1
|
Lima E Silva MA, Lorca da Silva R, Teixeira TP, Rocha TL, Marcon M. Glucocorticoids as emerging pollutants in surface water: A systematic review on their global occurrence and distribution. ENVIRONMENTAL RESEARCH 2025; 273:121280. [PMID: 40032243 DOI: 10.1016/j.envres.2025.121280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 02/27/2025] [Accepted: 03/01/2025] [Indexed: 03/05/2025]
Abstract
Glucocorticoids (GCs) are synthetic drugs widely used for treating several diseases with inflammatory pathophysiology. In general, 1-20% of the concentration of GCs initially administered is eliminated unchanged in the urine while still in its active form, and therefore, fractions of GCs are constantly released in effluents. Currently, water treatment plants do not have sufficiently effective technologies to remove these substances completely, favoring the presence of these emerging pollutants in the effluents of wastewater treatment plants. In this context, we conduct a systematic review to identify studies that found GCs in surface water. The general data of the included studies, the GCs found and their concentration, the water body where the GCs were found, and the place and date of sampling were summarized. GCs have already been found in the surface water of 24 countries, mainly China, Malaysia, and the United States. Countries with the highest concentrations of GCs found in surface water were Mexico, India, and Brazil. Betamethasone, budesonide, corticosterone, cortisol, cortisone, dexamethasone, fludrocortisone, fluticasone, hydrocortisone, methylprednisolone, prednisolone, prednisone, and triamcinolone were reported at concentrations ranging from 0.00098 to 24760 ng/L, including in water for human consumption. Revised data showed that the real presence of these substances worldwide is still underestimated, requiring further studies to determine their real distribution. Furthermore, we believe that some strategies can be adopted to mitigate surface water contamination by GCs, such as the intensification of public programs about educational activities related to the rational use of medicines, and the urgent need to improve and expand the water treatment methods.
Collapse
Affiliation(s)
- Marco Antonio Lima E Silva
- Laboratório de Estudos Farmacológicos (LEF), Instituto de Ciências Biológicas e Naturais, Universidade Federal do Triângulo Mineiro (UFTM), Uberaba, MG, Brazil
| | - Rhitor Lorca da Silva
- Laboratório de Estudos Farmacológicos (LEF), Instituto de Ciências Biológicas e Naturais, Universidade Federal do Triângulo Mineiro (UFTM), Uberaba, MG, Brazil
| | - Tiago Porfírio Teixeira
- Laboratório de Estudos Farmacológicos (LEF), Instituto de Ciências Biológicas e Naturais, Universidade Federal do Triângulo Mineiro (UFTM), Uberaba, MG, Brazil
| | - Thiago Lopes Rocha
- Laboratório de Biotecnologia Ambiental e Ecotoxicologia (LaBAE), Instituto de Patologia Tropical e Saúde Publica, Universidade Federal de Goiás (UFG), Goiânia, GO, Brazil
| | - Matheus Marcon
- Laboratório de Estudos Farmacológicos (LEF), Instituto de Ciências Biológicas e Naturais, Universidade Federal do Triângulo Mineiro (UFTM), Uberaba, MG, Brazil; Laboratório de Zebrafish (ZebLab), Instituto de Ciências Biológicas e Naturais, Universidade Federal do Triângulo Mineiro (UFTM), Uberaba, MG, Brazil; Departamento de Bioquímica, Farmacologia e Fisiologia, Instituto de Ciências Biológicas e Naturais, Universidade Federal do Triângulo Mineiro (UFTM), Uberaba, MG, Brazil; Programa de Pós-graduação em Ciências da Saúde (PGCS), Instituto de Ciências da Saúde, Universidade Federal do Triângulo Mineiro (UFTM), Uberaba, MG, Brazil.
| |
Collapse
|
2
|
Maremane SR, Belle GN, Oberholster PJ, Omotola EO. Occurrence of selected Covid-19 drugs in surface water resources: a review of their sources, pathways, receptors, fate, ecotoxicity, and possible interactions with heavy metals in aquatic ecosystems. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2024; 47:3. [PMID: 39607624 PMCID: PMC11604763 DOI: 10.1007/s10653-024-02293-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Accepted: 10/29/2024] [Indexed: 11/29/2024]
Abstract
The outbreak of the coronavirus disease 2019 (Covid-19) led to the high consumption of antibiotics such as azithromycin as well as corticosteroids such as prednisone, prednisolone, and dexamethasone used to treat the disease. Seemingly, the concentrations of these four Covid-19 drugs increased in wastewater effluents and surface water resources. This is due to the failure of traditional wastewater treatment facilities (WWTFs) to eliminate pharmaceuticals from wastewater. Therefore, the objective of the current research was to review the present state of literature on the occurrence of four Covid-19 drugs in water resources, the associated risks and toxicity, their fate, as well as the emergence of combined pollutants of Covid-19 drugs and heavy metals. From late 2019 to date, azithromycin was observed at concentrations of 935 ng/L, prednisone at 433 ng/L, prednisolone at 0.66 ng/L, and dexamethasone at 360 ng/L, respectively, in surface water resources. These concentrations had increased substantially in water resources and were all attributed to pollution by wastewater effluents and the rise in Covid-?19 infections. This phenomenon was also exacerbated by the observation of the pseudo-persistence of Covid-19 drugs, long half-life periods, as well as the excretion of Covid-19 drugs from the human body with about 30?90% of the parent drug. Nonetheless, the aquatic and human health toxicity and risks of Covid-19 drugs in water resources are unknown as the concentrations are deemed too low; thus, neglecting the possible long-term effects. Also, the accumulation of Covid-19 drugs in water resources presents the possible development of combined pollutants of Covid-19 drugs and heavy metals that are yet to be investigated. The risks and toxicity of the combined pollutants, including the fate of the Covid-19 drugs in water resources remains a research gap that undoubtably needs to be investigated.
Collapse
Affiliation(s)
- S R Maremane
- Faculty of Natural and Agricultural Sciences, Centre for Environmental Management, University of the Free State, PO Box 339, Bloemfontein, 9300, South Africa.
| | - G N Belle
- Faculty of Natural and Agricultural Sciences, Centre for Environmental Management, University of the Free State, PO Box 339, Bloemfontein, 9300, South Africa
- Centre for Mineral Biogeochemistry, University of the Free State, Bloemfontein, South Africa
| | - P J Oberholster
- Faculty of Natural and Agricultural Sciences, Centre for Environmental Management, University of the Free State, PO Box 339, Bloemfontein, 9300, South Africa
| | - E O Omotola
- Department of Chemical Sciences, College of Science and Information Technology, Tai Solarin, University of Education, Ijebu-Ode, Lagos, Ogun State, Nigeria
| |
Collapse
|
3
|
Jagadeesan KK, Proctor K, Standerwick R, Barden R, Kasprzyk-Hordern B. Predicting pharmaceutical concentrations and assessing risks in the aquatic environment using PERK: A case study of a catchment area in South-West England. WATER RESEARCH 2024; 268:122643. [PMID: 39490089 DOI: 10.1016/j.watres.2024.122643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 10/14/2024] [Accepted: 10/15/2024] [Indexed: 11/05/2024]
Abstract
The aim of this study was to introduce a model to predict pharmaceuticals concentrations in the aquatic environment and their environmental impacts using the Risk Quotient (RQ) approach. The model was trained using: (i) high resolution dataset on pharmaceuticals' concentration in wastewater and receiving environment in a river catchment, (ii) understanding of pharmaceuticals' discharge points in the catchment, (iii) fate of pharmaceuticals during wastewater treatment and in the receiving environment, (iv) high resolution per-postcode pharmaceutical prescription data. A total of 41 pharmaceuticals were evaluated, with successful predictions achieved for concentrations falling within the range of 0.7 (influent: 37 %, effluent: 39 %, river: 29 %) to 1 % (influent: 56 %, effluent: 58 %, river: 48 %) of the measured values. Importantly, our risk assessment demonstrates significant environmental risks associated with specific pharmaceuticals, with strong alignment (86 %) between assessments based on predicted and measured data, underscoring the reliability of our model in assessing environmental risks. The observed variability in predicted and measured concentrations underscores the necessity for ongoing model refinement, particularly in regions with notable discrepancies such as wastewater treatment plant (WWTP) C. Overall, our study illustrates the intricate dynamics of pharmaceutical contamination in aquatic ecosystems, emphasizing the crucial need for continued research in this field.
Collapse
Affiliation(s)
- Kishore Kumar Jagadeesan
- Department of Chemistry, University of Bath, United Kingdom,; Centre of Excellence in Water Based Early Warning Systems for Health Protection, University of Bath, Bath, BA2 7AY, UK.
| | | | | | - Ruth Barden
- Wessex Water, Bath BA2 7WW, UK; Centre of Excellence in Water Based Early Warning Systems for Health Protection, University of Bath, Bath, BA2 7AY, UK
| | - Barbara Kasprzyk-Hordern
- Department of Chemistry, University of Bath, United Kingdom,; Centre of Excellence in Water Based Early Warning Systems for Health Protection, University of Bath, Bath, BA2 7AY, UK.
| |
Collapse
|
4
|
Earl K, Sleight H, Ashfield N, Boxall ABA. Are pharmaceutical residues in crops a threat to human health? JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2024; 87:773-791. [PMID: 38959023 DOI: 10.1080/15287394.2024.2371418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2024]
Abstract
The application of biosolids, manure, and slurry onto agricultural soils and the growing use of treated wastewater in agriculture result in the introduction of human and veterinary pharmaceuticals to the environment. Once in the soil environment, pharmaceuticals may be taken up by crops, resulting in consequent human exposure to pharmaceutical residues. The potential side effects of pharmaceuticals administered in human medicine are widely documented; however, far less is known regarding the risks that arise from incidental dietary exposure. The aim of this study was to evaluate human exposure to pharmaceutical residues in crops and assess the associated risk to health for a range of pharmaceuticals frequently detected in soils. Estimated concentrations of carbamazepine, oxytetracycline, sulfamethoxazole, trimethoprim, and tetracycline in soil were used in conjunction with plant uptake and crop consumption data to estimate daily exposures to each compound. Exposure concentrations were compared to Acceptable Daily Intakes (ADIs) to determine the level of risk. Generally, exposure concentrations were lower than ADIs. The exceptions were carbamazepine, and trimethoprim and sulfamethoxazole under conservative, worst-case scenarios, where a potential risk to human health was predicted. Future research therefore needs to prioritize investigation into the health effects following exposure to these compounds from consumption of contaminated crops.
Collapse
Affiliation(s)
- Kirsten Earl
- Department of Environment and Geography, University of York, York, Heslington, UK
| | - Harriet Sleight
- Department of Environment and Geography, University of York, York, Heslington, UK
| | - Nahum Ashfield
- Department of Environment and Geography, University of York, York, Heslington, UK
| | - Alistair B A Boxall
- Department of Environment and Geography, University of York, York, Heslington, UK
| |
Collapse
|
5
|
Marumure J, Simbanegavi TT, Makuvara Z, Karidzagundi R, Alufasi R, Goredema M, Gufe C, Chaukura N, Halabowski D, Gwenzi W. Emerging organic contaminants in drinking water systems: Human intake, emerging health risks, and future research directions. CHEMOSPHERE 2024; 356:141699. [PMID: 38554874 DOI: 10.1016/j.chemosphere.2024.141699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 02/24/2024] [Accepted: 03/11/2024] [Indexed: 04/02/2024]
Abstract
Few earlier reviews on emerging organic contaminants (EOCs) in drinking water systems (DWS) focused on their detection, behaviour, removal and fate. Reviews on multiple exposure pathways, human intake estimates, and health risks including toxicokinetics, and toxicodynamics of EOCs in DWS are scarce. This review presents recent advances in human intake and health risks of EOCs in DWS. First, an overview of the evidence showing that DWS harbours a wide range of EOCs is presented. Multiple human exposure to EOCs occurs via ingestion of drinking water and beverages, inhalation and dermal pathways are discussed. A potential novel exposure may occur via the intravenous route in dialysis fluids. Analysis of global data on pharmaceutical pollution in rivers showed that the cumulative concentrations (μg L-1) of pharmaceuticals (mean ± standard error of the mean) were statistically more than two times significantly higher (p = 0.011) in South America (11.68 ± 5.29), Asia (9.97 ± 3.33), Africa (9.48 ± 2.81) and East Europe (8.09 ± 4.35) than in high-income regions (2.58 ± 0.48). Maximum cumulative concentrations of pharmaceuticals (μg L-1) decreased in the order; Asia (70.7) had the highest value followed by South America (68.8), Africa (51.3), East Europe (32.0) and high-income regions (17.1) had the least concentration. The corresponding human intake via ingestion of untreated river water was also significantly higher in low- and middle-income regions than in their high-income counterparts. For each region, the daily intake of pharmaceuticals was highest in infants, followed by children and then adults. A critique of the human health hazards, including toxicokinetics and toxicodynamics of EOCs is presented. Emerging health hazards of EOCs in DWS include; (1) long-term latent and intergenerational effects, (2) the interactive health effects of EOC mixtures, (3) the challenges of multifinality and equifinality, and (4) the Developmental Origins of Health and Disease hypothesis. Finally, research needs on human health hazards of EOCs in DWS are presented.
