1
|
Sinha R, Sahoo NR, Shrivastava K, Vineeth M. R., Kumar P, Qureshi S, Kumar A, Bhushan B. Effect of season, age and sex on E. coli adhesion patterns in Indigenous Ghurrah pigs - a comparative analysis of phenotypic classifications. BIOL RHYTHM RES 2021. [DOI: 10.1080/09291016.2019.1660517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- Rebeka Sinha
- Division of Animal Genetics, ICAR-Indian Veterinary Research Institute, Bareilly, India
- Animal Genetics and Breeding Division, ICAR-National Dairy Research Institute, Karnal, India
| | - Nihar Ranjan Sahoo
- Division of Animal Genetics, ICAR-Indian Veterinary Research Institute, Bareilly, India
| | - Kush Shrivastava
- Division of Animal Genetics, ICAR-Indian Veterinary Research Institute, Bareilly, India
| | - Vineeth M. R.
- Animal Genetics and Breeding Division, ICAR-National Dairy Research Institute, Karnal, India
| | - Pushpendra Kumar
- Division of Animal Genetics, ICAR-Indian Veterinary Research Institute, Bareilly, India
| | - Salauddin Qureshi
- Standardization Division, ICAR-Indian Veterinary Research Institute, Bareilly, India
| | - Amit Kumar
- Division of Animal Genetics, ICAR-Indian Veterinary Research Institute, Bareilly, India
| | - Bharat Bhushan
- Division of Animal Genetics, ICAR-Indian Veterinary Research Institute, Bareilly, India
| |
Collapse
|
2
|
Rawat C, Sahoo NR, Wagh SS, Kumar P, Kumar S, Sonwane A, Qureshi S, Kumar A, Panigrahi M. Association of ACK1, TFRC polymorphism with diarrhoeagenic E. coli adhesion patterns and their jejunal expression profile in Indian Ghurrah pigs. 3 Biotech 2019; 9:422. [PMID: 31696027 DOI: 10.1007/s13205-019-1956-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Accepted: 10/14/2019] [Indexed: 10/25/2022] Open
Abstract
A total of 9 SNPs located in TFRC and ACK1 genes of SSC13q41 genomic region were examined for their association with the adhesion pattern of native Indian pigs using local isolate of diarrhoeagenic E. coli. Phenotypic evaluation of adhesion pattern of 150 pigs revealed 116 animals positive for adhesion, whereas 34 animals had non-adhesive phenotype. Among the adhesive animals, 6, 87 and 23 pigs were strongly adhesive, weakly adhesive and adhesive, respectively. PCR-RFLP study revealed 8 polymorphic SNPs with low to moderate PIC ranging from 7.39 to 37.25% and low to high heterozygosities (8-70%). The loci g.291 C > T, rs81218930 C > T, rs318751568 C > T of TFRC and g.93222 C > A g.94600 C > T of ACK1 showed significant departure from HWE. The genotypic frequencies of the SNPs as well as the haplotypes did not differ significantly (P > 0.05) across the adhesion patterns except one SNP (ACK1-g.107371 A > C). Among the g.107371 A > C genotypes observed, CA was associated with non-adhesive phenotype. Furthermore, TFRC mRNA expression levels were found to be significantly (P < 0.05) different among various adhesive phenotypes, whereas that of ACK1 was significantly (P < 0.05) different between non-adhesive and adhesive groups. The significant association of SNP (ACK1-g.107371 A > C), which was also previously reported to influence ETECF4 mediated diarrhoea susceptibility, implicates its wider application in genetic control of piglet diarrhoea. Furthermore, the up-regulation of TFRC gene expression in adhesive group supports its proposed role in activation of immune cells against E. coli and intracellular iron transport.
Collapse
|
3
|
Massacci FR, Tofani S, Forte C, Bertocchi M, Lovito C, Orsini S, Tentellini M, Marchi L, Lemonnier G, Luise D, Blanc F, Castinel A, Bevilacqua C, Rogel-Gaillard C, Pezzotti G, Estellé J, Trevisi P, Magistrali CF. Host genotype and amoxicillin administration affect the incidence of diarrhoea and faecal microbiota of weaned piglets during a natural multiresistant ETEC infection. J Anim Breed Genet 2019; 137:60-72. [PMID: 31482656 DOI: 10.1111/jbg.12432] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 08/01/2019] [Accepted: 08/05/2019] [Indexed: 12/27/2022]
Abstract
Enterotoxigenic Escherichia coli (ETEC) is the aetiological agent of postweaning diarrhoea (PWD) in piglets. The SNPs located on the Mucine 4 (MUC4) and Fucosyltransferase 1 (FUT1) genes have been associated with the susceptibility to ETEC F4 and ETEC F18, respectively. The interplay between the MUC4 and FUT1 genotypes to ETEC infection and the use of amoxicillin in modifying the intestinal microbiota during a natural infection by multiresistant ETEC strains have never been investigated. The aim of this study was to evaluate the effects of the MUC4 and FUT1 genotypes and the administration of amoxicillin through different routes on the presence of diarrhoea and the faecal microbiota composition in piglets naturally infected with ETEC. Seventy-one piglets were divided into three groups: two groups differing by amoxicillin administration routes-parenteral (P) or oral (O) and a control group without antibiotics (C). Faecal scores, body weight, presence of ETEC F4 and F18 were investigated 4 days after the arrival in the facility (T0), at the end of the amoxicillin administration (T1) and after the withdrawal period (T2). The faecal bacteria composition was assessed by sequencing the 16S rRNA gene. We described that MUC4 and FUT1 genotypes were associated with the presence of ETEC F4 and ETEC F18. The faecal microbiota was influenced by the MUC4 genotypes at T0. We found the oral administration to be associated with the presence of diarrhoea at T1 and T2. Furthermore, the exposure to amoxicillin resulted in significant alterations of the faecal microbiota. Overall, MUC4 and FUT1 were confirmed as genetic markers for the susceptibility to ETEC infections in pigs. Moreover, our data highlight that group amoxicillin treatment may produce adverse outcomes on pig health in course of multiresistant ETEC infection. Therefore, alternative control measures able to maintain a healthy faecal microbiota in weaners are recommended.
Collapse
Affiliation(s)
- Francesca Romana Massacci
- Istituto Zooprofilattico Sperimentale dell'Umbria e delle Marche 'Togo Rosati', Perugia, Italy.,Department of Agricultural and Food Sciences, University of Bologna, Bologna, Italy.,GABI, INRA, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
| | - Silvia Tofani
- Istituto Zooprofilattico Sperimentale dell'Umbria e delle Marche 'Togo Rosati', Perugia, Italy
| | - Claudio Forte
- Istituto Zooprofilattico Sperimentale dell'Umbria e delle Marche 'Togo Rosati', Perugia, Italy
| | - Micol Bertocchi
- Department of Agricultural and Food Sciences, University of Bologna, Bologna, Italy
| | - Carmela Lovito
- Istituto Zooprofilattico Sperimentale dell'Umbria e delle Marche 'Togo Rosati', Perugia, Italy
| | - Serenella Orsini
- Istituto Zooprofilattico Sperimentale dell'Umbria e delle Marche 'Togo Rosati', Perugia, Italy
| | - Michele Tentellini
- Istituto Zooprofilattico Sperimentale dell'Umbria e delle Marche 'Togo Rosati', Perugia, Italy
| | - Lucia Marchi
- Istituto Zooprofilattico Sperimentale dell'Umbria e delle Marche 'Togo Rosati', Perugia, Italy
| | - Gaetan Lemonnier
- GABI, INRA, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
| | - Diana Luise
- Department of Agricultural and Food Sciences, University of Bologna, Bologna, Italy
| | - Fany Blanc
- GABI, INRA, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
| | - Adrien Castinel
- GeT-PlaGe, Genotoul, INRA US1426, Castanet-Tolosan Cedex, France
| | - Claudia Bevilacqua
- GABI, INRA, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
| | | | - Giovanni Pezzotti
- Istituto Zooprofilattico Sperimentale dell'Umbria e delle Marche 'Togo Rosati', Perugia, Italy
| | - Jordi Estellé
- GABI, INRA, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
| | - Paolo Trevisi
- Department of Agricultural and Food Sciences, University of Bologna, Bologna, Italy
| | | |
Collapse
|
4
|
Hu D, Rampoldi A, Bratus-Neuenschwander A, Hofer A, Bertschinger HU, Vögeli P, Neuenschwander S. Effective genetic markers for identifying the Escherichia coli F4ac receptor status of pigs. Anim Genet 2019; 50:136-142. [PMID: 30724375 DOI: 10.1111/age.12770] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/13/2018] [Indexed: 11/28/2022]
Abstract
The F4ac receptor locus (F4acR), which encodes susceptibility or resistance to Escherichia coli diarrhoea, is inherited as an autosomal recessive monogenetic trait. F4acR is localized on pig chromosome 13 (SSC13q41-q44) near the MUC13 gene. Two flanking markers (CHCF1 and ALGA0106330) with a high linkage disequilibrium (LD) with F4acR were found to be effective for the genetic identification of F4ac-resistant pigs in the Swiss Large White breed (one recombinant out of 2034 genotyped pigs). Three recombinant boars, one each from the Duroc, Swiss Landrace and Piétrain breeds, were genotyped with seven different markers and phenotyped by means of a microscopic adhesion test. Only ALGA0072075, CHCF1 and CHCF3 indicated the correct phenotype. To test the effect of the resistance allele on production traits, 530 Large White pigs from the national test station were investigated. A significant difference existed among the F4acR locus genotypes in the intramuscular fat content of the longissimus dorsi muscle, whereas no other production traits were influenced by the resistance allele. The frequency of the CHCF1-C and ALGA0106330-A alleles associated with resistance in the Swiss Large White population was 60%, which is advantageous for implementing this trait in a breeding programme to select for E. coli F4ac-resistant animals. The selection of resistant pigs should start on the male side due to the inability of resistant sows to produce sufficient amounts of protecting antibodies in the colostrum. Selection of genetically F4ac-resistant pigs is a sustainable and suitable alternative to decreasing animal loss and antibiotic use due to diarrhoea.
Collapse
Affiliation(s)
- D Hu
- Institute of Agricultural Sciences, ETH Zurich, Tannenstrasse 1, 8092, Zurich, Switzerland
| | - A Rampoldi
- Institute of Agricultural Sciences, ETH Zurich, Tannenstrasse 1, 8092, Zurich, Switzerland
| | | | - A Hofer
- SUISAG, Allmend 8, 6204 Sempach, Switzerland
| | - H U Bertschinger
- Institute of Agricultural Sciences, ETH Zurich, Tannenstrasse 1, 8092, Zurich, Switzerland
| | - P Vögeli
- Institute of Agricultural Sciences, ETH Zurich, Tannenstrasse 1, 8092, Zurich, Switzerland
| | - S Neuenschwander
- Institute of Agricultural Sciences, ETH Zurich, Tannenstrasse 1, 8092, Zurich, Switzerland
| |
Collapse
|
5
|
Lee JY, Han GG, Choi J, Jin GD, Kang SK, Chae BJ, Kim EB, Choi YJ. Pan-Genomic Approaches in Lactobacillus reuteri as a Porcine Probiotic: Investigation of Host Adaptation and Antipathogenic Activity. MICROBIAL ECOLOGY 2017; 74:709-721. [PMID: 28439658 DOI: 10.1007/s00248-017-0977-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Accepted: 03/24/2017] [Indexed: 06/07/2023]
Abstract
After the introduction of a ban on the use of antibiotic growth promoters (AGPs) for livestock, reuterin-producing Lactobacillus reuteri is getting attention as an alternative to AGPs. In this study, we investigated genetic features of L. reuteri associated with host specificity and antipathogenic effect. We isolated 104 L. reuteri strains from porcine feces, and 16 strains, composed of eight strains exhibiting the higher antipathogenic effect (group HS) and eight strains exhibiting the lower effect (group LS), were selected for genomic comparison. We generated draft genomes of the 16 isolates and investigated their pan-genome together with the 26 National Center for Biotechnology Information-registered genomes. L. reuteri genomes organized six clades with multi-locus sequence analysis, and the clade IV includes the 16 isolates. First, we identified six L. reuteri clade IV-specific genes including three hypothetical protein-coding genes. The three annotated genes encode transposases and cell surface proteins, indicating that these genes are the result of adaptation to the host gastrointestinal epithelia and that these host-specific traits were acquired by horizontal gene transfer. We also identified differences between groups HS and LS in the pdu-cbi-cob-hem gene cluster, which is essential for reuterin and cobalamin synthesis, and six genes specific to group HS are revealed. While the strains of group HS possessed all genes of this cluster, LS strains have lost many genes of the cluster. This study provides a deeper understanding of the relationship between probiotic properties and genomic features of L. reuteri.
