1
|
DeMeulemeester JA, Thompson AJ, Potkay JA. Surface Modification of Poly(dimethylsiloxane) Blood Flow Chambers with a Poly(ethylene glycol) Conjugate and Factor XII Inhibitor. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2025; 41:5048-5059. [PMID: 39969849 DOI: 10.1021/acs.langmuir.4c04106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2025]
Abstract
This study is focused on the application of a dual surface coating on poly(dimethylsiloxane) (PDMS) flow chambers, which aims to inhibit the contact activation pathway of coagulation. Polyethylene glycol (PEG) is a commonly used biocompatible molecule due to its hydrophilic nature and capacity to reduce protein adsorption. Corn trypsin inhibitor (CTI) is a selective inhibitor of Factor XII, which is the initial factor responsible for activating the intrinsic pathway of coagulation. By sequentially applying these two coatings to PDMS substrates, we expect the PEG-CTI coating to decrease blood clot formation and reduce fibrinogen deposition on surfaces compared to uncoated surfaces. Our results indicate that the PEG-CTI coating was successful in significantly reducing both cell adsorption and fibrinogen deposition to the surfaces of PDMS flow chambers. This study is a step toward applying PEG-CTI surface coatings to PDMS microfluidic artificial lungs, in which the surface interaction between the PDMS lungs and blood is a critical issue that must be mitigated to realize the full potential of this exciting therapeutic tool.
Collapse
Affiliation(s)
- Jake A DeMeulemeester
- VA Ann Arbor Healthcare System, Ann Arbor, Michigan 48105, United States
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Alex J Thompson
- VA Ann Arbor Healthcare System, Ann Arbor, Michigan 48105, United States
| | - Joseph A Potkay
- VA Ann Arbor Healthcare System, Ann Arbor, Michigan 48105, United States
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States
- Department of Surgery, University of Michigan, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
2
|
Li Q, Zhang P, Ye Z, Zhang H, Sun X, Gui L. A liquid metal based, integrated parallel electroosmotic micropump cluster drive system. LAB ON A CHIP 2024. [PMID: 38263786 DOI: 10.1039/d3lc00926b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2024]
Abstract
The application of liquid metal in a microfluidic system enables the fabrication of highly integrated on-chip electroosmotic micropumps (EOPs). In this work, a low-voltage driveable integrated parallel EOP cluster drive system is proposed. This system consists of two layers, a branch-channel layer and a trunk-channel layer. The lower branch-channel layer contains separate parallel pumping channels and a pair of comb liquid metal electrodes. The separated branch channels are connected together through the trunk channels in the upper layer. With this structural arrangement, the parallel micropumps form an integrated micropump cluster for larger pumping capacity. The distance between the pumping channel and the electrode next to it is controlled to 20 μm. To guide the pump design, parametric studies are performed and fully discussed. According to the experimental results, the micropump cluster can be driven at a low voltage of 0.5 V, and the flow rate reaches 274 nL min-1 at 5 V. In addition, the paper finally proposes an electrode protection strategy and an integrated pump-valve drive system which is expected to solve the shortcoming of electroosmotic pumps in terms of long-time storage and driving.
Collapse
Affiliation(s)
- Qian Li
- Liquid Metal and Cryogenic Biomedical Research Center, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, 29 Zhongguancun East Road, Haidian District, Beijing, 100190, China.
- School of Engineering Science, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Pan Zhang
- Liquid Metal and Cryogenic Biomedical Research Center, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, 29 Zhongguancun East Road, Haidian District, Beijing, 100190, China.
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zi Ye
- Liquid Metal and Cryogenic Biomedical Research Center, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, 29 Zhongguancun East Road, Haidian District, Beijing, 100190, China.
| | - Huimin Zhang
- Liquid Metal and Cryogenic Biomedical Research Center, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, 29 Zhongguancun East Road, Haidian District, Beijing, 100190, China.
- School of Engineering Science, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiao Sun
- Liquid Metal and Cryogenic Biomedical Research Center, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, 29 Zhongguancun East Road, Haidian District, Beijing, 100190, China.
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Lin Gui
- Liquid Metal and Cryogenic Biomedical Research Center, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, 29 Zhongguancun East Road, Haidian District, Beijing, 100190, China.
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
3
|
Wang MT, Pang SW. Enhancing Nasopharyngeal Carcinoma Cell Separation with Selective Fibronectin Coating and Topographical Modification on Polydimethylsiloxane Scaffold Platforms. Int J Mol Sci 2023; 24:12409. [PMID: 37569784 PMCID: PMC10418797 DOI: 10.3390/ijms241512409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 07/29/2023] [Accepted: 08/02/2023] [Indexed: 08/13/2023] Open
Abstract
The extracellular matrix (ECM) serves as a complex scaffold with diverse physical dimensions and surface properties influencing NPC cell migration. Polydimethylsiloxane (PDMS), a widely used biocompatible material, is hydrophobic and undesirable for cell seeding. Thus, the establishment of a biomimetic model with varied topographies and surface properties is essential for effective NPC43 cell separation from NP460 cells. This study explored how ECM surface properties influence NP460 and NPC43 cell behaviors via plasma treatments and chemical modifications to alter the platform surface. In addition to the conventional oxygen/nitrogen (O2/N2) plasma treatment, O2 and argon plasma treatments were utilized to modify the platform surface, which increased the hydrophilicity of the PDMS platforms, resulting in enhanced cell adhesion. (3-aminopropyl)triethoxysilane and fibronectin (FN) were used to coat the PDMS platforms uniformly and selectively. The chemical coatings significantly affected cell motility and spreading, as cells exhibited faster migration, elongated cell shapes, and larger spreading areas on FN-coated surfaces. Furthermore, narrower top layer trenches with 5 µm width and a lower concentration of 10 µg/mL FN were coated selectively on the platforms to limit NP460 cell movements and enhance NPC43 cell separation efficiency. A significantly high separation efficiency of 99.4% was achieved on the two-layer scaffold platform with 20/5 µm wide ridge/trench (R/T) as the top layer and 40/10 µm wide R/T as the bottom layer, coupling with 10 µg/mL FN selectively coated on the sidewalls of the top and bottom layers. This work demonstrated an innovative application of selective FN coating to direct cell behavior, offering a new perspective to probe into the subtleties of NPC cell separation efficiency. Moreover, this cost-effective and compact microsystem sets a new benchmark for separating cancer cells.