Collapse
Affiliation(s)
- Jerikias Marumure
- Department of Physics, Geography and Environmental Science, School of Natural Sciences, Great Zimbabwe University, Masvingo, Zimbabwe; Department of Life and Consumer Sciences, School of Agriculture and Life Sciences, College of Agriculture and Environmental Sciences, University of South Africa, South Africa
| | - Tinoziva T Simbanegavi
- Department of Soil Science and Environment, Faculty of Agriculture, Environment, and Food Systems, University of Zimbabwe, P. O. Box MP 167, Mount Pleasant, Harare, Zimbabwe
| | - Zakio Makuvara
- Department of Physics, Geography and Environmental Science, School of Natural Sciences, Great Zimbabwe University, Masvingo, Zimbabwe; Department of Life and Consumer Sciences, School of Agriculture and Life Sciences, College of Agriculture and Environmental Sciences, University of South Africa, South Africa
| | - Rangarirayi Karidzagundi
- Materials Development Unit, Zimbabwe Open University, P.O. Box MP1119 Mount Pleasant, Harare, Zimbabwe
| | - Richwell Alufasi
- Biological Sciences Department, Bindura University of Science Education, 741 Chimurenga Road, Off Trojan Road, P. Bag 1020, Bindura, Zimbabwe
| | - Marvelous Goredema
- Biological Sciences Department, Bindura University of Science Education, 741 Chimurenga Road, Off Trojan Road, P. Bag 1020, Bindura, Zimbabwe
| | - Claudious Gufe
- Department of Veterinary Technical Services, Central Veterinary Laboratories, Box CY55, 18A Borrowdale Road, Harare, Zimbabwe
| | - Nhamo Chaukura
- Department of Physical and Earth Sciences, Sol Plaatje University, Kimberley, 8301, South Africa
| | - Dariusz Halabowski
- University of Lodz, Faculty of Biology and Environmental Protection, Department of Ecology and Vertebrate Zoology, Lodz, Poland
| | - Willis Gwenzi
- Currently: Biosystems and Environmental Engineering Research Group, 380, New Adylin, Westgate, Harare, Zimbabwe; Formerly: Alexander von Humboldt Fellow & Guest/Visiting Professor, Grassland Science and Renewable Plant Resources, Faculty of Organic Agricultural Sciences, Universität Kassel, Steinstraße 19, D-37213, Witzenhausen, Germany; Formerly: Alexander von Humboldt Fellow and Guest Professor, Leibniz-Institut für Agrartechnik und Bioökonomie e.V. (ATB), Max-Eyth-Allee 100, D-14469 Potsdam, Germany.
| |
Collapse
|
6
|
Mukherjee J, Lodh BK, Sharma R, Mahata N, Shah MP, Mandal S, Ghanta S, Bhunia B. Advanced oxidation process for the treatment of industrial wastewater: A review on strategies, mechanisms, bottlenecks and prospects. CHEMOSPHERE 2023; 345:140473. [PMID: 37866496 DOI: 10.1016/j.chemosphere.2023.140473] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 10/15/2023] [Accepted: 10/16/2023] [Indexed: 10/24/2023]
Abstract
Due to its complex and, often, highly contaminated nature, treating industrial wastewater poses a significant environmental problem. Many of the persistent pollutants found in industrial effluents cannot be effectively removed by conventional treatment procedures. Advanced Oxidation Processes (AOPs) have emerged as a promising solution, offering versatile and effective means of pollutant removal and mineralization. This comprehensive review explores the application of various AOP strategies in industrial wastewater treatment, focusing on their mechanisms and effectiveness. Ozonation (O3): Ozonation, leveraging ozone (O3), represents a well-established AOP for industrial waste water treatment. Ozone's formidable oxidative potential enables the breakdown of a broad spectrum of organic and inorganic contaminants. This paper provides an in-depth examination of ozone reactions, practical applications, and considerations involved in implementing ozonation. UV/Hydrogen Peroxide (UV/H2O2): The combination of ultraviolet (UV) light and hydrogen peroxide (H2O2) has gained prominence as an AOP due to its ability to generate hydroxyl radicals (ȮH), highly efficient in pollutant degradation. The review explores factors influencing the efficiency of UV/H2O2 processes, including H2O2 dosage and UV radiation intensity. Fenton and Photo-Fenton Processes: Fenton's reagent and Photo-Fenton processes employ iron ions and hydrogen peroxide to generate hydroxyl radicals for pollutant oxidation. The paper delves into the mechanisms, catalyst selection, and the role of photoactivation in enhancing degradation rates within the context of industrial wastewater treatment. Electrochemical Advanced Oxidation Processes (EAOPs): EAOPs encompass a range of techniques, such as electro-Fenton and anodic oxidation, which employ electrode reactions to produce ȮH radicals. This review explores the electrochemical principles, electrode materials, and operational parameters critical for optimizing EAOPs in industrial wastewater treatment. TiO2 Photocatalysis (UV/TiO2): Titanium dioxide (TiO2) photocatalysis, driven by UV light, is examined for its potential in industrial wastewater treatment. The review investigates TiO2 catalyst properties, reaction mechanisms, and the influence of parameters like catalyst loading and UV intensity on pollutant removal. Sonolysis (Ultrasonic Irradiation): High-frequency ultrasound-induced sonolysis represents a unique AOP, generating ȮH radicals during the formation and collapse of cavitation bubbles. This paper delves into the physics of cavitation, sonolytic reactions, and optimization strategies for industrial wastewater treatment. This review offers a critical assessment of the applicability, advantages, and limitations of these AOP strategies in addressing the diverse challenges posed by industrial wastewater. It emphasizes the importance of selecting AOPs tailored to the specific characteristics of industrial effluents and outlines potential directions for future research and practical implementation. The integrated use of these AOPs, when appropriately adapted, holds the potential to achieve sustainable and efficient treatment of industrial wastewater, contributing significantly to environmental preservation and regulatory compliance.
Collapse
Affiliation(s)
- Jayanti Mukherjee
- Department of Pharmaceutical Chemistry, CMR College of Pharmacy, Affiliated to Jawaharlal Nehru Technological University Hyderabad, Hyderabad, Telangana, 501401, India.
| | - Bibhab Kumar Lodh
- Department of Chemical Engineering, National Institute of Technology, Agartala, 799046, India.
| | - Ramesh Sharma
- Bioproducts Processing Research Laboratory (BPRL), Department of Bio Engineering, National Institute of Technology, Agartala, 799046, India.
| | - Nibedita Mahata
- Department of Biotechnology, National Institute of Technology Durgapur, Durgapur, 713209, India.
| | - Maulin P Shah
- Industrial Wastewater Research Lab, Division of Applied & Environmental Microbiology, Enviro Technology Limited, Ankleshwar, Gujarat, India.
| | - Subhasis Mandal
- Department of Chemical Engineering, National Institute of Technology Calicut, Kozhikode, 673 601, India.
| | - Susanta Ghanta
- Department of Chemistry, National Institute of Technology, Agartala, 799046, India.
| | - Biswanath Bhunia
- Bioproducts Processing Research Laboratory (BPRL), Department of Bio Engineering, National Institute of Technology, Agartala, 799046, India.
| |
Collapse
|
7
|
Zhongguan H, Qiang Z, Zhang G, Nadeem A, Sen L, Ge Y. Cost-effective one-spot hydrothermal synthesis of graphene oxide nanoparticles for wastewater remediation: AI-enhanced approach for transition metal oxides. CHEMOSPHERE 2023:139064. [PMID: 37321457 DOI: 10.1016/j.chemosphere.2023.139064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 05/10/2023] [Accepted: 05/26/2023] [Indexed: 06/17/2023]
Abstract
This investigation presents a cost-efficient hydrothermal synthesis technique for producing graphene oxide nanoparticles (GO-NPs) that exhibit promising potential in wastewater treatment. The synthesis process involves a facile and expandable hydrothermal reactor that can be regulated using an AI-empowered methodology. The generated GO-NPs were characterised using X-ray diffraction (XRD), Fourier-transform infrared (FTIR) spectroscopy, Raman spectroscopy, and transmission electron microscopy (TEM), confirming their successful synthesis and high quality. The high degree of crystallinity observed in the GO-NPs can be attributed to the favourable reaction conditions facilitated by the hydrothermal synthesis. The TEM analysis showed that the GO-NPs had a homogeneous dispersion pattern and a consistent size distribution of approximately 10 nm. Carboxylation was employed to functionalize the GO-NPs, enhancing their reactivity towards diverse contaminants present in wastewater. The remediation potential of the GO-NPs for transition metal oxides, which are frequently found in wastewater, was assessed. The GO-NPs exhibited notable efficacy in remediating the transition metal oxides that were subjected to testing. The heightened efficacy of remediation can be attributed to the substantial surface area and elevated reactivity of the GO-NPs, in addition to their functionalization using carboxylic groups. The cost-effective and efficient synthesis method, coupled with the high remediation potential of the GO-NPs, makes them a highly promising contender for employment in wastewater remediation applications. The use of AI in regulating the hydrothermal synthesis procedure enables accurate manipulation of the reaction parameters, thereby augmenting the quality and uniformity of the resultant GO-NPs. The proposed method exhibits scalability potential for large-scale production of GO-NPs, presenting a viable remedy for the challenges associated with wastewater remediation.
Collapse
Affiliation(s)
| | - Zhou Qiang
- Wenzhou Medical University, Ouhai District, Wenzhou, 325015, China
| | - Guodao Zhang
- Hangzhou Dianzi University, Hangzhou, Zhejiang, 310005, China
| | | | - Lin Sen
- Wenzhou Medical University, Ouhai District, Wenzhou, 325015, China
| | - Yisu Ge
- Wenzhou Medical University, Ouhai District, Wenzhou, 325015, China.
| |
Collapse
|
8
|
Korkmaz NE, Caglar NB, Aksu A, Unsal T, Balcıoglu EB, Cavus Arslan H, Demirel N. Occurrence, bioconcentration, and human health risks of pharmaceuticals in biota in the Sea of Marmara, Türkiye. CHEMOSPHERE 2023; 325:138296. [PMID: 36898445 DOI: 10.1016/j.chemosphere.2023.138296] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 03/01/2023] [Accepted: 03/02/2023] [Indexed: 06/18/2023]
Abstract
The presence, bioconcentration, and health risk via seafood consumption of 11 pharmaceutical compounds belonging to different therapeutic groups (anti-inflammatory, antiepileptic, lipid regulators, and hormones) were investigated in the muscle tissues of fish and the meat of shrimp in the Sea of Marmara. Six biota species (Merlangius merlangus, Trachurus meditterraneus, Serranus hepatus, Pomatomus saltatrix, Parapenaeus longirostris, Spratus sprattus) were collected from the five stations in October and April 2019. Ultrasonic extraction method followed by solid phase extraction was used for extraction of pharmaceutical compounds from biota samples and then analyzed using high-performance liquid chromatography. Of the 11 compounds, 10 were detected in biota species. Ibuprofen was the most frequently detected pharmaceutical in the biota tissues at high concentrations (<3.0-1225 ng/g, dw). The other widely detected compounds were fenoprofen (<3.6-323 ng/g, dw), gemfibrozil (<3.2-480 ng/g, dw), 17α-ethynylestradiol (<2.0-462 ng/g, dw), and carbamazepine (<7.6-222 ng/g, dw). The bioconcentration factors of the selected pharmaceuticals calculated in various aquatic organisms ranged from 9 to 2324 L/kg. The estimated daily intakes of anti-inflammatories, antiepileptics, lipid regulators, and hormones via seafood consumption were 0.37-568, 1.1-324, 8.5-197, 3-340 ng/kg bw. Day, respectively. Based on hazard quotients, estrone, 17β-estradiol, and 17α-ethynylestradiol may pose a health risk to humans through the consumption of this seafood.
Collapse
Affiliation(s)
- Nagihan E Korkmaz
- Istanbul University, Institute of Marine Sciences and Management, Department of Chemical Oceanography, Istanbul, Turkey
| | - Nuray Balkis Caglar
- Istanbul University, Institute of Marine Sciences and Management, Department of Chemical Oceanography, Istanbul, Turkey.
| | - Abdullah Aksu
- Istanbul University, Institute of Marine Sciences and Management, Department of Chemical Oceanography, Istanbul, Turkey
| | - Tuba Unsal
- Istanbul University, Institute of Marine Sciences and Management, Department of Chemical Oceanography, Istanbul, Turkey
| | - Esra Billur Balcıoglu
- Istanbul University, Institute of Marine Sciences and Management, Department of Chemical Oceanography, Istanbul, Turkey
| | - Hande Cavus Arslan
- Halic University, Department of Industrial Engineering, Istanbul, Turkey
| | - Nazli Demirel
- Istanbul University, Institute of Marine Sciences and Management, Department of Physical Oceanography and Marine Biology, Istanbul, Turkey
| |
Collapse
|
9
|
Jagadeesan KK, Barden R, Kasprzyk-Hordern B. PERK: An R/Shiny application to predict and visualise concentrations of pharmaceuticals in the aqueous environment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 875:162352. [PMID: 36822428 DOI: 10.1016/j.scitotenv.2023.162352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 02/13/2023] [Accepted: 02/16/2023] [Indexed: 06/18/2023]
Abstract
Predicting the concentration of active pharmaceuticals ingredients (API) in the environment using modelling approaches is an important aspect in the assessment of their environmental risk, especially for the API with no or limited analytical detection methods. However, handling, validating, and incorporating diverse datasets, including API prescription/consumption data, metabolism, flow data, removal efficiency during wastewater treatment, and dilution factor for the modelling is often laborious and time-consuming. The aim of this manuscript is to evaluate R/Shiny based tool, PERK, to facilitate automated modelling and reporting predicted environmental concentration (PEC) of a comprehensive set of API in different environmental matrices. PERK helped to calculate PEC in wastewater influent, effluent, and river, and compare with measured environmental concentrations (MEC) for five catchments located in England. Prediction accuracy (PA), the ratio between PEC and MEC, can be also generated with the tool. PERK provides consistent interactive user-interface, enabling user to visualise the results with limited programming knowledge.
Collapse
Affiliation(s)
- Kishore Kumar Jagadeesan
- Environmental Chemistry & Public Health Research Group, Department of Chemistry, University of Bath, UK.
| | | | - Barbara Kasprzyk-Hordern
- Environmental Chemistry & Public Health Research Group, Department of Chemistry, University of Bath, UK
| |
Collapse
|
10
|
Suk M, Kümmerer K. Environmental degradation of human metabolites of cyclophosphamide leads to toxic and non-biodegradable transformation products. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 857:159454. [PMID: 36252658 DOI: 10.1016/j.scitotenv.2022.159454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 09/25/2022] [Accepted: 10/11/2022] [Indexed: 06/16/2023]
Abstract
The present study assessed the ready biodegradability of the prodrug cyclophosphamide (CPA) and its stable human metabolites in the closed bottle test (CBT). The results of the CBT showed that only the main human metabolite, carboxyphosphamide (CXP), was biodegradable to a certain extent (23 ± 2.4 % ThODNH3). All other metabolites showed neither biodegradation under these conditions nor were any toxic effects on the inoculum observed. Yet, HRMSn results revealed partial primary elimination of all human metabolites and formation of 25 new transformation products. Abiotic degradation via SNi and SN2 reactions was proposed as the main degradation pathway during the CBT. The main degradation products were assigned as 3-(2-chloroethyl)oxazolidin-2-one (COAZ), cytotoxic N-2-chloroethylaziridine (CEZ) and nor‑nitrogen mustard (NNM), an analogue of the chemical warfare agent HN2. While the acute ecotoxicity of the detected products is widely unknown, many have already been reported in medical literature to be either mutagenic, genotoxic, cytotoxic or carcinogenic and may therefore cause a greater risk than their precursors. QSAR models predicted that 16 of them are mutagenic and genotoxic, thus classifying the majority of the chemicals as potential environmental hazards. The central intermediates during the degradation process were proposed as CEZ and its corresponding aziridinium ion. However, other degradation products may occur depending on the type and strength of nucleophiles present in the matrices. Overall, the results demonstrated the importance to include human metabolites in the evaluation of the environmental fate of pharmaceuticals and their risk assessment especially when investigating prodrugs. The results underline the importance of identifying possible degradation products of metabolites, as they can be more toxic than related parent compounds and metabolites and can cause a greater risk to the environment and humans.
