experimental Facultad de Agronomía Salto, Ruta 31, km 21, Salto 50000, Uruguay
| | - Brenda Vera
- Sistema Ganadero Extensivo, Instituto Nacional de Investigación Agropecuaria, INIA Las Brujas, Ruta 48, km 10, Canelones 90200, Uruguay; (B.V.); (P.P.); (G.C.)
| | - Pablo Peraza
- Sistema Ganadero Extensivo, Instituto Nacional de Investigación Agropecuaria, INIA Las Brujas, Ruta 48, km 10, Canelones 90200, Uruguay; (B.V.); (P.P.); (G.C.)
| | - Gabriel Ciappesoni
- Sistema Ganadero Extensivo, Instituto Nacional de Investigación Agropecuaria, INIA Las Brujas, Ruta 48, km 10, Canelones 90200, Uruguay; (B.V.); (P.P.); (G.C.)
| | - Juan Pablo Damián
- Departamento de Biociencias Veterinarias, Facultad de Veterinaria, Universidad de la República, Ruta 8, km 18, Montevideo 13000, Uruguay;
- Núcleo de Bienestar Animal, Facultad de Veterinaria, Universidad de la República, Ruta 8, km 18, Montevideo 13000, Uruguay
| | - Elize Van Lier
- Departamento de Producción Animal y Pasturas, Facultad de Agronomía, Universidad de la República, Avda. Garzón 780, Montevideo 12900, Uruguay;
- Estación Experimental Facultad de Agronomía Salto, Ruta 31, km 21, Salto 50000, Uruguay
| |
Collapse
|
29
|
Wei L, Xiao W, Chen B, Zou Z, Zhu J, Li D, Yu J, Yang H. Single nucleotide polymorphisms in the MRFs gene family associated with growth in Nile tilapia. Mol Biol Rep 2024; 51:128. [PMID: 38236311 DOI: 10.1007/s11033-023-08955-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 11/17/2023] [Indexed: 01/19/2024]
Abstract
BACKGROUND Muscle occupies most of the fish body, promoting the proliferation of fish muscle fibers can facilitate rapid growth and increase the body weight of fish. Some studiesSeveral previous suggest that Myogenic regulatory factors (MRFs) play an important role in the growth of fish. OBJECTIVE To investigate the association between the polymorphism of MRFs gene family and growth traits in Nile tilapia (Oreochromis niloticus), get more molecular markers for growth. METHODS Amplified the Nile tilapia MRFs family gene, including Myogenic determination 1 (Myod1), Myogenic determination 2 (Myod2), Myogenin (Myog), Myogenic factor 5 (Myf5), and Myogenic factor 6 (Myf6), single nucleotide polymorphism (SNP) were screened by Sanger sequencing. RESULTS A total of 16 SNP loci were screened, including six for Myf5, six for Myf6, one for Myog, one for Myod1 and two for Myod2. The growth traits were analyzed in relation to these 16 SNP loci, and the results indicated significant associations between all 16 SNP loci and the growth traits (P < 0.05). The linkage disequilibrium analysis revealed that D1 and D2 diplotypes of Myf5 gene, E1, E2, E3 and E4 of Myf6 gene, and F1 diplotype of Myod2 gene were significantly associated with superior growth traits. CONCLUSION There were 6, 6, 1, 1 and 2 growth-related molecular markers in Myf5, Myf6, Myog, Myod1 and Myod2 genes, respectively, which could be applied to the breeding of Nile tilapia.
Collapse
Affiliation(s)
- Longjie Wei
- Wuxi Fisheries College, Nanjing Agricultural University, 214081, Wuxi, China
| | - Wei Xiao
- Wuxi Fisheries College, Nanjing Agricultural University, 214081, Wuxi, China.
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, 214081, Wuxi, China.
| | - Binglin Chen
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, 214081, Wuxi, China
| | - Zhiying Zou
- Wuxi Fisheries College, Nanjing Agricultural University, 214081, Wuxi, China
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, 214081, Wuxi, China
| | - Jinglin Zhu
- Wuxi Fisheries College, Nanjing Agricultural University, 214081, Wuxi, China
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, 214081, Wuxi, China
| | - Dayu Li
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, 214081, Wuxi, China
| | - Jie Yu
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, 214081, Wuxi, China
| | - Hong Yang
- Wuxi Fisheries College, Nanjing Agricultural University, 214081, Wuxi, China.
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, 214081, Wuxi, China.
| |
Collapse
|
30
|
Mou SI, Sultana T, Chatterjee D, Faruk MO, Hosen MI. Comprehensive characterization of coding and non-coding single nucleotide polymorphisms of the Myoneurin (MYNN) gene using molecular dynamics simulation and docking approaches. PLoS One 2024; 19:e0296361. [PMID: 38165846 PMCID: PMC10760682 DOI: 10.1371/journal.pone.0296361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 12/11/2023] [Indexed: 01/04/2024] Open
Abstract
Genome-wide association studies (GWAS) identified a coding single nucleotide polymorphism, MYNN rs10936599, at chromosome 3q. MYNN gene encodes myoneurin protein, which has been associated with several cancer pathogenesis and disease development processes. However, there needed to be a more detailed characterization of this polymorphism's (and other coding and non-coding polymorphisms) structural, functional, and molecular impact. The current study addressed this gap and analyzed different properties of rs10936599 and non-coding SNPs of MYNN via a thorough computational method. The variant, rs10936599, was predicted functionally deleterious by nine functionality prediction approaches, like SIFT, PolyPhen-2, and REVEL, etc. Following that, structural modifications were estimated through the HOPE server and Mutation3D. Moreover, the mutation was found in a conserved and active residue, according to ConSurf and CPORT. Further, the secondary structures were predicted, followed by tertiary structures, and there was a significant deviation between the native and variant models. Similarly, molecular simulation also showed considerable differences in the dynamic pattern of the wildtype and mutant structures. Molecular docking revealed that the variant binds with better docking scores with ligand NOTCH2. In addition to that, non-coding SNPs located at the MYNN locus were retrieved from the ENSEMBL database. These were found to disrupt the transcription factor binding regulatory regions; nonetheless, only two affect miRNA target sites. Again, eight non-coding variants were detected in the testes with normalized expression, whereas HaploReg v4.1 unveiled annotations for non-coding variants. In summary, in silico comprehensive characterization of coding and non-coding single nucleotide polymorphisms of MYNN gene will assist researchers to work on MYNN gene and establish their association with certain types of cancers.