Collapse
Affiliation(s)
- Jun-Yeong Lee
- Department of Agricultural Biotechnology, Seoul National University, Seoul, Republic of Korea
| | - Geon Goo Han
- Department of Agricultural Biotechnology, Seoul National University, Seoul, Republic of Korea
| | - Jaeyun Choi
- Department of Agricultural Biotechnology, Seoul National University, Seoul, Republic of Korea
| | - Gwi-Deuk Jin
- Department of Animal Life Science, Kangwon National University, Chuncheon, Republic of Korea
| | - Sang-Kee Kang
- Institute of Green-Bio Science and Technology, Seoul National University, Pyeongchang, Republic of Korea
| | - Byung Jo Chae
- Department of Animal Life Science, Kangwon National University, Chuncheon, Republic of Korea
| | - Eun Bae Kim
- Department of Animal Life Science, Kangwon National University, Chuncheon, Republic of Korea.
| | - Yun-Jaie Choi
- Department of Agricultural Biotechnology, Seoul National University, Seoul, Republic of Korea.
- Research Institute for Agriculture and Life Science, Seoul National University, Seoul, Republic of Korea.
| |
Collapse
|
6
|
Sinha R, Sahoo NR, Kumar P, Qureshi S, Kumar A, Ravikumar GVPPS, Bhushan B. Comparative jejunal expression of MUC 13 in Indian native pigs differentially adhesive to diarrhoeagenic E. coli. JOURNAL OF APPLIED ANIMAL RESEARCH 2016. [DOI: 10.1080/09712119.2016.1267009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Rebeka Sinha
- Division of Animal Genetics, Indian Veterinary Research Institute, Bareilly, India
| | - Nihar Ranjan Sahoo
- Division of Animal Genetics, Indian Veterinary Research Institute, Bareilly, India
| | - Pushpendra Kumar
- Division of Animal Genetics, Indian Veterinary Research Institute, Bareilly, India
| | - Salauddin Qureshi
- Standardization Division, Indian Veterinary Research Institute, Bareilly, India
| | - Amit Kumar
- Division of Animal Genetics, Indian Veterinary Research Institute, Bareilly, India
| | | | - Bharat Bhushan
- Division of Animal Genetics, Indian Veterinary Research Institute, Bareilly, India
| |
Collapse
|
7
|
Dubreuil JD, Isaacson RE, Schifferli DM. Animal Enterotoxigenic Escherichia coli. EcoSal Plus 2016; 7:10.1128/ecosalplus.ESP-0006-2016. [PMID: 27735786 PMCID: PMC5123703 DOI: 10.1128/ecosalplus.esp-0006-2016] [Citation(s) in RCA: 194] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Indexed: 12/13/2022]
Abstract
Enterotoxigenic Escherichia coli (ETEC) is the most common cause of E. coli diarrhea in farm animals. ETEC are characterized by the ability to produce two types of virulence factors: adhesins that promote binding to specific enterocyte receptors for intestinal colonization and enterotoxins responsible for fluid secretion. The best-characterized adhesins are expressed in the context of fimbriae, such as the F4 (also designated K88), F5 (K99), F6 (987P), F17, and F18 fimbriae. Once established in the animal small intestine, ETEC produce enterotoxin(s) that lead to diarrhea. The enterotoxins belong to two major classes: heat-labile toxins that consist of one active and five binding subunits (LT), and heat-stable toxins that are small polypeptides (STa, STb, and EAST1). This review describes the disease and pathogenesis of animal ETEC, the corresponding virulence genes and protein products of these bacteria, their regulation and targets in animal hosts, as well as mechanisms of action. Furthermore, vaccines, inhibitors, probiotics, and the identification of potential new targets by genomics are presented in the context of animal ETEC.
Collapse
Affiliation(s)
- J Daniel Dubreuil
- Faculté de Médecine Vétérinaire, Université de Montréal, Québec J2S 7C6, Canada
| | - Richard E Isaacson
- Department of Veterinary and Biomedical Sciences, University of Minnesota, St. Paul, MN 55108
| | - Dieter M Schifferli
- School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104
| |
Collapse
|
8
|
Roubos-van den Hil PJ, Litjens R, Oudshoorn AK, Resink JW, Smits CHM. New perspectives to the enterotoxigenic E. coli F4 porcine infection model: Susceptibility genotypes in relation to performance, diarrhoea and bacterial shedding. Vet Microbiol 2016; 202:58-63. [PMID: 27665990 DOI: 10.1016/j.vetmic.2016.09.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Revised: 09/08/2016] [Accepted: 09/17/2016] [Indexed: 11/16/2022]
Abstract
Enterotoxigenic E. coli (ETEC), causing post-weaning diarrhoea, is a major problem in weaned piglets. Individual animal responses to ETEC infection show high variability in animal experiments. Two studies were designed to optimize the ETEC F4ac infection model in piglets by combining the genotype susceptibility with performance, diarrhoea incidence and bacterial shedding. The studies were performed with respectively 120 and 80 male piglets that were tested for susceptibility or resistance towards ETEC O149:F4ac by a DNA marker based test. Three different genotypes were observed; resistant (RR), susceptible heterozygote (RS) and susceptible homozygote (SS). Piglets, were orally infected with an inoculum suspension (containing 1.5E8 CFU/ml ETEC F4ac) at day 0, 1 and 2 of the study. Performance, diarrhoea incidence and bacterial shedding were followed for 21days. In the first week after challenge a difference in average daily gain was observed between resistant and susceptible piglets in both studies. For the complete study period no significant differences were observed. Diarrhoea incidence was significantly higher in susceptible pigs compared to the resistant pigs in the first week after challenge. Bacterial shedding was much higher in the susceptible pigs and ETEC excretion lasted longer. ETEC was hardly detected in the faecal material of the resistant pigs. In conclusion, susceptible pigs showed higher diarrhoea incidence and higher numbers of faecal ETEC shedding in the first week after challenge compared to resistant pigs. The DNA marker based test can be used to select pigs that are susceptible for ETEC for inclusion in ETEC infection model, resulting in less animals needed to perform infection studies.
Collapse
Affiliation(s)
| | - Ralph Litjens
- Trouw Nutrition R&D, Ingredients Research Centre, P.O. Box 220, 5830 AE, Boxmeer, The Netherlands
| | - Anna-Katharina Oudshoorn
- Trouw Nutrition R&D, Ingredients Research Centre, P.O. Box 220, 5830 AE, Boxmeer, The Netherlands
| | - Jan Willem Resink
- Trouw Nutrition R&D, Swine Research Centre, P.O. Box 220, 5830 AE, Boxmeer, The Netherlands
| | - Coen H M Smits
- Trouw Nutrition R&D, Ingredients Research Centre, P.O. Box 220, 5830 AE, Boxmeer, The Netherlands
| |
Collapse
|
9
|
A genome-wide association analysis for susceptibility of pigs to enterotoxigenic Escherichia coli F41. Animal 2016; 10:1602-8. [PMID: 26936422 DOI: 10.1017/s1751731116000306] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Enterotoxigenic Escherichia coli (ETEC) is a type of pathogenic bacteria that cause diarrhea in piglets through colonizing pig small intestine epithelial cells by their surface fimbriae. Different fimbriae type of ETEC including F4, F18, K99 and F41 have been isolated from diarrheal pigs. In this study, we performed a genome-wide association study to map the loci associated with the susceptibility of pigs to ETEC F41 using 39454 single nucleotide polymorphisms (SNPs) in 667 F2 pigs from a White Duroc×Erhualian F2 cross. The most significant SNP (ALGA0022658, P=5.59×10-13) located at 6.95 Mb on chromosome 4. ALGA0022658 was in high linkage disequilibrium (r 2>0.5) with surrounding SNPs that span a 1.21 Mb interval. Within this 1.21 Mb region, we investigated ZFAT as a positional candidate gene. We re-sequenced cDNA of ZFAT in four pigs with different susceptibility phenotypes, and identified seven coding variants. We genotyped these seven variants in 287 unrelated pigs from 15 diverse breeds that were measured with ETEC F41 susceptibility phenotype. Five variants showed nominal significant association (P<0.05) with ETEC F41 susceptibility phenotype in International commercial pigs. This study provided refined region associated with susceptibility of pigs to ETEC F41 than that reported previously. Further works are needed to uncover the underlying causal mutation(s).
Collapse
|
10
|
Nguyen UV, Coddens A, Melkebeek V, Devriendt B, Goetstouwers T, Poucke MV, Peelman L, Cox E. High susceptibility prevalence for F4 + and F18 +Escherichia coli in Flemish pigs. Vet Microbiol 2016; 202:52-57. [PMID: 26822901 DOI: 10.1016/j.vetmic.2016.01.014] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Revised: 12/14/2015] [Accepted: 01/18/2016] [Indexed: 10/22/2022]
Abstract
F4 and/or F18 enterotoxigenic Escherichia coli (F4+/F18+ ETEC) are responsible for diarrhea while F18+ verotoxigenic E. coli (F18+ VTEC) cause edema disease in pigs. Both infections can result in severe economic losses, which are mainly the result of the medication, growth retardation and mortality. The susceptibility of piglets to these pathogens is determined by the presence of F4 and F18 receptors (F4R and F18R). Understanding the composition of the susceptibility phenotypes of pigs is useful for animal health and breeding management. This study aimed to determine the prevalence of the F4 ETEC susceptibility phenotypes and F18+E. coli susceptibility among Flemish pig breeds by using the in vitro villous adhesion assay. In this study, seven F4 ETEC susceptibility phenotypes were found, namely A (F4abR+,acR+,adR+; 59.16%), B (F4abR+,acR+,adR-; 6.28%), C (F4abR+,acR-,adR+; 2.62%), D (F4abR-,acR-,adR+; 6.28%), E (F4abR-,acR-,adR-; 24.08%), F (F4abR+,acR-,adR-; 1.05%) and G (F4abR-,acR+,adR-; 0.52%). F4ab and F4ac E. coli showed a stronger degree of adhesion to the intestinal villi (53.40% and 52.88% strong adhesion, respectively), compared to F4ad E. coli (43.46% strong adhesion). Furthermore, the correlation between F4ac and F4ab adhesion was higher (r=0.78) than between F4ac and F4ad adhesion (r=0.41) and between F4ab and F4ad adhesion (r=0.57). For F18+E. coli susceptibility, seven out of 82 pigs were F18R negative (8.54%), but only two of these seven pigs (2.44%) were also negative for F4R. As such, the chance to identify a pig that is positive for a F4 ETEC variant or F18+E. coli is 97.56%. Therefore, significant economic losses will arise due to F4+ and/or F18+E. coli infections in the Flemish pig population due to the high susceptibility prevalence.