Collapse
Affiliation(s)
- Morten Suk
- Institute of Sustainable Chemistry, Leuphana University of Lüneburg, 21335 Lüneburg, Germany
| | - Klaus Kümmerer
- Institute of Sustainable Chemistry, Leuphana University of Lüneburg, 21335 Lüneburg, Germany.
| |
Collapse
|
11
|
Amarzadeh M, Salehizadeh S, Damavandi S, Mubarak NM, Ghahrchi M, Ramavandi B, Shahamat YD, Nasseh N. Statistical modeling optimization for antibiotics decomposition by ultrasound/electro-Fenton integrated process: Non-carcinogenic risk assessment of drinking water. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 324:116333. [PMID: 36208514 DOI: 10.1016/j.jenvman.2022.116333] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 09/17/2022] [Accepted: 09/17/2022] [Indexed: 06/16/2023]
Abstract
The present work proposes an ultrasound (US) assisted electro-Fenton (EF) process for eliminating penicillin G (PNG) and ciprofloxacin (CIP) from aqueous solutions and the process was further optimized by response surface methodology (RSM)- Box-Behnken design (BBD). The impact of pH, hydrogen peroxide (H2O2) concentration, applied voltage, initial pollutant concentration, and operating time were studied. The capability application of the electro-Fenton (EF) and US processes was compared separately and in combination under the optimum conditions of pH of 4, a voltage of 15 V, the initial antibiotic concentration of 20.7 mg/L, H2O2 concentration of 0.8 mg/L, and the operating time of 75 min. The removal efficiency of PNG and CIP using the sono-electro-Fenton (SEF) process, as the results revealed, was approximately 96% and 98%, respectively. The experiments on two scavengers demonstrated that ⦁OH contributes significantly to the CIP and PNG degradation by SEF, whereas ⦁O-2 corresponds to only a negligible amount. The total organic carbon (TOC) and chemical oxygen demand (COD) analyses were used to assess the mineralization of CIP and PNG. The efficiency of COD and TOC removal was reached at 73.25% and 62.5% for CIP under optimized operating circumstances, and at 61.52% and 72% for PNG, respectively. These findings indicate that a sufficient rate of mineralization was obtained by SEF treatment for the mentioned pollutants. The reaction kinetics of CIP and PNG degradation by the SEF process were found to follow a pseudo-first-order kinetic model. In addition, the human health risk assessment of natural water containing CIP and PNG that was purified by US, EF, and SEF processes was done for the first time. According to the findings, the non-carcinogenic risk (HQ) caused by drinking purified water by all three systems was calculated in the acceptable range. Thus, SEF is a proper system to remove various antibiotics in potable water and reduces their human health risks.
Collapse
Affiliation(s)
- Mohamadamin Amarzadeh
- Department of Safety Engineering, Abadan Faculty of Petroleum Engineering, Petroleum University of Technology, Abadan, Iran.
| | - Saeed Salehizadeh
- Department of Chemical Engineering, Abadan Faculty of Petroleum Engineering, Petroleum University of Technology, Abadan, Iran.
| | - Sobhan Damavandi
- Department of Inspection Engineering, Abadan Faculty of Petroleum Engineering, Petroleum University of Technology, Abadan, Iran.
| | - Nabisab Mujawar Mubarak
- Petroleum and Chemical Engineering, Faculty of Engineering, Universiti Teknologi Brunei, Bandar Seri Begawan BE1410, Brunei Darussalam.
| | - Mina Ghahrchi
- Department of Environmental Health Engineering, Torbat Jam Faculty of Medical Sciences, Torbat Jam, Iran.
| | - Bahman Ramavandi
- Environmental Health Engineering Department, Faculty of Health and Nutrition, Bushehr University of Medical Sciences, Bushehr, Iran.
| | - Yousef Dadban Shahamat
- Department of Environmental Health Engineering, Faculty of Health, Golestan University of Medical Sciences, Gorgan, Iran.
| | - Negin Nasseh
- Cellular and Molecular Research Center, Birjand University of Medical Sciences, Birjand, Iran.
| |
Collapse
|
12
|
Mheidli N, Malli A, Mansour F, Al-Hindi M. Occurrence and risk assessment of pharmaceuticals in surface waters of the Middle East and North Africa: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 851:158302. [PMID: 36030863 DOI: 10.1016/j.scitotenv.2022.158302] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 08/18/2022] [Accepted: 08/22/2022] [Indexed: 06/15/2023]
Abstract
Pharmaceutical compounds in surface water are perceived as contaminants of emerging concern due to their impacts on the aquatic environment and human health. The risk associated with these compounds has not been quantified in the Middle East and North Africa (MENA). This review identified that 210 pharmaceutical compounds have been analyzed in MENA water compartments between 2008 and 2022. In fact, 151 of these substances were detected in at least one of 13 MENA countries where occurrence studies had been conducted. Antibiotics claimed the highest number of pharmaceuticals detected with concentrations ranging between 0.03 and 66,400 ng/L (for Thiamphenicol and Spiramycin respectively). To investigate whether any of these compounds exert an ecological, human health, or antibiotic resistance risk, a screening-level risk assessment was performed in surface water matrices using maximum, median, and minimum concentrations. 39 and 8 detected pharmaceuticals in MENA surface waters posed a possible risk on aquatic ecosystems and human health respectively. Extremely high risk quotients (>1000) for six pharmaceuticals (17β estradiol, spiramycin, diclofenac, metoprolol, ethinylestradiol, and carbamazepine) were enumerated based on maximal concentrations implying an alarming risk on aquatic toxicity. Moreover, hormones posed the highest possible risk on human health whether ingested through drinking water or fish (e.g., 17β-estradiol had a health risk quotient of 2880 for children). Spiramycin showed a high risk of antibiotic resistance with a risk quotient of 133. This review serves as a basis for future prioritization studies and regulatory guidelines in the MENA region to minimize the risks of the identified compounds.
Collapse
Affiliation(s)
- Nourhan Mheidli
- Baha and Walid Bassatne Department of Chemical Engineering and Advanced Energy, American University of Beirut, Beirut, Lebanon
| | - Ali Malli
- Baha and Walid Bassatne Department of Chemical Engineering and Advanced Energy, American University of Beirut, Beirut, Lebanon.
| | - Fatima Mansour
- Department of Civil and Environmental Engineering, American University of Beirut, Beirut, Lebanon
| | - Mahmoud Al-Hindi
- Baha and Walid Bassatne Department of Chemical Engineering and Advanced Energy, American University of Beirut, Beirut, Lebanon.
| |
Collapse
|
13
|
Sendão RMS, Esteves da Silva JCG, Pinto da Silva L. Photocatalytic removal of pharmaceutical water pollutants by TiO 2 - Carbon dots nanocomposites: A review. CHEMOSPHERE 2022; 301:134731. [PMID: 35489458 DOI: 10.1016/j.chemosphere.2022.134731] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 04/06/2022] [Accepted: 04/22/2022] [Indexed: 06/14/2023]
Abstract
Pharmaceuticals are becoming increasingly more relevant water contaminants, with photocatalysts (such as TiO2) being a promising approach to remove these compounds from water. However, TiO2 has poor sunlight-harvesting capacity, low photonic efficiency, and poor adsorption towards organic pollutants. One of the emerging strategies to enhance the photocatalytic performance of TiO2 is by conjugating it with fluorescent carbon dots. Herein, we performed a critical review of the development of TiO2 - carbon dots nanocomposites for the photocatalytic removal of pharmaceuticals. We found that carbon dots can improve the photocatalytic efficiency of the resulting nanocomposites, mostly due to increasing the adsorption of organic pollutants and enhancing the absorption in the visible range. However, while this approach shows significant promise, we also identified and discussed several aspects that need to be addressed before this strategy could be more widely used. We hope that this review can guide future studies aiming to the development of enhanced photocatalytic TiO2 - carbon dots nanocomposites.
Collapse
Affiliation(s)
- Ricardo M S Sendão
- Chemistry Research Unit (CIQUP), Institute of Molecular Sciences (IMS), Faculty of Sciences of University of Porto (FCUP), Rua do Campo Alegre 687, 4169-007, Porto, Portugal
| | - Joaquim C G Esteves da Silva
- Chemistry Research Unit (CIQUP), Institute of Molecular Sciences (IMS), Faculty of Sciences of University of Porto (FCUP), Rua do Campo Alegre 687, 4169-007, Porto, Portugal; LACOMEPHI, GreenUPorto, Department of Geosciences, Environment and Territorial Planning, Faculty of Sciences of University of Porto (FCUP), Rua do Campo Alegre 687, 4169-007, Porto, Portugal
| | - Luís Pinto da Silva
- Chemistry Research Unit (CIQUP), Institute of Molecular Sciences (IMS), Faculty of Sciences of University of Porto (FCUP), Rua do Campo Alegre 687, 4169-007, Porto, Portugal; LACOMEPHI, GreenUPorto, Department of Geosciences, Environment and Territorial Planning, Faculty of Sciences of University of Porto (FCUP), Rua do Campo Alegre 687, 4169-007, Porto, Portugal.
| |
Collapse
|
14
|
Tyszczuk-Rotko K, Kozak J, Czech B. Screen-Printed Voltammetric Sensors-Tools for Environmental Water Monitoring of Painkillers. SENSORS (BASEL, SWITZERLAND) 2022; 22:s22072437. [PMID: 35408052 PMCID: PMC9003516 DOI: 10.3390/s22072437] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 03/18/2022] [Accepted: 03/20/2022] [Indexed: 05/03/2023]
Abstract
The dynamic production and usage of pharmaceuticals, mainly painkillers, indicates the growing problem of environmental contamination. Therefore, the monitoring of pharmaceutical concentrations in environmental samples, mostly aquatic, is necessary. This article focuses on applying screen-printed voltammetric sensors for the voltammetric determination of painkillers residues, including non-steroidal anti-inflammatory drugs, paracetamol, and tramadol in environmental water samples. The main advantages of these electrodes are simplicity, reliability, portability, small instrumental setups comprising the three electrodes, and modest cost. Moreover, the electroconductivity, catalytic activity, and surface area can be easily improved by modifying the electrode surface with carbon nanomaterials, polymer films, or electrochemical activation.
Collapse
|
15
|
Javaid A, Latif S, Imran M, Hussain N, Bilal M, Iqbal HMN. MXene-based hybrid composites as photocatalyst for the mitigation of pharmaceuticals. CHEMOSPHERE 2022; 291:133062. [PMID: 34856238 DOI: 10.1016/j.chemosphere.2021.133062] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 11/08/2021] [Accepted: 11/22/2021] [Indexed: 02/05/2023]
Abstract
Environmental contamination is a burning issue and has gained global attention in the present era. Pharmaceuticals are emerging contaminants affecting the natural environment worldwide owing to their extensive consumption particularly in developing countries where self-medication is a common practice. These pharmaceuticals or their degraded active metabolites enter water bodies via different channels and are continuous threat to the whole ecological system. There is a dire need to find efficient approaches for their removal from all environmental matrices. Photocatalysis is one of the most effective and simple approach, however, finding a suitable photocatalyst is a challenging task. Recently, MXenes (two-dimensional transition metal carbides/nitrides), a relatively new material has attracted increasing interest as photocatalysts due to their exceptional properties, such as large surface area, appreciable safety, huge interlayer spacing, thermal conductivity, and environmental flexibility. This review describes the recent advancements of MXene-based composites and their photocatalytic potential for the elimination of pharmaceuticals. Furthermore, present limitations and future research requirements are recommended to attain more benefits of MXene-based composites for the purification of wastewater.
Collapse
Affiliation(s)
- Ayesha Javaid
- Centre for Inorganic Chemistry, School of Chemistry, University of the Punjab, Lahore, 54000, Pakistan
| | - Shoomaila Latif
- School of Physical Sciences, University of the Punjab, Lahore, 54000, Pakistan
| | - Muhammad Imran
- Centre for Inorganic Chemistry, School of Chemistry, University of the Punjab, Lahore, 54000, Pakistan
| | - Nazim Hussain
- Center for Applied Molecular Biology (CAMB), University of the Punjab, Lahore, Pakistan
| | - Muhammad Bilal
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian, 223003, China.
| | - Hafiz M N Iqbal
- Tecnologico de Monterrey, School of Engineering and Sciences, Campus Monterrey, Ave. Eugenio Garza Sada 2501, Monterrey, NL, CP, 64849, Mexico.
| |
Collapse
|
16
|
Javaid A, Latif S, Imran M, Hussain N, Rajoka MSR, Iqbal HMN, Bilal M. Nanohybrids-assisted photocatalytic removal of pharmaceutical pollutants to abate their toxicological effects - A review. CHEMOSPHERE 2022; 291:133056. [PMID: 34838839 DOI: 10.1016/j.chemosphere.2021.133056] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 11/03/2021] [Accepted: 11/22/2021] [Indexed: 02/08/2023]
Abstract
Advancement in medication by health care sector has undoubtedly improved our life but at the same time increased the chemical burden on our natural ecosystem. The residuals of pharmaceutical products become part of wastewater streams by different sources such as excretion after their usage, inappropriate way of their disposal during production etc. Hence, they are serious health hazards for human, animal, and aquatic lives. Due to rapid urbanization, the increased demand for clean drinking water is a burning global issue. In this regard it is need of the present era to explore efficient materials which could act as photocatalyst for mitigation of pharmaceuticals in wastewater. Nanohybrid as photocatalyst is one of the widely explored class of materials in photocatalytic degradation of such harmful pollutants. Among these nanohybrids; metal based nanohybrids (metals/metal oxides) and carbon based nanohybrids (carbon nanotubes, graphene, fullerenes etc.) have been explored to remove pharmaceutical drugs. Keeping in view the increasing harmful impacts of pharmaceuticals; the sources of pharmaceuticals in wastewater, their health risk factors and their mitigation using efficient nanohybrids as photocatalysts have been discussed in this review.
