1
|
van Wolferen M, Pulschen AA, Baum B, Gribaldo S, Albers SV. The cell biology of archaea. Nat Microbiol 2022; 7:1744-1755. [PMID: 36253512 PMCID: PMC7613921 DOI: 10.1038/s41564-022-01215-8] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 07/25/2022] [Indexed: 12/15/2022]
Abstract
The past decade has revealed the diversity and ubiquity of archaea in nature, with a growing number of studies highlighting their importance in ecology, biotechnology and even human health. Myriad lineages have been discovered, which expanded the phylogenetic breadth of archaea and revealed their central role in the evolutionary origins of eukaryotes. These discoveries, coupled with advances that enable the culturing and live imaging of archaeal cells under extreme environments, have underpinned a better understanding of their biology. In this Review we focus on the shape, internal organization and surface structures that are characteristic of archaeal cells as well as membrane remodelling, cell growth and division. We also highlight some of the technical challenges faced and discuss how new and improved technologies will help address many of the key unanswered questions.
Collapse
Affiliation(s)
- Marleen van Wolferen
- Molecular Biology of Archaea, Institute of Biology II, Faculty of Biology, University of Freiburg, Freiburg, Germany
| | | | - Buzz Baum
- Division of Cell Biology, MRC Laboratory of Molecular Biology, Cambridge, UK.
| | - Simonetta Gribaldo
- Evolutionary Biology of the Microbial Cell Unit, CNRS UMR2001, Department of Microbiology, Institute Pasteur, Paris, France.
| | - Sonja-Verena Albers
- Molecular Biology of Archaea, Institute of Biology II, Faculty of Biology, University of Freiburg, Freiburg, Germany.
| |
Collapse
|
2
|
Ithurbide S, Gribaldo S, Albers SV, Pende N. Spotlight on FtsZ-based cell division in Archaea. Trends Microbiol 2022; 30:665-678. [PMID: 35246355 DOI: 10.1016/j.tim.2022.01.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 12/22/2021] [Accepted: 01/10/2022] [Indexed: 12/15/2022]
Abstract
Compared with the extensive knowledge on cell division in model eukaryotes and bacteria, little is known about how archaea divide. Interestingly, both endosomal sorting complex required for transport (ESCRT)-based and FtsZ-based cell division systems are found in members of the Archaea. In the past couple of years, several studies have started to shed light on FtsZ-based cell division processes in members of the Euryarchaeota. In this review we highlight recent findings in this emerging field of research. We present current knowledge of the cell division machinery of halophiles which relies on two FtsZ proteins, and we compare it with that of methanobacteria, which relies on only one FtsZ. Finally, we discuss how these differences relate to the distinct cell envelopes of these two archaeal model systems.
Collapse
Affiliation(s)
- Solenne Ithurbide
- Molecular Biology of Archaea, Institute of Biology II, Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Simonetta Gribaldo
- Evolutionary Biology of the Microbial Cell Unit, CNRS UMR2001, Department of Microbiology, Institut Pasteur, Paris, France.
| | - Sonja-Verena Albers
- Molecular Biology of Archaea, Institute of Biology II, Faculty of Biology, University of Freiburg, Freiburg, Germany.
| | - Nika Pende
- Evolutionary Biology of the Microbial Cell Unit, CNRS UMR2001, Department of Microbiology, Institut Pasteur, Paris, France
| |
Collapse
|
3
|
van Wolferen M, Albers SV. Progress and Challenges in Archaeal Cell Biology. Methods Mol Biol 2022; 2522:365-371. [PMID: 36125763 DOI: 10.1007/978-1-0716-2445-6_24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Over the past decades there has been a growing interest in the domain of archaea. In this chapter we highlight the recent advances that have been made in studying the cell biology of archaea. We particularly focus on methods for genetic manipulation and imaging of different archaeal species and discuss the technical limitations at the often-extreme growth conditions. Several ongoing developments will help us overcoming these limitations, thereby facilitating future studies in the existing field of archaeal cell biology.
Collapse
Affiliation(s)
- Marleen van Wolferen
- Molecular Biology of Archaea, Institute of Biology II, University of Freiburg, Freiburg, Germany.
| | - Sonja-Verena Albers
- Molecular Biology of Archaea, Institute of Biology II, University of Freiburg, Freiburg, Germany.
| |
Collapse
|
4
|
The archaeal protein SepF is essential for cell division in Haloferax volcanii. Nat Commun 2021; 12:3469. [PMID: 34103513 PMCID: PMC8187382 DOI: 10.1038/s41467-021-23686-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Accepted: 05/07/2021] [Indexed: 02/05/2023] Open
Abstract
In most bacteria, cell division depends on the tubulin homolog FtsZ and other proteins, such as SepF, that form a complex termed the divisome. Cell division also depends on FtsZ in many archaea, but other components of the divisome are unknown. Here, we demonstrate that a SepF homolog plays important roles in cell division in Haloferax volcanii, a halophilic archaeon that is known to have two FtsZ homologs with slightly different functions (FtsZ1 and FtsZ2). SepF co-localizes with both FtsZ1 and FtsZ2 at midcell. Attempts to generate a sepF deletion mutant were unsuccessful, suggesting an essential role. Indeed, SepF depletion leads to severe cell division defects and formation of large cells. Overexpression of FtsZ1-GFP or FtsZ2-GFP in SepF-depleted cells results in formation of filamentous cells with a high number of FtsZ1 rings, while the number of FtsZ2 rings is not affected. Pull-down assays support that SepF interacts with FtsZ2 but not with FtsZ1, although SepF appears delocalized in the absence of FtsZ1. Archaeal SepF homologs lack a glycine residue known to be important for polymerization and function in bacteria, and purified H. volcanii SepF forms dimers, suggesting that polymerization might not be important for the function of archaeal SepF.