Collapse
Affiliation(s)
- Sadia Islam Mou
- Department of Biochemistry and Molecular Biology, University of Dhaka, Dhaka, Bangladesh
| | - Tamanna Sultana
- Department of Biochemistry and Molecular Biology, University of Dhaka, Dhaka, Bangladesh
| | - Dipankor Chatterjee
- Department of Biochemistry and Molecular Biology, University of Dhaka, Dhaka, Bangladesh
| | - Md. Omar Faruk
- Department of Biochemistry and Molecular Biology, University of Dhaka, Dhaka, Bangladesh
| | - Md. Ismail Hosen
- Department of Biochemistry and Molecular Biology, University of Dhaka, Dhaka, Bangladesh
| |
Collapse
|
31
|
Ousmael K, Whetten RW, Xu J, Nielsen UB, Lamour K, Hansen OK. Identification and high-throughput genotyping of single nucleotide polymorphism markers in a non-model conifer (Abies nordmanniana (Steven) Spach). Sci Rep 2023; 13:22488. [PMID: 38110478 PMCID: PMC10728141 DOI: 10.1038/s41598-023-49462-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 12/08/2023] [Indexed: 12/20/2023] Open
Abstract
Single nucleotide polymorphism (SNP) markers are powerful tools for investigating population structures, linkage analysis, and genome-wide association studies, as well as for breeding and population management. The availability of SNP markers has been limited to the most commercially important timber species, primarily due to the cost of genome sequencing required for SNP discovery. In this study, a combination of reference-based and reference-free approaches were used to identify SNPs in Nordmann fir (Abies nordmanniana), a species previously lacking genomic sequence information. Using a combination of a genome assembly of the closely related Silver fir (Abies alba) species and a de novo assembly of low-copy regions of the Nordmann fir genome, we identified a high density of reliable SNPs. Reference-based approaches identified two million SNPs in common between the Silver fir genome and low-copy regions of Nordmann fir. A combination of one reference-free and two reference-based approaches identified 250 shared SNPs. A subset of 200 SNPs were used to genotype 342 individuals and thereby tested and validated in the context of identity analysis and/or clone identification. The tested SNPs successfully identified all ramets per clone and five mislabeled individuals via identity and genomic relatedness analysis. The identified SNPs will be used in ad hoc breeding of Nordmann fir in Denmark.
Collapse
Affiliation(s)
- Kedra Ousmael
- Department of Geosciences and Natural Resource Management, University of Copenhagen, Rolighedsvej 23, 1958, Frederiksberg C, Denmark.
| | - Ross W Whetten
- Department of Forestry and Environmental Resources, North Carolina State University, Raleigh, NC, 27606, USA
| | - Jing Xu
- Department of Geosciences and Natural Resource Management, University of Copenhagen, Rolighedsvej 23, 1958, Frederiksberg C, Denmark
| | - Ulrik B Nielsen
- Department of Geosciences and Natural Resource Management, University of Copenhagen, Rolighedsvej 23, 1958, Frederiksberg C, Denmark
| | - Kurt Lamour
- Department of Entomology and Plant Pathology, University of Tennessee, Knoxville, TN, USA
| | - Ole K Hansen
- Department of Geosciences and Natural Resource Management, University of Copenhagen, Rolighedsvej 23, 1958, Frederiksberg C, Denmark
| |
Collapse
|
32
|
Hossain MU, Ahammad I, Moniruzzaman M, Akter Lubna M, Bhattacharjee A, Mahmud Chowdhury Z, Ahmed I, Hosen MB, Biswas S, Chandra Das K, Keya CA, Salimullah M. Investigation of pathogenic germline variants in gastric cancer and development of "GasCanBase" database. Cancer Rep (Hoboken) 2023; 6:e1906. [PMID: 37867380 PMCID: PMC10728505 DOI: 10.1002/cnr2.1906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 08/29/2023] [Accepted: 09/14/2023] [Indexed: 10/24/2023] Open
Abstract
BACKGROUND Gastric cancer, which is also known as stomach cancer, can be influenced by both germline and somatic mutations. Non-synonymous Single Nucleotide Polymorphisms (nsSNPs) in germline have long been reported to play a pivotal role in cancer progression. AIM The aim of this study is to examine the nsSNP in GC-associated genes. The study also aims to develop a database with extensive information regarding the nsSNPs in the GC-associated genes and their impacts. METHODS AND RESULTS A total of 34,588 nsSNPs from 1,493,460 SNPs of the 40 genes were extracted from the available SNP database. Drug binding and energy minimization were examined by molecular docking and YASARA. To validate the existence of the germline CDH1 gene mutation (rs34466743) in the isolated blood DNA of gastric cancer (GC) patients, polymerase chain reaction (PCR) and DNA sequencing were performed. According to the results of the gene network analysis, 17 genes may interact with other types of cancer. A total of 11,363 nsSNPs were detected within the 40 GC genes. Among these, 474 nsSNPs were predicted to be damaging and 40 to be the most damaging. The SNPs in domain regions were thought to be strong candidates that alter protein functions. Our findings proposed that most of the selected nsSNPs were within the domains or motif regions. Free Energy Deviation calculation of protein structure pointed toward noteworthy changes in the structure of each protein that can demolish its natural function. Subsequently, drug binding confirmed the structural variation and the ineffectiveness of the drug against the mutant model in individuals with these germline variants. Furthermore, in vitro analysis of the rs34466743 germline variant from the CDH1 gene confirmed the strength and robustness of the pipeline that could expand the somatic alteration for causing cancer. In addition, a comprehensive gastric cancer polymorphism database named "GasCanBase" was developed to make data available to researchers. CONCLUSION The findings of this study and the "GasCanBase" database may greatly contribute to our understanding of molecular epidemiology and the development of precise therapeutics for gastric cancer. GasCanBase is available at: https://www.gascanbase.com/.
Collapse
Affiliation(s)
| | - Ishtiaque Ahammad
- Bioinformatics DivisionNational Institute of BiotechnologyDhakaBangladesh
| | - Md. Moniruzzaman
- Molecular Biotechnology DivisionNational Institute of BiotechnologyDhakaBangladesh
| | | | | | | | - Istiak Ahmed
- Department of PharmacyNoakhali Science and Technology UniversityNoakhaliBangladesh
| | - Md. Billal Hosen
- Department of PharmacyNoakhali Science and Technology UniversityNoakhaliBangladesh
| | - Shourov Biswas
- Department of Clinical OncologyBangabandhu Sheikh Mujib Medical UniversityDhakaBangladesh
| | - Keshob Chandra Das
- Molecular Biotechnology DivisionNational Institute of BiotechnologyDhakaBangladesh
| | - Chaman Ara Keya
- Department of Biochemistry and MicrobiologyNorth South UniversityDhakaBangladesh
| | - Md. Salimullah
- Molecular Biotechnology DivisionNational Institute of BiotechnologyDhakaBangladesh
| |
Collapse
|
33
|
Wen Y, Liu J, Su Y, Chen X, Hou Y, Liao L, Wang Z. Forensic biogeographical ancestry inference: recent insights and current trends. Genes Genomics 2023; 45:1229-1238. [PMID: 37081293 DOI: 10.1007/s13258-023-01387-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 04/01/2023] [Indexed: 04/22/2023]
Abstract
BACKGROUND As a powerful complement to the paradigmatic DNA profiling strategy, biogeographical ancestry inference (BGAI) plays a significant part in human forensic investigation especially when a database hit or eyewitness testimony are not available. It indicates one's biogeographical profile based on known population-specific genetic variations, and thus is crucial for guiding authority investigations to find unknown individuals. Forensic biogeographical ancestry testing exploits much of the recent advances in the understanding of human genomic variation and improving of molecular biology. OBJECTIVE In this review, recent development of prospective ancestry informative markers (AIMs) and the statistical approaches of inferring biogeographic ancestry from AIMs are elucidated and discussed. METHODS We highlight the research progress of three potential AIMs (i.e., single nucleotide polymorphisms, microhaplotypes, and Y or mtDNA uniparental markers) and discuss the prospects and challenges of two methods that are commonly used in BGAI. CONCLUSION While BGAI for forensic purposes has been thriving in recent years, important challenges, such as ethics and responsibilities, data completeness, and ununified standards for evaluation, remain for the use of biogeographical ancestry information in human forensic investigations. To address these issues and fully realize the value of BGAI in forensic investigation, efforts should be made not only by labs/institutions around the world independently, but also by inter-lab/institution collaborations.