Collapse
Affiliation(s)
- Ayesha Javaid
- Centre for Inorganic Chemistry, School of Chemistry, University of the Punjab, Lahore, 54000, Pakistan
| | - Shoomaila Latif
- School of Physical Sciences, University of the Punjab, Lahore, Pakistan
| | - Muhammad Imran
- Centre for Inorganic Chemistry, School of Chemistry, University of the Punjab, Lahore, 54000, Pakistan
| | - Nazim Hussain
- Centre for Applied Molecular Biology (CAMB), University of the Punjab, Lahore, 53700, Pakistan
| | - Muhammad Shahid Riaz Rajoka
- Department of Food Science and Engineering, College of Chemistry and Chemical Engineering, Shenzhen University, Shenzhen, Guangdong, People's Republic of China
| | - Hafiz M N Iqbal
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey, 64849, Mexico.
| | - Muhammad Bilal
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian, 223003, China.
| |
Collapse
|
17
|
Sengar A, Vijayanandan A. Human health and ecological risk assessment of 98 pharmaceuticals and personal care products (PPCPs) detected in Indian surface and wastewaters. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 807:150677. [PMID: 34599960 DOI: 10.1016/j.scitotenv.2021.150677] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 09/07/2021] [Accepted: 09/26/2021] [Indexed: 05/20/2023]
Abstract
The release of pharmaceuticals and personal care products (PPCPs) in environmental waters has become an urgent issue due to their pseudo-persistent traits. The present study was undertaken to conduct a screening-level risk assessment of 98 PPCPs, detected in different water matrices (treated wastewater, surface water, and groundwater) of India, for evaluating ecological risk (risk to fish, daphnia, and algae), human health risk, and antimicrobial resistance (AMR) selection risk by following risk quotient (RQ) based methodology. In the present study, 47% of the detected PPCPs in Indian waters were found to exert a possible risk (RQ > 1) to either aquatic species and human health, or cause AMR selection risk. 17 out of 25 antibiotics detected in the environmental waters were found to pose a threat of AMR selection. 11 out of 49 pharmaceuticals were found to exert human health risk from ingesting contaminated surface water, whereas only 2 pharmaceuticals out of 25 were found to exert risk from the intake of groundwater. Very high RQs (>1000) for few pharmaceuticals were obtained, signifying a great potential of the detected PPCPs in causing severe health concern, aquatic toxicity, and AMR spread. Within India, special attention needs to be given to the pharmaceutical hubs, as the environmental waters in these regions were found to be severely contaminated with drug residues resulting in extremely high RQs. The present study will be helpful in prioritizing the detected PPCPs in the environmental waters of India, for which immediate attention and enforceable guidelines are required.
Collapse
Affiliation(s)
- Ashish Sengar
- Department of Civil Engineering, Indian Institute of Technology Delhi, New Delhi 110016, India
| | - Arya Vijayanandan
- Department of Civil Engineering, Indian Institute of Technology Delhi, New Delhi 110016, India.
| |
Collapse
|
18
|
Jagadeesan KK, Grant J, Griffin S, Barden R, Kasprzyk-Hordern B. PrAna: an R package to calculate and visualize England NHS primary care prescribing data. BMC Med Inform Decis Mak 2022; 22:5. [PMID: 34991567 PMCID: PMC8734375 DOI: 10.1186/s12911-021-01727-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Accepted: 12/17/2021] [Indexed: 11/10/2022] Open
Abstract
Background The objective of this work to calculate prescribed quantity of an active pharmaceutical ingredient (API) in prescription medications for human use, to facilitate research on the prediction of amount of API released to the environment and create an open-data tool to facilitate spatiotemporal and long-term prescription trends for wider usage. Design We have developed an R package, PrAna to calculate the prescribed quantity (in kg) of an APIs by postcode using England’s national level prescription data provided by National Health Service, for the years 2015–2018. Datasets generated using PrAna can be visualized in a real-time interactive web-based tool, PrAnaViz to explore spatiotemporal and long-term trends. The visualisations can be customised by selecting month, year, API, and region. Results PrAnaViz’s targeted API approach is demonstrated with the visualisation of prescribed quantities of 14 APIs in the Bath and North East Somerset (BANES) region during 2018. Once the APIs list is loaded, the back end retrieves relevant data and populates the graphs based on user-defined data features in real-time. These plots include the prescribed quantity of APIs over a year, by month, and individual API by month, general practice, postcode, and medicinal form. The non-targeted API approach is demonstrated with the visualisation of clarithromycin prescribed quantities at different postcodes in the BANES region. Conclusion PrAna and PrAnaViz enables the analysis of spatio-temporal and long-term trends with prescribed quantities of different APIs by postcode. This can be used as a support tool for policymakers, academics and researchers in public healthcare, and environmental scientist to monitor different group of pharmaceuticals emitted to the environment and for prospective risk assessment of pharmaceuticals in the environment.
Collapse
Affiliation(s)
| | - James Grant
- Department of Chemistry, University of Bath, Bath, UK.,Digital, Data and Technology Group, University of Bath, Bath, UK
| | - Sue Griffin
- NHS Bath and North East Somerset Clinical Commissioning Group, Bath, UK
| | | | | |
Collapse
|
19
|
Investigation of Photocatalysis by Mesoporous Titanium Dioxide Supported on Glass Fibers as an Integrated Technology for Water Remediation. Catalysts 2021. [DOI: 10.3390/catal12010041] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
The photocatalytic efficiency of an innovative UV-light catalyst consisting of a mesoporous TiO2 coating on glass fibers was investigated for the degradation of pharmaceuticals (PhACs) in wastewater effluents. Photocatalytic activity of the synthesized material was tested, for the first time, on a secondary wastewater effluent spiked with nine PhACs and the results were compared with the photolysis used as a benchmark treatment. Replicate experiments were performed in a flow reactor equipped with a UV radiation source emitting at 254 nm. Interestingly, the novel photocatalyst led to the increase of the degradation of carbamazepine and trimethoprim (about 2.2 times faster than the photolysis). Several transformation products (TPs) resulting from both the spiked PhACs and the compounds naturally occurring in the secondary wastewater effluent were identified through UPLC-QTOF/MS/MS. Some of them, produced mainly from carbamazepine and trimethoprim, were still present at the end of the photolytic treatment, while they were completely or partially removed by the photocatalytic treatment.
Collapse
|
20
|
A Review on the Removal of Carbamazepine from Aqueous Solution by Using Activated Carbon and Biochar. SUSTAINABILITY 2021. [DOI: 10.3390/su132111760] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Carbamazepine (CBZ), one of the most used pharmaceuticals worldwide and a Contaminant of Emerging Concern, represents a potential risk for the environment and human health. Wastewater treatment plants (WWTPs) are a significant source of CBZ to the environment, polluting the whole water cycle. In this review, the CBZ presence and fate in the urban water cycle are addressed, with a focus on adsorption as a possible solution for its removal. Specifically, the scientific literature on CBZ removal by activated carbon and its possible substitute Biochar, is comprehensively scanned and summed up, in view of increasing the circularity in water treatments. CBZ adsorption onto activated carbon and biochar is analyzed considering several aspects, such as physicochemical characteristics of the adsorbents, operational conditions of the adsorption processes and adsorption kinetics and isotherms models. WWTPs usually show almost no removal of CBZ (even negative), whereas removal is witnessed in drinking water treatment plants through advanced treatments (even >90%). Among these, adsorption is considered one of the preferable methods, being economical and easier to operate. Adsorption capacity of CBZ is influenced by the characteristics of the adsorbent precursors, pyrolysis temperature and modification or activation processes. Among operational conditions, pH shows low influence on the process, as CBZ has no charge in most pH ranges. Differently, increasing temperature and rotational speed favor the adsorption of CBZ. The presence of other micro-contaminants and organic matter decreases the CBZ adsorption due to competition effects. These results, however, concern mainly laboratory-scale studies, hence, full-scale investigations are recommended to take into account the complexity of the real conditions.
Collapse
|
21
|
Veiga-Gómez M, Nebot C, Falqué E, Pérez B, Franco CM, Cepeda A. Determination of pharmaceuticals and heavy metals in groundwater for human and animal consumption and crop irrigation in Galicia. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2021; 38:2055-2076. [PMID: 34477499 DOI: 10.1080/19440049.2021.1964702] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Pharmaceuticals and heavy metals are contaminants present in groundwaters, which are the main source of drinking water in most parts of the world. In the northwest region of Spain, Galicia, groundwater harvesting is a common practice for drinking water supply, crop irrigation, cattle watering, as well as recreational use such as filling pools. In order to assess the quality of Galician groundwaters, the presence of 21 pharmaceuticals and 10 heavy metals was analysed by UPLC-MS/MS and ICP/MS methods, respectively, in a total of 118 groundwater samples from private wells. Seventeen of the 21 compounds studied were detected in 28% of the samples, with the highest presence of pharmaceuticals belonging to the antimicrobial group (52%), specifically the sulphonamides group in a range of concentration between 21 and 14.9 ng/L. In addition, 30% of the samples contained at least one heavy metal (Mn, As and Fe) above the legally permitted levels. Evaluation of the risk associated with the consumption of the analysed groundwater indicated no human risk for any of the detected pharmaceuticals but high cancer risk for children due to Cd, Cr and As concentrations was observe.
Collapse
Affiliation(s)
- María Veiga-Gómez
- Analytical Chemistry, Nutrition and Bromatology, Faculty of Veterinary Medicine, University of Santiago de Compostela, Lugo, Spain
| | - Carolina Nebot
- Analytical Chemistry, Nutrition and Bromatology, Faculty of Veterinary Medicine, University of Santiago de Compostela, Lugo, Spain
| | - Elena Falqué
- Analytical Chemistry Group, Department of Analytical and Food Chemistry, Faculty of Science, University of Vigo-Ourense Campus, Ourense, Spain
| | - Benita Pérez
- Analytical Chemistry Group, Department of Analytical and Food Chemistry, Faculty of Chemistry, University of Vigo-Vigo Campus, Vigo, Spain
| | - Carlos Manuel Franco
- Analytical Chemistry, Nutrition and Bromatology, Faculty of Veterinary Medicine, University of Santiago de Compostela, Lugo, Spain
| | - Alberto Cepeda
- Analytical Chemistry, Nutrition and Bromatology, Faculty of Veterinary Medicine, University of Santiago de Compostela, Lugo, Spain
| |
Collapse
|
22
|
Kumari M, Kumar A. Can pharmaceutical drugs used to treat Covid-19 infection leads to human health risk? A hypothetical study to identify potential risk. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 778:146303. [PMID: 34030377 PMCID: PMC7942154 DOI: 10.1016/j.scitotenv.2021.146303] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 02/18/2021] [Accepted: 03/02/2021] [Indexed: 05/21/2023]
Abstract
This is the first study to assess human health risks due to the exposure of 'repurposed' pharmaceutical drugs used to treat Covid-19 infection. The study used a six-step approach to determine health risk estimates. For this, consumption of pharmaceuticals under normal circumstances and in Covid-19 infection was compiled to calculate the predicted environmental concentrations (PECs) in river water and in fishes. Risk estimates of pharmaceutical drugs were evaluated for adults as they are most affected by Covid-19 pandemic. Acceptable daily intakes (ADIs) are estimated using the no-observed-adverse-effect-level (NOAEL) or no observable effect level (NOEL) values in rats. The estimated ADI values are then used to calculate predicted no-effect concentrations (PNECs) for three different exposure routes (i) through the accidental ingestion of contaminated surface water during recreational activities only, (ii) through fish consumption only, and (iii) through combined accidental ingestion of contaminated surface water during recreational activities and fish consumption. Higher risk values (hazard quotient, HQ: 337.68, maximum; 11.83, minimum) were obtained for the combined ingestion of contaminated water during recreational activities and fish consumption exposure under the assumptions used in this study indicating possible effects to human health. Amongst the pharmaceutical drugs, ritonavir emerged as main drug, and is expected to pose adverse effects on r human health through fish consumption. Mixture toxicity analysis showed major risk effects of exposure of pharmaceutical drugs (interaction-based hazard index, HIint: from 295.42 (for lopinavir + ritonavir) to 1.20 for chloroquine + rapamycin) demonstrating possible risks due to the co-existence of pharmaceutical in water. The presence of background contaminants in contaminated water does not show any influence on the observed risk estimates as indicated by low HQadd values (<1). Regular monitoring of pharmaceutical drugs in aquatic environment needs to be carried out to reduce the adverse effects of pharmaceutical drugs on human health.
Collapse
Affiliation(s)
- Minashree Kumari
- Department of Civil Engineering, Indian Institute of Technology Delhi, Hauz Khas, Delhi 110016, India.
| | - Arun Kumar
- Department of Civil Engineering, Indian Institute of Technology Delhi, Hauz Khas, Delhi 110016, India.
| |
Collapse
|
23
|
Fallou H, Giraudet S, Cimetière N, Wolbert D, Le Cloirec P. Adsorption onto ACFC of mixture of pharmaceutical residues in water - experimental studies and modelling. ENVIRONMENTAL TECHNOLOGY 2021; 42:2845-2855. [PMID: 31933425 DOI: 10.1080/09593330.2020.1716393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Accepted: 10/15/2019] [Indexed: 06/10/2023]
Abstract
The presence of pharmaceutical residues in water resources is a critical issue for the production of drinking water, even though trace concentrations are mostly encountered. The adsorption of eight micropollutants, in mixture, onto a microporous activated carbon fibre cloth was investigated. For each compound, the kinetics and isotherms of adsorption were studied in batch reactors with ultrapure water, groundwater and half-diluted groundwater. Experimental data were generated and compared to values calculated by the association of Ideal Adsorbed Solution Theory (IAST) model and the Homogeneous Surface Diffusion Model (HSDM). The impact of the nature and the content of Natural Organic Matter (NOM) was modelled considering an Equivalent Background Compound (EBC). The presence of NOM in the groundwater is largely detrimental for the adsorption of trace micropollutants.
Collapse
Affiliation(s)
- Hélène Fallou
- Univ Rennes, Ecole Nationale Supérieure de Chimie de Rennes, CNRS, Rennes Cedex 7, France
| | - Sylvain Giraudet
- Univ Rennes, Ecole Nationale Supérieure de Chimie de Rennes, CNRS, Rennes Cedex 7, France
| | - Nicolas Cimetière
- Univ Rennes, Ecole Nationale Supérieure de Chimie de Rennes, CNRS, Rennes Cedex 7, France
| | - Dominique Wolbert
- Univ Rennes, Ecole Nationale Supérieure de Chimie de Rennes, CNRS, Rennes Cedex 7, France
| | - Pierre Le Cloirec
- Univ Rennes, Ecole Nationale Supérieure de Chimie de Rennes, CNRS, Rennes Cedex 7, France
| |
Collapse
|
24
|
Abstract
Pharmaceuticals are an increasing problem in waterways due to improper disposal and lack of removal at wastewater treatment plants. Long-term exposure impacts to humans are unknown but have been observed in model organisms (i.e., fish), impacting reproduction, changing temperament, and causing organ damage. The application of activated carbon (AC) for organic contaminant removal is widespread and applied successfully for water treatment. The objective of this study is to rapidly adsorb ibuprofen using AC to determine the feasibility as a point-of-entry treatment option for removal of pharmaceuticals in the toilet. AC factors analyzed include type of AC raw material, adsorbent particle size, contact time, and competitive adsorption of ibuprofen and common toilet bowl cleaner components such as chlorine and methylene blue dye. A coconut-based AC with a high surface area adsorbed the highest quantity of ibuprofen. There was no significant impact to ibuprofen adsorption upon the introduction of other compounds to the solution, thus demonstrating rapid adsorption and the potential for application at the point-of-entry.