Collapse
Affiliation(s)
| | - S. W. Pang
- Department of Electrical Engineering, Centre for Biosystems, Neuroscience, and Nanotechnology, City University of Hong Kong, Hong Kong 999077, China;
| |
Collapse
|
4
|
Krawczyk K, Jankowska A, Młotek M, Ulejczyk B, Kobiela T, Ławniczak-Jabłońska K. Surface Modification of Silicone by Dielectric Barrier Discharge Plasma. MATERIALS (BASEL, SWITZERLAND) 2023; 16:2973. [PMID: 37109808 PMCID: PMC10143276 DOI: 10.3390/ma16082973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 04/03/2023] [Accepted: 04/06/2023] [Indexed: 06/19/2023]
Abstract
The objective of the study was to modify the surface of the silicone rubber, using dielectric barrier discharge (DBD) to improve its hydrophilic properties. The influence of the exposure time, discharge power, and gas composition-in which the dielectric barrier discharge was generated-on the properties of the silicone surface layer were examined. After the modification, the wetting angles of the surface were measured. Then, the value of surface free energy (SFE) and changes in the polar components of the modified silicone over time were determined using the Owens-Wendt method. The surfaces and morphology of the selected samples before and after plasma modification were examined by Fourier-transform infrared spectroscopy with attenuated total reflectance (FTIR-ATR), atomic force microscopy AFM, and X-ray photoelectron spectroscopy (XPS). Based on the research, it can be concluded that the silicone surface can be modified using a dielectric barrier discharge. Surface modification, regardless of the chosen method, is not permanent. The AFM and XPS study show that the structure's ratio of oxygen to carbon increases. However, after less than four weeks, it decreases and reaches the value of the unmodified silicone. It was found that the cause of the changes in the parameters of the modified silicone rubber is the disappearance of oxygen-containing groups on the surface and a decrease in the molar ratio of oxygen to carbon, causing the RMS surface roughness and the roughness factor to return to the initial values.
Collapse
Affiliation(s)
- Krzysztof Krawczyk
- Faculty of Chemistry, Warsaw University of Technology, ul. Noakowskiego 3, 00-664 Warsaw, Poland; (K.K.); (A.J.); (B.U.); (T.K.)
| | - Agnieszka Jankowska
- Faculty of Chemistry, Warsaw University of Technology, ul. Noakowskiego 3, 00-664 Warsaw, Poland; (K.K.); (A.J.); (B.U.); (T.K.)
| | - Michał Młotek
- Faculty of Chemistry, Warsaw University of Technology, ul. Noakowskiego 3, 00-664 Warsaw, Poland; (K.K.); (A.J.); (B.U.); (T.K.)
| | - Bogdan Ulejczyk
- Faculty of Chemistry, Warsaw University of Technology, ul. Noakowskiego 3, 00-664 Warsaw, Poland; (K.K.); (A.J.); (B.U.); (T.K.)
| | - Tomasz Kobiela
- Faculty of Chemistry, Warsaw University of Technology, ul. Noakowskiego 3, 00-664 Warsaw, Poland; (K.K.); (A.J.); (B.U.); (T.K.)
| | | |
Collapse
|
5
|
Soni P, Anupom T, Lesanpezeshki L, Rahman M, Hewitt JE, Vellone M, Stodieck L, Blawzdziewicz J, Szewczyk NJ, Vanapalli SA. Microfluidics-integrated spaceflight hardware for measuring muscle strength of Caenorhabditis elegans on the International Space Station. NPJ Microgravity 2022; 8:50. [PMID: 36344513 PMCID: PMC9640571 DOI: 10.1038/s41526-022-00241-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 10/12/2022] [Indexed: 11/09/2022] Open
Abstract
Caenorhabditis elegans is a low-cost genetic model that has been flown to the International Space Station to investigate the influence of microgravity on changes in the expression of genes involved in muscle maintenance. These studies showed that genes that encode muscle attachment complexes have decreased expression under microgravity. However, it remains to be answered whether the decreased expression leads to concomitant changes in animal muscle strength, specifically across multiple generations. We recently reported the NemaFlex microfluidic device for the measurement of muscle strength of C. elegans (Rahman et al., Lab Chip, 2018). In this study, we redesign our original NemaFlex device and integrate it with flow control hardware for spaceflight investigations considering mixed animal culture, constraints on astronaut time, crew safety, and on-orbit operations. The technical advances we have made include (i) a microfluidic device design that allows animals of a given size to be sorted from unsynchronized cultures and housed in individual chambers, (ii) a fluid handling protocol for injecting the suspension of animals into the microfluidic device that prevents channel clogging, introduction of bubbles, and crowding of animals in the chambers, and (iii) a custom-built worm-loading apparatus interfaced with the microfluidic device that allows easy manipulation of the worm suspension and prevents fluid leakage into the surrounding environment. Collectively, these technical advances enabled the development of new microfluidics-integrated hardware for spaceflight studies in C. elegans. Finally, we report Earth-based validation studies to test this new hardware, which has led to it being flown to the International Space Station.
Collapse
|
6
|
Zhu Y, Chen Q, Tsoi CC, Huang X, El Abed A, Ren K, Leu SY, Zhang X. Biomimetic reusable microfluidic reactors with physically immobilized RuBisCO for glucose precursor production. Catal Sci Technol 2022. [DOI: 10.1039/d1cy02038b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Reusable RuBisCO-immobilized microfluidic reactors are used to synthesize the glucose precursor from CO2 and restore >95% of activity after refreshing.