Collapse
|
5
|
Pende N, Sogues A, Megrian D, Sartori-Rupp A, England P, Palabikyan H, Rittmann SKMR, Graña M, Wehenkel AM, Alzari PM, Gribaldo S. SepF is the FtsZ anchor in archaea, with features of an ancestral cell division system. Nat Commun 2021; 12:3214. [PMID: 34088904 PMCID: PMC8178401 DOI: 10.1038/s41467-021-23099-8] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 04/15/2021] [Indexed: 12/11/2022] Open
Abstract
Most archaea divide by binary fission using an FtsZ-based system similar to that of bacteria, but they lack many of the divisome components described in model bacterial organisms. Notably, among the multiple factors that tether FtsZ to the membrane during bacterial cell constriction, archaea only possess SepF-like homologs. Here, we combine structural, cellular, and evolutionary analyses to demonstrate that SepF is the FtsZ anchor in the human-associated archaeon Methanobrevibacter smithii. 3D super-resolution microscopy and quantitative analysis of immunolabeled cells show that SepF transiently co-localizes with FtsZ at the septum and possibly primes the future division plane. M. smithii SepF binds to membranes and to FtsZ, inducing filament bundling. High-resolution crystal structures of archaeal SepF alone and in complex with the FtsZ C-terminal domain (FtsZCTD) reveal that SepF forms a dimer with a homodimerization interface driving a binding mode that is different from that previously reported in bacteria. Phylogenetic analyses of SepF and FtsZ from bacteria and archaea indicate that the two proteins may date back to the Last Universal Common Ancestor (LUCA), and we speculate that the archaeal mode of SepF/FtsZ interaction might reflect an ancestral feature. Our results provide insights into the mechanisms of archaeal cell division and pave the way for a better understanding of the processes underlying the divide between the two prokaryotic domains.
Collapse
Affiliation(s)
- Nika Pende
- Evolutionary Biology of the Microbial Cell Unit, CNRS UMR2001, Department of Microbiology, Institut Pasteur, Paris, France
| | - Adrià Sogues
- Structural Microbiology Unit, Institut Pasteur, CNRS UMR 3528, Université de Paris, Paris, France
| | - Daniela Megrian
- Evolutionary Biology of the Microbial Cell Unit, CNRS UMR2001, Department of Microbiology, Institut Pasteur, Paris, France
- École Doctorale Complexité du vivant, Sorbonne University, Paris, France
| | | | - Patrick England
- Plate-forme de biophysique moléculaire, C2RT-Institut Pasteur, CNRS, UMR 3528, Paris, France
| | - Hayk Palabikyan
- Archaea Physiology & Biotechnology Group, Department of Functional and Evolutionary Ecology, University of Vienna, Wien, Austria
| | - Simon K-M R Rittmann
- Archaea Physiology & Biotechnology Group, Department of Functional and Evolutionary Ecology, University of Vienna, Wien, Austria
| | - Martín Graña
- Bioinformatics Unit, Institut Pasteur of Montevideo, Montevideo, Uruguay
| | - Anne Marie Wehenkel
- Structural Microbiology Unit, Institut Pasteur, CNRS UMR 3528, Université de Paris, Paris, France.
| | - Pedro M Alzari
- Structural Microbiology Unit, Institut Pasteur, CNRS UMR 3528, Université de Paris, Paris, France
| | - Simonetta Gribaldo
- Evolutionary Biology of the Microbial Cell Unit, CNRS UMR2001, Department of Microbiology, Institut Pasteur, Paris, France.
| |
Collapse
|
6
|
Cell division in the archaeon Haloferax volcanii relies on two FtsZ proteins with distinct functions in division ring assembly and constriction. Nat Microbiol 2021; 6:594-605. [PMID: 33903747 PMCID: PMC7611241 DOI: 10.1038/s41564-021-00894-z] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 03/22/2021] [Indexed: 02/02/2023]
Abstract
In bacteria, the tubulin homologue FtsZ assembles a cytokinetic ring, termed the Z ring, and plays a key role in the machinery that constricts to divide the cells. Many archaea encode two FtsZ proteins from distinct families, FtsZ1 and FtsZ2, with previously unclear functions. Here, we show that Haloferax volcanii cannot divide properly without either or both FtsZ proteins, but DNA replication continues and cells proliferate in alternative ways, such as blebbing and fragmentation, via remarkable envelope plasticity. FtsZ1 and FtsZ2 colocalize to form the dynamic division ring. However, FtsZ1 can assemble rings independent of FtsZ2, and stabilizes FtsZ2 in the ring, whereas FtsZ2 functions primarily in the constriction mechanism. FtsZ1 also influenced cell shape, suggesting it forms a hub-like platform at midcell for the assembly of shape-related systems too. Both FtsZ1 and FtsZ2 are widespread in archaea with a single S-layer envelope, but archaea with a pseudomurein wall and division septum only have FtsZ1. FtsZ1 is therefore likely to provide a fundamental recruitment role in diverse archaea, and FtsZ2 is required for constriction of a flexible S-layer envelope, where an internal constriction force might dominate the division mechanism, in contrast with the single-FtsZ bacteria and archaea that divide primarily by wall ingrowth.