Collapse
|
25
|
Tröger R, Ren H, Yin D, Postigo C, Nguyen PD, Baduel C, Golovko O, Been F, Joerss H, Boleda MR, Polesello S, Roncoroni M, Taniyasu S, Menger F, Ahrens L, Yin Lai F, Wiberg K. What's in the water? - Target and suspect screening of contaminants of emerging concern in raw water and drinking water from Europe and Asia. WATER RESEARCH 2021; 198:117099. [PMID: 33930794 DOI: 10.1016/j.watres.2021.117099] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 03/15/2021] [Accepted: 03/28/2021] [Indexed: 06/12/2023]
Abstract
There is growing worry that drinking water can be affected by contaminants of emerging concern (CECs), potentially threatening human health. In this study, a wide range of CECs (n = 177), including pharmaceuticals, pesticides, perfluoroalkyl substances (PFASs) and other compounds, were analysed in raw water and in drinking water collected from drinking water treatment plants (DWTPs) in Europe and Asia (n = 13). The impact of human activities was reflected in large numbers of compounds detected (n = 115) and high variation in concentrations in the raw water (range 15-7995 ng L-1 for ∑177CECs). The variation was less pronounced in drinking water, with total concentration ranging from 35 to 919 ng L-1. Treatment efficiency was on average 65 ± 28%, with wide variation between different DWTPs. The DWTP with the highest ∑CEC concentrations in raw water had the most efficient treatment procedure (average treatment efficiency 89%), whereas the DWTP with the lowest ∑177CEC concentration in the raw water had the lowest average treatment efficiency (2.3%). Suspect screening was performed for 500 compounds ranked high as chemicals of concern for drinking water, using a prioritisation tool (SusTool). Overall, 208 features of interest were discovered and three were confirmed with reference standards. There was co-variation between removal efficiency in DWTPs for the target compounds and the suspected features detected using suspect screening, implying that removal of known contaminants can be used to predict overall removal of potential CECs for drinking water production. Our results can be of high value for DWTPs around the globe in their planning for future treatment strategies to meet the increasing concern about human exposure to unknown CECs present in their drinking water.
Collapse
Affiliation(s)
- Rikard Tröger
- Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences (SLU), Box 7050, SE-750 07 Uppsala, Sweden.
| | - Hanwei Ren
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Daqiang Yin
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Cristina Postigo
- Water, Environmental, and Food Chemistry Unit (ENFOCHEM), Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research (IDAEA-CSIC), Carrer Jordi Girona 18-26, Barcelona, 08034, Spain
| | - Phuoc Dan Nguyen
- Centre Asiatique de Recherche sur l'Eau, Ho Chi Minh City University of Technology, 268 Ly Thuong Kiet, District 10; Vietnam National University of Ho Chi Minh City, Linh Trung Ward, Thu Duc District, Ho Chi Minh City, Vietnam
| | - Christine Baduel
- Université Grenoble Alpes, IRD, CNRS, Grenoble INP, IGE, 38 050 Grenoble, France
| | - Oksana Golovko
- Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences (SLU), Box 7050, SE-750 07 Uppsala, Sweden; University of South Bohemia in Ceske Budejovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zatisi 728/II, CZ-389 25, Vodnany, Czech Republic
| | - Frederic Been
- KWR Water Research Institute, 3430BB Nieuwegein, The Netherlands
| | - Hanna Joerss
- Helmholtz-Zentrum Geesthacht, Institute of Coastal Research, 21502 Geesthacht, Germany
| | - Maria Rosa Boleda
- Aigües de Barcelona - EMGCIA S.A, General Batet 1-7, 08028, Barcelona, Spain
| | - Stefano Polesello
- Water Research Institute (CNR-IRSA), via del Mulino 19, 20861 Brugherio (MB), Italy
| | | | - Sachi Taniyasu
- National Institute of Advanced Industrial Science and Technology (AIST), 16-1 Onogawa, Tsukuba, Ibaraki 305-8569, Japan
| | - Frank Menger
- Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences (SLU), Box 7050, SE-750 07 Uppsala, Sweden
| | - Lutz Ahrens
- Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences (SLU), Box 7050, SE-750 07 Uppsala, Sweden
| | - Foon Yin Lai
- Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences (SLU), Box 7050, SE-750 07 Uppsala, Sweden
| | - Karin Wiberg
- Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences (SLU), Box 7050, SE-750 07 Uppsala, Sweden
| |
Collapse
|
26
|
Laouameur K, Flilissa A, Erto A, Balsamo M, Ernst B, Dotto G, Benguerba Y. Clorazepate removal from aqueous solution by adsorption onto maghnite: Experimental and theoretical analysis. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.115430] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
27
|
Gwenzi W. Autopsy, thanatopraxy, cemeteries and crematoria as hotspots of toxic organic contaminants in the funeral industry continuum. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 753:141819. [PMID: 33207461 DOI: 10.1016/j.scitotenv.2020.141819] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 07/18/2020] [Accepted: 08/18/2020] [Indexed: 05/06/2023]
Abstract
The occurrence and health risks of toxic organic contaminants (TOCs) in the funeral industry are relatively under-studied compared to other industries. An increasing body of literature reports TOCs including emerging contaminants in the funeral industry, but comprehensive reviews of the evidence are still lacking. Hence, evidence was analysed to address the proposition that, the funeral industry constitutes several hotspot reservoirs of a wide spectrum of TOCs posing ecological and human health risks. TOCs detected include embalming products, persistent organic pollutants, synthetic pesticides, pharmaceuticals, personal care products and illicit drugs. Human cadavers, solid wastes, wastewaters and air-borne particulates from autopsy, thanatopraxy care facilities (mortuaries, funeral homes), cemeteries and crematoria are hotspots of TOCs. Ingestion of contaminated water, and aquatic and marine foods constitutes non-occupational human exposure, while occupational exposure occurs via inhalation and dermal intake. Risk factors promoting exposure to TOCs include unhygienic burial practices, poor solid waste and wastewater disposal, and weak and poorly enforced regulations. The generic health risks of TOCs are quite diverse, and include; (1) genotoxicity, endocrine disruption, teratogenicity and neurodevelopmental disorders, (2) development of antimicrobial resistance, (3) info-disruption via biomimicry, and (4) disruption of ecosystem functions and trophic interactions. Barring formaldehyde and inferential evidence, the epidemiological studies linking TOCs in the funeral industry to specific health outcomes are scarce. The reasons for the lack of evidence, and limitations of current health risk assessment protocols are discussed. A comprehensive framework for hazard identification, risk assessment and mitigation (HIRAM) in the funeral industry is proposed. The HIRAM includes regulatory, surveillance and control systems such as prevention and removal of TOCs. Future directions on the ecotoxicology of mixtures, behaviour, and health risks of TOCs are highlighted. The opportunities presented by emerging tools, including isotopic labelling, genomics, big data analytics (e.g., machine learning), and in silico techniques in toxicokinetic modelling are highlighted.
Collapse
Affiliation(s)
- Willis Gwenzi
- Biosystems and Environmental Engineering Research Group, Department of Soil Science and Agricultural Engineering, Faculty of Agriculture, University of Zimbabwe, P.O. Box MP167, Mount Pleasant, Harare, Zimbabwe.
| |
Collapse
|
28
|
White MP, Elliott LR, Gascon M, Roberts B, Fleming LE. Blue space, health and well-being: A narrative overview and synthesis of potential benefits. ENVIRONMENTAL RESEARCH 2020; 191:110169. [PMID: 32971082 DOI: 10.1016/j.envres.2020.110169] [Citation(s) in RCA: 130] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 08/28/2020] [Accepted: 09/03/2020] [Indexed: 05/18/2023]
Abstract
Research into the potential health and well-being benefits from exposure to green spaces such as parks and woodlands has led to the development of several frameworks linking the different strands of evidence. The current paper builds on these to provide a model of how exposure to aquatic environments, or blue spaces such as rivers, lakes and the coast, in particular, may benefit health and well-being. Although green and blue spaces share many commonalities, there are also important differences. Given the breadth of the research, spanning multiple disciplines and research methodologies, a narrative review approach was adopted which aimed to highlight key issues and processes rather than provide a definitive balance of evidence summary. Novel aspects of our framework included the inclusion of outcomes that are only indirectly good for health through being good for the environment, the addition of nature connectedness as both a trait and state, and feedback loops where actions/interventions to increase exposure are implemented. Limitations of the review and areas for future work, including the need to integrate potential benefits with potential risks, are discussed.
Collapse
Affiliation(s)
- Mathew P White
- European Centre for Environment & Human Health, University of Exeter, UK; Urban & Environmental Psychology Group, University of Vienna, Austria.
| | - Lewis R Elliott
- European Centre for Environment & Human Health, University of Exeter, UK
| | - Mireia Gascon
- Universitat Pompeu Fabra (UPF), Barcelona, Spain; CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Bethany Roberts
- European Centre for Environment & Human Health, University of Exeter, UK
| | - Lora E Fleming
- European Centre for Environment & Human Health, University of Exeter, UK
| |
Collapse
|
29
|
Wee SY, Haron DEM, Aris AZ, Yusoff FM, Praveena SM. Active pharmaceutical ingredients in Malaysian drinking water: consumption, exposure, and human health risk. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2020; 42:3247-3261. [PMID: 32328897 DOI: 10.1007/s10653-020-00565-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 04/10/2020] [Indexed: 05/05/2023]
Abstract
Active pharmaceutical ingredients (APIs) are typical endocrine disruptors found in common pharmaceuticals and personal care products, which are frequently detected in aquatic environments, especially surface water treated for drinking. However, current treatment technologies are inefficient for removing emerging endocrine disruptors, leading to the potential contamination of tap water. This study employed an optimized analytical method comprising solid-phase extraction and liquid chromatography-tandem mass spectrometry (SPE-LC-MS/MS) to detect APIs in tap water in Putrajaya, Malaysia. Several therapeutic classes of pharmaceuticals and personal care products, including anti-inflammatory drugs (dexamethasone and diclofenac), antibiotics (sulfamethoxazole and triclosan), antiepileptics (primidone), antibacterial agents (ciprofloxacin), beta-blockers (propranolol), psychoactive stimulants (caffeine), and antiparasitic drugs (diazinon), were detected in the range of < 0.03 to 21.39 ng/L, whereas chloramphenicol (an antibiotic) was below the detection limit (< 0.23 ng/L). A comparison with global data revealed the spatial variability of emerging tap water pollutants. Diclofenac accounted for the highest concentration (21.39 ng/L), followed by triclosan and ciprofloxacin (9.74 ng/L and 8.69 ng/L, respectively). Caffeine was observed in all field samples with the highest distribution at 35.32%. Caffeine and triclosan exhibited significantly different distributions in household tap water (p < 0.05). Humans are exposed to these APIs by drinking the tap water; however, the estimated risk was negligible (risk quotient < 1). APIs are useful water quality monitoring indicators for water resource conservation and water supply safety related to emerging organic contaminants; thus, API detection is important for safeguarding the environment and human health.
Collapse
Affiliation(s)
- Sze Yee Wee
- Department of Environment, Faculty of Forestry and Environment, Universiti Putra Malaysia, 43400, UPM Serdang, Selangor, Malaysia
| | - Didi Erwandi Mohamad Haron
- Shimadzu-UMMC Centre of Xenobiotic Studies, Department of Pharmacology, Faculty of Medicine, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Ahmad Zaharin Aris
- Department of Environment, Faculty of Forestry and Environment, Universiti Putra Malaysia, 43400, UPM Serdang, Selangor, Malaysia.
| | - Fatimah Md Yusoff
- Department of Aquaculture, Faculty of Agriculture, Universiti Putra Malaysia, 43400, UPM Serdang, Selangor, Malaysia
| | - Sarva Mangala Praveena
- Department of Environmental and Occupational Health, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400, UPM Serdang, Selangor, Malaysia
| |
Collapse
|
30
|
Gopinath KP, Madhav NV, Krishnan A, Malolan R, Rangarajan G. Present applications of titanium dioxide for the photocatalytic removal of pollutants from water: A review. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2020; 270:110906. [PMID: 32721341 DOI: 10.1016/j.jenvman.2020.110906] [Citation(s) in RCA: 129] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Revised: 04/26/2020] [Accepted: 06/01/2020] [Indexed: 05/20/2023]
Abstract
The evolution of modern technology and industrial processes has been accompanied by an increase in the utilization of chemicals to derive new products. Water bodies are frequently contaminated by the presence of conventional pollutants such as dyes and heavy metals, as well as microorganisms that are responsible for various diseases. A sharp rise has also been observed in the presence of new compounds heretofore excluded from the design and evaluation of wastewater treatment processes, categorized as "emerging pollutants". While some are harmless, certain emerging pollutants possess the ability to cause debilitating effects on a wide spectrum of living organisms. Photocatalytic degradation has emerged as an increasingly popular solution to the problem of water pollution due to its effectiveness and versatility. The primary objective of this study is to thoroughly scrutinize recent applications of titanium dioxide and its modified forms as photocatalytic materials in the removal and control of several classes of water pollutants as reported in literature. Different structural modifications are used to enhance the performance of the photocatalyst such as doping and formation of composites. The principles of these modifications have been scrutinized and evaluated in this review in order to present their advantages and drawbacks. The mechanisms involved in the removal of different pollutants through photocatalysis performed by TiO2 have been highlighted. The factors affecting the mechanism of photocatalysis and those affecting the performance of different TiO2-based photocatalysts have also been thoroughly discussed, thereby presenting a comprehensive view of all aspects involved in the application of TiO2 to remediate and control water pollution.
Collapse
Affiliation(s)
| | - Nagarajan Vikas Madhav
- Department of Chemical Engineering, SSN College of Engineering, Kalavakkam, Chennai, 603110, Tamil Nadu, India
| | - Abhishek Krishnan
- Department of Chemical Engineering, SSN College of Engineering, Kalavakkam, Chennai, 603110, Tamil Nadu, India
| | - Rajagopal Malolan
- Department of Chemical Engineering, SSN College of Engineering, Kalavakkam, Chennai, 603110, Tamil Nadu, India
| | - Goutham Rangarajan
- Department of Chemical Engineering & Applied Chemistry, University of Toronto, 200 College Street, Ontario, M5S 3E5, Canada
| |
Collapse
|
31
|
Jameel Y, Valle D, Kay P. Spatial variation in the detection rates of frequently studied pharmaceuticals in Asian, European and North American rivers. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 724:137947. [PMID: 32408421 DOI: 10.1016/j.scitotenv.2020.137947] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Revised: 03/12/2020] [Accepted: 03/13/2020] [Indexed: 06/11/2023]
Abstract
Pharmaceutical consumption has expanded rapidly during the last century and their persistent presence in the environment has become a major concern. Unfortunately, our understanding of the distribution of pharmaceuticals in surface water and their effects on aquatic biota and public health is limited. Here, we explore patterns in the detection rate of the most frequently studied pharmaceuticals in 64 rivers from 22 countries using bi-clustering algorithms and subsequently analyze the results in the context of regional differences in pharmaceutical consumption habits, social and environmental factors, and removal-efficiency of wastewater treatment plants (WWTP). We find that 20% of the pharmaceuticals included in this analysis are pervasively present in all the surface waterbodies. Several pharmaceuticals also display low overall positive detection rates; however, they exhibit significant spatial variability and their detection rates are consistently lower in Western European and North America (WEOG) rivers in comparison to Asian rivers. Our analysis suggests the important role of pharmaceutical consumption and population in governing these patterns, however the role of WWTP efficiency appeared to be limited. We were constrained in our ability to assess the role of hydrology, which most likely also plays an important role in regulating pharmaceuticals in rivers. Most importantly though, we demonstrate the ability of our algorithm to provide probabilistic estimates of the detection rate of pharmaceuticals that were not studied in a river, an exercise that could be useful in prioritizing pharmaceuticals for future study.