Collapse
Affiliation(s)
- Yujiao Zhu
- Department of Applied Physics, The Hong Kong Polytechnic University, Hong Kong, 999077, P. R. China
- Department of Chemistry, Hong Kong Baptist University, Hong Kong, 999077, P. R. China
| | - Qingming Chen
- School of Microelectronics Science and Technology, Sun Yat-Sen University, Zhuhai, 519082, P. R. China
| | - Chi Chung Tsoi
- Department of Applied Physics, The Hong Kong Polytechnic University, Hong Kong, 999077, P. R. China
| | - Xiaowen Huang
- State Key Laboratory of Biobased Material and Green Papermaking, Department of Bioengineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, P. R. China
| | - Abdel El Abed
- Laboratoire Lumière Matière et Interfaces (LuMIn), Institut d'Alembert, ENS Paris Saclay, CentraleSupélec, CNRS, Université Paris-Saclay, 4 avenue des Sciences, 91190 Gif-sur-Yvette, France
| | - Kangning Ren
- Department of Chemistry, Hong Kong Baptist University, Hong Kong, 999077, P. R. China
| | - Shao-Yuan Leu
- Department of Civil and Environmental Engineering, Hong Kong Polytechnic University, Hong Kong, 999077, P. R. China
| | - Xuming Zhang
- Department of Applied Physics, The Hong Kong Polytechnic University, Hong Kong, 999077, P. R. China
| |
Collapse
|
7
|
Peng Z, Shimba K, Miyamoto Y, Yagi T. A Study of the Effects of Plasma Surface Treatment on Lipid Bilayers Self-Spreading on a Polydimethylsiloxane Substrate under Different Treatment Times. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:10732-10740. [PMID: 34464138 DOI: 10.1021/acs.langmuir.1c01319] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Plasma-treated poly(dimethylsiloxane) (PDMS)-supported lipid bilayers are used as functional tools for studying cell membrane properties and as platforms for biotechnology applications. Self-spreading is a versatile method for forming lipid bilayers. However, few studies have focused on the effect of plasma treatment on self-spreading lipid bilayer formation. In this paper, we performed lipid bilayer self-spreading on a PDMS surface with different treatment times. Surface characterization of PDMS treated with different treatment times is evaluated by AFM and SEM, and the effects of plasma treatment of the PDMS surface on lipid bilayer self-spreading behavior is investigated by confocal microscopy. The front-edge velocity of lipid bilayers increases with the plasma treatment time. By theoretical analyses with the extended-DLVO modeling, we find that the most likely cause of the velocity change is the hydration repulsion energy between the PDMS surface and lipid bilayers. Moreover, the growth behavior of membrane lobes on the underlying self-spreading lipid bilayer was affected by topography changes in the PDMS surface resulting from plasma treatment. Our findings suggest that the growth of self-spreading lipid bilayers can be controlled by changing the plasma treatment time.
Collapse
Affiliation(s)
- Zugui Peng
- School of Engineering, Tokyo Institute of Technology, 403, Ishikawadai Bldg. 3, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8550 Japan
| | - Kenta Shimba
- School of Engineering, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Yoshitaka Miyamoto
- School of Engineering, Tokyo Institute of Technology, 403, Ishikawadai Bldg. 3, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8550 Japan
- Department of Reproductive Biology, National Center for Child Health and Development, 2-10-1 Okura, Setagaya-ku, Tokyo 157-8535, Japan
| | - Tohru Yagi
- School of Engineering, Tokyo Institute of Technology, 403, Ishikawadai Bldg. 3, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8550 Japan
| |
Collapse
|
8
|
Wang Z, Qian L, Peng X, Huang Z, Yang Y, He C, Fang P. New Aspects of Degradation in Silicone Rubber under UVA and UVB Irradiation: A Gas Chromatography-Mass Spectrometry Study. Polymers (Basel) 2021; 13:polym13132215. [PMID: 34279359 PMCID: PMC8271979 DOI: 10.3390/polym13132215] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 06/26/2021] [Accepted: 06/27/2021] [Indexed: 11/29/2022] Open
Abstract
In this paper, gas chromatography–mass spectrometry (GC–MS) and positron annihilation lifetime spectroscopy (PALS) were used to probe the changes of oligomers and the polydimethylsiloxane (PDMS) network in silicone rubber, after different durations of UVA/UVB irradiation. At the early stage (<300 h) of UVA/UVB irradiation, the concentration of D4-D9 decreases. The o-Ps intensity of the extracted silicone rubber increases in the stage after UVB irradiation. These results indicate the crosslinking of oligomers into the PDMS network. After a long duration (>300 h) of UVB irradiation, D4 was generated and the lifetime of τ3 also increased, indicating the rupture of the Si-O bond in the PDMS network. These two aging processes were termed the post curing process and the chain session process. The new finding was that UVA could only induce the post curing process; UVB causes the rupture of the chemical bond in silicone rubber. Photons of UVB could break the C-H bond, and then trigger the backbiting decomposition of PDMS, breaking the Si-O bond, while the photons of UVA cannot. The fact that D4 was generated after UVB irradiation can be used to evaluate the UVB stability of silicone rubber in the future.
Collapse
Affiliation(s)
- Zheng Wang
- Guangdong Key Laboratory of Electric Power Equipment Reliability, Electric Power Research Institute of Guangdong Power Grid Co., Ltd., Guangzhou 510080, China; (Z.W.); (Z.H.)
- Hubei Nuclear-Solid Physics Key Laboratory and Department of Physics, Wuhan University, Wuhan 430072, China; (L.Q.); (Y.Y.)
| | - Libing Qian
- Hubei Nuclear-Solid Physics Key Laboratory and Department of Physics, Wuhan University, Wuhan 430072, China; (L.Q.); (Y.Y.)
| | - Xiangyang Peng
- Guangdong Key Laboratory of Electric Power Equipment Reliability, Electric Power Research Institute of Guangdong Power Grid Co., Ltd., Guangzhou 510080, China; (Z.W.); (Z.H.)
- Correspondence: (X.P.); (C.H.); (P.F.); Tel.: +86-020-85123465 (X.P.)
| | - Zhen Huang
- Guangdong Key Laboratory of Electric Power Equipment Reliability, Electric Power Research Institute of Guangdong Power Grid Co., Ltd., Guangzhou 510080, China; (Z.W.); (Z.H.)
| | - Yue Yang
- Hubei Nuclear-Solid Physics Key Laboratory and Department of Physics, Wuhan University, Wuhan 430072, China; (L.Q.); (Y.Y.)
| | - Chunqing He
- Hubei Nuclear-Solid Physics Key Laboratory and Department of Physics, Wuhan University, Wuhan 430072, China; (L.Q.); (Y.Y.)