Collapse
Affiliation(s)
- Yufeng Wen
- Key Laboratory of Evidence Science (China University of Political Science and Law), Ministry of Education, Beijing, 100088, China
- Institute of Forensic Medicine, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, 610041, China
- School of Life Sciences, Jilin University, Changchun, 130012, China
| | - Jing Liu
- Institute of Forensic Medicine, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, 610041, China
| | - Yonglin Su
- Department of Rehabilitation Medicine, West China Hospital Sichuan University, Chengdu, 610041, China
| | - Xiacan Chen
- Institute of Forensic Medicine, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, 610041, China
| | - Yiping Hou
- Institute of Forensic Medicine, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, 610041, China
| | - Linchuan Liao
- Institute of Forensic Medicine, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, 610041, China.
| | - Zheng Wang
- Key Laboratory of Evidence Science (China University of Political Science and Law), Ministry of Education, Beijing, 100088, China.
- Institute of Forensic Medicine, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
34
|
Aida N, Saito A, Azuma T. Current Status of Next-Generation Sequencing in Bone Genetic Diseases. Int J Mol Sci 2023; 24:13802. [PMID: 37762102 PMCID: PMC10530486 DOI: 10.3390/ijms241813802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 09/01/2023] [Accepted: 09/05/2023] [Indexed: 09/29/2023] Open
Abstract
The development of next-generation sequencing (NGS) has dramatically increased the speed and volume of genetic analysis. Furthermore, the range of applications of NGS is rapidly expanding to include genome, epigenome (such as DNA methylation), metagenome, and transcriptome analyses (such as RNA sequencing and single-cell RNA sequencing). NGS enables genetic research by offering various sequencing methods as well as combinations of methods. Bone tissue is the most important unit supporting the body and is a reservoir of calcium and phosphate ions, which are important for physical activity. Many genetic diseases affect bone tissues, possibly because metabolic mechanisms in bone tissue are complex. For instance, the presence of specialized immune cells called osteoclasts in the bone tissue, which absorb bone tissue and interact with osteoblasts in complex ways to support normal vital functions. Moreover, the many cell types in bones exhibit cell-specific proteins for their respective activities. Mutations in the genes encoding these proteins cause a variety of genetic disorders. The relationship between age-related bone tissue fragility (also called frailty) and genetic factors has recently attracted attention. Herein, we discuss the use of genomic, epigenomic, transcriptomic, and metagenomic analyses in bone genetic disorders.
Collapse
Affiliation(s)
- Natsuko Aida
- Department of Biochemistry, Tokyo Dental College, 2-9-18 Kandamisaki-cho, Chiyoda-ku, Tokyo 101-0061, Japan; (A.S.); (T.A.)
| | - Akiko Saito
- Department of Biochemistry, Tokyo Dental College, 2-9-18 Kandamisaki-cho, Chiyoda-ku, Tokyo 101-0061, Japan; (A.S.); (T.A.)
| | - Toshifumi Azuma
- Department of Biochemistry, Tokyo Dental College, 2-9-18 Kandamisaki-cho, Chiyoda-ku, Tokyo 101-0061, Japan; (A.S.); (T.A.)
- Oral Health Science Center, Tokyo Dental College, 2-9-18 Kandamisaki-cho, Chiyoda-ku, Tokyo 101-0061, Japan
| |
Collapse
|
35
|
Wu K, Kong F, Zhang J, Tang Y, Chen Y, Chao L, Nie L, Huang Z. Recent Progress in Single-Nucleotide Polymorphism Biosensors. BIOSENSORS 2023; 13:864. [PMID: 37754098 PMCID: PMC10527258 DOI: 10.3390/bios13090864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 08/23/2023] [Accepted: 08/26/2023] [Indexed: 09/28/2023]
Abstract
Single-nucleotide polymorphisms (SNPs), the most common form of genetic variation in the human genome, are the main cause of individual differences. Furthermore, such attractive genetic markers are emerging as important hallmarks in clinical diagnosis and treatment. A variety of destructive abnormalities, such as malignancy, cardiovascular disease, inherited metabolic disease, and autoimmune disease, are associated with single-nucleotide variants. Therefore, identification of SNPs is necessary for better understanding of the gene function and health of an individual. SNP detection with simple preparation and operational procedures, high affinity and specificity, and cost-effectiveness have been the key challenge for years. Although biosensing methods offer high specificity and sensitivity, as well, they suffer drawbacks, such as complicated designs, complicated optimization procedures, and the use of complicated chemistry designs and expensive reagents, as well as toxic chemical compounds, for signal detection and amplifications. This review aims to provide an overview on improvements for SNP biosensing based on fluorescent and electrochemical methods. Very recently, novel designs in each category have been presented in detail. Furthermore, detection limitations, advantages and disadvantages, and challenges have also been presented for each type.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Libo Nie
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou 412007, China; (K.W.); (F.K.); (J.Z.); (Y.T.); (Y.C.); (L.C.)
| | - Zhao Huang
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou 412007, China; (K.W.); (F.K.); (J.Z.); (Y.T.); (Y.C.); (L.C.)
| |
Collapse
|
36
|
Hu C, Shen L, Zou F, Wu Y, Wang B, Wang A, Wu C, Wang L, Liu J, Wang W, Liu Q. Predicting and overcoming resistance to CDK9 inhibitors for cancer therapy. Acta Pharm Sin B 2023; 13:3694-3707. [PMID: 37719386 PMCID: PMC10502288 DOI: 10.1016/j.apsb.2023.05.026] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 04/19/2023] [Accepted: 05/22/2023] [Indexed: 09/19/2023] Open
Abstract
Abnormally activated CDK9 participates in the super-enhancer mediated transcription of short-lived proteins required for cancer cell survival. Targeting CDK9 has shown potent anti-tumor activity in clinical trials among different cancers. However, the study and knowledge on drug resistance to CDK9 inhibitors are very limited. In this study, we established an AML cell line with acquired resistance to a highly selective CDK9 inhibitor BAY1251152. Through genomic sequencing, we identified in the kinase domain of CDK9 a mutation L156F, which is also a coding SNP in the CDK9 gene. By knocking in L156F into cancer cells using CRISPR/Cas9, we found that single CDK9 L156F could drive the resistance to CDK9 inhibitors, not only ATP competitive inhibitor but also PROTAC degrader. Mechanistically, CDK9 L156F disrupts the binding with inhibitors due to steric hindrance, further, the mutation affects the thermal stability and catalytic activity of CDK9 protein. To overcome the drug resistance mediated by the CDK9-L156F mutation, we discovered a compound, IHMT-CDK9-36 which showed potent inhibition activity both for CDK9 WT and L156F mutant. Together, we report a novel resistance mechanism for CDK9 inhibitors and provide a novel chemical scaffold for the future development of CDK9 inhibitors.