Collapse
Affiliation(s)
- Yusuf Jameel
- School of Forest Resources and Conservation, University of Florida, Gainesville, FL, USA.
| | - Denis Valle
- School of Forest Resources and Conservation, University of Florida, Gainesville, FL, USA
| | - Paul Kay
- School of Geography, University of Leeds, Leeds, West Yorkshire LS2 9JT, UK
| |
Collapse
|
32
|
De Sotto R, Tang R, Bae S. Biofilms in premise plumbing systems as a double-edged sword: microbial community composition and functional profiling of biofilms in a tropical region. JOURNAL OF WATER AND HEALTH 2020; 18:172-185. [PMID: 32300090 DOI: 10.2166/wh.2020.182] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
To understand distributions of opportunistic premise plumbing pathogens (OPPPs) and microbial community structures governed by sample location, pipe materials, water temperature, age of property and type of house, 29 biofilm samples obtained from faucets, pipes, and shower heads in different households in Singapore were examined using next-generation sequencing technology. Predictive functional profiling of the biofilm communities was also performed to understand the potential of uncultivated microorganisms in premise plumbing systems and their involvement in various metabolic pathways. Microbial community analysis showed Proteobacteria, Bacteroidetes, Acidobacteria, Nitrospira, and Actinobacteria to be the most abundant phyla across the samples which was found to be significantly different when grouped by age of the properties, location, and the type of house. Meanwhile, opportunistic premise plumbing pathogens such as Mycobacterium, Citrobacter, Pseudomonas, Stenotrophomonas, and Methylobacterium were observed from the samples at 0.5% of the total reads. Functional prediction using 16S gene markers revealed the involvement of the biofilm communities in different metabolic pathways like nitrogen metabolism, biodegradation of xenobiotics, and bacterial secretion implying diverse functionalities that are yet to be studied in this environment. This study serves as a preliminary survey on the microbial communities harboring premise plumbing systems in a tropical region like Singapore.
Collapse
Affiliation(s)
- Ryan De Sotto
- Department of Civil and Environmental Engineering, National University of Singapore, 5A Engineering Drive 1, Singapore 117411, Singapore E-mail:
| | - Rena Tang
- Department of Civil and Environmental Engineering, National University of Singapore, 5A Engineering Drive 1, Singapore 117411, Singapore E-mail:
| | - Sungwoo Bae
- Department of Civil and Environmental Engineering, National University of Singapore, 5A Engineering Drive 1, Singapore 117411, Singapore E-mail:
| |
Collapse
|
33
|
Paut Kusturica M, Golocorbin-Kon S, Ostojic T, Kresoja M, Milovic M, Horvat O, Dugandzija T, Davidovac N, Vasic A, Tomas A. Consumer willingness to pay for a pharmaceutical disposal program in Serbia: A double hurdle modeling approach. WASTE MANAGEMENT (NEW YORK, N.Y.) 2020; 104:246-253. [PMID: 31986446 DOI: 10.1016/j.wasman.2020.01.029] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2019] [Revised: 01/15/2020] [Accepted: 01/20/2020] [Indexed: 05/23/2023]
Abstract
Proper collection and disposal of pharmaceutical waste from households can reduce the negative influence of medicines on the environment. The aim of this paper is to examine the current methods of disposal of unused medicines from households, as well as the willingness of Serbian residents to participate and bear the costs of an organized collection program. Moreover, this research aims to define factors contributing to an individual's willingness to participate and pay for a medicine collection program. The survey included randomly selected patients older than 18 years visiting private pharmacies in the four largest Serbian cities. The questionnaire included information regarding the presence of unwanted medicines within the household, general medicine disposal practices, the likelihood to participate in a medicine take-back program, willingness to pay for a medicine disposal program (per prescription and per visit), importance to the environment, and demographic variables from participants. Approximately 80% of surveyed respondents are very or somewhat likely to participate, however less than half of the respondents are willing to pay for the collection of their unused medicines. The factors that influenced willingness to participate are environmental awareness and income, while the factors affecting willingness to pay, are previously received advice about proper disposal, education level, number of unwanted medicines in the household and gender. The majority of Serbian people dispose unused medicines improperly, mostly into household garbage. Well-organized and easily accessible collection programs are essential in order to enable the general public to return unused medicines for proper disposal.
Collapse
Affiliation(s)
- Milica Paut Kusturica
- Department of Pharmacology and Toxicology, Faculty of Medicine, University of Novi Sad, Novi Sad, Serbia.
| | | | - Tijana Ostojic
- Faculty of Technical Sciences, University of Novi Sad, Serbia
| | | | - Marko Milovic
- Department of Pharmacology and Toxicology, Faculty of Medicine, University of Novi Sad, Novi Sad, Serbia
| | - Olga Horvat
- Department of Pharmacology and Toxicology, Faculty of Medicine, University of Novi Sad, Novi Sad, Serbia
| | - Tihomir Dugandzija
- Department of Epidemiology, Faculty of Medicine, University of Novi Sad, Novi Sad, Serbia
| | | | | | - Ana Tomas
- Department of Pharmacology and Toxicology, Faculty of Medicine, University of Novi Sad, Novi Sad, Serbia
| |
Collapse
|
34
|
Kariim I, Abdulkareem A, Abubakre O. Development and characterization of MWCNTs from activated carbon as adsorbent for metronidazole and levofloxacin sorption from pharmaceutical wastewater: Kinetics, isotherms and thermodynamic studies. SCIENTIFIC AFRICAN 2020. [DOI: 10.1016/j.sciaf.2019.e00242] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
|
35
|
Tröger R, Köhler SJ, Franke V, Bergstedt O, Wiberg K. A case study of organic micropollutants in a major Swedish water source - Removal efficiency in seven drinking water treatment plants and influence of operational age of granulated active carbon filters. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 706:135680. [PMID: 31784151 DOI: 10.1016/j.scitotenv.2019.135680] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 11/19/2019] [Accepted: 11/19/2019] [Indexed: 06/10/2023]
Abstract
A wide range of organic micropollutants (n = 163) representing several compound categories (pharmaceuticals, pesticides, per- and polyfluorinated alkyl substances, flame retardants, phthalates, food additives, drugs and benzos) were analysed in water samples from the Göta Älv river (Sweden's second largest source water). The sampling also included raw water and finished drinking water from seven drinking water treatment plants and in addition a more detailed sampling at one of the treatment plants after six granulated active carbon filters of varying operational ages. In total, 27 organic micropollutants were detected, with individual concentrations ranging from sub ng L-1 levels to 54 ng L-1. The impact of human activities along the flow path was reflected by increased concentrations downstream the river, with total concentrations ranging from 65 ng L-1 at the start of the river to 120 ng L-1 at the last sampling point. The removal efficiency was significantly (p = 0.014; one-sided t-test) higher in treatment plants that employed granulated active carbon filters (n = 4; average 60%) or artificial infiltration (n = 1; 65%) compared with those that used a more conventional treatment strategy (n = 2; 38%). The removal was also strongly affected by the operational age of the carbon filters. A filter with an operational age of 12 months with recent addition of ~10% new material showed an average removal efficiency of 92%, while a 25-month old filter had an average of 76%, and an even lower 34% was observed for a 71-month old filter. The breakthrough in the carbon filters occurred in the order of dissolved organic carbon, per- and polyfluorinated alkyl substances and then other organic micropollutants. The addition of fresh granulated active carbon seemed to improve the removal of hydrophobic organic compounds, particularly dissolved organic carbon and per- and polyfluorinated alkyl substances.
Collapse
Affiliation(s)
- Rikard Tröger
- Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences SLU, Box 7050, SE-750 07 Uppsala, Sweden.
| | - Stephan J Köhler
- Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences SLU, Box 7050, SE-750 07 Uppsala, Sweden; Norrvatten, Box 2093, SE-169 02 Solna, Sweden
| | - Vera Franke
- Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences SLU, Box 7050, SE-750 07 Uppsala, Sweden
| | | | - Karin Wiberg
- Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences SLU, Box 7050, SE-750 07 Uppsala, Sweden
| |
Collapse
|
36
|
Kumari M, Kumar A. Human health risk assessment of antibiotics in binary mixtures for finished drinking water. CHEMOSPHERE 2020; 240:124864. [PMID: 31542580 DOI: 10.1016/j.chemosphere.2019.124864] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 08/17/2019] [Accepted: 09/13/2019] [Indexed: 06/10/2023]
Abstract
The present study developed a new step-wise approach to estimate the potential human health risk of antibiotics in binary mixture for drinking water samples for two different sub-populations. Monte Carlo simulation based uncertainty analysis was performed to reduce uncertainty in risk assessment. Human health risk assessment studies were carried out using the acceptable daily intake (ADIs) for exposures of individual antibiotics considering point of departure (POD) and uncertainty factors (UFs). The estimated ADI values were used to estimate the predicted no effect concentrations (PNECs), at or below which no adverse human health effects are anticipated. Hazard quotient (HQ) in risk assessment was calculated as a ratio of environmental concentrations (ECs) and PNECs (EC/PNEC). The study showed that the average HQs values of individual antibiotics in adult and children were found below the acceptable limit, demonstrating no possible human health risk for both the subgroups. HIinteraction values of antibiotics in binary mixture was calculated using HQ values of antibiotics. The study observed that the estimated HIinteraction values of antibiotics in binary mixture was found to be less than 1 for both the sub populations, indicating no potential adverse effects on human health. Concentration of antibiotics was the primary contributor (>65%) to the overall variance in the uncertainty estimates for HQs of individual antibiotics in drinking water for adult and children. The co-occurrence of antibiotics in binary mixture for drinking water samples doesn't possess any possible risk on human health for the studied population.
Collapse
Affiliation(s)
- Minashree Kumari
- Environment Engineering Section, Department of Civil Engineering, Indian Institute of Technology Delhi, Hauz Khas, Delhi, 110017, India.
| | - Arun Kumar
- Environment Engineering Section, Department of Civil Engineering, Indian Institute of Technology Delhi, Hauz Khas, Delhi, 110017, India.
| |
Collapse
|
37
|
Nechifor G, Totu EE, Nechifor AC, Constantin L, Constantin AM, Cărăuşu ME, Isildak I. Added value recyclability of glass fiber waste as photo-oxidation catalyst for toxic cytostatic micropollutants. Sci Rep 2020; 10:136. [PMID: 31924816 PMCID: PMC6954219 DOI: 10.1038/s41598-019-56836-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Accepted: 12/17/2019] [Indexed: 02/05/2023] Open
Abstract
There is an increased interest in recycling valuable waste materials for usage in procedures with high added values. Silica microparticles are involved in the processes of catalysis, separation, immobilization of complexants, biologically active compounds, and different nanospecies, responding to restrictive requirements for selectivity of various chemical and biochemical processes. This paper presents the surface modification of accessible and dimensionally controlled recycled silica microfiber with titanium dioxide. Strong base species in organic solvents: methoxide, ethoxide, propoxide, and potassium butoxide in corresponding alcohol, activated the glass microfibres with 12-13 µm diameter. In the photo-oxidation process of a toxic micro-pollutant, cyclophosphamide, the new composite material successfully proved photocatalytic effectiveness. The present work fulfills simultaneously two specific objectives related to the efforts directed towards a sustainable environment and circular economy: recycling of optical glass microfibers resulted as waste from the industry, and their usage for the photo-oxidation of highly toxic emerging micro-pollutants.
Collapse
Affiliation(s)
- Gheorghe Nechifor
- Faculty of Applied Chemistry and Material Science, Polytechnic University of Bucharest, 060042, Bucharest, Romania
| | - Eugenia Eftimie Totu
- Faculty of Applied Chemistry and Material Science, Polytechnic University of Bucharest, 060042, Bucharest, Romania.
| | - Aurelia Cristina Nechifor
- Faculty of Applied Chemistry and Material Science, Polytechnic University of Bucharest, 060042, Bucharest, Romania
| | - Lucian Constantin
- National Research and Development Institute for Industrial Ecology - ECOIND Bucharest, 71-73 Drumul Podul Dambovitei Str., 060652, Bucharest, Romania
| | - Alina Mirela Constantin
- National Research and Development Institute for Industrial Ecology - ECOIND Bucharest, 71-73 Drumul Podul Dambovitei Str., 060652, Bucharest, Romania
| | - Mihaela Elena Cărăuşu
- Department of Public Health and Management, Faculty of Dental Medicine, Grigore T. Popa University of Medicine and Pharmacy, 700115, Iasi, Romania
| | - Ibrahim Isildak
- Department of Bioengineering, Faculty of Chemical and Metallurgical Engineering, Yildiz Technical University, 34210, Esenler-Istanbul, Turkey
| |
Collapse
|
38
|
The occurrence and exposure risk assessment of psychoactive drug residues and metabolites in aquatic environment. J Pharm Biomed Anal 2020; 178:112944. [DOI: 10.1016/j.jpba.2019.112944] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 10/16/2019] [Accepted: 10/18/2019] [Indexed: 11/20/2022]
|
39
|
Analytical Detection of Pesticides, Pollutants, and Pharmaceutical Waste in the Environment. ENVIRONMENTAL CHEMISTRY FOR A SUSTAINABLE WORLD 2020. [DOI: 10.1007/978-3-030-38101-1_3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
40
|
Edwards QA, Sultana T, Kulikov SM, Garner-O'Neale LD, Metcalfe CD. Micropollutants related to human activity in groundwater resources in Barbados, West Indies. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 671:76-82. [PMID: 30927730 DOI: 10.1016/j.scitotenv.2019.03.314] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 03/19/2019] [Accepted: 03/20/2019] [Indexed: 06/09/2023]
Abstract
Several micropollutants, including caffeine, artificial sweeteners, pharmaceuticals, steroid hormones and a current-use pesticide were analyzed in water samples collected from five groundwater pumping stations in Barbados. The presence of caffeine and three artificial sweeteners (i.e. acesulfame, sucralose, saccharin) in groundwater samples indicated that groundwater was being contaminated by infiltration of wastewater into the karst aquifer. An estrogen (i.e. estrone), three pharmaceuticals (i.e. carbamazepine, trimethoprim, ibuprofen) and a transformation product of the fungicide, chlorothalonil (i.e. 4-hydroxychlorothalonil) were also detected at ng/L concentrations in groundwater collected from two or more pumping sites. The concentrations of carbamazepine and trimethoprim were correlated with the concentrations of caffeine (R2 values of 0.70 to 0.80), indicating pharmaceutical contamination of groundwater by infiltration from domestic wastewater. The concentrations of caffeine were generally higher in groundwater samples collected in June during the wet season relative to the concentrations in samples collected in February during the dry season, indicating that infiltration of contaminants is higher during periods of heavy rainfall. Rapid rates of degradation and relatively slow rates of infiltration may explain why several target analytes were not detected in groundwater. Elevated concentrations of 4-hydroxychlorothalonil > 0.1 μg/L in samples collected at two of the monitoring sites warrant further studies on the sources and the distribution of this compound and other pesticides used in agriculture and for turf-treatment (e.g. golf courses). Overall, more data are needed in order to implement mitigation strategies that are effective in reducing chemical contamination in groundwater in Barbados.