Collapse
Affiliation(s)
- Ut V Nguyen
- Laboratory of Immunology, Faculty of Veterinary medicine, Ghent University, Salisburylaan 133, Merelbeke 9820, Belgium.
| | - Annelies Coddens
- Laboratory of Immunology, Faculty of Veterinary medicine, Ghent University, Salisburylaan 133, Merelbeke 9820, Belgium.
| | - Vesna Melkebeek
- Laboratory of Immunology, Faculty of Veterinary medicine, Ghent University, Salisburylaan 133, Merelbeke 9820, Belgium.
| | - Bert Devriendt
- Laboratory of Immunology, Faculty of Veterinary medicine, Ghent University, Salisburylaan 133, Merelbeke 9820, Belgium.
| | - Tiphanie Goetstouwers
- Laboratory of Animal Genetics, Faculty of Veterinary Medicine, Ghent University, Heidestraat 19, 9820 Merelbeke, Belgium.
| | - Mario Van Poucke
- Laboratory of Animal Genetics, Faculty of Veterinary Medicine, Ghent University, Heidestraat 19, 9820 Merelbeke, Belgium.
| | - Luc Peelman
- Laboratory of Animal Genetics, Faculty of Veterinary Medicine, Ghent University, Heidestraat 19, 9820 Merelbeke, Belgium.
| | - Eric Cox
- Laboratory of Immunology, Faculty of Veterinary medicine, Ghent University, Salisburylaan 133, Merelbeke 9820, Belgium.
| |
Collapse
|
11
|
Abstract
The first described adhesive antigen of Escherichia coli strains isolated from animals was the K88 antigen, expressed by strains from diarrheic pigs. The K88 antigen was visible by electron microscopy as a surface-exposed filament that was thin and flexible and had hemagglutinating properties. Many different fimbriae have been identified in animal enterotoxigenic E. coli (ETEC) and have been discussed in this article. The role of these fimbriae in the pathogenesis of ETEC has been best studied with K88, K99, 987P, and F41. Each fimbrial type carries at least one adhesive moiety that is specific for a certain host receptor, determining host species, age, and tissue specificities. ETEC are the most frequently diagnosed pathogens among neonatal and post-weaning piglets that die of diarrhea. Immune electron microscopy of animal ETEC fimbriae usually shows that the minor subunits are located at the fimbrial tips and at discrete sites along the fimbrial threads. Since fimbriae most frequently act like lectins by binding to the carbohydrate moieties of glycoproteins or glycolipids, fimbrial receptors have frequently been studied with red blood cells of various animal species. Identification and characterization of the binding moieties of ETEC fimbrial adhesins should be useful for the design of new prophylactic or therapeutic strategies. Some studies describing potential receptor or adhesin analogues that interfere with fimbria-mediated colonization have been described in the article.
Collapse
|
12
|
Abstract
Swine are used in biomedical research as models for biomedical research and for teaching. This chapter covers normative biology and behavior along with common and emerging swine diseases. Xenotransplantation is discussed along with similarities and differences of swine immunology.
Collapse
Affiliation(s)
- Kristi L. Helke
- Departments of Comparative Medicine and Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC, USA
| | | | - Raimon Duran-Struuck
- Columbia Center of Translational Immunology, Department of Surgery; Institute of Comparative Medicine; Columbia University Medical Center, New York, NY, USA
| | - M. Michael Swindle
- Medical University of South Carolina, Department of Comparative Medicine and Department of Surgery, Charleston, SC, USA
| |
Collapse
|
13
|
Goetstouwers T, Van Poucke M, Coddens A, Nguyen VU, Melkebeek V, Deforce D, Cox E, Peelman LJ. Variation in 12 porcine genes involved in the carbohydrate moiety assembly of glycosphingolipids does not account for differential binding of F4 Escherichia coli and their fimbriae. BMC Genet 2014; 15:103. [PMID: 25277275 PMCID: PMC4189734 DOI: 10.1186/s12863-014-0103-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2014] [Accepted: 09/18/2014] [Indexed: 11/10/2022] Open
Abstract
Background Glycosphingolipids (GSLs) are important membrane components composed of a carbohydrate structure attached to a hydrophobic ceramide. They can serve as specific membrane receptors for microbes and microbial products, such as F4 Escherichia coli (F4 ETEC) and isolated F4 fimbriae. The aim of this study was to investigate the hypothesis that variation in genes involved in the assembly of the F4 binding carbohydrate moiety of GSLs (i.e. ARSA, B4GALT6, GAL3ST1, GALC, GBA, GLA, GLB1, GLB1L, NEU1, NEU2, UGCG, UGT8) could account for differential binding of F4 ETEC and their fimbriae. Results RT-PCR could not reveal any differential expression of the 12 genes in the jejunum of F4 receptor-positive (F4R+) and F4 receptor-negative (F4R-) pigs. Sequencing the complete open reading frame of the 11 expressed genes (NEU2 was not expressed) identified 72 mutations. Although some of them might have a structural effect, none of them could be associated with a F4R phenotype. Conclusion We conclude that no regulatory or structural variation in any of the investigated genes is responsible for the genetic susceptibility of pigs towards F4 ETEC. Electronic supplementary material The online version of this article (doi:10.1186/s12863-014-0103-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Tiphanie Goetstouwers
- Laboratory of Animal Genetics, Faculty of Veterinary Medicine, Ghent University, Heidestraat 19, B-9820, Merelbeke, Belgium.
| | - Mario Van Poucke
- Laboratory of Animal Genetics, Faculty of Veterinary Medicine, Ghent University, Heidestraat 19, B-9820, Merelbeke, Belgium.
| | - Annelies Coddens
- Laboratory of Immunology, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820, Merelbeke, Belgium.
| | - Van Ut Nguyen
- Laboratory of Immunology, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820, Merelbeke, Belgium.
| | - Vesna Melkebeek
- Laboratory of Immunology, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820, Merelbeke, Belgium.
| | - Dieter Deforce
- Laboratory of Pharmaceutical Biotechnology, Faculty of Pharmaceutical Sciences, Ghent University, Harelbekestraat 72, 9000, Ghent, Belgium.
| | - Eric Cox
- Laboratory of Immunology, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820, Merelbeke, Belgium.
| | - Luc J Peelman
- Laboratory of Animal Genetics, Faculty of Veterinary Medicine, Ghent University, Heidestraat 19, B-9820, Merelbeke, Belgium.
| |
Collapse
|
14
|
Nguyen V, Goetstouwers T, Coddens A, Van Poucke M, Peelman L, Deforce D, Melkebeek V, Cox E. Differentiation of F4 receptor profiles in pigs based on their mucin 4 polymorphism, responsiveness to oral F4 immunization and in vitro binding of F4 to villi. Vet Immunol Immunopathol 2013; 152:93-100. [DOI: 10.1016/j.vetimm.2012.09.015] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
15
|
Fontanesi L, Bertolini F, Dall'Olio S, Buttazzoni L, Gallo M, Russo V. Analysis of association between the MUC4 g.8227C>G polymorphism and production traits in Italian heavy pigs using a selective genotyping approach. Anim Biotechnol 2012; 23:147-55. [PMID: 22870870 DOI: 10.1080/10495398.2011.653462] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
In pigs, susceptibility to enterotoxigenic Escherichia coli (ETEC) K88 strains (locus F4bcR) is determined by a dominant allele, with the recessive allele determining resistance. The susceptible allele also appeared to be associated with higher growth rate even with discordant results. A single nucleotide polymorphism (SNP) in exon 7 of the mucin 4 (MUC4) gene (DQ848681:g.8227C>G), shown to be in close linkage disequilibrium with the F4bcR locus, has been used as marker to identify susceptible pigs, substituting invasive villous adhesion tests. We herein analyzed this SNP in Italian local breeds and applied a selective genotyping approach in Italian Large White, Italian Landrace, and Italian Duroc comparing allele frequency distribution in groups of pigs with extreme estimated breeding values (EBV) for average daily gain (ADG) and backfat thickness (BFT) to evaluate if this marker is associated with these traits. Allele G (associated with susceptibility to ETEC) was associated with higher ADG and BFT in Italian Large White (P=6.66E-04 and P=0.012, respectively) and higher ADG in Italian Landrace (P=7.23E-12). This polymorphism was poorly informative in Italian Duroc. Antagonistic associations of the MUC4 g.8227C>G alleles on susceptibility to ETEC and growth performances evidence the complexity of applying marker assisted selection in pig breeding.
Collapse
Affiliation(s)
- Luca Fontanesi
- Dept. of Agro-Food Science and Technology, Sezione di Allevamenti Zootecnici, University of Bologna, Bologna, Italy.
| | | | | | | | | | | |
Collapse
|
16
|
Schroyen M, Stinckens A, Verhelst R, Niewold T, Buys N. The search for the gene mutations underlying enterotoxigenic Escherichia coli F4ab/ac susceptibility in pigs: a review. Vet Res 2012; 43:70. [PMID: 23061722 PMCID: PMC3499147 DOI: 10.1186/1297-9716-43-70] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2012] [Accepted: 09/27/2012] [Indexed: 11/16/2022] Open
Abstract
Diarrhoea due to enterotoxigenic Escherichia coli with fimbriae F4 (ETEC-F4) is an important problem in neonatal and just weaned piglets and hence for the pig farming industry. There is substantial evidence for a genetic basis for susceptibility to ETEC-F4 since not all piglets suffer from diarrhoea after an ETEC-F4 infection. It is assumed that the wild boar was originally ETEC-F4 resistant and that susceptibility towards ETEC arose after domestication. There are different phenotypes in the pig determined by which of the three existing F4 variants (F4ab, F4ac or F4ad) they are susceptible or resistant for. This suggests that several F4 receptors exist, expressed individually or in combination with each other on the brush border of the piglet’s small intestine. As such, the mucin-type glycoproteins (IMTGP) are described as F4ab/ac receptors, while the intestinal neutral glycospingolipid (IGLad) is proposed as an F4ad receptor. GP74 is a putative F4ab receptor. However, the specific genes that encode for the susceptibility are not yet known. In the past decades, linkage analyses revealed that the loci encoding for the receptor(s) for the two most frequent variants F4ab and F4ac were mapped to the 13th chromosome of the pig (Sus scrofa 13, SSC13). After fine mapping, the region of interest was mapped between two microsatellite markers, Sw207 and S0075, and interesting candidate genes surfaced. Numerous SNP analyses and a few expression studies on the three MUC-genes (MUC4, MUC13 and MUC20) and the transferrin receptor gene (TFRC) as well as on some other positional candidate genes have been performed in order to find the causative mutation for the ETEC-F4ab/ac receptor(s). However, until today, the exact mutation causing susceptibility to ETEC-F4 remains unknown.