Collapse
|
7
|
Makkay AM, Louyakis AS, Ram-Mohan N, Gophna U, Gogarten JP, Papke RT. Insights into gene expression changes under conditions that facilitate horizontal gene transfer (mating) of a model archaeon. Sci Rep 2020; 10:22297. [PMID: 33339886 PMCID: PMC7749143 DOI: 10.1038/s41598-020-79296-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 11/19/2020] [Indexed: 12/16/2022] Open
Abstract
Horizontal gene transfer is a means by which bacteria, archaea, and eukaryotes are able to trade DNA within and between species. While there are a variety of mechanisms through which this genetic exchange can take place, one means prevalent in the archaeon Haloferax volcanii involves the transient formation of cytoplasmic bridges between cells and is referred to as mating. This process can result in the exchange of very large fragments of DNA between the participating cells. Genes governing the process of mating, including triggers to initiate mating, mechanisms of cell fusion, and DNA exchange, have yet to be characterized. We used a transcriptomic approach to gain a more detailed knowledge of how mating might transpire. By examining the differential expression of genes expressed in cells harvested from mating conditions on a filter over time and comparing them to those expressed in a shaking culture, we were able to identify genes and pathways potentially associated with mating. These analyses provide new insights into both the mechanisms and barriers of mating in Hfx. volcanii.
Collapse
Affiliation(s)
- Andrea M Makkay
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT, USA
| | - Artemis S Louyakis
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT, USA
| | - Nikhil Ram-Mohan
- Department of Emergency Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Uri Gophna
- The Shmunis School of Biomedicine and Cancer Research, Faculty of Life Sciences, Tel Aviv University, P.O. Box 39040, 6997801, Tel Aviv, Israel
| | - J Peter Gogarten
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT, USA.,Institute for Systems Genomics, University of Connecticut, Storrs, CT, USA
| | - R Thane Papke
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT, USA.
| |
Collapse
|
8
|
Turkowyd B, Schreiber S, Wörtz J, Segal ES, Mevarech M, Duggin IG, Marchfelder A, Endesfelder U. Establishing Live-Cell Single-Molecule Localization Microscopy Imaging and Single-Particle Tracking in the Archaeon Haloferax volcanii. Front Microbiol 2020; 11:583010. [PMID: 33329447 PMCID: PMC7714787 DOI: 10.3389/fmicb.2020.583010] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 10/16/2020] [Indexed: 01/30/2023] Open
Abstract
In recent years, fluorescence microscopy techniques for the localization and tracking of single molecules in living cells have become well-established and are indispensable tools for the investigation of cellular biology and in vivo biochemistry of many bacterial and eukaryotic organisms. Nevertheless, these techniques are still not established for imaging archaea. Their establishment as a standard tool for the study of archaea will be a decisive milestone for the exploration of this branch of life and its unique biology. Here, we have developed a reliable protocol for the study of the archaeon Haloferax volcanii. We have generated an autofluorescence-free H. volcanii strain, evaluated several fluorescent proteins for their suitability to serve as single-molecule fluorescence markers and codon-optimized them to work under optimal H. volcanii cultivation conditions. We found that two of them, Dendra2Hfx and PAmCherry1Hfx, provide state-of-the-art single-molecule imaging. Our strategy is quantitative and allows dual-color imaging of two targets in the same field of view (FOV) as well as DNA co-staining. We present the first single-molecule localization microscopy (SMLM) images of the subcellular organization and dynamics of two crucial intracellular proteins in living H. volcanii cells, FtsZ1, which shows complex structures in the cell division ring, and RNA polymerase, which localizes around the periphery of the cellular DNA. This work should provide incentive to develop SMLM strategies for other archaeal organisms in the near future.
Collapse
Affiliation(s)
- Bartosz Turkowyd
- Department of Systems and Synthetic Microbiology, Max Planck Institute for Terrestrial Microbiology and LOEWE Center for Synthetic Microbiology (SYNMIKRO), Marburg, Germany
| | | | - Julia Wörtz
- Department of Biology II, Ulm University, Ulm, Germany
| | - Ella Shtifman Segal
- Department of Molecular Microbiology and Biotechnology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Moshe Mevarech
- Department of Molecular Microbiology and Biotechnology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Iain G. Duggin
- The ithree Institute, University of Technology Sydney, Ultimo, NSW, Australia
| | | | - Ulrike Endesfelder
- Department of Systems and Synthetic Microbiology, Max Planck Institute for Terrestrial Microbiology and LOEWE Center for Synthetic Microbiology (SYNMIKRO), Marburg, Germany
- Department of Physics, Mellon College of Science, Carnegie-Mellon University, Pittsburgh, PA, United States
| |
Collapse
|
9
|
Archaeal cell biology: diverse functions of tubulin-like cytoskeletal proteins at the cell envelope. Emerg Top Life Sci 2018; 2:547-559. [DOI: 10.1042/etls20180026] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Revised: 10/23/2018] [Accepted: 10/24/2018] [Indexed: 11/17/2022]
Abstract
The tubulin superfamily of cytoskeletal proteins is widespread in all three domains of life — Archaea, Bacteria and Eukarya. Tubulins build the microtubules of the eukaryotic cytoskeleton, whereas members of the homologous FtsZ family construct the division ring in prokaryotes and some eukaryotic organelles. Their functions are relatively poorly understood in archaea, yet these microbes contain a remarkable diversity of tubulin superfamily proteins, including FtsZ for division, a newly described major family called CetZ that is involved in archaeal cell shape control, and several other divergent families of unclear function that are implicated in a variety of cell envelope-remodelling contexts. Archaeal model organisms, particularly halophilic archaea such as Haloferax volcanii, have sufficiently developed genetic tools and we show why their large, flattened cells that are capable of controlled differentiation are also well suited to cell biological investigations by live-cell high-resolution light and electron microscopy. As most archaea only have a glycoprotein lattice S-layer, rather than a peptidoglycan cell wall like bacteria, the activity of the tubulin-like cytoskeletal proteins at the cell envelope is expected to vary significantly, and may involve direct membrane remodelling or directed synthesis or insertion of the S-layer protein subunits. Further studies of archaeal cell biology will provide fresh insight into the evolution of cells and the principles in common to their fundamental activities across the full spectrum of cellular life.