Collapse
Affiliation(s)
- Quincy A Edwards
- Department of Biological and Chemical Sciences, The University of the West Indies, Cave Hill Campus, PO Box 64, Bridgetown, BB11000, Barbados.
| | - Tamanna Sultana
- Water Quality Centre, Trent University, 1600 West Bank Drive, Peterborough, Ontario K9J 7B8, Canada
| | - Sergei M Kulikov
- Department of Biological and Chemical Sciences, The University of the West Indies, Cave Hill Campus, PO Box 64, Bridgetown, BB11000, Barbados
| | - Leah D Garner-O'Neale
- Department of Biological and Chemical Sciences, The University of the West Indies, Cave Hill Campus, PO Box 64, Bridgetown, BB11000, Barbados
| | - Chris D Metcalfe
- Water Quality Centre, Trent University, 1600 West Bank Drive, Peterborough, Ontario K9J 7B8, Canada
| |
Collapse
|
41
|
González García M, Fernández-López C, Polesel F, Trapp S. Predicting the uptake of emerging organic contaminants in vegetables irrigated with treated wastewater - Implications for food safety assessment. ENVIRONMENTAL RESEARCH 2019; 172:175-181. [PMID: 30782537 DOI: 10.1016/j.envres.2019.02.011] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 01/08/2019] [Accepted: 02/07/2019] [Indexed: 06/09/2023]
Abstract
Emerging organic contaminants (EOCs) undergoing incomplete removal during wastewater treatment may be found in treated wastewater (TWW) used for irrigation of agricultural products. Following uptake into edible plant parts, EOCs may eventually enter in the food chain, with associated human exposure. In the present study, we used a newly developed steady-state plant uptake model with added phloem transport to predict the uptake of four EOCs (carbamazepine, ibuprofen, ketoprofen and naproxen) into three varieties of lettuce. Input data were derived from an experimental study with vegetables grown in greenhouse and irrigated with TWW spiked with CBZ at 0, 30, 60, 120 and 210 µg/L in each variety of lettuce. Predicted carbamazepine concentrations in leaves were on average 82% higher than in roots, with good agreement between measured and calculated data. We subsequently predicted the uptake of anti-inflammatory compounds ibuprofen, ketoprofen and naproxen, for which the chemical analysis could not provide concentrations above detection limit. These three substances are weak acids and predicted concentrations in roots were higher than in the edible leaves, mainly due to phloem transport downwards. The daily dietary intake of all four EOCs was estimated for consumption of leafy vegetables, being far below usual therapeutic doses.
Collapse
Affiliation(s)
| | - Carmen Fernández-López
- University Centre of Defense at the Spanish Air Force Academy, Santiago de la Ribera, Spain.
| | - Fabio Polesel
- DTU Environment, Technical University of Denmark, Lyngby, Denmark
| | - Stefan Trapp
- DTU Environment, Technical University of Denmark, Lyngby, Denmark
| |
Collapse
|
42
|
Franco MB, Andrade TS, Sousa-Moura D, Lopes da Silva M, Machado Ferraz IB, Camargo NS, Domingues I, Oliveira R, Grisolia CK. Exposure to dilute concentrations of bupropion affects zebrafish early life stages. CHEMOSPHERE 2019; 222:175-183. [PMID: 30708151 DOI: 10.1016/j.chemosphere.2019.01.141] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 01/21/2019] [Accepted: 01/24/2019] [Indexed: 06/09/2023]
Abstract
Psychiatric pharmaceuticals are one of the most prescribed active substances globally. Bupropion (BPP) is an antidepressant that acts via inhibition of norepinephrine and dopamine reuptake. It has been found in various water matrices, and thus its effects on aquatic organisms must be studied. The present study aimed to evaluate the acute toxic effects of BPP on zebrafish (Danio rerio) early life stages. For developmental analysis, organisms were exposed for 168 h to concentrations ranging from 0 to 82000 μg/L. Two other experiments were performed by exposing embryos to a wide range of concentrations (from 0 to 50000 μg/L) in order to evaluate BPP effects on embryonic behavior, using the Zebrabox and testing at the biochemical level (acetylcholinesterase, glutathione-S-transferase, lactate dehydrogenase and catalase). Developmental analysis indicated that BPP had low acute toxicity with a calculated 168 h-LC50 of 50346 μg/L. Concentrations equal to or above 44800 μg/L elicited several effects such as hatching delay, edemas and tail deformities. However, concentrations from 7300 μg/L upwards elicited equilibrium alteration. Behavioral analysis showed that BPP affected zebrafish locomotor behavior by decreasing activity at 0.6 μg/L, increasing activity at 8.8 and 158 μg/L, and decreasing activity at 50000 μg/L. Biochemical analysis showed an increase of AChE activity at 158 and 2812 μg/L, an increase in GST at the highest concentrations, CAT alteration and increase of LDH at 0.6, 2812 and 50000 μg/L. We can conclude that BPP affects zebrafish early life stages at environmental concentrations.
Collapse
Affiliation(s)
- Mariana Bernardes Franco
- Laboratório de Genética Toxicológica, Departamento de Genética e Morfologia, Instituto de Ciências Biológicas, Universidade de Brasília, UnB, 70910-900, Brasília, Distrito Federal, Brazil; Faculdade da Ceilândia, Universidade de Brasília, 72220-90, Brasília, Distrito Federal, Brazil.
| | - Thayres S Andrade
- Laboratório de Genética Toxicológica, Departamento de Genética e Morfologia, Instituto de Ciências Biológicas, Universidade de Brasília, UnB, 70910-900, Brasília, Distrito Federal, Brazil; Universidade Federal do Ceará, UFC, Campus de Crateús, 63700-000, Crateús, Ceará, Brazil.
| | - Diego Sousa-Moura
- Laboratório de Genética Toxicológica, Departamento de Genética e Morfologia, Instituto de Ciências Biológicas, Universidade de Brasília, UnB, 70910-900, Brasília, Distrito Federal, Brazil.
| | - Muriel Lopes da Silva
- Laboratório de Genética Toxicológica, Departamento de Genética e Morfologia, Instituto de Ciências Biológicas, Universidade de Brasília, UnB, 70910-900, Brasília, Distrito Federal, Brazil.
| | - Irvin Bryan Machado Ferraz
- Laboratório de Genética Toxicológica, Departamento de Genética e Morfologia, Instituto de Ciências Biológicas, Universidade de Brasília, UnB, 70910-900, Brasília, Distrito Federal, Brazil.
| | - Níchollas Serafim Camargo
- Laboratório de Genética Toxicológica, Departamento de Genética e Morfologia, Instituto de Ciências Biológicas, Universidade de Brasília, UnB, 70910-900, Brasília, Distrito Federal, Brazil; Faculdade da Ceilândia, Universidade de Brasília, 72220-90, Brasília, Distrito Federal, Brazil.
| | - Inês Domingues
- Departamento de Biologia & CESAM, Universidade de Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal.
| | - Rhaul Oliveira
- Laboratório de Genética Toxicológica, Departamento de Genética e Morfologia, Instituto de Ciências Biológicas, Universidade de Brasília, UnB, 70910-900, Brasília, Distrito Federal, Brazil; Faculdade de Tecnologia, Universidade Estadual de Campinas, UNICAMP, 13484-332, Limeira, São Paulo, Brazil; Programa de Pós-graduação em Toxicologia e Análises Toxicológicas, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, USP, 05508-000, Butantã, São Paulo, Brazil.
| | - Cesar Koppe Grisolia
- Laboratório de Genética Toxicológica, Departamento de Genética e Morfologia, Instituto de Ciências Biológicas, Universidade de Brasília, UnB, 70910-900, Brasília, Distrito Federal, Brazil.
| |
Collapse
|
43
|
Michael I, Ogbonna B, Sunday N, Anetoh M, Matthew O. Assessment of disposal practices of expired and unused medications among community pharmacies in Anambra State southeast Nigeria: a mixed study design. J Pharm Policy Pract 2019; 12:12. [PMID: 31016021 PMCID: PMC6469121 DOI: 10.1186/s40545-019-0174-1] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Accepted: 11/30/2018] [Indexed: 02/02/2023] Open
Abstract
Background Expired or unused medicines are potentially toxic substances that should be managed effectively to avoid accumulation of potentially toxic pharmaceuticals in the environment. In Nigeria, there is currently limited literature on the methods and protocols used by community pharmacists in the disposal of expired drugs. This study assessed disposal practices of expired and unused medications by pharmacists in Anambra State and compared them to the National Agency for Food and Drug Administration and Control (NAFDAC) guideline on disposal of expired drugs. Methods A questionnaire survey and key informant interview (KII) was used for the study. The pre-tested revised and adapted questionnaires were sent to all the 103 community pharmacies in Pharmacists Council of Nigeria (PCN) 2015 record of registered pharmacies in Anambra State. The participants were asked questions about how they disposed of expired and unused medications. The respondents that used NAFDAC or drug wholesalers were asked questions on how the third party destroys their expired drugs. In addition to the use of a questionnaire, KII was conducted to assess relevant professionals and stakeholders in this area. Results The study recorded 77 successfully returned questionnaires out of the 103 distributed and a response rate of 74.8%. The various disposal methods were: through NAFDAC 28.0 (31.8%), drug distributors 21.0 (23.9%), rubbish bins 8.0 (9.1%); this was mainly for solid dosage forms. However, 6.0(7.1%) reported that they used the sink to dispose of their liquid dosage forms and 24.0 (29.6%) noted they do not stock Class B controlled drugs. A lesser proportion of respondents 18.0 (23.4%) complied fully with the national guideline on disposal of expired drugs, while 17.0 (22.1%) complied partially and 42.0 (54.5%) did not comply. Some of the respondents 17.0 (22.1%) reported that NAFDAC uses incineration or other forms of heat to dispose of expired drugs, but 19.0 (24.7%) reported they do not know how NAFDAC dispose of their expired drugs. Majority of the respondents 55.0 (71.4%) suggested the state-run disposal system. Conclusion Poor compliance with the national guideline for medication disposal increases the potential risk of contamination of our environment and increases the possibility of ingesting toxic pharmaceutical wastes by humans and animals. This underscores the need for improvement on expired drugs management protocols to prevent contaminations and the attendant health hazards.
Collapse
Affiliation(s)
- Iweh Michael
- 1Department of Clinical Pharmacy and Pharmacy Management, Nnamdi Azikiwe University, Awka, Anambra State Nigeria
| | - Brian Ogbonna
- 1Department of Clinical Pharmacy and Pharmacy Management, Nnamdi Azikiwe University, Awka, Anambra State Nigeria
| | - Nduka Sunday
- 1Department of Clinical Pharmacy and Pharmacy Management, Nnamdi Azikiwe University, Awka, Anambra State Nigeria
| | - Maureen Anetoh
- 1Department of Clinical Pharmacy and Pharmacy Management, Nnamdi Azikiwe University, Awka, Anambra State Nigeria
| | - Okonta Matthew
- 2Department of Clinical Pharmacy and Pharmacy Management, University of Nigeria, Nsukka, Nigeria
| |
Collapse
|
44
|
Li Y, Zhang L, Liu X, Ding J. Ranking and prioritizing pharmaceuticals in the aquatic environment of China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 658:333-342. [PMID: 30579191 DOI: 10.1016/j.scitotenv.2018.12.048] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 12/04/2018] [Accepted: 12/04/2018] [Indexed: 06/09/2023]
Abstract
Pharmaceuticals have become "persistent" pollutants in the aquatic environment, due to their wide usage in daily life and their continuous release into the aquatic environment. Hence, prioritization and ranking lists are required to screen for target compounds as part of risk assessments. A ranking system based on three criteria, such as occurrence, exposure potential and ecological effects, was developed in this study for specific application to China. A total of 100 pharmaceuticals were selected as candidates based on the ranking system and available consumption data. These pharmaceuticals have been previously reported by wastewater treatment plants (WWTPs) in China. 13 pharmaceuticals were classified as priority pharmaceuticals, among which diclofenac, erythromycin, and penicillin G were highly prioritized. Due to their abuse, antibiotics contributed a majority to the priority pharmaceuticals among all therapeutic classes, indicating that antibiotics should be considered based on their behaviors in WWTPs. The pharmaceuticals ranking list achieved good applicability and will help to establish a focus for future monitoring and management of pharmaceuticals. It will also provide an important basis for both ecological risk assessment and pollution control of pharmaceuticals in the aquatic environment.
Collapse
Affiliation(s)
- Yan Li
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Luyan Zhang
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Xianshu Liu
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Jie Ding
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China.
| |
Collapse
|
45
|
Santos FR, Martins DA, Morais PCV, Oliveira AHB, Gama AF, Nascimento RF, Choi-Lima KF, Moreira LB, Abessa DMS, Nelson RK, Reddy CM, Swarthout RF, Cavalcante RM. Influence of anthropogenic activities and risk assessment on protected mangrove forest using traditional and emerging molecular markers (Ceará coast, northeastern Brazil). THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 656:877-888. [PMID: 30625674 DOI: 10.1016/j.scitotenv.2018.11.380] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 11/17/2018] [Accepted: 11/25/2018] [Indexed: 06/09/2023]
Abstract
Anthropogenic molecular markers were used to assess chemicals inputs and ecological risks associated from multiple sources to sediments in one of the largest tropical mangrove forests of South America, with a particular focus on lesser studied compounds resulting from rural activities. Total concentrations ranged from 23.4 to 228.2 ng g-1 for polycyclic aromatic hydrocarbons (∑PAHs), 750.4 to 5912.5 ng g-1 for aliphatic hydrocarbons (∑AHs), 32.4 to 696.6 ng g-1 for pesticides (∑pesticides), 23.1 to 2109.7 ng g-1 for coprostanol and sterols (∑sterols), 139.3 to 580.2 ng g-1 for naturals hormones (∑natural hormones) and 334.1 to 823.4 ng g-1 for synthetics hormones (∑synthetic hormones). The PAHs and AHs used as traditional anthropogenic markers showed a mixture between natural and anthropogenic sources, related mainly to inputs from higher plants, phytoplankton and both, biomass and petroleum combustion. Rural activities linked to agricultural pest control are the predominant source of pesticides, although minor inputs from pesticides used in urban public health campaigns and household activities were also detected. Synthetic hormones levels are two to three orders of magnitude greater than natural hormones levels and no correlations were observed between the main sewage markers and synthetic hormone concentrations, rural activities such as animal husbandry, which use drugs in management, may be the predominant anthropogenic sources of these compounds in the region. Traditional markers failed to detect ecological risks in rural areas, where synthetic substances (e.g. pesticides and hormones) are widely used and introduced in the environment.