Collapse
Affiliation(s)
- Chen Hu
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
- Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei 230031, China
| | - Lijuan Shen
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
- University of Science and Technology of China, Hefei 230026, China
| | - Fengming Zou
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
- Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei 230031, China
| | - Yun Wu
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
- Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei 230031, China
| | - Beilei Wang
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
- Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei 230031, China
| | - Aoli Wang
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
- Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei 230031, China
| | - Chao Wu
- Tarapeutics Science Inc., Bengbu 233000, China
| | - Li Wang
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
- Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei 230031, China
| | - Jing Liu
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
- University of Science and Technology of China, Hefei 230026, China
- Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei 230031, China
| | - Wenchao Wang
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
- University of Science and Technology of China, Hefei 230026, China
- Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei 230031, China
| | - Qingsong Liu
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
- University of Science and Technology of China, Hefei 230026, China
- Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei 230031, China
- Precision Medicine Research Laboratory of Anhui Province, Hefei 230088, China
| |
Collapse
|
37
|
Hasan MM, Nabi AN, Yasmin T. Comprehensive analysis predicting effects of deleterious SNPs of human progesterone receptor gene on its structure and functions: a computational approach. J Biomol Struct Dyn 2023; 41:8002-8017. [PMID: 36166622 DOI: 10.1080/07391102.2022.2127908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 09/17/2022] [Indexed: 10/14/2022]
Abstract
Progesterone receptor plays a crucial role in the development of the mammary gland and breast cancer. Single nucleotide polymorphisms (SNPs) within its gene, PGR, are associated with the risk of miscarriages and preterm birth as well as many cancers across different populations. The main aim of this work is to investigate the most deleterious SNPs in the PGR gene to identify potential biomarkers for various disease susceptibility and treatments. Both sequence and structure-based computational approaches were adopted and in total 11 nsSNPs have been filtered out of 674 nsSNPs along with seven non-coding SNPs. R740Q, I744T and D746E belonged to a mutation cluster. R740Q, D746E along with S865L altered H-bond interactions within the receptor. The same mutations have been found to be associated with several cancers including uterine and breast cancer among others. It is, therefore, possible that the high-risk SNPs associated with cancers may exert their effect by causing changes in the protein structure, particularly in its bonding patterns, and thus affecting its function. In addition, seven non-coding SNPs that were located in the UTR region created a new miRNA site while three SNPs disrupted a conserved miRNA site. These high-risk SNPs can play an instrumental role in generating a dataset of the PGR gene's SNPs. Thus, the present study may pave the way to design and develop novel therapeutics for overcoming the challenges associated with certain cancers and pregnancy that result from a change in the protein structure and function due to the SNP mutations in the PGR gene.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- M Mahbub Hasan
- Population Genetics Laboratory, Department of Biochemistry and Molecular Biology, University of Dhaka, Dhaka, Bangladesh
| | - Ahm Nurun Nabi
- Population Genetics Laboratory, Department of Biochemistry and Molecular Biology, University of Dhaka, Dhaka, Bangladesh
| | - Tahirah Yasmin
- Population Genetics Laboratory, Department of Biochemistry and Molecular Biology, University of Dhaka, Dhaka, Bangladesh
| |
Collapse
|
38
|
Wang Y, Zeng Z, Li J, Zhao D, Zhao Y, Peng C, Lan C, Wang C. Identification and validation of new quantitative trait loci for spike-related traits in two RIL populations. MOLECULAR BREEDING : NEW STRATEGIES IN PLANT IMPROVEMENT 2023; 43:64. [PMID: 37533603 PMCID: PMC10390419 DOI: 10.1007/s11032-023-01401-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 06/19/2023] [Indexed: 08/04/2023]
Abstract
Wheat (Triticum aestivum L.) is one of the most important cereal crops for ensuring food security worldwide. Identification of major quantitative trait loci (QTL) for spike-related traits is important for improvement of yield potential in wheat breeding. In this study, by using the wheat 55K single nucleotide polymorphism (SNP) array and diversity array technology (DArT), two recombinant inbred line populations derived from crosses avocet/chilero and avocet/huites were used to map QTL for kernel number per spike (KNS), total spikelet number per spike (TSS), fertile spikelet number per spike (FSS), and spike compactness (SC). Forty-two QTLs were identified on chromosomes 2A (4), 2B (3), 3A (2), 3B (7), 5A (11), 6A (4), 6B, and 7A (10), explaining 3.13-21.80% of the phenotypic variances. Twelve QTLs were detected in multi-environments on chromosomes 2A, 3B (2), 5A (4), 6A (3), 6B, and 7A, while four QTL clusters were detected on chromosomes 3A, 3B, 5A, and 7A. Two stable and new QTL clusters, QKns/Tss/Fss/SC.haust-5A and QKns/Tss/Fss.haust-7A, were detected in the physical intervals of 547.49-590.46 Mb and 511.54-516.15 Mb, accounting for 7.53-14.78% and 7.01-20.66% of the phenotypic variances, respectively. High-confidence annotated genes for QKns/Tss/Fss/SC.haust-5A and QKns/Tss/Fss.haust-7A were more highly expressed in spike development. The results provide new QTL and molecular markers for marker-assisted breeding in wheat. Supplementary Information The online version contains supplementary material available at 10.1007/s11032-023-01401-4.
Collapse
Affiliation(s)
- Yuying Wang
- College of Agronomy, Henan University of Science and Technology, Luoyang, 471000 Henan China
- The Shennong Laboratory, Zhengzhou, 450002 Henan China
| | - Zhankui Zeng
- College of Agronomy, Henan University of Science and Technology, Luoyang, 471000 Henan China
- The Shennong Laboratory, Zhengzhou, 450002 Henan China
| | - Jiachuang Li
- College of Agronomy, Henan University of Science and Technology, Luoyang, 471000 Henan China
- The Shennong Laboratory, Zhengzhou, 450002 Henan China
| | - Dehui Zhao
- College of Agronomy, Henan University of Science and Technology, Luoyang, 471000 Henan China
- The Shennong Laboratory, Zhengzhou, 450002 Henan China
| | - Yue Zhao
- College of Agronomy, Henan University of Science and Technology, Luoyang, 471000 Henan China
- The Shennong Laboratory, Zhengzhou, 450002 Henan China
| | - Chen Peng
- College of Agronomy, Henan University of Science and Technology, Luoyang, 471000 Henan China
- The Shennong Laboratory, Zhengzhou, 450002 Henan China
| | - Caixia Lan
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070 Hubei China
| | - Chunping Wang
- College of Agronomy, Henan University of Science and Technology, Luoyang, 471000 Henan China
- The Shennong Laboratory, Zhengzhou, 450002 Henan China
| |
Collapse
|
39
|
Ooi V, McMichael L, Hunter ME, Takoukam Kamla A, Lanyon JM. A new DNA extraction method (HV-CTAB-PCI) for amplification of nuclear markers from open ocean-retrieved faeces of an herbivorous marine mammal, the dugong. PLoS One 2023; 18:e0278792. [PMID: 37285349 DOI: 10.1371/journal.pone.0278792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 04/27/2023] [Indexed: 06/09/2023] Open
Abstract
Non-invasively collected faecal samples are an alternative source of DNA to tissue samples, that may be used in genetic studies of wildlife when direct sampling of animals is difficult. Although several faecal DNA extraction methods exist, their efficacy varies between species. Previous attempts to amplify mitochondrial DNA (mtDNA) markers from faeces of wild dugongs (Dugong dugon) have met with limited success and nuclear markers (microsatellites) have been unsuccessful. This study aimed to establish a tool for sampling both mtDNA and nuclear DNA (nDNA) from dugong faeces by modifying approaches used in studies of other large herbivores. First, a streamlined, cost-effective DNA extraction method that enabled the amplification of both mitochondrial and nuclear markers from large quantities of dugong faeces was developed. Faecal DNA extracted using a new 'High Volume- Cetyltrimethyl Ammonium Bromide- Phenol-Chloroform-Isoamyl Alcohol' (HV-CTAB-PCI) method was found to achieve comparable amplification results to extraction of DNA from dugong skin. As most prevailing practices advocate sampling from the outer surface of a stool to maximise capture of sloughed intestinal cells, this study compared amplification success of mtDNA between the outer and inner layers of faeces, but no difference in amplification was found. Assessment of the impacts of faecal age or degradation on extraction, however, demonstrated that fresher faeces with shorter duration of environmental (seawater) exposure amplified both markers better than eroded scats. Using the HV-CTAB-PCI method, nuclear markers were successfully amplified for the first time from dugong faeces. The successful amplification of single nucleotide polymorphism (SNP) markers represents a proof-of-concept showing that DNA from dugong faeces can potentially be utilised in population genetic studies. This novel DNA extraction protocol offers a new tool that will facilitate genetic studies of dugongs and other large and cryptic marine herbivores in remote locations.