Collapse
|
10
|
Caspi Y, Dekker C. Dividing the Archaeal Way: The Ancient Cdv Cell-Division Machinery. Front Microbiol 2018; 9:174. [PMID: 29551994 PMCID: PMC5840170 DOI: 10.3389/fmicb.2018.00174] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Accepted: 01/25/2018] [Indexed: 01/06/2023] Open
Abstract
Cell division in most prokaryotes is mediated by the well-studied fts genes, with FtsZ as the principal player. In many archaeal species, however, division is orchestrated differently. The Crenarchaeota phylum of archaea features the action of the three proteins, CdvABC. This Cdv system is a unique and less-well-studied division mechanism that merits closer inspection. In vivo, the three Cdv proteins form a composite band that contracts concomitantly with the septum formation. Of the three Cdv proteins, CdvA is the first to be recruited to the division site, while CdvB and CdvC are thought to participate in the active part of the Cdv division machinery. Interestingly, CdvB shares homology with a family of proteins from the eukaryotic ESCRT-III complex, and CdvC is a homolog of the eukaryotic Vps4 complex. These two eukaryotic complexes are key factors in the endosomal sorting complex required for transport (ESCRT) pathway, which is responsible for various budding processes in eukaryotic cells and which participates in the final stages of division in Metazoa. There, ESCRT-III forms a contractile machinery that actively cuts the membrane, whereas Vps4, which is an ATPase, is necessary for the turnover of the ESCRT membrane-abscission polymers. In contrast to CdvB and CdvC, CdvA is unique to the archaeal Crenarchaeota and Thaumarchaeota phyla. The Crenarchaeota division mechanism has often been suggested to represent a simplified version of the ESCRT division machinery thus providing a model system to study the evolution and mechanism of cell division in higher organisms. However, there are still many open questions regarding this parallelism and the division mechanism of Crenarchaeota. Here, we review the existing data on the role of the Cdv proteins in the division process of Crenarchaeota as well as concisely review the ESCRT system in eukaryotes. We survey the similarities and differences between the division and abscission mechanisms in the two cases. We suggest that the Cdv system functions differently in archaea than ESCRT does in eukaryotes, and that, unlike the eukaryotic case, the Cdv system's main function may be related to surplus membrane invagination and cell-wall synthesis.
Collapse
Affiliation(s)
- Yaron Caspi
- Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, Delft, Netherlands
| | - Cees Dekker
- Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, Delft, Netherlands
| |
Collapse
|
11
|
Yao Q, Jewett AI, Chang YW, Oikonomou CM, Beeby M, Iancu CV, Briegel A, Ghosal D, Jensen GJ. Short FtsZ filaments can drive asymmetric cell envelope constriction at the onset of bacterial cytokinesis. EMBO J 2017; 36:1577-1589. [PMID: 28438890 DOI: 10.15252/embj.201696235] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Revised: 03/17/2017] [Accepted: 03/23/2017] [Indexed: 11/09/2022] Open
Abstract
FtsZ, the bacterial homologue of eukaryotic tubulin, plays a central role in cell division in nearly all bacteria and many archaea. It forms filaments under the cytoplasmic membrane at the division site where, together with other proteins it recruits, it drives peptidoglycan synthesis and constricts the cell. Despite extensive study, the arrangement of FtsZ filaments and their role in division continue to be debated. Here, we apply electron cryotomography to image the native structure of intact dividing cells and show that constriction in a variety of Gram-negative bacterial cells, including Proteus mirabilis and Caulobacter crescentus, initiates asymmetrically, accompanied by asymmetric peptidoglycan incorporation and short FtsZ-like filament formation. These results show that a complete ring of FtsZ is not required for constriction and lead us to propose a model for FtsZ-driven division in which short dynamic FtsZ filaments can drive initial peptidoglycan synthesis and envelope constriction at the onset of cytokinesis, later increasing in length and number to encircle the division plane and complete constriction.
Collapse
Affiliation(s)
- Qing Yao
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Andrew I Jewett
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Yi-Wei Chang
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Catherine M Oikonomou
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Morgan Beeby
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Cristina V Iancu
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Ariane Briegel
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Debnath Ghosal
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Grant J Jensen
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA .,Howard Hughes Medical Institute, California Institute of Technology, Pasadena, CA, USA
| |
Collapse
|
12
|
Abstract
In comparison with bacteria and eukaryotes, the large and diverse group of microorganisms known as archaea possess a great diversity of cytoskeletal proteins, including members of the tubulin superfamily. Many species contain FtsZ, CetZ and even possible tubulins; however, some major taxonomic groups do not contain any member of the tubulin superfamily. Studies using the model archaeon, Halferax volcanii have recently been instrumental in defining the fundamental roles of FtsZ and CetZ in archaeal cell division and cell shape regulation. Structural studies of archaeal tubulin superfamily proteins provide a definitive contribution to the cytoskeletal field, showing which protein-types must have developed prior to the divergence of archaea and eukaryotes. Several regions of the globular core domain - the "signature" motifs - combine in the 3D structure of the common molecular fold to form the GTP-binding site. They are the most conserved sequence elements and provide the primary basis for identification of new superfamily members through homology searches. The currently well-characterised proteins also all share a common mechanism of GTP-dependent polymerisation, in which GTP molecules are sandwiched between successive subunits that are arranged in a head-to-tail manner. However, some poorly-characterised archaeal protein families retain only some of the signature motifs and are unlikely to be capable of dynamic polymerisation, since the promotion of depolymerisation by hydrolysis to GDP depends on contributions from both subunits that sandwich the nucleotide in the polymer.