Collapse
Affiliation(s)
- Martine Schroyen
- Department Biosystems, KU Leuven, Kasteelpark Arenberg 30, 3001, Heverlee, Belgium.
| | | | | | | | | |
Collapse
|
17
|
Lin J, Mateo KS, Zhao M, Erickson AK, Garcia N, He D, Moxley RA, Francis DH. Protection of piglets against enteric colibacillosis by intranasal immunization with K88ac (F4ac) fimbriae and heat labile enterotoxin of Escherichia coli. Vet Microbiol 2012; 162:731-739. [PMID: 23089483 DOI: 10.1016/j.vetmic.2012.09.025] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2012] [Revised: 09/25/2012] [Accepted: 09/27/2012] [Indexed: 10/27/2022]
Abstract
Enterotoxigenic Escherichia coli (ETEC) is an important diarrheal agent of young domestic animals. Currently, there are no commercially available non-living vaccines to protect weaned pigs from the disease and no major veterinary biologics company markets a postweaning ETEC vaccine of any kind. While efforts have been made to develop a non-living postweaning ETEC vaccine for pigs, studies have been limited to the assessment of immune responses to experimental immunogens. In the present study, we describe a reproducible gnotobiotic piglet model of post-weaning ETEC diarrhea and efficacy tests in that model of subunit vaccines consisting of K88 (F4) fimbriae and/or heat labile enterotoxin (LT) delivered by the intranasal route. We also report antibody responses to the vaccine antigens. Piglets vaccinated with both antigens mounted a substantial immune response with serum and cecal antibody titers to K88 antigen significantly greater than those of controls. Serum anti-LT antibody titers were also significantly greater than those of controls. Piglets vaccinated with both antigens remained healthy following challenge with ETEC. At least some pigs vaccinated with either antigen alone, and most of the control piglets developed dehydrating diarrhea and suffered significant weight loss. The results of this study suggest that an intranasal vaccine consisting of both antigens is highly protective against a vigorous experimental challenge of pigs with K88+ ETEC, while that against either antigen alone is not. The current study provides a system whereby various ETEC antigens and/or combinations of antigens can be tested in exploring strategies for the development of vaccines for ETEC.
Collapse
Affiliation(s)
- Jun Lin
- Department of Veterinary and Biomedical Sciences, South Dakota State University, Box 2175, Brookings, SD 57007, United States
| | - Kristina S Mateo
- Department of Veterinary and Biomedical Sciences, South Dakota State University, Box 2175, Brookings, SD 57007, United States
| | - Mojun Zhao
- Department of Veterinary and Biomedical Sciences, South Dakota State University, Box 2175, Brookings, SD 57007, United States; Brookings Biomedical, Inc., 1006 32nd Ave, Suite 106, Brookings, SD 57006, United States
| | - Alan K Erickson
- Department of Veterinary and Biomedical Sciences, South Dakota State University, Box 2175, Brookings, SD 57007, United States
| | - Nuria Garcia
- Department of Veterinary and Biomedical Sciences, South Dakota State University, Box 2175, Brookings, SD 57007, United States
| | - Dong He
- Department of Mathematics and Statistics, Box 2220, Brookings, SD 57007, United States
| | - Rodney A Moxley
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, AK 68583, United States
| | - David H Francis
- Department of Veterinary and Biomedical Sciences, South Dakota State University, Box 2175, Brookings, SD 57007, United States; Brookings Biomedical, Inc., 1006 32nd Ave, Suite 106, Brookings, SD 57006, United States.
| |
Collapse
|
18
|
Enterotoxigenic Escherichia coli prevents host NF-κB activation by targeting IκBα polyubiquitination. Infect Immun 2012; 80:4417-25. [PMID: 23027537 DOI: 10.1128/iai.00809-12] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
The NF-κB pathway regulates innate immune responses to infection. NF-κB is activated after pathogen-associated molecular patterns are detected, leading to the induction of proinflammatory host responses. As a countermeasure, bacterial pathogens have evolved mechanisms to subvert NF-κB signaling. Enterotoxigenic Escherichia coli (ETEC) causes diarrheal disease and significant morbidity and mortality for humans in developing nations. The extent to which this important pathogen subverts innate immune responses by directly targeting the NF-κB pathway is an understudied topic. Here we report that ETEC secretes a heat-stable, proteinaceous factor that blocks NF-κB signaling normally induced by tumor necrosis factor (TNF), interleukin-1β, and flagellin. Pretreating intestinal epithelial cells with ETEC supernatant significantly blocked the degradation of the NF-κB inhibitor IκBα without affecting IκBα phosphorylation. Data from immunoprecipitation experiments suggest that the ETEC factor functions by preventing IκBα polyubiquitination. Inhibiting clathrin function blocked the activity of the secreted ETEC factor, suggesting that this yet-uncharacterized activity may utilize clathrin-dependent endocytosis to enter host cells. These data suggest that ETEC evades the host innate immune response by directly modulating NF-κB signaling.
Collapse
|
19
|
Ren J, Yan X, Ai H, Zhang Z, Huang X, Ouyang J, Yang M, Yang H, Han P, Zeng W, Chen Y, Guo Y, Xiao S, Ding N, Huang L. Susceptibility towards enterotoxigenic Escherichia coli F4ac diarrhea is governed by the MUC13 gene in pigs. PLoS One 2012; 7:e44573. [PMID: 22984528 PMCID: PMC3440394 DOI: 10.1371/journal.pone.0044573] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2012] [Accepted: 08/03/2012] [Indexed: 11/18/2022] Open
Abstract
Enterotoxigenic Escherichia coli (ETEC) F4ac is a major determinant of diarrhea and mortality in neonatal and young pigs. Susceptibility to ETEC F4ac is governed by the intestinal receptor specific for the bacterium and is inherited as a monogenic dominant trait. To identify the receptor gene (F4acR), we first mapped the locus to a 7.8-cM region on pig chromosome 13 using a genome scan with 194 microsatellite markers. A further scan with high density markers on chromosome 13 refined the locus to a 5.7-cM interval. Recombination breakpoint analysis defined the locus within a 2.3-Mb region. Further genome-wide mapping using 39,720 informative SNPs revealed that the most significant markers were proximal to the MUC13 gene in the 2.3-Mb region. Association studies in a collection of diverse outbred populations strongly supported that MUC13 is the most likely responsible gene. We characterized the porcine MUC13 gene that encodes two transcripts: MUC13A and MUC13B. Both transcripts have the characteristic PTS regions of mucins that are enriched in distinct tandem repeats. MUC13B is predicated to be heavily O-glycosylated, forming the binding site of the bacterium; while MUC13A does not have the O-glycosylation binding site. Concordantly, 127 independent pigs homozygous for MUC13A across diverse breeds are all resistant to ETEC F4ac, and all 718 susceptible animals from the broad breed panel carry at least one MUC13B allele. Altogether, we conclude that susceptibility towards ETEC F4ac is governed by the MUC13 gene in pigs. The finding has an immediate translation into breeding practice, as it allows us to establish an efficient and accurate diagnostic test for selecting against susceptible animals. Moreover, the finding improves our understanding of mucins that play crucial roles in defense against enteric pathogens. It revealed, for the first time, the direct interaction between MUC13 and enteric bacteria, which is poorly understood in mammals.
Collapse
Affiliation(s)
- Jun Ren
- Key Laboratory for Animal Biotechnology of Jiangxi Province and the Ministry of Agriculture of China, Jiangxi Agricultural University, Nanchang, People’s Republic of China
- * E-mail: (LH); (JR)
| | - Xueming Yan
- Key Laboratory for Animal Biotechnology of Jiangxi Province and the Ministry of Agriculture of China, Jiangxi Agricultural University, Nanchang, People’s Republic of China
- College of Life Science, Jiangxi Science and Technology Normal University, Nanchang, People’s Republic of China
| | - Huashui Ai
- Key Laboratory for Animal Biotechnology of Jiangxi Province and the Ministry of Agriculture of China, Jiangxi Agricultural University, Nanchang, People’s Republic of China
| | - Zhiyan Zhang
- Key Laboratory for Animal Biotechnology of Jiangxi Province and the Ministry of Agriculture of China, Jiangxi Agricultural University, Nanchang, People’s Republic of China
| | - Xiang Huang
- Key Laboratory for Animal Biotechnology of Jiangxi Province and the Ministry of Agriculture of China, Jiangxi Agricultural University, Nanchang, People’s Republic of China
| | - Jing Ouyang
- Key Laboratory for Animal Biotechnology of Jiangxi Province and the Ministry of Agriculture of China, Jiangxi Agricultural University, Nanchang, People’s Republic of China
| | - Ming Yang
- Key Laboratory for Animal Biotechnology of Jiangxi Province and the Ministry of Agriculture of China, Jiangxi Agricultural University, Nanchang, People’s Republic of China
| | - Huaigu Yang
- Key Laboratory for Animal Biotechnology of Jiangxi Province and the Ministry of Agriculture of China, Jiangxi Agricultural University, Nanchang, People’s Republic of China
| | - Pengfei Han
- Key Laboratory for Animal Biotechnology of Jiangxi Province and the Ministry of Agriculture of China, Jiangxi Agricultural University, Nanchang, People’s Republic of China
| | - Weihong Zeng
- Key Laboratory for Animal Biotechnology of Jiangxi Province and the Ministry of Agriculture of China, Jiangxi Agricultural University, Nanchang, People’s Republic of China
| | - Yijie Chen
- Key Laboratory for Animal Biotechnology of Jiangxi Province and the Ministry of Agriculture of China, Jiangxi Agricultural University, Nanchang, People’s Republic of China
| | - Yuanmei Guo
- Key Laboratory for Animal Biotechnology of Jiangxi Province and the Ministry of Agriculture of China, Jiangxi Agricultural University, Nanchang, People’s Republic of China
| | - Shijun Xiao
- Key Laboratory for Animal Biotechnology of Jiangxi Province and the Ministry of Agriculture of China, Jiangxi Agricultural University, Nanchang, People’s Republic of China
| | - Nengshui Ding
- Key Laboratory for Animal Biotechnology of Jiangxi Province and the Ministry of Agriculture of China, Jiangxi Agricultural University, Nanchang, People’s Republic of China
| | - Lusheng Huang
- Key Laboratory for Animal Biotechnology of Jiangxi Province and the Ministry of Agriculture of China, Jiangxi Agricultural University, Nanchang, People’s Republic of China
- * E-mail: (LH); (JR)
| |
Collapse
|
20
|
Inverse relationship between heat stable enterotoxin-b induced fluid accumulation and adherence of F4ac-positive enterotoxigenic Escherichia coli in ligated jejunal loops of F4ab/ac fimbria receptor-positive swine. Vet Microbiol 2012; 161:315-24. [PMID: 22901529 DOI: 10.1016/j.vetmic.2012.07.048] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2012] [Revised: 07/26/2012] [Accepted: 07/27/2012] [Indexed: 11/22/2022]
Abstract
Heat-labile enterotoxin (LT) produced by enterotoxigenic Escherichia coli (ETEC) increases bacterial adherence to porcine enterocytes in vitro and enhances small intestinal colonization in swine. Heat-stable enterotoxin-b (STb) is not known to affect colonization; however, through an induction of net fluid accumulation it might reduce bacterial adherence. The relationship between fluid accumulation and bacterial adherence in jejunal loops inoculated with ETEC strains that produce LT, STb, both, or neither toxin was studied. Ligated jejunal loops were constructed in weaned Yorkshire pigs in two independent experiments (Exp. 1, n=5, 8-week-old; Exp. 2, n=6, 6-8-week-old). Each pig was inoculated with six F4ac(+)E. coli strains: (1) LT(+), STb(+) parent (WAM2317); (2) STb(-) (ΔestB) mutant (MUN297); (3) MUN297 complemented with STb (MUN298); (4) LT(-) STb(-) (ΔeltAB ΔestB) mutant (MUN300); (5) MUN300 complemented with LT (MUN301); and (6) 1836-2 (non-enterotoxigenic, wild-type). Pigs were confirmed to be K88 (F4)ab/ac receptor-positive in Exp. 2 by testing for intestinal mucin-type glycoproteins and inferred to be receptor-positive in both Exp. 1 and 2 based on histopathologic evidence of bacterial adherence. Strains that produced STb induced marked fluid accumulation with the response (ml/cm) to WAM2317 and MUN298 significantly greater than that to the other strains (P<0.0001). Conversely, bacterial adherence scores based on immunohistochemistry and CFU/g of washed mucosa were both lowest in the strains that expressed STb and highest in those that did not. For the two experiments combined, the Pearson correlation coefficient (R) between fluid volume (ml/cm) and log CFU per gram was -0.57021 (P<0.0001); R(2)=0.3521 (n=197). These results support the hypothesis that enterotoxin-induced fluid accumulation flushes progeny organisms into the lumen of the bowel, thereby increasing the likelihood of fecal shedding and transmission of the pathogen to new hosts.