Collapse
Affiliation(s)
- Vicky Ooi
- School of Biological Sciences, The University of Queensland, St Lucia, Queensland, Australia
| | - Lee McMichael
- School of Veterinary Science, The University of Queensland, Gatton, Queensland, Australia
| | - Margaret E Hunter
- U.S. Geological Survey, Wetland and Aquatic Research Center, Sirenia Project, Gainesville, Florida, United States of America
| | - Aristide Takoukam Kamla
- Aquatic Animal Health Program, College of Veterinary Medicine, University of Florida, Gainesville, Florida, United States of America
- African Marine Mammal Conservation Organization, Dizangue, Littoral, Cameroon
| | - Janet M Lanyon
- School of Biological Sciences, The University of Queensland, St Lucia, Queensland, Australia
| |
Collapse
|
40
|
Kladova OA, Tyugashev TE, Mikushina ES, Kuznetsov NA, Novopashina DS, Kuznetsova AA. The Activity of Natural Polymorphic Variants of Human DNA Polymerase β Having an Amino Acid Substitution in the Transferase Domain. Cells 2023; 12:cells12091300. [PMID: 37174699 PMCID: PMC10177036 DOI: 10.3390/cells12091300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 04/26/2023] [Accepted: 04/29/2023] [Indexed: 05/15/2023] Open
Abstract
To maintain the integrity of the genome, there is a set of enzymatic systems, one of which is base excision repair (BER), which includes sequential action of DNA glycosylases, apurinic/apyrimidinic endonucleases, DNA polymerases, and DNA ligases. Normally, BER works efficiently, but the enzymes themselves (whose primary function is the recognition and removal of damaged bases) are subject to amino acid substitutions owing to natural single-nucleotide polymorphisms (SNPs). One of the enzymes in BER is DNA polymerase β (Polβ), whose function is to fill gaps in DNA with complementary dNMPs. It is known that many SNPs can cause an amino acid substitution in this enzyme and a significant decrease in the enzymatic activity. In this study, the activity of four natural variants of Polβ, containing substitution E154A, G189D, M236T, or R254I in the transferase domain, was analyzed using molecular dynamics simulations and pre-steady-state kinetic analyses. It was shown that all tested substitutions lead to a significant reduction in the ability to form a complex with DNA and with incoming dNTP. The G189D substitution also diminished Polβ catalytic activity. Thus, a decrease in the activity of studied mutant forms may be associated with an increased risk of damage to the genome.
Collapse
Affiliation(s)
- Olga A Kladova
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of Russian Academy of Sciences, Novosibirsk 630090, Russia
| | - Timofey E Tyugashev
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of Russian Academy of Sciences, Novosibirsk 630090, Russia
| | - Elena S Mikushina
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of Russian Academy of Sciences, Novosibirsk 630090, Russia
| | - Nikita A Kuznetsov
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of Russian Academy of Sciences, Novosibirsk 630090, Russia
- Department of Natural Sciences, Novosibirsk State University, Novosibirsk 630090, Russia
| | - Daria S Novopashina
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of Russian Academy of Sciences, Novosibirsk 630090, Russia
| | - Aleksandra A Kuznetsova
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of Russian Academy of Sciences, Novosibirsk 630090, Russia
| |
Collapse
|
41
|
Koutsoumanis K, Allende A, Alvarez‐Ordoñez A, Bolton D, Bover‐Cid S, Chemaly M, Davies R, De Cesare A, Herman L, Hilbert F, Lindqvist R, Nauta M, Peixe L, Skandamis P, Suffredini E, Miller MW, Mysterud A, Nöremark M, Simmons M, Tranulis MA, Vaccari G, Viljugrein H, Ortiz‐Pelaez A, Ru G. Monitoring of chronic wasting disease (CWD) (IV). EFSA J 2023; 21:e07936. [PMID: 37077299 PMCID: PMC10107390 DOI: 10.2903/j.efsa.2023.7936] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/21/2023] Open
Abstract
The European Commission requested an analysis of the Chronic Wasting Disease (CWD) monitoring programme in Norway, Sweden, Finland, Iceland, Estonia, Latvia, Lithuania and Poland (9 January 2017-28 February 2022). Thirteen cases were detected in reindeer, 15 in moose and 3 in red deer. They showed two phenotypes, distinguished by the presence or absence of detectable disease-associated normal cellular prion protein (PrP) in lymphoreticular tissues. CWD was detected for the first time in Finland, Sweden and in other areas of Norway. In countries where the disease was not detected, the evidence was insufficient to rule out its presence altogether. Where cases were detected, the prevalence was below 1%. The data also suggest that the high-risk target groups for surveillance should be revised, and 'road kill' removed. Data show that, in addition to differences in age and sex, there are differences in the prion protein gene (PRNP) genotypes between positive and negative wild reindeer. A stepwise framework has been proposed with expanded minimum background surveillance to be implemented in European countries with relevant cervid species. Additional surveillance may include ad hoc surveys for four different objectives, specific to countries with/without cases, focusing on parallel testing of obex and lymph nodes from adult cervids in high-risk target groups, sustained over time, using sampling units and a data-driven design prevalence. Criteria for assessing the probability of CWD presence have been outlined, based on the definition of the geographical area, an annual assessment of risk of introduction, sustained minimum background surveillance, training and engagement of stakeholders and a surveillance programme based on data-driven parameters. All positive cases should be genotyped. Sample sizes for negative samples have been proposed to detect and estimate the frequency of PRNP polymorphisms. Double-strand sequencing of the entire PRNP open reading frame should be undertaken for all selected samples, with data collated in a centralised collection system at EU level.
Collapse
|
42
|
Huo YJ, Li XY, Zhang M, Gao C, Xiao Q, Zhao YH, Gao S, Gong TT, Wu QJ. Strong Cumulative Evidence of Associations of 6 Single Nucleotide Polymorphisms with Ovarian Cancer Risk: An Umbrella Review. J Clin Med 2023; 12:jcm12052025. [PMID: 36902812 PMCID: PMC10004083 DOI: 10.3390/jcm12052025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 02/26/2023] [Accepted: 02/27/2023] [Indexed: 03/08/2023] Open
Abstract
Background: An increasing number of studies have reported associations between single nucleotide polymorphisms (SNPs) and ovarian cancer (OC) risk. However, some of the findings were inconsistent. The objective of this umbrella review was to evaluate the associations comprehensively and quantitatively. Methods: The protocol of this review was registered in PROSPERO (No. CRD42022332222). We searched the PubMed, Web of Science, and Embase databases to identify related systematic reviews and meta-analyses from inception to 15 October 2021. In addition to estimating the summary effect size by using fixed and random effects models and calculating the 95% prediction interval, we evaluated the cumulative evidence for associations with nominally statistical significance based on the Venice criteria and false positive report probability (FPRP). Results: Forty articles were included in this umbrella review, which referred to a total of 54 SNPs. The median number of original studies per meta-analysis was four, while the median number of total subjects was 3455. All included articles had greater than moderate methodological quality. A total of 18 SNPs were nominally statistically associated with OC risk; 6 SNPs (8 genetic models), 5 SNPs (7 genetic models), and 16 SNPs (25 genetic models) were identified as strong, moderate, and weak cumulative evidence, respectively. Conclusion: This umbrella review revealed associations between SNPs and OC risk and suggested strong cumulative evidence of associations of six SNPs (eight genetic models) with OC risk.