Collapse
Affiliation(s)
- Christopher H S Aylett
- Department of Biology, Institute for Molecular Biology and Biophysics, Eidgenössische Technische Hochschule (ETH) Zürich, Zürich, Switzerland
| | - Iain G Duggin
- The iThree Institute, University of Technology Sydney, Sydney, NSW, 2007, Australia.
| |
Collapse
|
13
|
Losensky G, Jung K, Urlaub H, Pfeifer F, Fröls S, Lenz C. Shedding light on biofilm formation ofHalobacterium salinarumR1 by SWATH-LC/MS/MS analysis of planktonic and sessile cells. Proteomics 2016; 17. [DOI: 10.1002/pmic.201600111] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Revised: 07/30/2016] [Accepted: 09/05/2016] [Indexed: 11/10/2022]
Affiliation(s)
- Gerald Losensky
- Microbiology and Archaea; Department of Biology; Technische Universität Darmstadt; Darmstadt Germany
| | - Klaus Jung
- Institute for Animal Breeding and Genetics; University of Veterinary Medicine Foundation; Hannover Germany
| | - Henning Urlaub
- Bioanalytical Mass Spectrometry Group; Max Planck Institute for Biophysical Chemistry; Göttingen Germany
- Institute of Clinical Chemistry; Bioanalytics; University Medical Center Göttingen; Göttingen Germany
| | - Felicitas Pfeifer
- Microbiology and Archaea; Department of Biology; Technische Universität Darmstadt; Darmstadt Germany
| | - Sabrina Fröls
- Microbiology and Archaea; Department of Biology; Technische Universität Darmstadt; Darmstadt Germany
| | - Christof Lenz
- Bioanalytical Mass Spectrometry Group; Max Planck Institute for Biophysical Chemistry; Göttingen Germany
- Institute of Clinical Chemistry; Bioanalytics; University Medical Center Göttingen; Göttingen Germany
| |
Collapse
|
14
|
Duggin IG, Aylett CHS, Walsh JC, Michie KA, Wang Q, Turnbull L, Dawson EM, Harry EJ, Whitchurch CB, Amos LA, Löwe J. CetZ tubulin-like proteins control archaeal cell shape. Nature 2014; 519:362-5. [PMID: 25533961 DOI: 10.1038/nature13983] [Citation(s) in RCA: 108] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2014] [Accepted: 10/20/2014] [Indexed: 11/09/2022]
Abstract
Tubulin is a major component of the eukaryotic cytoskeleton, controlling cell shape, structure and dynamics, whereas its bacterial homologue FtsZ establishes the cytokinetic ring that constricts during cell division. How such different roles of tubulin and FtsZ evolved is unknown. Studying Archaea may provide clues as these organisms share characteristics with Eukarya and Bacteria. Here we report the structure and function of proteins from a distinct family related to tubulin and FtsZ, named CetZ, which co-exists with FtsZ in many archaea. CetZ X-ray crystal structures showed the FtsZ/tubulin superfamily fold, and one crystal form contained sheets of protofilaments, suggesting a structural role. However, inactivation of CetZ proteins in Haloferax volcanii did not affect cell division. Instead, CetZ1 was required for differentiation of the irregular plate-shaped cells into a rod-shaped cell type that was essential for normal swimming motility. CetZ1 formed dynamic cytoskeletal structures in vivo, relating to its capacity to remodel the cell envelope and direct rod formation. CetZ2 was also implicated in H. volcanii cell shape control. Our findings expand the known roles of the FtsZ/tubulin superfamily to include archaeal cell shape dynamics, suggesting that a cytoskeletal role might predate eukaryotic cell evolution, and they support the premise that a major function of the microbial rod shape is to facilitate swimming.
Collapse
Affiliation(s)
- Iain G Duggin
- 1] Medical Research Council Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK [2] The ithree institute, University of Technology Sydney, New South Wales 2007, Australia
| | - Christopher H S Aylett
- Medical Research Council Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - James C Walsh
- 1] The ithree institute, University of Technology Sydney, New South Wales 2007, Australia [2] School of Physics, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Katharine A Michie
- Medical Research Council Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - Qing Wang
- Medical Research Council Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - Lynne Turnbull
- The ithree institute, University of Technology Sydney, New South Wales 2007, Australia
| | - Emma M Dawson
- The ithree institute, University of Technology Sydney, New South Wales 2007, Australia
| | - Elizabeth J Harry
- The ithree institute, University of Technology Sydney, New South Wales 2007, Australia
| | - Cynthia B Whitchurch
- The ithree institute, University of Technology Sydney, New South Wales 2007, Australia
| | - Linda A Amos
- Medical Research Council Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - Jan Löwe
- Medical Research Council Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
| |
Collapse
|
15
|
Ettema TJG, Lindås AC, Hjort K, Poplawski AB, Kaessmann H, Grogan DW, Kelman Z, Andersson AF, Pelve EA, Lundgren M, Svärd SG. Rolf Bernander (1956-2014): pioneer of the archaeal cell cycle. Mol Microbiol 2014; 92:903-9. [PMID: 24865634 DOI: 10.1111/mmi.12608] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/04/2014] [Indexed: 11/29/2022]
Abstract
On 19 January 2014 Rolf ('Roffe') Bernander passed away unexpectedly. Rolf was a dedicated scientist; his research aimed at unravelling the cell biology of the archaeal domain of life, especially cell cycle-related questions, but he also made important contributions in other areas of microbiology. Rolf had a professor position in the Molecular Evolution programme at Uppsala University, Sweden for about 8 years, and in January 2013 he became chair professor at the Department of Molecular Biosciences, The Wenner-Gren Institute at Stockholm University in Sweden. Rolf was an exceptional colleague and will be deeply missed by his family and friends, and the colleagues and co-workers that he leaves behind in the scientific community. He will be remembered for his endless enthusiasm for science, his analytical mind, and his quirky sense of humour.