Collapse
|
21
|
Pastoret S, Ameels H, Bossiroy F, Decreux A, De Longueville F, Thomas A, Desmecht D. Detection of disease resistance and susceptibility alleles in pigs using oligonucleotide microarray hybridization. J Vet Diagn Invest 2012; 24:479-88. [DOI: 10.1177/1040638712442878] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
A multiplex DNA microarray chip aimed at the identification of allelic polymorphisms was developed for simultaneous detection of swine disease resistance genes underlying malignant hyperthermia ( RYR), postweaning diarrhea, edema disease ( FUT1), neonatal diarrhea ( MUC4), and influenza ( MX1). The on-chip detection was performed with fragmented polymerase chain reaction (PCR)–amplified products. Particular emphasis was placed on the reduction of the number of PCR reactions required. The targets were biotin labeled during the PCR reaction, and the arrays were detected using a colorimetric methodology. Target recognition was provided by specific capture probes designed for each susceptible or resistant allelic variant. Sequencing was chosen as the gold standard to assess chip accuracy. All genotypes retrieved from the microarray (476) fit with sequencing data despite the fact that each pig was heterozygote for at least 1 target gene.
Collapse
Affiliation(s)
- Soumya Pastoret
- Unité de Recherche en Biologie Cellulaire, Facultés universitaires Notre-Dame de la Paix, Namur, Belgium (Pastoret, Ameels, Bossiroy)
- Service de Pathologie systémique, University of Liège, Liège, Belgium (Decreux, Thomas, Desmecht)
- Eppendorf Array Technology, Namur, Belgium (De Longueville, Remacle)
| | - Hélène Ameels
- Unité de Recherche en Biologie Cellulaire, Facultés universitaires Notre-Dame de la Paix, Namur, Belgium (Pastoret, Ameels, Bossiroy)
- Service de Pathologie systémique, University of Liège, Liège, Belgium (Decreux, Thomas, Desmecht)
- Eppendorf Array Technology, Namur, Belgium (De Longueville, Remacle)
| | - Frédérique Bossiroy
- Unité de Recherche en Biologie Cellulaire, Facultés universitaires Notre-Dame de la Paix, Namur, Belgium (Pastoret, Ameels, Bossiroy)
- Service de Pathologie systémique, University of Liège, Liège, Belgium (Decreux, Thomas, Desmecht)
- Eppendorf Array Technology, Namur, Belgium (De Longueville, Remacle)
| | - Annabelle Decreux
- Unité de Recherche en Biologie Cellulaire, Facultés universitaires Notre-Dame de la Paix, Namur, Belgium (Pastoret, Ameels, Bossiroy)
- Service de Pathologie systémique, University of Liège, Liège, Belgium (Decreux, Thomas, Desmecht)
- Eppendorf Array Technology, Namur, Belgium (De Longueville, Remacle)
| | - Françoise De Longueville
- Unité de Recherche en Biologie Cellulaire, Facultés universitaires Notre-Dame de la Paix, Namur, Belgium (Pastoret, Ameels, Bossiroy)
- Service de Pathologie systémique, University of Liège, Liège, Belgium (Decreux, Thomas, Desmecht)
- Eppendorf Array Technology, Namur, Belgium (De Longueville, Remacle)
| | - Anne Thomas
- Unité de Recherche en Biologie Cellulaire, Facultés universitaires Notre-Dame de la Paix, Namur, Belgium (Pastoret, Ameels, Bossiroy)
- Service de Pathologie systémique, University of Liège, Liège, Belgium (Decreux, Thomas, Desmecht)
- Eppendorf Array Technology, Namur, Belgium (De Longueville, Remacle)
| | - Daniel Desmecht
- Unité de Recherche en Biologie Cellulaire, Facultés universitaires Notre-Dame de la Paix, Namur, Belgium (Pastoret, Ameels, Bossiroy)
- Service de Pathologie systémique, University of Liège, Liège, Belgium (Decreux, Thomas, Desmecht)
- Eppendorf Array Technology, Namur, Belgium (De Longueville, Remacle)
| |
Collapse
|
22
|
Santiago-Mateo K, Zhao M, Lin J, Zhang W, Francis DH. Avirulent K88 (F4)+ Escherichia coli strains constructed to express modified enterotoxins protect young piglets from challenge with a virulent enterotoxigenic Escherichia coli strain that expresses the same adhesion and enterotoxins. Vet Microbiol 2012; 159:337-42. [PMID: 22541162 DOI: 10.1016/j.vetmic.2012.03.046] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2012] [Revised: 03/30/2012] [Accepted: 03/31/2012] [Indexed: 11/29/2022]
Abstract
Virulence of enterotoxigenic Escherichia coli (ETEC) is associated with fimbrial adhesins and enterotoxins such as heat-labile (LT) and/or heat-stable (ST) enterotoxins. Previous studies using a cell culture model suggest that exclusion of ETEC from attachment to epithelial cells requires expression of both an adhesin such as K88 (F4) fimbriae, and LT. To test the ability of non-pathogenic E. coli constructs to exclude virulent ETEC sufficiently to prevent clinical disease, we utilized a piglet ETEC challenge model. Thirty-nine 5-day-old piglets were inoculated with a placebo (control), or with either of the three K88(+)E. coli strains isogenic with regard to modified LT expression: 8017 (pBR322 plasmid vector control), non-toxigenic mutant 8221 (LT(R192G)) in pBR322, or 8488, with the LT gene fused to the STb gene in pBR322 (LT(R192G)-STb). Piglets were challenged with virulent ETEC Strain 3030-2 (K88(+)/LT/STb) 24h post-inoculation. K88ac receptor-positive piglets in the control group developed diarrhea and became dehydrated 12-24h post-challenge. Piglets inoculated with 8221 or 8488 did not exhibit clinical signs of ETEC disease; most piglets inoculated with 8017 showed diarrhea. Control pigs exhibited significant weight loss, increased blood total protein, and higher numbers of colony-forming units of 3030-2 E. coli in washed ileum and jejunum than treated pigs. This study shows for the first time that pre-inoculation with an avirulent strain expressing adhesive fimbriae and a non-toxic form of LT provides significant short term protection from challenge with a virulent ETEC strain that expresses the same fimbrial adhesion and enterotoxin.
Collapse
Affiliation(s)
- Kristina Santiago-Mateo
- Center for Infectious Disease Research and Vaccine Development, Department of Veterinary and Biomedical Sciences, South Dakota State University, Brookings, SD 57007-1396, USA
| | | | | | | | | |
Collapse
|
23
|
Ouyang J, Zeng W, Ren J, Yan X, Zhang Z, Yang M, Han P, Huang X, Ai H, Huang L. Association of B3GNT5 polymorphisms with susceptibility to ETEC F4ab/ac in the white Duroc × Erhualian intercross and 15 outbred pig breeds. Biochem Genet 2011; 50:19-33. [PMID: 21956797 DOI: 10.1007/s10528-011-9454-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2010] [Accepted: 05/12/2011] [Indexed: 11/29/2022]
Abstract
The B3GNT5 gene is a candidate for the F4ab/ac receptor conferring susceptibility to enterotoxigenic Escherichia coli (ETEC) F4ab/ac in pigs. In this study, we screened mutations in the complete coding region of the porcine B3GNT5 gene and identified four SNPs in the 3' untranslated regions. We genotyped the four SNPs across a large-scale White Duroc × Chinese Erhualian F2 resource population (total F2 = 755) and 292 purebred piglets representing 15 Chinese and Western breeds. We found that the g.1476G→A locus and haplotypes [A;T;G;T] and [A;G;G;T] had significant association with susceptibility to ETEC F4ac in the resource population. None of the B3GNT5 polymorphisms and haplotypes was associated with susceptibility to ETEC F4ab/ac in outbred piglets. This result, together with other reports, supports the conclusion that B3GNT5 is not the responsible gene encoding the ETEC F4ab/ac receptors.
Collapse
Affiliation(s)
- Jing Ouyang
- Key Laboratory for Animal Biotechnology of Jiangxi Province and the Ministry of Agriculture of China, Jiangxi Agricultural University, Nanchang, 330045, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Niu X, Li Y, Ding X, Zhang Q. Refined mapping of the Escherichia coli F4ab/F4ac receptor gene(s) on pig chromosome 13. Anim Genet 2011; 42:552-5. [PMID: 21906107 DOI: 10.1111/j.1365-2052.2011.02176.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Enterotoxigenic Escherichia coli expressing F4 fimbriae is the major cause of diarrhoea in neonatal and post-weaning piglets. Previous studies have revealed that the loci controlling the F4ab/F4ac receptors are located on SSC13q41, between markers SW207 and S0283. In this study, we refined their positions in a two generation population containing 366 piglets of three breeds (Large White, Landrace, and Songliao Black). Nine microsatellite markers within this region were selected from the MARC (U.S. Meat Animal Research Center) porcine linkage map, and the pedigree disequilibrium test was employed for fine-mapping. The F4abR gene was located in the interval between S0283 and SW1833, a 4.8-cM region, and the F4acR gene was located in the interval between S0283 and SW1876, a 1.6-cM region. Our results also suggest that the F4ab/F4ac receptors might be controlled by two different but closely linked loci. The results of microsatellite-based haplotype analysis in the corresponding region show that some specific haplotypes were overwhelmingly present in the adhesive or non-adhesive animals, indicating that there are mutations within the identified regions that are strongly associated with the F4ab/ac phenotypes.
Collapse
Affiliation(s)
- X Niu
- Key Laboratory Animal Genetics and Breeding of the Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | | | | | | |
Collapse
|
25
|
Yan X, Huang X, Ren J, Ouyang J, Yang M, Han P, Huang L. Adhesion phenotypes of pigs of Chinese and Western breeds and a White Duroc-Erhualian crossbreed with regard to susceptibility to enterotoxigenicEscherichia coliwith fimbrial adhesins K99, 987P, and F41. Am J Vet Res 2011; 72:80-4. [DOI: 10.2460/ajvr.72.1.80] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
26
|
Ji H, Ren J, Yan X, Huang X, Zhang B, Zhang Z, Huang L. The porcine MUC20 gene: molecular characterization and its association with susceptibility to enterotoxigenic Escherichia coli F4ab/ac. Mol Biol Rep 2010; 38:1593-601. [DOI: 10.1007/s11033-010-0268-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2010] [Accepted: 09/02/2010] [Indexed: 01/30/2023]
|
27
|
Yan X, Huang X, Ren J, Zou Z, Yang S, Ouyang J, Zeng W, Yang B, Xiao S, Huang L. Distribution of Escherichia coli F4 adhesion phenotypes in pigs of 15 Chinese and Western breeds and a White DurocxErhualian intercross. J Med Microbiol 2009; 58:1112-1117. [PMID: 19574416 DOI: 10.1099/jmm.0.009803-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Diarrhoea in newborn and weaned piglets is mainly caused by enterotoxigenic Escherichia coli (ETEC) with fimbriae F4. To investigate the prevalence of resistance to three fimbrial strains, F4ab, F4ac and F4ad, among Chinese indigenous pigs and Western commercial pigs introduced into China, we determined the ETEC F4 adhesion phenotypes in 292 pure-bred piglets from three Western commercial breeds and 12 Chinese indigenous breeds, and a total of 1093 adult pigs in a White DurocxErhualian intercross, by an in vitro microscopic adhesion assay. All the Tibet and Lantang pigs and a majority of the Erhualian and Rongchang pigs were resistant (nonadherent) to ETEC F4 whereas all the Laiwu pigs and most of the Jiangquhai and Tongcheng pigs were susceptible (adhesive) to at least one of the F4 strains. Yushan Black pigs were uniformly resistant to F4ab, and Jinhua pigs were predominantly resistant to F4ac. Susceptible and resistant animals were observed in the other breeds, indicating that diarrhoea caused by ETEC F4 could be prevalent in these breeds. This study confirmed the existence of eight previously reported F4 adhesion patterns, and supported the assumption that the three F4 receptors are encoded by distinct loci. Expression of the weakly adherent phenotype was observed in six pure-bred piglets and 90 adult F(2)/F(3) animals, and the inheritance of this phenotype and its correlation with susceptibility to disease are still not known.