- Correspondence: (X.P.); (C.H.); (P.F.); Tel.: +86-020-85123465 (X.P.)
| | - Pengfei Fang
- Hubei Nuclear-Solid Physics Key Laboratory and Department of Physics, Wuhan University, Wuhan 430072, China; (L.Q.); (Y.Y.)
- Correspondence: (X.P.); (C.H.); (P.F.); Tel.: +86-020-85123465 (X.P.)
| |
Collapse
|
9
|
Cao X, Liu X, Liu Y, Ma R, Sun S. The effect of curvature on chondrocytes migration and bone mesenchymal stem cells differentiation. J Appl Polym Sci 2021. [DOI: 10.1002/app.50392] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Xing Cao
- College of Chemistry and Environmental Engineering Shenzhen University Shenzhen China
| | - Xiangli Liu
- Shenzhen Engineering Laboratory of Aerospace Detection and Imaging, Department of Materials Science and Engineering Harbin Institute of Technology (Shenzhen) Shenzhen China
| | - Yan Liu
- College of Chemistry and Environmental Engineering Shenzhen University Shenzhen China
| | - Rui Ma
- College of Chemistry and Environmental Engineering Shenzhen University Shenzhen China
| | - Shichang Sun
- College of Chemistry and Environmental Engineering Shenzhen University Shenzhen China
- Research Center for Water Science and Environmental Engineering Shenzhen University Shenzhen China
| |
Collapse
|
10
|
Detecting zeta potential of polydimethylsiloxane (PDMS) in electrolyte solutions with atomic force microscope. J Colloid Interface Sci 2020; 578:116-123. [PMID: 32521351 DOI: 10.1016/j.jcis.2020.05.061] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Revised: 05/12/2020] [Accepted: 05/12/2020] [Indexed: 11/22/2022]
Abstract
Zeta potential of PDMS-liquid interface is an important parameter for generating electroosmotic flow in a PDMS microchannel. In this paper, the zeta potentials of a PDMS slab in contacting with electrolyte solutions were evaluated with an atomic force microscope (AFM). As a colloidal probe of the AFM approaches to the surface of a PDMS slab in an electrolyte solution, a force curve is obtained and used to calculate the zeta potential of the PDMS. The effects of the plasma treating time and the aging of the electrolyte solutions on the zeta potential of PDMS surfaces were examined. The experimental results show that the air plasma treating time does not change the zeta potential of PDMS appreciably. Furthermore, the decreased zeta potential of a plasma-treated PDMS in an electrolyte solution is due to liquid aging, not the PDMS itself. Such characteristics probed by AFM provide new understanding of the surface charges of PDMS in electrolyte solutions.
Collapse
|
11
|
Kong L, Levin A, Toprakcioglu Z, Xu Y, Gang H, Ye R, Mu BZ, Knowles TPJ. Lipid-Stabilized Double Emulsions Generated in Planar Microfluidic Devices. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:2349-2356. [PMID: 32045250 DOI: 10.1021/acs.langmuir.9b03622] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Microemulsions have found a wide range of applications exploiting their chemical and physical properties. Development of microfluidic-based approaches has allowed for the controlled production of highly monodispersed emulsions, including the formation of multiple and hierarchical emulsions. Conventional poly(dimethylsiloxane)-based microfluidic systems require tight spatial control over the surface chemistry when used for double emulsion generation, which can be challenging to achieve on the micrometer scale. Here, we present a two-dimensional device design, which can selectively be surface-treated in a straightforward manner and allows for the formation of uniform water/oil/water double emulsions by combining two distinct hydrophilic and hydrophobic surface properties. These surfaces are sufficiently separated in space to allow for imparting their functionalization without the requirement for lithographic approaches or complex flow control. We demonstrate that a mismatch between the wettability requirements of the continuous phase and the channel wall inherent in this approach can be tolerated over several hundreds of micrometers, opening up the possibility to use simple pressure-driven flows to achieve surface functionalization. The design architecture exhibits robust efficiency in emulsion generation while retaining simple device fabrication. We finally demonstrate the potential of this approach by generating water in oil in water emulsions with lipid molecules acting as surfactants.