Collapse
Affiliation(s)
- Thijs J G Ettema
- Department of Cell- and Molecular Biology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Deletion of cdvB paralogous genes of Sulfolobus acidocaldarius impairs cell division. Extremophiles 2014; 18:331-9. [PMID: 24399085 DOI: 10.1007/s00792-013-0618-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2013] [Accepted: 12/05/2013] [Indexed: 10/25/2022]
Abstract
The majority of Crenarchaeota utilize the cell division system (Cdv) to divide. This system consists of three highly conserved genes, cdvA, cdvB and cdvC that are organized in an operon. CdvC is homologous to the AAA-type ATPase Vps4, involved in multivesicular body biogenesis in eukaryotes. CdvA is a unique archaeal protein that interacts with the membrane, while CdvB is homologous to the eukaryal Vps24 and forms helical filaments. Most Crenarcheota contain additional CdvB paralogs. In Sulfolobus acidocaldarius these are termed CdvB1-3. We have used a gene inactivation approach to determine the impact of these additional cdvB genes on cell division. Independent deletion mutants of these genes were analyzed for growth and protein localization. One of the deletion strains (ΔcdvB3) showed a severe growth defect on plates and delayed growth on liquid medium. It showed the formation of enlarged cells and a defect in DNA segregation. Since these defects are accompanied with an aberrant localization of CdvA and CdvB, we conclude that CdvB3 fulfills an important accessory role in cell division.
Collapse
|
17
|
Pelve EA, Martens-Habbena W, Stahl DA, Bernander R. Mapping of active replication origins in vivo in thaum- and euryarchaeal replicons. Mol Microbiol 2013; 90:538-50. [PMID: 23991938 DOI: 10.1111/mmi.12382] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/26/2013] [Indexed: 02/03/2023]
Abstract
We report mapping of active replication origins in thaum- and euryarchaeal replicons using high-throughput sequencing-based marker frequency analysis. The chromosome of the thaumarchaeon Nitrosopumilus maritimus is shown to contain a single origin of replication, whereas the main chromosome in the halophilic euryarchaea Haloferax mediterranei and Haloferax volcanii each contains two origins. All replication origins specified bidirectional replication, and the two origins in the halophiles were initiated in synchrony. The pHM500 plasmid of H. mediterranei is shown to contain a single origin, and the copy numbers of five plasmid replicons in the two halophiles were inferred to be close to that of the main chromosome. Origin recognition boxes (ORBs) that provide binding sites for Orc1/Cdc6 replication initiator proteins are identified at all chromosomal origins, as well as in a range of additional thaumarchaeal species. An annotation update is provided for all three species.
Collapse
Affiliation(s)
- Erik A Pelve
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Svante Arrhenius väg 20C, SE-106 91, Stockholm, Sweden
| | | | | | | |
Collapse
|
18
|
Abstract
Growth and proliferation of all cell types require intricate regulation and coordination of chromosome replication, genome segregation, cell division and the systems that determine cell shape. Recent findings have provided insight into the cell cycle of archaea, including the multiple-origin mode of DNA replication, the initial characterization of a genome segregation machinery and the discovery of a novel cell division system. The first archaeal cytoskeletal protein, crenactin, was also recently described and shown to function in cell shape determination. Here, we outline the current understanding of the archaeal cell cycle and cytoskeleton, with an emphasis on species in the genus Sulfolobus, and consider the major outstanding questions in the field.
Collapse
Affiliation(s)
- Ann-Christin Lindås
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Svante Arrhenius väg 20C, SE-106 91, Stockholm, Sweden
| | | |
Collapse
|
19
|
The Nitrosopumilus maritimus CdvB, but not FtsZ, assembles into polymers. ARCHAEA-AN INTERNATIONAL MICROBIOLOGICAL JOURNAL 2013; 2013:104147. [PMID: 23818813 PMCID: PMC3684127 DOI: 10.1155/2013/104147] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2013] [Accepted: 05/08/2013] [Indexed: 11/22/2022]
Abstract
Euryarchaeota and Crenarchaeota are two major phyla of archaea which use distinct molecular apparatuses for cell division. Euryarchaea make use of the tubulin-related protein FtsZ, while Crenarchaea, which appear to lack functional FtsZ, employ the Cdv (cell division) components to divide. Ammonia oxidizing archaeon (AOA) Nitrosopumilus maritimus belongs to another archaeal phylum, the Thaumarchaeota, which has both FtsZ and Cdv genes in the genome. Here, we used a heterologous expression system to characterize FtsZ and Cdv proteins from N. maritimus by investigating the ability of these proteins to form polymers. We show that one of the Cdv proteins in N. maritimus, the CdvB (Nmar_0816), is capable of forming stable polymers when expressed in fission yeast. The N. maritimus CdvB is also capable of assembling into filaments in mammalian cells. However, N. maritimus FtsZ does not assemble into polymers in our system. The ability of CdvB, but not FtsZ, to polymerize is consistent with a recent finding showing that several Cdv proteins, but not FtsZ, localize to the mid-cell site in the dividing N. maritimus. Thus, we propose that it is Cdv proteins, rather than FtsZ, that function as the cell division apparatus in N. maritimus.