Collapse
Affiliation(s)
- Xueming Yan
- Department of Biology, Jiangxi Science and Technology Normal University, Nanchang 330038, PR China.,Key Laboratory for Animal Biotechnology of Jiangxi Province and the Ministry of Agriculture of China, Jiangxi Agricultural University, Nanchang 330045, PR China
| | - Xiang Huang
- Key Laboratory for Animal Biotechnology of Jiangxi Province and the Ministry of Agriculture of China, Jiangxi Agricultural University, Nanchang 330045, PR China
| | - Jun Ren
- Key Laboratory for Animal Biotechnology of Jiangxi Province and the Ministry of Agriculture of China, Jiangxi Agricultural University, Nanchang 330045, PR China
| | - Zhengzhi Zou
- Key Laboratory for Animal Biotechnology of Jiangxi Province and the Ministry of Agriculture of China, Jiangxi Agricultural University, Nanchang 330045, PR China
| | - Shujin Yang
- Key Laboratory for Animal Biotechnology of Jiangxi Province and the Ministry of Agriculture of China, Jiangxi Agricultural University, Nanchang 330045, PR China
| | - Jing Ouyang
- Key Laboratory for Animal Biotechnology of Jiangxi Province and the Ministry of Agriculture of China, Jiangxi Agricultural University, Nanchang 330045, PR China
| | - Weihong Zeng
- Key Laboratory for Animal Biotechnology of Jiangxi Province and the Ministry of Agriculture of China, Jiangxi Agricultural University, Nanchang 330045, PR China
| | - Bin Yang
- Key Laboratory for Animal Biotechnology of Jiangxi Province and the Ministry of Agriculture of China, Jiangxi Agricultural University, Nanchang 330045, PR China
| | - Shijun Xiao
- Key Laboratory for Animal Biotechnology of Jiangxi Province and the Ministry of Agriculture of China, Jiangxi Agricultural University, Nanchang 330045, PR China
| | - Lusheng Huang
- Key Laboratory for Animal Biotechnology of Jiangxi Province and the Ministry of Agriculture of China, Jiangxi Agricultural University, Nanchang 330045, PR China
| |
Collapse
|
28
|
J. Genovese, K, Harvey, RB, Anderson, RC, Nisbet DJ. Protection of Suckling Neonatal Pigs Against Infection with an Enterotoxigenic Escherichia coli Expressing 987P Fimbriae by the Administration of a Bacterial Competitive Exclusion Culture. MICROBIAL ECOLOGY IN HEALTH AND DISEASE 2009. [DOI: 10.1080/089106001753341309] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Affiliation(s)
- Kenneth J. Genovese,
- From the U.S. Department of Agriculture, Agricultural Research Service, Southern Plains Agricultural Research Center, College Station, TX 77845, USA
| | | | | | | |
Collapse
|
29
|
Li Y, Qiu X, Li H, Zhang Q. Adhesive patterns of Escherichia coli F4 in piglets of three breeds. J Genet Genomics 2009; 34:591-9. [PMID: 17643944 DOI: 10.1016/s1673-8527(07)60067-8] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2006] [Accepted: 01/29/2007] [Indexed: 10/23/2022]
Abstract
Escherichia coli expressing F4 fimbriae is the major pathogenic bacteria that causes diarrhea in piglets before weaning. The adhesion of E. coli to the brush borders of the epithelial cells of piglets is the precondition leading to diarrhea, which in turn is due to the presence of the F4 receptors determined by an autosomal recessive gene on the brush borders of the epithelial cells. In order to clarify the genetic mechanism of the adhesion, an in vitro adhesion experiment was carried out for three variants of E. coli F4 (ab, ac, and ad) in 366 piglets of three pig breeds [Landrace (LR), Large White (LW), and Songliao Black (SB)]. The results showed that there existed significant differences (P<0.001) in the adhesion percentage among the three breeds. Most SB piglets were nonadhesive for all the three variants, whereas most LR piglets were adhesive. Within each breed except for LR, the proportions of the three F4 variants adhering to the brush borders differed significantly. According to the patterns of the adhesion of the three F4 variants in the three breeds, it is very likely that the three F4 variants F4ab, F4ac, and F4ad have different receptors that are controlled by three different loci.
Collapse
Affiliation(s)
- Yuhua Li
- Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, State Key Laboratory for Agrobiotechnology, College of Animal Science and Technology, China Agricultural University, Beijing 100094, China
| | | | | | | |
Collapse
|
30
|
Lessard M, Dupuis M, Gagnon N, Nadeau E, Matte JJ, Goulet J, Fairbrother JM. Administration of Pediococcus acidilactici or Saccharomyces cerevisiae boulardii modulates development of porcine mucosal immunity and reduces intestinal bacterial translocation after Escherichia coli challenge1,2. J Anim Sci 2009; 87:922-34. [DOI: 10.2527/jas.2008-0919] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
31
|
Yan XM, Ren J, Huang X, Zhang ZY, Ouyang J, Zeng WH, Zou ZZ, Yang SJ, Yang B, Huang LS. Comparison of production traits between pigs with and without the Escherichia coli F4 receptors in a White Duroc × Erhualian intercross F2 population1. J Anim Sci 2009; 87:334-9. [DOI: 10.2527/jas.2008-1107] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
32
|
Detection of quantitative trait loci for porcine susceptibility to enterotoxigenic Escherichia coli F41 in a White Duroc × Chinese Erhualian resource population. Animal 2009; 3:946-50. [DOI: 10.1017/s1751731109004509] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
33
|
Characterization of the binding specificity of K88ac and K88ad fimbriae of enterotoxigenic Escherichia coli by constructing K88ac/K88ad chimeric FaeG major subunits. Infect Immun 2008; 77:699-706. [PMID: 19015246 DOI: 10.1128/iai.01165-08] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Enterotoxigenic Escherichia coli (ETEC) strains expressing K88 (F4) fimbriae are the major cause of diarrhea in young pigs. Three antigenic variants of K88 fimbriae (K88ab, K88ac, and K88ad) have been identified among porcine ETEC strains. Each K88 fimbrial variant shows a unique pattern in binding to different receptors on porcine enterocytes. Such variant specificity in fimbrial binding is believed to be controlled by the major subunit (FaeG) of the K88 fimbriae, because the genes coding for the only other fimbrial subunit are identical among the three variants. Uniqueness in binding to host receptors may be responsible for differences in the virulence levels of porcine diarrhea disease caused by K88 ETEC strains. To better understand the relationships between the structure of FaeG proteins and fimbrial binding function, and perhaps virulence in disease, we constructed and expressed various K88ac/K88ad faeG gene chimeras and characterized the binding activity of each K88 chimeric fimbria. After verifying biosynthesis of the chimeric fimbriae, we examined their binding specificities in bacterial adherence assays by using porcine brush border vesicles that are specific to either the K88ac or K88ad fimbria. Results showed that each fimbria switched binding specificity to that of the reciprocal type when a peptide comprising amino acids 125 to 163 was exchanged with that of its counterpart. Substitutions of a single amino acid within this region negatively affected the binding capacity of each fimbria. These data indicate that the peptide including amino acids 125 to 163 of the FaeG subunit is essential for K88 variant-specific binding.
Collapse
|
34
|
Heat-labile enterotoxin promotes Escherichia coli adherence to intestinal epithelial cells. J Bacteriol 2008; 191:178-86. [PMID: 18978047 DOI: 10.1128/jb.00822-08] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Given recent evidence suggesting that the heat-labile enterotoxin (LT) provides a colonization advantage for enterotoxigenic Escherichia coli (ETEC) in vivo, we hypothesized that LT preconditions the host intestinal epithelium for ETEC adherence. To test this hypothesis, we used an in vitro model of ETEC adherence to examine the role of LT in promoting bacterium-host interactions. We present data demonstrating that elaboration of LT promotes a significant increase in E. coli adherence. This phenotype is primarily dependent on the inherent ADP-ribosylation activity of this toxin, with a secondary role observed for the receptor-binding LT-B subunit. Rp-3',5'-cyclic AMP (cAMP), an inhibitor of protein kinase A, was sufficient to abrogate LT's ability to promote subsequent bacterial adherence. Increased adherence was not due to changes in the surface expression of the host receptor for the K88ac adhesin. Evidence is also presented for a role for bacterial sensing of host-derived cAMP in promoting adherence to host cells.
Collapse
|
35
|
Escherichia coli constructs expressing human or porcine enterotoxins induce identical diarrheal diseases in a piglet infection model. Appl Environ Microbiol 2008; 74:5832-7. [PMID: 18658289 DOI: 10.1128/aem.00893-08] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
To develop a piglet model for studying diarrheal disease and developing vaccines, we challenged gnotobiotic piglets with isogenic Escherichia coli strains constructed to express porcine 987P(F6) fimbriae and a heat-labile or a heat-stable enterotoxin to examine clinical outcomes. Piglets developed identical diarrheal diseases when inoculated with constructs expressing human or porcine enterotoxins.
Collapse
|
36
|
Polymorphisms of three gene-derived STS on pig chromosome 13q41 are associated with susceptibility to enterotoxigenic Escherichia coli F4ab/ac in pigs. ACTA ACUST UNITED AC 2008; 51:614-9. [DOI: 10.1007/s11427-008-0078-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2007] [Accepted: 12/25/2007] [Indexed: 11/26/2022]
|
37
|
Zhang B, Ren J, Yan X, Huang X, Ji H, Peng Q, Zhang Z, Huang L. Investigation of the porcine MUC13 gene: isolation, expression, polymorphisms and strong association with susceptibility to enterotoxigenic Escherichia coli F4ab/ac. Anim Genet 2008; 39:258-66. [DOI: 10.1111/j.1365-2052.2008.01721.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
38
|
Comparison of the contributions of heat-labile enterotoxin and heat-stable enterotoxin b to the virulence of enterotoxigenic Escherichia coli in F4ac receptor-positive young pigs. Infect Immun 2008; 76:3141-9. [PMID: 18426880 DOI: 10.1128/iai.01743-07] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In swine, the most common and severe enterotoxigenic Escherichia coli (ETEC) infections are caused by strains that express K88 (F4)(+) fimbriae, heat-labile enterotoxin (LT), heat-stable enterotoxin b (STb), and enteroaggregative E. coli heat-stable toxin 1. Previous studies based on a design that involved enterotoxin genes cloned into a nontoxigenic fimbriated strain have suggested that LT but not STb plays an important role in dehydrating diarrheal disease in piglets <1 week old and also enhances bacterial colonization of the intestine. In the present study, we compared these two toxins in terms of importance for piglets >1 week old with a study design that involved construction of isogenic single- and double-deletion mutants and inoculation of 9-day-old F4ac receptor-positive gnotobiotic piglets. Based on the postinoculation percent weight change per h and serum bicarbonate concentrations, the virulence of the STb(-) mutant (Delta estB) did not significantly differ from that of the parent. However, deletion of the LT genes (Delta eltAB) in the STb(-) mutant resulted in a complete abrogation of weight loss, dehydration, and metabolic acidosis in inoculated pigs, and LT complementation restored the virulence of this strain. These results support the hypothesis that LT is a more significant contributor than STb to the virulence of F4(+) ETEC infections in young F4ac receptor-positive pigs less than 2 weeks old. However, in contrast to previous studies with gnotobiotic piglets, there was no evidence that the expression of LT enhanced the ability of the F4(+) ETEC strain to colonize the small intestine.