Collapse
Affiliation(s)
- Lingling Kong
- State Key Laboratory of Bioreactor Engineering, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, People's Republic of China
- Centre for Misfolding Diseases, Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Aviad Levin
- Centre for Misfolding Diseases, Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Zenon Toprakcioglu
- Centre for Misfolding Diseases, Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Yufan Xu
- Centre for Misfolding Diseases, Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Hongze Gang
- State Key Laboratory of Bioreactor Engineering, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, People's Republic of China
| | - Ruqiang Ye
- State Key Laboratory of Bioreactor Engineering, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, People's Republic of China
| | - Bo-Zhong Mu
- State Key Laboratory of Bioreactor Engineering, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, People's Republic of China
- Shanghai Collaborative Innovation Center for Biomanufacturing Technology, East China University of Science and Technology, Shanghai 200237, People's Republic of China
| | - Tuomas P J Knowles
- Centre for Misfolding Diseases, Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
- Cavendish Laboratory, University of Cambridge, Cambridge CB3 0FE, United Kingdom
| |
Collapse
|
12
|
Meyer S, Clarke C, dos Santos RO, Bishop D, Krieger MA, Blanes L. Developing self-generated calibration curves using a capillary-driven wax-polyester lab on a chip device and thermal gates. Microchem J 2019. [DOI: 10.1016/j.microc.2019.01.062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
13
|
Yan L, Zhang B, Wang Y, Zhou C, Li R, Luo W, Chen Y, Zou H, Liang M. The improvement of thermal stability and adhesion of silicone rubber composites modified by phenolic epoxy resin. JOURNAL OF MACROMOLECULAR SCIENCE PART A-PURE AND APPLIED CHEMISTRY 2019. [DOI: 10.1080/10601325.2019.1584858] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Liwei Yan
- The State Key Lab of Polymer Materials Engineering, Polymer Research Institute of Sichuan University, Chengdu, China
| | - Bin Zhang
- The State Key Lab of Polymer Materials Engineering, Polymer Research Institute of Sichuan University, Chengdu, China
| | - Yuan Wang
- The State Key Lab of Polymer Materials Engineering, Polymer Research Institute of Sichuan University, Chengdu, China
| | - Cheng Zhou
- The State Key Lab of Polymer Materials Engineering, Polymer Research Institute of Sichuan University, Chengdu, China
| | - Rui Li
- The State Key Lab of Polymer Materials Engineering, Polymer Research Institute of Sichuan University, Chengdu, China
| | - Wei Luo
- The State Key Lab of Polymer Materials Engineering, Polymer Research Institute of Sichuan University, Chengdu, China
| | - Yang Chen
- The State Key Lab of Polymer Materials Engineering, Polymer Research Institute of Sichuan University, Chengdu, China
| | - Huawei Zou
- The State Key Lab of Polymer Materials Engineering, Polymer Research Institute of Sichuan University, Chengdu, China
| | - Mei Liang
- The State Key Lab of Polymer Materials Engineering, Polymer Research Institute of Sichuan University, Chengdu, China
| |
Collapse
|
14
|
Saraf N, Villegas M, Willenberg BJ, Seal S. Multiplex Viral Detection Platform Based on a Aptamers-Integrated Microfluidic Channel. ACS OMEGA 2019; 4:2234-2240. [PMID: 30729227 PMCID: PMC6358057 DOI: 10.1021/acsomega.8b03277] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Accepted: 01/11/2019] [Indexed: 05/02/2023]
Abstract
A polydimethylsiloxane-based microfluidic device has been developed for the multiplex detection of viral envelope proteins such as Zika and chikungunya on a single platform using aptamer-analyte interactions. The channel is integrated with microsized pillars that increase the surface area allowing more aptamers to attach to the incoming envelope protein molecules, thus increasing the overall sensitivity of the system. The working of the device depends on the formation of protein-mediated sandwich morphology that is obtained using an aptamer and aptamer-functionalized gold nanoparticle (AuNP) pair. The colorimetric signal is obtained upon introduction of silver reagents into the channel, which are selectively deposited on the AuNP surface, providing a gray contrast in the testing zone. The microfluidic channel approach successfully detected clinically relevant concentrations of Zika and chikungunya envelope proteins in phosphine-buffered saline (1 pM) and calf blood (100 pM) with high specificity using gold-decorated aptamers integrated in a microfluidic channel.
Collapse
Affiliation(s)
- Nileshi Saraf
- Advanced
Materials Processing and Analysis Centre, Department of
Materials Science and Engineering, Department of Internal Medicine, College of
Medicine, and Nanoscience Technology Centre, University
of Central Florida, Orlando, Florida 32827, United States
| | - Michael Villegas
- University
of Florida, Gainesville, Florida 32611, United
States
| | - Bradley Jay Willenberg
- Advanced
Materials Processing and Analysis Centre, Department of
Materials Science and Engineering, Department of Internal Medicine, College of
Medicine, and Nanoscience Technology Centre, University
of Central Florida, Orlando, Florida 32827, United States
| | - Sudipta Seal
- Advanced
Materials Processing and Analysis Centre, Department of
Materials Science and Engineering, Department of Internal Medicine, College of
Medicine, and Nanoscience Technology Centre, University
of Central Florida, Orlando, Florida 32827, United States
| |
Collapse
|
15
|
|
16
|
Benneker AM, Gumuscu B, Derckx EGH, Lammertink RGH, Eijkel JCT, Wood JA. Enhanced ion transport using geometrically structured charge selective interfaces. LAB ON A CHIP 2018; 18:1652-1660. [PMID: 29770816 DOI: 10.1039/c7lc01220a] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
A microfluidic platform containing charged hydrogels is used to investigate the effect of geometry on charge transport in electrodialysis applications. The influence of heterogeneity on ion transport is determined by electrical characterization and fluorescence microscopy of three different hydrogel geometries. We found that electroosmotic transport of ions towards the hydrogel is enhanced in heterogeneous geometries, as a result of the inhomogeneous electric field in these systems. This yields higher ionic currents for equal applied potentials when compared to homogeneous geometries. The contribution of electroosmotic transport is present in all current regimes, including the Ohmic regime. We also found that the onset of the overlimiting current occurs at lower potentials due to the increased heterogeneity in hydrogel shape, owing to the non-uniform electric field distribution in these systems. Pinning of ion depletion and enrichment zones is observed in the heterogeneous hydrogel systems, due to electroosmotic flows and electrokinetic instabilities. Our platform is highly versatile for the rapid investigation of the effects of membrane topology on general electrodialysis characteristics, including the formation of ion depletion zones on the micro-scale and the onset of the overlimiting current.
Collapse
Affiliation(s)
- Anne M Benneker
- Soft Matter, Fluidics and Interfaces, MESA+ Institute for Nanotechnology, University of Twente, The Netherlands.