Collapse
Affiliation(s)
- Ying-Jun Huo
- Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, No. 36, San Hao Street, Shenyang 110004, China
- Clinical Research Center, Shengjing Hospital of China Medical University, Shenyang 110004, China
- Key Laboratory of Precision Medical Research on Major Chronic Disease, Shenyang 110004, China
| | - Xiao-Ying Li
- Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, No. 36, San Hao Street, Shenyang 110004, China
- Clinical Research Center, Shengjing Hospital of China Medical University, Shenyang 110004, China
- Key Laboratory of Precision Medical Research on Major Chronic Disease, Shenyang 110004, China
| | - Meng Zhang
- Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, No. 36, San Hao Street, Shenyang 110004, China
- Clinical Research Center, Shengjing Hospital of China Medical University, Shenyang 110004, China
- Key Laboratory of Precision Medical Research on Major Chronic Disease, Shenyang 110004, China
| | - Chang Gao
- Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, No. 36, San Hao Street, Shenyang 110004, China
- Clinical Research Center, Shengjing Hospital of China Medical University, Shenyang 110004, China
- Key Laboratory of Precision Medical Research on Major Chronic Disease, Shenyang 110004, China
| | - Qian Xiao
- Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, No. 36, San Hao Street, Shenyang 110004, China
| | - Yu-Hong Zhao
- Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, No. 36, San Hao Street, Shenyang 110004, China
- Clinical Research Center, Shengjing Hospital of China Medical University, Shenyang 110004, China
- Key Laboratory of Precision Medical Research on Major Chronic Disease, Shenyang 110004, China
| | - Song Gao
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, No. 36, San Hao Street, Shenyang 110004, China
| | - Ting-Ting Gong
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, No. 36, San Hao Street, Shenyang 110004, China
- Correspondence: (T.-T.G.); (Q.-J.W.); Tel.: +86-24-96615-41311 (T.-T.G.); +86-24-96615-13652 (Q.-J.W.)
| | - Qi-Jun Wu
- Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, No. 36, San Hao Street, Shenyang 110004, China
- Clinical Research Center, Shengjing Hospital of China Medical University, Shenyang 110004, China
- Key Laboratory of Precision Medical Research on Major Chronic Disease, Shenyang 110004, China
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, No. 36, San Hao Street, Shenyang 110004, China
- Correspondence: (T.-T.G.); (Q.-J.W.); Tel.: +86-24-96615-41311 (T.-T.G.); +86-24-96615-13652 (Q.-J.W.)
| |
Collapse
|
43
|
Alonso-Garrido M, Lozano M, Riffo-Campos AL, Font G, Vila-Donat P, Manyes L. Assessment of single-nucleotide variant discovery protocols in RNA-seq data from human cells exposed to mycotoxins. Toxicol Mech Methods 2023; 33:215-221. [PMID: 36016515 DOI: 10.1080/15376516.2022.2117673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
Abstract
Food and feed contamination by nonlegislated mycotoxins beauvericin (BEA) and enniatin B (ENB) is a worldwide health concern in the present. The principal objective of this work is to assess some of the existing protocols to discover the single nucleotide variants (SNVs) in transcriptomic data obtained by RNA-seq from Jurkat cells in vitro samples individually exposed to BEA and ENB at three concentration levels (1.5, 3 and 5 µM). Moreover, previous transcriptomic results will be compared with new findings obtained using a different protocol. SNVs rs201003509 in BEA exposed cells and the rs36045790 in ENB were found in the differentially expressed genes in all doses compared to controls by means of the Genome Analysis Toolkit (GATK) Best Practices workflow. SNV-RNA-seq complementary pipeline did not show any SNV. Concerning gene expression, discrepant results were found for 1.5 µM BEA exposed cells compared with previous findings. However, 354 overlapped differentially expressed genes (DEGs) were identified in the three ENB concentrations used, with 147 matches with respect to the 245 DEGs found in the previous results. In conclusion, the two discovery SNVs protocols based on variant calling from RNA-seq used in this work displayed very different results and there were SNVs found manually not identified by any pipeline. Additionally, the new gene expression analysis reported comparable but non identical DEGs to the previous transcriptomic results obtained from these RNA-seq data.
Collapse
Affiliation(s)
- M Alonso-Garrido
- Laboratory of Food Chemistry and Toxicology, Faculty of Pharmacy, University of Valencia, Burjassot, Spain
| | - M Lozano
- Laboratory of Food Chemistry and Toxicology, Faculty of Pharmacy, University of Valencia, Burjassot, Spain.,Epidemiology and Environmental Health Joint Research Unit, FISABIO - Universitat Jaume I - Universitat de València, València, Spain
| | - A L Riffo-Campos
- Millennium Nucleus on Sociomedicine (SocioMed) and Vicerrectoría Académica, Universidad de La Frontera, Temuco, Chile.,Department of Computer Science, ETSE, University of Valencia, Valencia, Spain
| | - G Font
- Laboratory of Food Chemistry and Toxicology, Faculty of Pharmacy, University of Valencia, Burjassot, Spain
| | - P Vila-Donat
- Laboratory of Food Chemistry and Toxicology, Faculty of Pharmacy, University of Valencia, Burjassot, Spain
| | - L Manyes
- Laboratory of Food Chemistry and Toxicology, Faculty of Pharmacy, University of Valencia, Burjassot, Spain
| |
Collapse
|
44
|
Syed NA, Bhatti A, John P. Molecular dynamics simulations and bioinformatics' analysis of deleterious missense single nucleotide polymorphisms in Glyoxalase-1 gene. J Biomol Struct Dyn 2023; 41:13707-13717. [PMID: 36812296 DOI: 10.1080/07391102.2023.2181654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 02/12/2023] [Indexed: 02/24/2023]
Abstract
Glyoxalase-1 (Glo-1) is a key member of the Glyoxalase system, the primary line of defense against dicarbonyl stress which, in tandem, with reduced levels of expression or activity of Glyoxalase-1 enzyme, has been implicated in various human diseases like type 2 diabetes mellitus (T2DM) and its vascular complications. The association of Glo-1 single nucleotide polymorphisms with genetic susceptibility to T2DM and its vascular complications is yet to be explored. Therefore, in this study, we have employed a computational approach to identify the most damaging missense or nonsynonymous SNPs (nsSNPs) in Glo-1 gene. Initially, we characterized missense SNPs that are damaging to the structural and functional integrity of Glo-1 using various bioinformatic tools. These tools included SIFT, PolyPhen-2, SNAP, PANTHER, PROVEAN, PhD-SNP, SNPs&GO, I-Mutant, MUpro and MutPred2. One of these missense SNPs (rs1038747749; corresponding to amino acid change Arginine to Glutamine at position 38) was found to be highly conserved in evolution and is an important part of the enzyme's active site, glutathione binding site, as well as the dimeric interface based on the results obtained from ConSurf and NCBI Conserved Domain Search tools. Project HOPE reported that this mutation replaces a positively charged polar amino acid (Arginine) with a small, neutrally charged amino acid (Glutamine). Comparative modelling of wildtype and mutant (R38Q) Glo-1 proteins was performed in the run up to molecular dynamics simulation analysis which showed that rs1038747749 adversely impacts Glo-1 protein's stability, rigidity, compactness, hydrogen bonds/interactions as demonstrated by the results of various parameters computed during the analysis.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Nida Ali Syed
- Department of Healthcare Biotechnology, Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), Islamabad, Pakistan
| | - Attya Bhatti
- Department of Healthcare Biotechnology, Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), Islamabad, Pakistan
| | - Peter John
- Department of Healthcare Biotechnology, Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), Islamabad, Pakistan
| |
Collapse
|
45
|
Mukherjee A, Chattopadhyay T. Tetra-Primer Amplification Refractory Mutation System (T-ARMS). Methods Mol Biol 2023; 2638:315-325. [PMID: 36781652 DOI: 10.1007/978-1-0716-3024-2_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2023]
Abstract
Single-nucleotide polymorphisms (SNPs), the most abundant genetic variation in the population, have become the molecular marker of choice. Generally, the efficient detection of SNPs requires specialized costly equipment. Although there are a few strategies for detecting SNPs through polymerase chain reaction, followed by restriction enzyme digestion and agarose gel electrophoresis, these methods are time-consuming and might be less diagnostic. Interestingly, the tetra primer amplification refractory mutation system (T-ARMS) strategy utilizes a pair of allele-specific primers in a single PCR for the diagnostic detection of SNPs in a codominant manner through standard agarose gel electrophoresis. The simplicity and robustness of the strategy have inspired the researchers to adopt this low-cost method of SNP detection in different crop plants. Here, we have described the principle, methods, and conditions for the T-ARMS strategy. The described methodology starts from the isolation of genomic DNA and ends with the post-PCR analysis of refractory amplicons in standard agarose gel electrophoresis. The limitations and future perspectives are also discussed. Taken together, T-ARMS evolves as a method of choice for low-cost SNP detection in plants.