Collapse
|
39
|
Koh SY, George S, Brözel V, Moxley R, Francis D, Kaushik RS. Porcine intestinal epithelial cell lines as a new in vitro model for studying adherence and pathogenesis of enterotoxigenic Escherichia coli. Vet Microbiol 2008; 130:191-7. [PMID: 18261863 DOI: 10.1016/j.vetmic.2007.12.018] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2007] [Revised: 12/08/2007] [Accepted: 12/10/2007] [Indexed: 11/18/2022]
Abstract
Enterotoxigenic Escherichia coli (ETEC) infections result in large economic losses in the swine industry worldwide. The organism causes diarrhea by adhering to and colonizing enterocytes in the small intestines. While much progress has been made in understanding the pathogenesis of ETEC, no homologous intestinal epithelial cultures suitable for studying porcine ETEC pathogenesis have been described prior to this report. In the current study, we investigated the adherence of various porcine ETEC strains to two porcine (IPEC-1 and IPEC-J2) and one human (INT-407) small intestinal epithelial cell lines. Each cell line was assessed for its ability to support the adherence of E. coli expressing fimbrial adhesins K88ab, K88ac, K88ad, K99, F41, 987P, and F18. Wild-type ETEC expressing K88ab, K88ac, and K88ad efficiently bound to both IPEC-1 and IPEC-J2 cells. An ETEC strain expressing both K99 and F41 bound heavily to both porcine cell lines but an E. coli strain expressing only K99 bound very poorly to these cells. E. coli expressing F18 adhesin strongly bound to IPEC-1 cells but did not adhere to IPEC-J2 cells. The E. coli strains G58-1 and 711 which express no fimbrial adhesins and those that express 987P fimbriae failed to bind to either porcine cell line. Only strains B41 and K12:K99 bound in abundance to INT-407 cells. The binding of porcine ETEC to IPEC-J2, IPEC-1 and INT-407 with varying affinities, together with lack of binding of 987P ETEC and non-fimbriated E. coli strains, suggests strain-specific E. coli binding to these cell lines. These findings suggest the potential usefulness of porcine intestinal cell lines for studying ETEC pathogenesis.
Collapse
Affiliation(s)
- Seung Y Koh
- Department of Veterinary Science, South Dakota State University, Brookings, SD 57007, USA
| | | | | | | | | | | |
Collapse
|
40
|
Peng QL, Ren J, Yan XM, Huang X, Tang H, Wang YZ, Zhang B, Huang LS. The g.243A>G mutation in intron 17 of MUC4 is significantly associated with susceptibility/resistance to ETEC F4ab/ac infection in pigs. Anim Genet 2007; 38:397-400. [PMID: 17559554 DOI: 10.1111/j.1365-2052.2007.01608.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Using a porcine radiation hybrid panel, we assigned the mucin 4 (MUC4) gene to SSC13q41, which harbours the enterotoxigenic Escherichia coli (ETEC) F4ab/ac receptor locus. In addition, we identified two SNPs in intron 17 of MUC4 (DQ124298:g.243A>G and DQ124298:g.334A>G) in the parental population of a White Duroc x Erhualian cross. Association analysis showed that the MUC4 g.243A>G mutation was strongly associated with ETEC F4ab/ac, and especially with F4ac adhesion phenotypes in the White Duroc x Erhualian resource population, indicating that this polymorphism was in a significant linkage disequlibrium with the ETEC F4ab/ac receptor locus. Because of different linkage disequlibrium values between the ETEC F4ab and F4ac adhesion phenotypes and the MUC4 g.243A>G mutation, we argue that the inheritance of F4ab and F4ac receptors might be under the control of two closely linked loci.
Collapse
Affiliation(s)
- Q-L Peng
- Key Laboratory for Animal Biotechnology of Jiangxi Province and the Ministry of Agriculture of China, Jiangxi Agricultural University, 330045, Nanchang, China
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Wang Y, Ren J, Lan L, Yan X, Huang X, Peng Q, Tang H, Zhang B, Ji H, Huang L. Characterization of polymorphisms of transferrin receptor and their association with susceptibility to ETEC F4ab/ac in pigs. J Anim Breed Genet 2007; 124:225-9. [PMID: 17651325 DOI: 10.1111/j.1439-0388.2007.00664.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Diarrhoea caused by enterotoxigenic Escherichia coli (ETEC) expressing F4 (F4ab, F4ac and F4ad) fimbriae is a significant cause of mortality and morbidity in newborn and weaned pigs. The locus controlling susceptibility towards ETEC F4ab/ac has been mapped to SSC13q41, in which TFRC (transferrin receptor) was localized and considered as a positional candidate gene for ETEC F4ab/ac receptor. In this study, we determined susceptibility/resistance to ETEC F4ab/ac in a total of 755 F2 animals from a White Duroc x Erhualian intercross using a microscopic enterocyte adhesion assay. We identified two TFRC polymorphisms (SNPs 591 A>G and 632 A>G) in a single exon after comparative sequencing analysis of 2371-bp amplicons containing the complete coding region of TFRC using RNA of eight full-sib F2 animals with susceptible and resistant phenotypes. The intron sequences flanking the two exon polymorphisms were obtained, revealing an intron polymorphism (SNP 291 C>T). We genotyped the 19 founder animals of the White Duroc x Erhualian intercross for the identified polymorphisms, showing that only the 291 C>T polymorphism is a highly informative marker. We further genotyped all 59 F1 and 755 F2 animals for the 291 C>T polymorphism, and the association of this polymorphism with susceptibility/resistance to ETEC F4ab/ac in these F2 animals was evaluated by the transmission disequilibrium test. The result showed that the 291 C>T polymorphism is not a causal mutation, however, has a significant linkage disequilibrium with the ETEC F4ab/ac, especially F4ac receptor locus.
Collapse
Affiliation(s)
- Y Wang
- Key Laboratory for Animal Biotechnology of Jiangxi Province and the Ministry of Agriculture of China, Jiangxi Agricultural University, Nanchang, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Lallès JP, Boudry G, Favier C, Sève B. High-viscosity carboxymethylcellulose reduces carbachol-stimulated intestinal chloride secretion in weaned piglets fed a diet based on skimmed milk powder and maltodextrin. Br J Nutr 2007; 95:488-95. [PMID: 16512934 DOI: 10.1079/bjn20051673] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
High-viscosity carboxymethylcellulose (CMC) promotes gastrointestinal disorders, tissue alterations and bacterial overgrowth in pigs. The impact of CMC on intestinal absorptive and secretory physiology is not known. We hypothesised that CMC consumption alters intestinal Na-dependent glucose absorption and stimulates electrogenic chloride secretion. For testing this hypothesis, twenty-four piglets were weaned at 21d of age and pair-fed for 13d a starter diet based on skimmed milk powder and maltodextrin containing cellulose (control) or CMC. Body weight and faecal total aerobe and coliform counts were measured kinetically. At slaughter, digesta were weighed and characterised for viscosity and pH. Gastrointestinal tissues were weighed and sampled for physiology in Ussing chambers, morphometry and enzymology. Glucose absorption tended to be higher (P=0·08) and carbachol-stimulated chloride secretion was lower (P=0·01) with CMC in the small intestine, without changes in the colon. Aerobes were transiently higher at day 7 (P<0·05) but coliform counts remained unchanged (P=0·78) and β-haemoliticEscherichia coliwere virtually absent. Stomach and small-intestinal segments were heavier, and viscosity higher with CMC (0·001<P<0·05). The pH in the stomach was higher, and in the caecum and proximal colon lower with CMC (0·001<P<0·05). Jejunal villus area was slightly reduced with CMC (P<0·05) without effects on enzyme activities (P>0·10). In conclusion, CMC supplementation had pro-absorptive effects on the small intestine, possibly due to the absence of pathogenicE. coliin the present study.
Collapse
Affiliation(s)
- Jean-Paul Lallès
- Unité Mixte de Recherche Systèmes d'Elevage, Nutrition Animale et Humaine (SENAH), INRA-Agrocampus Rennes, Domaine de la Prise, Saint-Gilles, France.
| | | | | | | |
Collapse
|
43
|
Geenen PL, Van der Meulen J, Bouma A, Engel B, Heesterbeek JAP, De Jong MCM. Classification of temporal profiles of F4+ E. coli shedding and faecal dry matter in experimental post-weaning diarrhoea of pigs. Epidemiol Infect 2006; 135:1001-9. [PMID: 17156498 PMCID: PMC2870645 DOI: 10.1017/s0950268806007588] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Enterotoxigenic F4+ Escherichia coli can colonize the intestine of pigs and cause diarrhoea. Our primary goal was to find a discriminant rule to discriminate between F4+ E. coli shedding profiles as this may reflect differences in the infectiousness of pigs. Our secondary goal was to find a discriminant rule to discriminate between diarrhoeic and non-diarrhoeic pigs. Repeated measurements (bacterial shedding and percentage dry matter of faeces) were taken of 74 weaned pigs that were infected experimentally with F4+ E. coli. These measurements were summarized into two new variables by means of a principal components analysis. Discriminant rules were derived based on these summary variables by fitting a mixture of normal distributions. Finally, the association between the classifications (as derived from the discriminant rules) and the occurrence in the pigs of the F4 receptor, an adhesion site for F4+ E. coli, was studied. We found that only the classification based on bacterial shedding allowed us to distinguish two significantly different groups of pigs (high and low shedders). Presence of the F4 receptor was associated strongly with pigs being high shedders.
Collapse
Affiliation(s)
- P L Geenen
- Infectious Diseases, Animal Sciences Group, Lelystad, The Netherlands.
| | | | | | | | | | | |
Collapse
|
44
|
Zhang W, Berberov EM, Freeling J, He D, Moxley RA, Francis DH. Significance of heat-stable and heat-labile enterotoxins in porcine colibacillosis in an additive model for pathogenicity studies. Infect Immun 2006; 74:3107-14. [PMID: 16714538 PMCID: PMC1479275 DOI: 10.1128/iai.01338-05] [Citation(s) in RCA: 97] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Although heat-stable (ST) and heat-labile (LT) enterotoxins produced by enterotoxigenic Escherichia coli (ETEC) have been documented as important factors associated with diarrheal diseases, investigations assessing the contributions of individual enterotoxins to the pathogenesis of E. coli infection have been limited. To address the individual roles of enterotoxins in the diarrheal disease caused by K88-positive ETEC in young pigs, enterotoxin-positive and -negative isogenic E. coli strains were constructed by using pBR322 to clone and express LT and STb. Four strains, K88+ astA, K88+ astA/pBR322, K88+ astA STb+, and K88+ astA LT+, were constructed and subsequently included in gnotobiotic piglet challenge studies, and their pathogenesis was assessed. The results indicated that all K88+ isogenic strains were able to colonize the small intestines of piglets exhibiting the K88 receptor. However, only LT- and STb-positive strains caused appreciable diarrhea. Piglets inoculated with the K88+ astA LT+ strain became dehydrated within 18 h, while those inoculated with the K88+ astA STb+ strain did not, although diarrhea developed in several piglets. The changes in the blood packed-cell volume and plasma total protein of gnotobiotic piglets inoculated with the LT-positive strains were significantly greater than those of pigs inoculated with the K88 astA/pBR322 strain (P = 0.012, P = 0.002). Immunochemistry image analysis also suggested that LT enhanced bacterial colonization in a gnotobiotic piglet model. This investigation suggested that LT is a major contributor to the virulence of K88+ ETEC and that isogenic constructs are a useful tool for studying the pathogenesis of ETEC infection.