| | | | | | | | | | | |
Collapse
|
17
|
Plegue TJ, Kovach KM, Thompson AJ, Potkay JA. Stability of Polyethylene Glycol and Zwitterionic Surface Modifications in PDMS Microfluidic Flow Chambers. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:492-502. [PMID: 29231737 DOI: 10.1021/acs.langmuir.7b03095] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Blood-material interactions are crucial to the lifetime, safety, and overall success of blood contacting devices. Hydrophilic polymer coatings have been employed to improve device lifetime by shielding blood contacting materials from the natural foreign body response, primarily the intrinsic pathway of the coagulation cascade. These coatings have the ability to repel proteins, cells, bacteria, and other micro-organisms. Coatings are desired to have long-term stability, so that the nonthrombogenic and nonfouling effects gained are long lasting. Unfortunately, there exist limited studies which investigate their stability under dynamic flow conditions as encountered in a physiological setting. In addition, direct comparisons between multiple coatings are lacking in the literature. In this study, we investigate the stability of polyethylene glycol (PEG), zwitterionic sulfobetaine silane (SBSi), and zwitterionic polyethylene glycol sulfobetaine silane (PEG-SBSi) grafted by a room temperature, sequential flow chemistry process on polydimethylsiloxane (PDMS) over time under ambient, static fluid (no flow), and physiologically relevant flow conditions and compare the results to uncoated PDMS controls. PEG, SBSi, and PEG-SBSi coatings maintained contact angles below 20° for up to 35 days under ambient conditions. SBSi and PEG-SBSi showed increased stability and hydrophilicity after 7 days under static conditions. They also retained contact angles ≤40° for all shear rates after 7 days under flow, demonstrating their potential for long-term stability. The effectiveness of the coatings to resist platelet adhesion was also studied under physiological flow conditions. PEG showed a 69% reduction in adhered platelets, PEG-SBSi a significant 80% reduction, and SBSi a significant 96% reduction compared to uncoated control samples, demonstrating their potential applicability for blood contacting applications. In addition, the presented coatings and their stability under shear may be of interest in other applications including marine coatings, lab on a chip devices, and contact lenses, where it is desirable to reduce surface fouling due to proteins, cells, and other organisms.
Collapse
Affiliation(s)
- Thomas J Plegue
- VA Ann Arbor Healthcare System , Ann Arbor, Michigan 48105, United States
| | - Kyle M Kovach
- Department of Biomedical Engineering, Case Western Reserve University , Cleveland, Ohio 44106, United States
| | - Alex J Thompson
- VA Ann Arbor Healthcare System , Ann Arbor, Michigan 48105, United States
- Department of Surgery, University of Michigan , Ann Arbor, Michigan 48109, United States
| | - Joseph A Potkay
- VA Ann Arbor Healthcare System , Ann Arbor, Michigan 48105, United States
- Department of Surgery, University of Michigan , Ann Arbor, Michigan 48109, United States
| |
Collapse
|
18
|
Mehl BT, Martin RS. Enhanced Microchip Electrophoresis Separations Combined with Electrochemical Detection Utilizing a Capillary Embedded in Polystyrene. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2018; 10:37-45. [PMID: 29707044 PMCID: PMC5915312 DOI: 10.1039/c7ay02505j] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
The ability to use microchip-based electrophoresis for fast, high-throughput separations provides researchers with a tool for close-to real time analysis of biological systems. While PDMS-based electrophoresis devices are popular, the separation efficiency is often an issue due to the hydrophobic nature of PDMS. In this study, a hybrid microfluidic capillary device was fabricated to utilize the positive features of PDMS along with the electrophoretic performance of fused silica. A capillary loop was embedded in a polystyrene base that can be coupled with PDMS microchannels at minimal dead volume interconnects. A method for cleaning out the capillaries after a wet-polishing step was devised through the use of 3D printed syringe attachment. By comparing the separation efficiency of fluorescein and CBI-glycine with both a PDMS-based serpentine device and the embedded capillary loop device, it was shown that the embedded capillary loop device maintained higher theoretical plates for both analytes. A Pd decoupler with a carbon or Pt detection electrode were embedded along with the loop allowing integration of the electrophoretic separation with electrochemical detection. A series of catecholamines were separated to show the ability to resolve similar analytes and detect redox active species. The release of dopamine and norepinephrine from PC 12 cells was also analyzed showing the compatibility of these improved microchip separations with high ionic cell buffers associated with cell culture.
Collapse
|
19
|
Epoxy-silicone copolymer synthesis via efficient hydrosilylation reaction catalyzed by high-activity platinum and its effect on structure and performance of silicone rubber coatings. Polym Bull (Berl) 2017. [DOI: 10.1007/s00289-017-2127-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
20
|
Shin S, Ault JT, Feng J, Warren PB, Stone HA. Low-Cost Zeta Potentiometry Using Solute Gradients. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2017; 29:1701516. [PMID: 28597932 DOI: 10.1002/adma.201701516] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Revised: 04/07/2017] [Indexed: 05/18/2023]
Abstract
The zeta potential is an electric potential in the Debye screening layer of an electrolyte, which represents a key physicochemical surface property in various fields ranging from electrochemistry to pharmaceuticals. Thus, characterizing the zeta potential is essential for many applications, but available measurement techniques are limited. Electrophoretic light scattering is typically used to measure the zeta potential of particles in suspension, whereas zeta potential measurements of a solid wall in solution rely on either streaming potential or electroosmotic mobility measurement techniques, both of which are expensive and sophisticated. Here, a simple, robust method to simultaneously measure the zeta potential of particles in suspension and solid walls is presented. The method uses solute gradients to induce particle and fluid motions via diffusiophoresis and diffusioosmosis, respectively, which are both sensitive to the zeta potential of the particle and the wall. By visualizing the particle dynamics, both zeta potentials can be determined independently. Finally, a compact microscope is used to demonstrate low-cost zeta potentiometry that allows measurement of both particle and wall zeta potentials, which suggests a cost-effective tool for pharmaceuticals as well as for educational purposes.