Collapse
Affiliation(s)
- Arnab Mukherjee
- Department of Plant Breeding and Genetics, Bihar Agricultural College, Bihar Agricultural University, Sabour, Bhagalpur, Bihar, India
| | - Tirthartha Chattopadhyay
- Department of Plant Breeding and Genetics, Bihar Agricultural College, Bihar Agricultural University, Sabour, Bhagalpur, Bihar, India
| |
Collapse
|
46
|
Kumar K, Yu Q, Bhatia D, Honsho C, Gmitter FG. Construction of a high density genetic linkage map to define the locus conferring seedlessness from Mukaku Kishu mandarin. FRONTIERS IN PLANT SCIENCE 2023; 14:1087023. [PMID: 36875618 PMCID: PMC9976630 DOI: 10.3389/fpls.2023.1087023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 01/30/2023] [Indexed: 06/18/2023]
Abstract
Mukaku Kishu ('MK'), a small sized mandarin, is an important source of seedlessness in citrus breeding. Identification and mapping the gene(s) governing 'MK' seedlessness will expedite seedless cultivar development. In this study, two 'MK'-derived mapping populations- LB8-9 Sugar Belle® ('SB') × 'MK' (N=97) and Daisy ('D') × 'MK' (N=68) were genotyped using an Axiom_Citrus56 Array encompassing 58,433 SNP probe sets, and population specific male and female parent linkage maps were constructed. The parental maps of each population were integrated to produce sub-composite maps, which were further merged to develop a consensus linkage map. All the parental maps (except 'MK_D') had nine major linkage groups, and contained 930 ('SB'), 810 ('MK_SB'), 776 ('D') and 707 ('MK_D') SNPs. The linkage maps displayed 96.9 ('MK_D') to 98.5% ('SB') chromosomal synteny with the reference Clementine genome. The consensus map was comprised of 2588 markers including a phenotypic seedless (Fs)-locus and spanned a genetic distance of 1406.84 cM, with an average marker distance of 0.54 cM, which is substantially lower than the reference Clementine map. For the phenotypic Fs-locus, the distribution of seedy and seedless progenies in both 'SB' × 'MK' (55:42, χ2 = 1.74) and 'D' × 'MK' populations (33:35, χ2 = 0.06) followed a test cross pattern. The Fs-locus mapped on chromosome 5 with SNP marker 'AX-160417325' at 7.4 cM in 'MK_SB' map and between two SNP markers 'AX-160536283' and 'AX-160906995' at a distance of 2.4 and 4.9 cM, respectively in 'MK_D' map. The SNPs 'AX-160417325' and 'AX-160536283' correctly predicted seedlessness of 25-91.9% progenies in this study. Based on the alignment of flanking SNP markers to the Clementine reference genome, the candidate gene for seedlessness hovered in a ~ 6.0 Mb region between 3.97 Mb (AX-160906995) to 10.00 Mb (AX-160536283). This region has 131 genes of which 13 genes (belonging to seven gene families) reportedly express in seed coat or developing embryo. The findings of the study will prove helpful in directing future research for fine mapping this region and eventually underpinning the exact causative gene governing seedlessness in 'MK'.
Collapse
Affiliation(s)
- Krishan Kumar
- Citrus Research and Education Center, Institute of Food and Agricultural Sciences, University of Florida, Lake Alfred, FL, United States
- Punjab Agricultural University, Dr. JC Bakhshi Regional Research Station, Abohar, India
| | - Qibin Yu
- Citrus Research and Education Center, Institute of Food and Agricultural Sciences, University of Florida, Lake Alfred, FL, United States
| | - Dharminder Bhatia
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, India
| | - Chitose Honsho
- Citrus Research and Education Center, Institute of Food and Agricultural Sciences, University of Florida, Lake Alfred, FL, United States
- Laboratory of Pomology, Faculty of Agriculture, University of Miyazaki, Miyazaki, Japan
| | - Frederick G. Gmitter
- Citrus Research and Education Center, Institute of Food and Agricultural Sciences, University of Florida, Lake Alfred, FL, United States
| |
Collapse
|
47
|
Derived Polymorphic Amplified Cleaved Sequence (dPACS) Assay. Methods Mol Biol 2023; 2638:373-385. [PMID: 36781657 DOI: 10.1007/978-1-0716-3024-2_27] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2023]
Abstract
The derived polymorphic amplified cleaved sequence (dPACS) assay is a simple polymerase chain reaction/restriction fragment length polymorphism (PCR-RFLP)-based procedure for detecting known single-nucleotide polymorphisms (SNPs) and deletion-insertion polymorphisms (DIPs). It is relatively straightforward to carry out using basic and commonly available molecular biology kits. The method differs from other PCR-RFLP assays in that it employs 35-55 bp primer pairs that encompass the entire targeted DNA region except for a few diagnostic nucleotides being examined. In so doing, it allows for the introduction of nucleotide mismatches in one or both primers for differentiating wild from mutant sequences following polymerase chain reaction, restriction digestion and MetaPhor gel electrophoresis. Primer design and the selection of discriminating enzymes are achieved with the help of the dPACS 1.0 program. The method is exemplified here with the positive detection of serine 264-psbA, a key determinant for the effective binding of some photosystem II inhibitors to their target. A serine-to-glycine mutation at codon 264 of psbA causes resistance to serine-binding photosystem II herbicides in several grasses and broad-leaf weeds, including Amaranthus retroflexus, which is employed in this study.