Collapse
|
20
|
A korarchaeal genome reveals insights into the evolution of the Archaea. Proc Natl Acad Sci U S A 2008; 105:8102-7. [PMID: 18535141 DOI: 10.1073/pnas.0801980105] [Citation(s) in RCA: 185] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The candidate division Korarchaeota comprises a group of uncultivated microorganisms that, by their small subunit rRNA phylogeny, may have diverged early from the major archaeal phyla Crenarchaeota and Euryarchaeota. Here, we report the initial characterization of a member of the Korarchaeota with the proposed name, "Candidatus Korarchaeum cryptofilum," which exhibits an ultrathin filamentous morphology. To investigate possible ancestral relationships between deep-branching Korarchaeota and other phyla, we used whole-genome shotgun sequencing to construct a complete composite korarchaeal genome from enriched cells. The genome was assembled into a single contig 1.59 Mb in length with a G + C content of 49%. Of the 1,617 predicted protein-coding genes, 1,382 (85%) could be assigned to a revised set of archaeal Clusters of Orthologous Groups (COGs). The predicted gene functions suggest that the organism relies on a simple mode of peptide fermentation for carbon and energy and lacks the ability to synthesize de novo purines, CoA, and several other cofactors. Phylogenetic analyses based on conserved single genes and concatenated protein sequences positioned the korarchaeote as a deep archaeal lineage with an apparent affinity to the Crenarchaeota. However, the predicted gene content revealed that several conserved cellular systems, such as cell division, DNA replication, and tRNA maturation, resemble the counterparts in the Euryarchaeota. In light of the known composition of archaeal genomes, the Korarchaeota might have retained a set of cellular features that represents the ancestral archaeal form.
Collapse
|
21
|
Santi I, Scarselli M, Mariani M, Pezzicoli A, Masignani V, Taddei A, Grandi G, Telford JL, Soriani M. BibA: a novel immunogenic bacterial adhesin contributing to group B Streptococcus survival in human blood. Mol Microbiol 2007; 63:754-67. [PMID: 17212592 DOI: 10.1111/j.1365-2958.2006.05555.x] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
By the analysis of the recently sequenced genomes of Group B Streptococcus (GBS) we have identified a novel immunogenic adhesin with anti-phagocytic activity, named BibA. The bibA gene is present in 100% of the 24 GBS strains analysed. BibA-specific IgG were found in human sera from normal healthy donors. The putative protein product is a polypeptide of 630 amino acids containing a helix-rich N-terminal domain, a proline-rich region and a canonical LPXTG cell wall-anchoring domain. BibA is expressed on the surface of several GBS strains, but is also recovered in GBS culture supernatants. BibA specifically binds to human C4-binding protein, a regulator of the classic complement pathway. Deletion of the bibA gene severely reduced the capacity of GBS to survive in human blood and to resist opsonophagocytic killing by human neutrophils. In addition, BibA expression increased the virulence of GBS in a mouse infection model. The role of BibA in GBS adhesion was demonstrated by the impaired ability of a bibA knockout mutant strain to adhere to both human cervical and lung epithelial cells. Furthermore, we calculated that recombinant BibA bound to human epithelial cells of distinct origin with an affinity constant of approximately 10(-8) M for cervical epithelial cells. Hence BibA is a novel multifunctional protein involved in both resistance to phagocytic killing and adhesion to host cells. The identification of this potential new virulence factor represents an important step in the development of strategies to combat GBS-associated infections.
Collapse
Affiliation(s)
- Isabella Santi
- Novartis Vaccines and Diagnostics Srl, Via Fiorentina 1, 53100, Siena, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Ozawa K, Harashina T, Yatsunami R, Nakamura S. Gene cloning, expression and partial characterization of cell division protein FtsZ1 from extremely halophilic archaeon Haloarcula japonica strain TR-1. Extremophiles 2005; 9:281-8. [PMID: 15844012 DOI: 10.1007/s00792-005-0443-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2004] [Accepted: 02/25/2005] [Indexed: 11/28/2022]
Abstract
The gene encoding a cell division protein FtsZ1 was cloned from an extremely halophilic archaeon, Haloarcula japonica strain TR-1. Nucleotide sequencing analysis of the ftsZ1 gene revealed that the structural gene consisted of an open reading frame of 1,158 nucleotides encoding 386 amino acids. Transcription of the ftsZ1 gene in Ha. japonica was confirmed by RT-PCR. A modified ftsZ1 gene was inserted into the shuttle vector pWL102 and used to transform Ha. japonica. The recombinant FtsZ1 was produced as a fusion with hexahistidine-tag in Ha. japonica host cells and purified. Purified recombinant FtsZ1 exhibited GTP-dependent polymerization activity and GTP-hydrolyzing activity in the presence of high concentrations of KCl.
Collapse
Affiliation(s)
- Kazumichi Ozawa
- Department of Bioengineering, Tokyo Institute of Technology, Yokohama, Japan
| | | | | | | |
Collapse
|
23
|
Herrmann U, Soppa J. Cell cycle-dependent expression of an essential SMC-like protein and dynamic chromosome localization in the archaeon Halobacterium salinarum. Mol Microbiol 2002; 46:395-409. [PMID: 12406217 DOI: 10.1046/j.1365-2958.2002.03181.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The genome of Halobacterium salinarum encodes four proteins of the structural maintenance of chromosomes (SMC) protein superfamily. Two proteins form a novel subfamily and are named 'SMC-like proteins of H. salinarum' (Sph1 and Sph2). Northern blot analyses revealed that sph1 and hp24, the adjacent gene, are solely transcribed in exponentially growing, but not in stationary phase, cells. A synchronization procedure was developed, which makes use of the DNA polymerase inhibitor aphidicolin and leads to highly synchronous cultures. It allowed us for the first time to study cell cycle-dependent transcription in an archaeon. The sph1 transcript was found to be highly cell cycle regulated, with its maximal accumulation around the time of septum formation. The Sph1 protein level was also elevated at that time, but a basal protein level was found throughout the cell cycle. The hp24 transcript was sharply upregulated about 1 h before sph1 and had already declined at the time of sph1 induction. These and additional transcript patterns revealed that precisely controlled transcriptional regulation is involved in haloarchaeal cell cycle progression. A DNA staining protocol was developed, which opened the possibility of following the dynamic intracellular localization of haloarchaeal nucleoids using synchronized cultures. After an initial dispersed localization, the nucleoid is condensed at mid-cell. Subsequently, DNA is rapidly transported to the 1/4 and 3/4 positions. All staining patterns were also observed in untreated exponentially growing cells, excluding synchronization artifacts. The Sph1 concentration is elevated when segregation of the new chromosomes is nearly complete; therefore, it is proposed to play a role in a late step of replication, e.g. DNA repair, similar to eukaryotic Rad18 proteins.