Collapse
Affiliation(s)
- Sangwoo Shin
- Department of Mechanical Engineering, University of Hawaii at Manoa, Honolulu, HI, 96822, USA
| | - Jesse T Ault
- Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, NJ, 08544, USA
| | - Jie Feng
- Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, NJ, 08544, USA
| | | | - Howard A Stone
- Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, NJ, 08544, USA
| |
Collapse
|
21
|
Zhou C, Robert MC, Kapoulea V, Lei F, Stagner AM, Jakobiec FA, Dohlman CH, Paschalis EI. Sustained Subconjunctival Delivery of Infliximab Protects the Cornea and Retina Following Alkali Burn to the Eye. Invest Ophthalmol Vis Sci 2017; 58:96-105. [PMID: 28114570 PMCID: PMC5231904 DOI: 10.1167/iovs.16-20339] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Purpose Tumor necrosis factor (TNF)-α is upregulated in eyes following corneal alkali injury and contributes to corneal and also retinal damage. Prompt TNF-α inhibition by systemic infliximab ameliorates retinal damage and improves corneal wound healing. However, systemic administration of TNF-α inhibitors carries risk of significant complications, whereas topical eye-drop delivery is hindered by poor ocular bioavailability and the need for patient adherence. This study investigates the efficacy of subconjunctival delivery of TNF-α antibodies using a polymer-based drug delivery system (DDS). Methods The drug delivery system was prepared using porous polydimethylsiloxane/polyvinyl alcohol composite fabrication and loaded with 85 μg of infliximab. Six Dutch-belted pigmented rabbits received ocular alkali burn with NaOH. Immediately after the burn, subconjunctival implantation of anti-TNF-α DDS was performed in three rabbits while another three received sham DDS (without antibody). Rabbits were followed with photography for 3 months. Results After 3 months, the device was found to be well tolerated by the host and the eyes exhibited less corneal damage as compared to eyes implanted with a sham DDS without drug. The low dose treatment suppressed CD45 and TNF-α expression in the burned cornea and inhibited retinal ganglion cell apoptosis and optic nerve degeneration, as compared to the sham DDS treated eyes. Immunolocalization revealed drug penetration in the conjunctiva, cornea, iris, and choroid, with residual infliximab in the DDS 3 months after implantation. Conclusions This reduced-risk biologic DDS improves corneal wound healing and provides retinal neuroprotection, and may be applicable not only to alkali burns but also to other inflammatory surgical procedures such as penetrating keratoplasty and keratoprosthesis implantation.
Collapse
Affiliation(s)
- Chengxin Zhou
- Boston Keratoprosthesis Laboratory, Department of Ophthalmology, Massachusetts Eye and Ear and Schepens Eye Research Institute, Boston, Massachusetts, United States 2Harvard Medical School, Boston, Massachusetts, United States
| | - Marie-Claude Robert
- Department of Ophthalmology, Université de Montreal, Montreal, Quebec, Canada 4Centre Hospitalier de l'Université de Montreal, Hospital Notre-Dame, Montreal, Quebec, Canada
| | - Vassiliki Kapoulea
- Boston Keratoprosthesis Laboratory, Department of Ophthalmology, Massachusetts Eye and Ear and Schepens Eye Research Institute, Boston, Massachusetts, United States 2Harvard Medical School, Boston, Massachusetts, United States
| | - Fengyang Lei
- Boston Keratoprosthesis Laboratory, Department of Ophthalmology, Massachusetts Eye and Ear and Schepens Eye Research Institute, Boston, Massachusetts, United States 2Harvard Medical School, Boston, Massachusetts, United States
| | - Anna M Stagner
- Harvard Medical School, Boston, Massachusetts, United States 5David G. Cogan Ophthalmic Pathology Laboratory, Massachusetts Eye and Ear, Boston, Massachusetts, United States
| | - Frederick A Jakobiec
- Harvard Medical School, Boston, Massachusetts, United States 5David G. Cogan Ophthalmic Pathology Laboratory, Massachusetts Eye and Ear, Boston, Massachusetts, United States
| | - Claes H Dohlman
- Boston Keratoprosthesis Laboratory, Department of Ophthalmology, Massachusetts Eye and Ear and Schepens Eye Research Institute, Boston, Massachusetts, United States 2Harvard Medical School, Boston, Massachusetts, United States
| | - Eleftherios I Paschalis
- Boston Keratoprosthesis Laboratory, Department of Ophthalmology, Massachusetts Eye and Ear and Schepens Eye Research Institute, Boston, Massachusetts, United States 2Harvard Medical School, Boston, Massachusetts, United States 6Disruptive Technology Laboratory (D.T.L.), Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts, United States
| |
Collapse
|
22
|
Zhang J, Onaizah O, Sadri A, Diller E. A generic label-free microfluidic microobject sorter using a magnetic elastic diverter. Biomed Microdevices 2017; 19:43. [DOI: 10.1007/s10544-017-0183-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
23
|
Trantidou T, Elani Y, Parsons E, Ces O. Hydrophilic surface modification of PDMS for droplet microfluidics using a simple, quick, and robust method via PVA deposition. MICROSYSTEMS & NANOENGINEERING 2017; 3:16091. [PMID: 31057854 PMCID: PMC6444978 DOI: 10.1038/micronano.2016.91] [Citation(s) in RCA: 207] [Impact Index Per Article: 25.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Revised: 11/24/2016] [Accepted: 11/28/2016] [Indexed: 05/07/2023]
Abstract
Polydimethylsiloxane (PDMS) is a dominant material in the fabrication of microfluidic devices to generate water-in-oil droplets, particularly lipid-stabilized droplets, because of its highly hydrophobic nature. However, its key property of hydrophobicity has hindered its use in the microfluidic generation of oil-in-water droplets, which requires channels to have hydrophilic surface properties. In this article, we developed, optimized, and characterized a method to produce PDMS with a hydrophilic surface via the deposition of polyvinyl alcohol following plasma treatment and demonstrated its suitability for droplet generation. The proposed method is simple, quick, effective, and low cost and is versatile with respect to surfactants, with droplets being successfully generated using both anionic surfactants and more biologically relevant phospholipids. This method also allows the device to be selectively patterned with both hydrophilic and hydrophobic regions, leading to the generation of double emulsions and inverted double emulsions.