Collapse
|
48
|
Sen S, Rathi S, Sahu J, Mandal SC, Ray S, Slama P, Roychoudhury S. In Silico Mining and Characterization of High-Quality SNP/Indels in Some Agro-Economically Important Species Belonging to the Family Euphorbiaceae. Genes (Basel) 2023; 14:332. [PMID: 36833259 PMCID: PMC9956114 DOI: 10.3390/genes14020332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 01/07/2023] [Accepted: 01/20/2023] [Indexed: 01/31/2023] Open
Abstract
(1) Background: To assess the genetic makeup among the agro-economically important members of Euphorbiaceae, the present study was conducted to identify and characterize high-quality single-nucleotide polymorphism (SNP) markers and their comparative distribution in exonic and intronic regions from the publicly available expressed sequence tags (ESTs). (2) Methods: Quality sequences obtained after pre-processing by an EG assembler were assembled into contigs using the CAP3 program at 95% identity; the mining of SNP was performed by QualitySNP; GENSCAN (standalone) was used for detecting the distribution of SNPs in the exonic and intronic regions. (3) Results: A total of 25,432 potential SNPs (pSNP) and 14,351 high-quality SNPs (qSNP), including 2276 indels, were detected from 260,479 EST sequences. The ratio of quality SNP to potential SNP ranged from 0.22 to 0.75. A higher frequency of transitions and transversions was observed more in the exonic than the intronic region, while indels were present more in the intronic region. C↔T (transition) was the most dominant nucleotide substitution, while in transversion, A↔T was the dominant nucleotide substitution, and in indel, A/- was dominant. (4) Conclusions: Detected SNP markers may be useful for linkage mapping; marker-assisted breeding; studying genetic diversity; mapping important phenotypic traits, such as adaptation or oil production; or disease resistance by targeting and screening mutations in important genes.
Collapse
Affiliation(s)
- Surojit Sen
- Department of Zoology, Mariani College, Mariani 785634, India
| | - Sunayana Rathi
- Department of Biochemistry and Agricultural Chemistry, Assam Agricultural University, Jorhat 785013, India
| | - Jagajjit Sahu
- GyanArras Academy, Gothapatna, Malipada, Bhubaneswar 751003, India
| | - Subhash C. Mandal
- Department of Pharmaceutical Technology, Division of Pharmacognosy, Jadavpur University, Kolkata 700032, India
| | - Supratim Ray
- Department of Pharmaceutical Sciences, Assam University, Silchar 788011, India
| | - Petr Slama
- Laboratory of Animal Immunology and Biotechnology, Department of Animal Morphology, Physiology and Genetics, Faculty of AgriSciences, Mendel University in Brno, 61300 Brno, Czech Republic
| | | |
Collapse
|
49
|
Investigation of UTR Variants by Computational Approaches Reveal Their Functional Significance in PRKCI Gene Regulation. Genes (Basel) 2023; 14:genes14020247. [PMID: 36833174 PMCID: PMC9956319 DOI: 10.3390/genes14020247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 01/02/2023] [Accepted: 01/16/2023] [Indexed: 01/20/2023] Open
Abstract
Single nucleotide polymorphisms (SNPs) are associated with many diseases including neurological disorders, heart diseases, diabetes, and different types of cancers. In the context of cancer, the variations within non-coding regions, including UTRs, have gained utmost importance. In gene expression, translational regulation is as important as transcriptional regulation for the normal functioning of cells; modification in normal functions can be associated with the pathophysiology of many diseases. UTR-localized SNPs in the PRKCI gene were evaluated using the PolymiRTS, miRNASNP, and MicroSNIper for association with miRNAs. Furthermore, the SNPs were subjected to analysis using GTEx, RNAfold, and PROMO. The genetic intolerance to functional variation was checked through GeneCards. Out of 713 SNPs, a total of thirty-one UTR SNPs (three in 3' UTR region and twenty-nine in 5' UTR region) were marked as ≤2b by RegulomeDB. The associations of 23 SNPs with miRNAs were found. Two SNPs, rs140672226 and rs2650220, were significantly linked with expression in the stomach and esophagus mucosa. The 3' UTR SNPs rs1447651774 and rs115170199 and the 5' UTR region variants rs778557075, rs968409340, and 750297755 were predicted to destabilize the mRNA structure with substantial change in free energy (∆G). Seventeen variants were predicted to have linkage disequilibrium with various diseases. The SNP rs542458816 in 5' UTR was predicted to put maximum influence on transcription factor binding sites. Gene damage index(GDI) and loss of function (o:e) ratio values for PRKCI suggested that the gene is not tolerant to loss of function variants. Our results highlight the effects of 3' and 5' UTR SNP on miRNA, transcription and translation of PRKCI. These analyses suggest that these SNPs can have substantial functional importance in the PRKCI gene. Future experimental validation could provide further basis for the diagnosis and therapeutics of various diseases.
Collapse
|
50
|
Xiao Q, Chen J, Zhu J, Zeng S, Cai H, Zhu G. Association of several loci of SMAD7 with colorectal cancer: A meta-analysis based on case-control studies. Medicine (Baltimore) 2023; 102:e32631. [PMID: 36607878 PMCID: PMC9829263 DOI: 10.1097/md.0000000000032631] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Sma-and mad-related protein 7 (SMAD7) can affect tumor progression by closing transforming growth factor-beta intracellular signaling channels. Despite the extensive research on the correlation between SMAD7 polymorphisms and colorectal cancer (CRC), the conclusions of studies are still contradictory. We conducted a study focusing on the association of SMAD7 polymorphisms rs4939827, rs4464148, and rs12953717 with CRC. METHODS We searched through 5 databases for articles and used odd ratios (ORs) and 95% confidence intervals (CIs) to discuss the correlation of SMAD7 polymorphisms with CRC risk. The heterogeneity will be appraised by subgroup analysis and meta-regression. Contour-enhanced funnel plot, Begg test and Egger test were utilized to estimate publication bias, and the sensitivity analysis illustrates the reliability of the outcomes. We performed False-positive report probability and trial sequential analysis methods to verify results. We also used public databases for bioinformatics analysis. RESULTS We conclusively included 34 studies totaling 173251 subjects in this study. The minor allele (C) of rs4939827 is a protective factor of CRC (dominant, OR/[95% CI] = 0.89/[0.83-0.97]; recessive, OR/[95% CI] = 0.89/[0.83-0.96]; homozygous, OR/[95% CI] = 0.84/[0.76-0.93]; heterozygous, OR/[95% CI] = 0.91/[0.85-0.97]; additive, OR/[95% CI] = 0.91/[0.87-0.96]). the T allele of rs12953717 (recessive, OR/[95% CI] = 1.22/[1.15-1.28]; homozygous, OR/[95% CI] = 1.25/[1.13-1.38]; additive, OR/[95% CI] = 1.11/[1.05-1.17]) and the C allele of rs4464148 (heterozygous, OR/[95% CI] = 1.13/[1.04-1.24]) can enhance the risk of CRC. CONCLUSION Rs4939827 (T > C) can decrease the susceptibility to CRC. However, the rs4464148 (T > C) and rs12953717 (C > T) variants were connected with an enhanced risk of CRC.
Collapse
Affiliation(s)
- Qiang Xiao
- General Surgery Department, First Affiliated Hospital of Nanchang University, Jiangxi, China
| | - Jian Chen
- General Surgery Department, First Affiliated Hospital of Nanchang University, Jiangxi, China
| | - Jia Zhu
- General Surgery Department, First Affiliated Hospital of Nanchang University, Jiangxi, China
| | - Shukun Zeng
- General Surgery Department, First Affiliated Hospital of Nanchang University, Jiangxi, China
| | - Hu Cai
- General Surgery Department, First Affiliated Hospital of Nanchang University, Jiangxi, China
| | - Guomin Zhu
- General Surgery Department, First Affiliated Hospital of Nanchang University, Jiangxi, China
- * Correspondence: Guomin Zhu, First Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi, China (e-mail: )
| |
Collapse
|