Collapse
Affiliation(s)
- Ute Herrmann
- J W Goethe-Universität, Biozentrum Niederusel, Institut für Mikrobiologie, Frankfurt, Germany
| | | |
Collapse
|
24
|
Fitz-Gibbon ST, Ladner H, Kim UJ, Stetter KO, Simon MI, Miller JH. Genome sequence of the hyperthermophilic crenarchaeon Pyrobaculum aerophilum. Proc Natl Acad Sci U S A 2002; 99:984-9. [PMID: 11792869 PMCID: PMC117417 DOI: 10.1073/pnas.241636498] [Citation(s) in RCA: 180] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/30/2001] [Indexed: 11/18/2022] Open
Abstract
We determined and annotated the complete 2.2-megabase genome sequence of Pyrobaculum aerophilum, a facultatively aerobic nitrate-reducing hyperthermophilic (T(opt) = 100 degrees C) crenarchaeon. Clues were found suggesting explanations of the organism's surprising intolerance to sulfur, which may aid in the development of methods for genetic studies of the organism. Many interesting features worthy of further genetic studies were revealed. Whole genome computational analysis confirmed experiments showing that P. aerophilum (and perhaps all crenarchaea) lack 5' untranslated regions in their mRNAs and thus appear not to use a ribosome-binding site (Shine-Dalgarno)-based mechanism for translation initiation at the 5' end of transcripts. Inspection of the lengths and distribution of mononucleotide repeat-tracts revealed some interesting features. For instance, it was seen that mononucleotide repeat-tracts of Gs (or Cs) are highly unstable, a pattern expected for an organism deficient in mismatch repair. This result, together with an independent study on mutation rates, suggests a "mutator" phenotype.
Collapse
Affiliation(s)
- Sorel T Fitz-Gibbon
- Department of Microbiology, Immunology, and Molecular Genetics, and Molecular Biology Institute, University of California, Los Angeles, CA 90095-1489, USA
| | | | | | | | | | | |
Collapse
|
25
|
Gilson PR, Beech PL. Cell division protein FtsZ: running rings around bacteria, chloroplasts and mitochondria. Res Microbiol 2001; 152:3-10. [PMID: 11281323 DOI: 10.1016/s0923-2508(00)01162-1] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Of all the proteins involved in prokaryotic cell division FtsZ is one of the earliest acting and most widely distributed, being found in all but a few species. We discuss several recent discoveries of FtsZ in eukaryotic cells and the protein's role in the division of chloroplasts and mitochondria, organelles that are of bacterial origin.
Collapse
Affiliation(s)
- P R Gilson
- Centre for Cellular and Molecular Biology, School of Biological and Chemical Sciences, Deakin University, VIC, Australia.
| | | |
Collapse
|
26
|
Eichler J. Archaeal protein translocation crossing membranes in the third domain of life. EUROPEAN JOURNAL OF BIOCHEMISTRY 2000; 267:3402-12. [PMID: 10848955 DOI: 10.1046/j.1432-1327.2000.01396.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Proper cell function relies on correct protein localization. As a first step in the delivery of extracytoplasmic proteins to their ultimate destinations, the hydrophobic barrier presented by lipid-based membranes must be overcome. In contrast to the well-defined bacterial and eukaryotic protein translocation systems, little is known about how proteins cross the membranes of archaea, the third and most recently described domain of life. In bacteria and eukaryotes, protein translocation occurs at proteinaceous sites comprised of evolutionarily conserved core components acting in concert with other, domain-specific elements. Examination of available archaeal genomes as well as cloning of individual genes from other archaeal strains reveals the presence of homologues to selected elements of the bacterial or eukaryotic translocation machines. Archaeal genomic searches, however, also reveal an apparent absence of other, important components of these two systems. Archaeal translocation may therefore represent a hybrid of the bacterial and eukaryotic models yet may also rely on components or themes particular to this domain of life. Indeed, considering the unique chemical composition of the archaeal membrane as well as the extreme conditions in which archaea thrive, the involvement of archaeal-specific translocation elements could be expected. Thus, understanding archaeal protein translocation could reveal the universal nature of certain features of protein translocation which, in some cases, may not be readily obvious from current comparisons of bacterial and eukaryotic systems. Alternatively, elucidation of archaeal translocation could uncover facets of the translocation process either not yet identified in bacteria or eukaryotes, or which are unique to archaea. In the following, the current status of our understanding of protein translocation in archaea is reviewed.
Collapse
Affiliation(s)
- J Eichler
- Department of Life Sciences, Ben Gurion University, Beersheva, Israel.
| |
Collapse
|
27
|
Abstract
Recent progress in cell cycle analysis of archaea has included the identification of putative chromosome replication origins, novel DNA polymerases and an unusual mode of cell cycle organization featuring multiple copies of the chromosome and asymmetric cell divisions. Genome sequence data indicate that in crenarchaea, the 'ubiquitous' FtsZ/MinD-based prokaryotic cell division apparatus is absent and division therefore must occur by unique, as-yet-unidentified mechanisms. The evolutionary and functional relationships between the archaeal Cdc6 protein and bacterial and eukaryal replication initiation factors are discussed.
Collapse
Affiliation(s)
- R Bernander
- Dept of Cell and Molecular Biology, Box 596, Biomedical Center, Uppsala University, SE-751 24 Uppsala, Sweden.
| |
Collapse
|