Collapse
Affiliation(s)
- Weiping Zhang
- Veterinary Science Department, Box 2157, South Dakota State University, Brookings, SD 57006, USA
| | | | | | | | | | | |
Collapse
|
45
|
Python P, Jörg H, Neuenschwander S, Asai-Coakwell M, Hagger C, Bürgi E, Bertschinger HU, Stranzinger G, Vögeli P. Inheritance of the F4ab, F4ac and F4ad E. coli receptors in swine and examination of four candidate genes for F4acR. J Anim Breed Genet 2005; 122 Suppl 1:5-14. [PMID: 16130451 DOI: 10.1111/j.1439-0388.2005.00490.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Susceptibility to enterotoxigenic Escherichia coli with fimbriae F4ac is dominantly inherited in the pig. A three-generation pedigree was created to refine the position of F4acR on chromosome 13 comprising 202 pigs: eight parents, 18 F1 and 176 F2 pigs. The 17-point analysis indicates that F4acR lies between Sw207 and S0283. Recombinant offspring specify that the most probable order is Sw207-S0075-F4acR-Sw225-S0283. We observed six phenotypes for the three fimbrial variants F4ab, F4ac and F4ad. The two missing phenotypes F4abR-/F4acR+/F4adR+ and F4abR-/F4acR+/F4adR- indicate that pigs susceptible to F4ac are always susceptible to F4ab. Furthermore, a weak and a strong adhesion of F4ab and F4ad bacteria was observed. The weak receptor F4abR (F4abRw) was present only in pigs devoid of the receptor F4acR (F4abR+/F4acR-). In contrast, in pigs with the phenotype F4abR+/F4acR+, F4ab bacteria adhered to the majority of enterocytes. F4abRw constitutes a frequently observed phenotype whose inheritance is still unclear. Strong adhesion of F4ab and F4ac bacteria is most likely influenced by the same receptor that we name F4bcR. The number of F4ad bacteria that adhered to enterocytes was very variable in the adhesion test. Moreover, expression of F4adR was independent of age. Our segregation analyses indicated a dominant inheritance of F4adR, although the number of susceptible pigs was smaller than expected. We examined four genes as candidates for the F4acR locus: the transferrin receptor gene (TFRC) and three genes members of the glucosyl/galactosyltransferase family (B3GnT5, B3GALT3 and B4GALT4). Comparison of sequences from resistant and homozygous susceptible F4ac pigs did not reveal any causative single nucleotide polymorphism in the four genes. Two silent mutations at the positions 295 (C/T) and 313 (T/C) in B3GALT3 were found. Using the somatic cell hybrid panel, B3GnT5 and B3GALT3 were assigned to the chromosomal region SSC13q23-q41. No mutations were found in the cDNA sequences of these genes associated with the F4acR genotypes.
Collapse
Affiliation(s)
- P Python
- Institute of Animal Sciences, Swiss Federal Institute of Technology, ETH-Zentrum, Zurich, Switzerland
| | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Fairbrother JM, Nadeau E, Gyles CL. Escherichia coli in postweaning diarrhea in pigs: an update on bacterial types, pathogenesis, and prevention strategies. Anim Health Res Rev 2005; 6:17-39. [PMID: 16164007 DOI: 10.1079/ahr2005105] [Citation(s) in RCA: 620] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Escherichia coli is one of the most important causes of postweaning diarrhea in pigs. This diarrhea is responsible for economic losses due to mortality, morbidity, decreased growth rate, and cost of medication. The E. coli causing postweaning diarrhea mostly carry the F4 (K88) or the F18 adhesin. Recently, an increase in incidence of outbreaks of severe E. coli-associated diarrhea has been observed worldwide. The factors contributing to the increased number of outbreaks of this more severe form of E. coli-associated diarrhea are not yet fully understood. These could include the emergence of more virulent E. coli clones, such as the 0149:LT:STa:STb:EAST1:F4ac, or recent changes in the management of pigs. Development of multiple bacterial resistance to a wide range of commonly used antibiotics and a recent increase in the prevalence and severity of the postweaning syndromes will necessitate the use of alternative measures for their control. New vaccination strategies include the oral immunization of piglets with live avirulent E. coli strains carrying the fimbrial adhesins or oral administration of purified F4 (K88) fimbriae. Other approaches to control this disease include supplementation of the feed with egg yolk antibodies from chickens immunized with F4 or F18 adhesins, breeding of F18- and F4-resistant animals, supplementation with zinc and/ or spray-dried plasma, dietary acidification, phage therapy, or the use of probiotics. To date, not a single strategy has proved to be totally effective and it is probable that the most successful approach on a particular farm will involve a combination of diet modification and other preventive measures.
Collapse
Affiliation(s)
- John M Fairbrother
- The Escherichia coli Laboratory, Faculté de Médecine Vétérinaire, Université de Montréal, 3200 Sicotte, Saint-Hyacinthe, QC, Canada J2S 2M2.
| | | | | |
Collapse
|
47
|
Verdonck F, Cox E, Goddeeris BM. F4 fimbriae expressed by porcine enterotoxigenic Escherichia coli, an example of an eccentric fimbrial system? J Mol Microbiol Biotechnol 2004; 7:155-69. [PMID: 15383714 DOI: 10.1159/000079825] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
An overwhelming number of infectious diseases in both humans and animals are initiated by bacterial adhesion to carbohydrate structures on a mucosal surface. Most bacterial pathogens mediate this adhesion by fimbriae or pili which contain an adhesive lectin subunit. The importance of fimbriae as virulence factors led to research elucidating the regulation of fimbrial expression and their molecular assembly process. This review provides an overview of the current knowledge of induction, expression and assembly of F4 (K88) fimbriae and discusses its unique as well as its identical characteristics compared to other intensively studied fimbriae or pili expressed by Escherichia coli.
Collapse
Affiliation(s)
- F Verdonck
- Laboratory of Veterinary Immunology, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium.
| | | | | |
Collapse
|
48
|
Berberov EM, Zhou Y, Francis DH, Scott MA, Kachman SD, Moxley RA. Relative importance of heat-labile enterotoxin in the causation of severe diarrheal disease in the gnotobiotic piglet model by a strain of enterotoxigenic Escherichia coli that produces multiple enterotoxins. Infect Immun 2004; 72:3914-24. [PMID: 15213135 PMCID: PMC427467 DOI: 10.1128/iai.72.7.3914-3924.2004] [Citation(s) in RCA: 103] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Enterotoxigenic Escherichia coli (ETEC) strains that produce multiple enterotoxins are important causes of severe dehydrating diarrhea in human beings and animals, but the relative importance of these enterotoxins in the pathogenesis is poorly understood. Gnotobiotic piglets were used to study the importance of heat-labile enterotoxin (LT) in infection with an ETEC strain that produces multiple enterotoxins. LT(-) (DeltaeltAB) and complemented mutants of an F4(+) LT(+) STb(+) EAST1(+) ETEC strain were constructed, and the virulence of these strains was compared in gnotobiotic piglets expressing receptors for F4(+) fimbria. Sixty percent of the piglets inoculated with the LT(-) mutant developed severe dehydrating diarrhea and septicemia compared to 100% of those inoculated with the nalidixic acid-resistant (Nal(r)) parent and 100% of those inoculated with the complemented mutant strain. Compared to piglets inoculated with the Nal(r) parent, the mean rate of weight loss (percent per hour) of those inoculated with the LT(-) mutant was 67% lower (P < 0.05) and that of those inoculated with the complemented strain was 36% higher (P < 0.001). Similarly, piglets inoculated with the LT(-) mutant had significant reductions in the mean bacterial colony count (CFU per gram) in the ileum; bacterial colonization scores (square millimeters) in the jejunum and ileum; and clinical pathology parameters of dehydration, electrolyte imbalance, and metabolic acidosis (P < 0.05). These results indicate the significance of LT to the development of severe dehydrating diarrhea and postdiarrheal septicemia in ETEC infections of swine and demonstrate that EAST1, LT, and STb may be concurrently expressed by porcine ETEC strains.
Collapse
Affiliation(s)
- Emil M Berberov
- 111 Veterinary Basic Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583-0905, USA
| | | | | | | | | | | |
Collapse
|
49
|
Verdonck F, Cox E, Vancaeneghem S, Goddeeris BM. The interaction of F4 fimbriae with porcine enterocytes as analysed by surface plasmon resonance. ACTA ACUST UNITED AC 2004; 41:243-8. [PMID: 15196574 DOI: 10.1016/j.femsim.2004.03.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2004] [Revised: 03/12/2004] [Accepted: 03/22/2004] [Indexed: 11/18/2022]
Abstract
Fimbriae often play a prominent role in anchoring bacterial cells to host tissue and mediate the first step in pathogenesis. As a consequence, there is a continuous development of new strategies to block the binding of fimbriae to their specific receptor on host cells. The present study demonstrates the specific interaction of F4 (K88) fimbriae and porcine enterocytes using a real-time biomolecular interaction analysis system (BIAcore 3000), based on the principles of surface plasmon resonance (SPR). This method offers new opportunities to screen therapeutics for prevention of adhesion and subsequent disease without receptor purification.
Collapse
Affiliation(s)
- Frank Verdonck
- Laboratory of Veterinary Immunology, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, B-9820 Merelbeke, Belgium.
| | | | | | | |
Collapse
|
50
|
Python P, Jörg H, Neuenschwander S, Hagger C, Stricker C, Bürgi E, Bertschinger HU, Stranzinger G, Vögeli P. Fine-mapping of the intestinal receptor locus for enterotoxigenic Escherichia coli F4ac on porcine chromosome 13. Anim Genet 2002; 33:441-7. [PMID: 12464019 DOI: 10.1046/j.1365-2052.2002.00915.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The aim of this study was to refine the localization of the receptor locus for fimbriae F4ac. Small intestinal enterocyte preparations from 187 pigs were phenotyped by an in vitro adhesion test using two strains of Escherichia coli representing the variants F4ab and F4ac. The three-generation pedigree comprised eight founders, 18 F1 and 174 F2 animals, for a total of 200 pigs available for the linkage analysis. Results of the adhesion tests on 171 F2 pigs slaughtered at 8 weeks of age show that 23.5% of the pigs were adhesive for F4ab and non-adhesive for F4ac (phenotype F4abR+/F4acR-; R means receptor). Pigs of this phenotype were characterized by a weak adhesion receptor for F4ab. No pigs were found expressing only F4acR and lacking F4abR. Receptors for F4ab and F4ac (F4abR+/F4acR+) were expressed by 54.5% of the pigs. Animals of this phenotype strongly bound both F4ab and F4ac E. coli. In the segregation study, the serum transferrin (TF) gene and 10 microsatellites on chromosome 13 were linked with F4acR (recombination fractions (theta) between 0.00 and 0.11 and lod score values (Z) between 11.4 and 40.4). The 11-point analysis indicates the F4acR locus was located in the interval S0068-Sw1030 close to S0075 and Sw225, with recombination fractions (theta) of 0.05 between F4acR and S0068, 0.04 with Sw1030, and 0.00 with S0075 and Sw225. The lack of pigs displaying the F4abR-/F4acR+ phenotype and the presence of two phenotypes for F4abR (a strong receptor present in phenotype F4abR+/F4acR+ and a weak receptor in phenotype F4abR+/F4acR-) led us to conclude that the receptor for F4ac binds F4ab bacteria as well, and that it is controlled by one gene localized between S0068 and Sw1030 on chromosome 13.
Collapse
Affiliation(s)
- P Python
- Institute of Animal Sciences, Swiss Federal Institute of Technology, ETH-Zentrum, Zurich, Switzerland
| | | | | | | | | | | | | | | | | |
Collapse
|