Collapse
Affiliation(s)
- Felipe R Santos
- Instituto Oceanográfico, Universidade de São Paulo, Praça do Oceanográfico, 191, 05508-120 São Paulo, SP, Brazil.
| | - Davi A Martins
- Instituto de Ciências do Mar, Universidade Federal do Ceará, Av. Abolição, 3207, 60165-081 Fortaleza, CE, Brazil
| | - Pollyana C V Morais
- Instituto de Ciências do Mar, Universidade Federal do Ceará, Av. Abolição, 3207, 60165-081 Fortaleza, CE, Brazil
| | - André H B Oliveira
- Departamento de Química Analítica e Físico-Química, Universidade Federal do Ceará, 60455-760 Fortaleza, CE, Brazil
| | - Allyne F Gama
- Instituto de Ciências do Mar, Universidade Federal do Ceará, Av. Abolição, 3207, 60165-081 Fortaleza, CE, Brazil
| | - Ronaldo F Nascimento
- Departamento de Química Analítica e Físico-Química, Universidade Federal do Ceará, 60455-760 Fortaleza, CE, Brazil
| | - Katherine F Choi-Lima
- Centro de Investigação em Ecotoxicologia Aquática e Poluição (NEPEA), São Paulo State University (UNESP Campus do Litoral Paulista), Praça Infante Dom Henrique, s/n., CEP 11330-900 São Vicente, SP, Brazil
| | - Lucas Buruaem Moreira
- Centro de Investigação em Ecotoxicologia Aquática e Poluição (NEPEA), São Paulo State University (UNESP Campus do Litoral Paulista), Praça Infante Dom Henrique, s/n., CEP 11330-900 São Vicente, SP, Brazil
| | - Denis M S Abessa
- Centro de Investigação em Ecotoxicologia Aquática e Poluição (NEPEA), São Paulo State University (UNESP Campus do Litoral Paulista), Praça Infante Dom Henrique, s/n., CEP 11330-900 São Vicente, SP, Brazil
| | - Robert K Nelson
- Department of Marine Chemistry and Geochemistry, Woods Hole Oceanographic Institution, 266 Woods Hole road, MA 02543, United States of America
| | - Christopher M Reddy
- Department of Marine Chemistry and Geochemistry, Woods Hole Oceanographic Institution, 266 Woods Hole road, MA 02543, United States of America
| | - Robert F Swarthout
- Department of Marine Chemistry and Geochemistry, Woods Hole Oceanographic Institution, 266 Woods Hole road, MA 02543, United States of America
| | - Rivelino M Cavalcante
- Instituto de Ciências do Mar, Universidade Federal do Ceará, Av. Abolição, 3207, 60165-081 Fortaleza, CE, Brazil.
| |
Collapse
|
46
|
Patel M, Kumar R, Kishor K, Mlsna T, Pittman CU, Mohan D. Pharmaceuticals of Emerging Concern in Aquatic Systems: Chemistry, Occurrence, Effects, and Removal Methods. Chem Rev 2019; 119:3510-3673. [DOI: 10.1021/acs.chemrev.8b00299] [Citation(s) in RCA: 827] [Impact Index Per Article: 137.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- Manvendra Patel
- School of Environmental Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Rahul Kumar
- School of Environmental Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Kamal Kishor
- School of Environmental Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Todd Mlsna
- Department of Chemistry, Mississippi State University, Mississippi State, Mississippi 39762, United States
| | - Charles U. Pittman
- Department of Chemistry, Mississippi State University, Mississippi State, Mississippi 39762, United States
| | - Dinesh Mohan
- School of Environmental Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| |
Collapse
|
47
|
Fatoki OS, Opeolu BO, Genthe B, Olatunji OS. Multi-residue method for the determination of selected veterinary pharmaceutical residues in surface water around Livestock Agricultural farms. Heliyon 2018; 4:e01066. [PMID: 30603700 PMCID: PMC6304463 DOI: 10.1016/j.heliyon.2018.e01066] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 12/04/2018] [Accepted: 12/17/2018] [Indexed: 11/15/2022] Open
Abstract
A multi-residue method for the determination of the occurrence and prevalence levels of selected veterinary pharmaceutical residues in surface water was developed on a high performance liquid chromatography coupled to ultraviolet-visible (HPLC-UV) detector, and tested with the intent of profiling their distribution. The limit of detection (LOD) and limit of quantitation (LOQ) achieved for the selected pharmaceuticals; acetaminophen, diclofenac, salicylic acid, tetracycline, chloramphenicol, ciprofloxacin, bisphenol-A, 17β-estradiol, estriol, and ivermectin ranged between 0.06-3.45 μg L-1 and 0.17-10.35 μg L-1 respectively. Other International Conference on Harmonization (ICH) parameters for validation of analytical procedures were also evaluated and discussed. Pharmaceutical residues were recovered from surface water samples collected from around livestock farms in Cape Town, South Africa by solid phase extraction (SPE), and thereafter separated and quantified using a validated method on a HPLC-UV-detector. Most frequently detected residues were: acetaminophen (56%), diclofenac (53), tetracycline (72%), 17β-estradiol (73%); chloramphenicol (68%), and salicylic acid (67%), with significantly high (p > 0.05) spatial variability in the concentration distributions of the pharmaceuticals in the surface waters.
Collapse
Affiliation(s)
- Olalekan S. Fatoki
- Department of Chemistry, Faculty of Applied Sciences, Cape Peninsula University of Technology, Cape Town, South Africa
| | - Beatrice O. Opeolu
- Department of Chemistry, Faculty of Applied Sciences, Cape Peninsula University of Technology, Cape Town, South Africa
| | - Bettina Genthe
- Department of Chemistry, Council for Scientific and Industrial Research (CSIR), Stellenbosch 7600, Western Cape, South Africa
| | - Olatunde S. Olatunji
- School of Chemistry and Physics, College of Agriculture, Engineering and Science, University of Kwazul-Natal, Westville, Durban 4000, South Africa
| |
Collapse
|
48
|
Semerjian L, Shanableh A, Semreen MH, Samarai M. Human health risk assessment of pharmaceuticals in treated wastewater reused for non-potable applications in Sharjah, United Arab Emirates. ENVIRONMENT INTERNATIONAL 2018; 121:325-331. [PMID: 30241020 DOI: 10.1016/j.envint.2018.08.048] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Revised: 08/20/2018] [Accepted: 08/22/2018] [Indexed: 06/08/2023]
Abstract
Pharmaceuticals and personal care products are an integral part of societal health yet their presence in various environmental compartments, including treated wastewaters, has sparked concerns towards possible human and ecological health effects. The current study aims to characterize human health risks posed by ten pharmaceuticals quantified in wastewater treatment plant effluents where water is reused mainly for landscape irrigation. Receptors were identified as children playing in green areas, adult landscape workers, and adult users of athletic and golf courses irrigated by treated wastewater. The human health risk assessment model exhibited safe exposure (RQ < 1) to all pharmaceuticals for all receptors through both dermal and ingestion exposure pathways. RQs were highest for the landscape worker followed by children playing in green areas and then adult using the athletic fields. RQs were highest to lowest in the following order of pharmaceuticals: acetaminophen, metoprolol, ciprofloxacin, erythromycin, ofloxacin, sulfadiazine, sulfamethoxazole, sulfapyridine, risperidone, and sulfamethazine. Such risk assessment findings aid in supporting decisions to optimize wastewater treatment and reuse strategies, as well as safeguard public and environmental health.
Collapse
Affiliation(s)
- Lucy Semerjian
- Department of Environmental Health Sciences, College of Health Sciences, University of Sharjah, P.O. Box 27272, Sharjah, United Arab Emirates.
| | - Abdallah Shanableh
- Research Institute of Sciences and Engineering, University of Sharjah, P.O. Box 27272, Sharjah, United Arab Emirates
| | - Mohammad H Semreen
- Department of Medicinal Chemistry, College of Pharmacy, University of Sharjah, P.O. Box 27272, Sharjah, United Arab Emirates; Sharjah Institute for Medical Research, University of Sharjah, P.O. Box 27272, Sharjah, United Arab Emirates
| | - Mufid Samarai
- Sharjah Research Academy, Government of Sharjah, P.O. Box 2580, Sharjah, United Arab Emirates
| |
Collapse
|
49
|
Damkjaer K, Weisser JJ, Msigala SC, Mdegela R, Styrishave B. Occurrence, removal and risk assessment of steroid hormones in two wastewater stabilization pond systems in Morogoro, Tanzania. CHEMOSPHERE 2018; 212:1142-1154. [PMID: 30286543 DOI: 10.1016/j.chemosphere.2018.08.053] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Revised: 08/01/2018] [Accepted: 08/12/2018] [Indexed: 06/08/2023]
Abstract
The present study investigated the occurrence and removal of 10 steroid hormones (4 androgens, 3 progestagens and 3 estrogens) in two WSP systems, Mafisa and Mzumbe in Morogoro, Tanzania. All 10 steroid hormones were detected in the influent of both WSP systems in the dry as well as in the rainy season. The concentrations of steroids in influent wastewater ranged from 0.1 ng/L for 17-OH-pregnenolone to 445 ng/L for estrone and from below limit of detection for 17-OH-pregnenolone to 45 ng/L for estrone in effluent. During dry season, the overall mean ± standard deviation removal efficiency for the 10 steroids were 70 ± 21% for Mzumbe WSP and 97 ± 3% for Mafisa WSP. During the rainy season the overall mean removal efficiency for all the steroid hormones were 52 ± 32% for Mzumbe WSP and 94 ± 8% for Mafisa WSP. Risk was characterized by calculating the risk quotients (RQs) for fish and humans. 46% of the total RQs calculated were above one, indicating high risk. Low RQs were estimated for androgens and progestagens but the estrogen concentrations measured in the WSP systems and Morogoro River indicated a high risk for fish. However, estrogens appeared not to pose an appreciable risk to human health from water intake and fish consumption. The results indicated that WSP systems are quite effective in removing steroid hormones from wastewater. Thus, low technology systems such as WSP systems are suitable techniques in low income counties due to relatively low costs of building, operating and maintaining these systems.
Collapse
Affiliation(s)
- Katrine Damkjaer
- Toxicology Laboratory, Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark
| | - Johan J Weisser
- Toxicology Laboratory, Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark
| | - Sijaona C Msigala
- Department of Veterinary Medicine and Public Health, College of Veterinary Medicine and Biomedical Sciences, Sokoine University of Agriculture, P. O. Box 3021, Morogoro, Tanzania
| | - Robinson Mdegela
- Department of Veterinary Medicine and Public Health, College of Veterinary Medicine and Biomedical Sciences, Sokoine University of Agriculture, P. O. Box 3021, Morogoro, Tanzania
| | - Bjarne Styrishave
- Toxicology Laboratory, Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark.
| |
Collapse
|
50
|
Mayoudom EVT, Nguidjoe E, Mballa RN, Tankoua OF, Fokunang C, Anyakora C, Blackett KN. Identification and quantification of 19 pharmaceutical active compounds and metabolites in hospital wastewater in Cameroon using LC/QQQ and LC/Q-TOF. ENVIRONMENTAL MONITORING AND ASSESSMENT 2018; 190:723. [PMID: 30430263 DOI: 10.1007/s10661-018-7097-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Accepted: 10/30/2018] [Indexed: 06/09/2023]
Abstract
Human pharmaceutical residues are a serious environmental concern. They have been reported to have eco, geno, and human toxic effects, and thus their importance as micropollutants cannot be ignored. These have been studied extensively in Europe and North America. However, African countries are still lagging behind in research on these micropollutants. In this study, the wastewaters of the University Teaching Hospital of Yaoundé (UTHY) were screened for the presence of active pharmaceutical ingredients and their metabolites. The screening was carried out using two methods: high-performance liquid chromatography coupled to a triple quadrupole analyzer (LC/QQQ) and high-performance coupled to a mass spectrometer with a time of flight analyzer (LC/Q-TOF). A total of 19 active pharmaceutical ingredients and metabolites were identified and quantified. The compounds identified include paracetamol (211.93 μg/L), ibuprofen (141 μg/L), tramadol (76 μg/L), O-demethyltramadol (141 μg/L), erythromycinanhydrate (7 μg/L), ciprofloxacin (24 μg/L), clarinthromycine (0.088 μg/L), azitromycine (0.39 μg/L), sulfamethoxazole 0.16 μg/L), trimetoprime (0.27 μg/L), caffeine (5.8 μg/L), carnamaeepine (0.94 μg/L), atenolol (0.43 μg/L), propranolol (0.3 μg/L), cimetidine (34 μg/L), hydroxy omeprazole (5 μg/L), diphenhydramine (0.38 μg/L), metformine (154 μg/L), and sucralose (13.07 μg/L).
Collapse
Affiliation(s)
- Edwige Vanessa Tchadji Mayoudom
- Department of Pharmacology and Toxicology, Faculty of Medicine and Biomedical Sciences, University of Yaounde I, Yaounde, Cameroon
| | - Evrard Nguidjoe
- Department of Pharmacology and Toxicology, Faculty of Medicine and Biomedical Sciences, University of Yaounde I, Yaounde, Cameroon
| | - Rose Ngono Mballa
- Department of Galenic Pharmacy and Pharmaceutical Legislation, Faculty of Medicine and Biomedical Sciences, University of Yaounde I, Yaounde, Cameroon
- Laboratory for the Control of Drug Quality and Expertise, LACOME, Yaounde, Cameroon
| | - Olivia Fossi Tankoua
- Department of Pharmacology and Toxicology, Faculty of Medicine and Biomedical Sciences, University of Yaounde I, Yaounde, Cameroon
| | - Charles Fokunang
- Department of Pharmacology and Toxicology, Faculty of Medicine and Biomedical Sciences, University of Yaounde I, Yaounde, Cameroon
| | - Chimezie Anyakora
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Lagos, Lagos, Nigeria.
- Centre for Applied Research on Separation Science, Lagos, Nigeria.
| | | |
Collapse
|