Collapse
Affiliation(s)
- Tatiana Trantidou
- Department of Chemistry, Imperial College London, London SW7 2AZ, UK
| | - Yuval Elani
- Department of Chemistry, Imperial College London, London SW7 2AZ, UK
- Institute of Chemical Biology, Imperial College London, London SW7 2AZ, UK
| | - Edward Parsons
- London Centre for Nanotechnology, University College London, London WC1E 6BT, UK
| | - Oscar Ces
- Department of Chemistry, Imperial College London, London SW7 2AZ, UK
- Institute of Chemical Biology, Imperial College London, London SW7 2AZ, UK
| |
Collapse
|
24
|
Olsen TR, Tapia-Alveal C, Yang KA, Zhang X, Pereira LJ, Farmakidis N, Pei R, Stojanovic MN, Lin Q. INTEGRATED MICROFLUIDIC SELEX USING FREE SOLUTION ELECTROKINETICS. JOURNAL OF THE ELECTROCHEMICAL SOCIETY 2017; 164:B3122-B3129. [PMID: 29170564 PMCID: PMC5697788 DOI: 10.1149/2.0191705jes] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Systematic evolution of ligands by exponential enrichment (SELEX) offers a powerful method to isolate affinity oligonucleotides known as aptamers, which can then be used in a wide range of applications from drug delivery to biosensing. However, conventional SELEX methods rely on labor intensive and time consuming benchtop operations. A simplified microfluidic approach is presented which allows integration of the affinity selection and amplification stages of SELEX for the isolation of target-binding oligonucleotides by combining bead-based biochemical reactions with free solution electrokinetic oligonucleotide transfer. Free solution electrokinetics allows coupling of affinity selection and amplification for closed loop oligonucleotide enrichment without the need for offline processes, flow handling components or gel components, while bead based selection and amplification allow efficient manipulation of reagents and reaction products thereby realizing on-chip loop closure and integration of the entire SELEX process. Thus the approach is capable of multi-round enrichment of oligonucleotides using simple transfer processes while maintaining a high level of device integration, as demonstrated by the isolation of an aptamer pool against a protein target (IgA) with significantly higher binding affinity than the starting library in approximately 4 hours of processing time.
Collapse
Affiliation(s)
- Timothy R Olsen
- Department of Mechanical Engineering, Columbia University, New York, NY, USA
| | | | - Kyung-Ae Yang
- Department of Medicine, Columbia University, New York, NY, USA
| | - Xin Zhang
- Department of Mechanical Engineering, Columbia University, New York, NY, USA
| | | | | | - Renjun Pei
- Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, China
| | | | - Qiao Lin
- Department of Mechanical Engineering, Columbia University, New York, NY, USA
| |
Collapse
|
25
|
Tian K, Bae J, Bakarich SE, Yang C, Gately RD, Spinks GM, In Het Panhuis M, Suo Z, Vlassak JJ. 3D Printing of Transparent and Conductive Heterogeneous Hydrogel-Elastomer Systems. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2017; 29:1604827. [PMID: 28075033 DOI: 10.1002/adma.201604827] [Citation(s) in RCA: 177] [Impact Index Per Article: 22.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Revised: 11/05/2016] [Indexed: 05/17/2023]
Abstract
A hydrogel-dielectric-elastomer system, polyacrylamide and poly(dimethylsiloxane) (PDMS), is adapted for extrusion printing for integrated device fabrication. A lithium-chloride-containing hydrogel printing ink is developed and printed onto treated PDMS with no visible signs of delamination and geometrically scaling resistance under moderate uniaxial tension and fatigue. A variety of designs are demonstrated, including a resistive strain gauge and an ionic cable.
Collapse
Affiliation(s)
- Kevin Tian
- School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02138, USA
| | - Jinhye Bae
- School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02138, USA
| | - Shannon E Bakarich
- School of Mechanical Materials and Mechatronic Engineering, University of Wollongong, Wollongong, NSW, 2522, Australia
- Intelligent Polymer Research Institute, ARC Centre of Excellence for Electromaterials Science, AIIM Facility, University of Wollongong, Wollongong, NSW, 2522, Australia
| | - Canhui Yang
- School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02138, USA
- State Key Laboratory for Strength and Vibration of Mechanical Structures, International Center for Applied Mechanics, School of Aerospace, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Reece D Gately
- Intelligent Polymer Research Institute, ARC Centre of Excellence for Electromaterials Science, AIIM Facility, University of Wollongong, Wollongong, NSW, 2522, Australia
- Soft Materials Group, School of Chemistry, University of Wollongong, Wollongong, NSW, 2522, Australia
| | - Geoffrey M Spinks
- School of Mechanical Materials and Mechatronic Engineering, University of Wollongong, Wollongong, NSW, 2522, Australia
- Intelligent Polymer Research Institute, ARC Centre of Excellence for Electromaterials Science, AIIM Facility, University of Wollongong, Wollongong, NSW, 2522, Australia
| | - Marc In Het Panhuis
- Intelligent Polymer Research Institute, ARC Centre of Excellence for Electromaterials Science, AIIM Facility, University of Wollongong, Wollongong, NSW, 2522, Australia
- Soft Materials Group, School of Chemistry, University of Wollongong, Wollongong, NSW, 2522, Australia
| | - Zhigang Suo
- School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02138, USA
- Kavli Institute for Bionano Science and Technology, Harvard University, Cambridge, MA, 02138, United States
| | - Joost J Vlassak
- School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02138, USA
| |
Collapse
|
26
|
Gao M, Gui L. Development of a Multi-Stage Electroosmotic Flow Pump Using Liquid Metal Electrodes. MICROMACHINES 2016; 7:E165. [PMID: 30404339 PMCID: PMC6190331 DOI: 10.3390/mi7090165] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Revised: 08/28/2016] [Accepted: 09/07/2016] [Indexed: 11/16/2022]
Abstract
Injection of liquid metal into a polydimethylsiloxane (PDMS) channel can provide a simple, cheap, and fast method to fabricate a noncontact electrode for micro electroosmotic flow (EOF) pumps. In this study, a multi-stage EOF pump using liquid metal noncontact electrodes was proposed and demonstrated for high-flow-velocity applications. To test the pumping performance of this EOF pump and measure the flow velocity, fluorescent particles were added into deionized (DI) water to trace the flow. According to the experimental results, the pump with a five-stage design can drive a water flow of 5.57 μm/s at 10 V, while the PDMS gap between the electrode and the pumping channel is 20 μm. To provide the guidance for the pump design, parametric studies were performed and fully discussed, such as the PDMS gap, pumping channel dimension, and stage number. This multi-stage EOF pump shows potential for many high-flow-velocity microfluidic applications.
Collapse
Affiliation(s)
- Meng Gao
- Key Laboratory of Cryogenics, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, 29 Zhongguancun East Road, Haidian District, Beijing 100190, China.
| | - Lin Gui
- Key Laboratory of Cryogenics, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, 29 Zhongguancun East Road, Haidian District, Beijing 100190, China.
| |
Collapse
|
27
|
Martins D, Wei X, Levicky R, Song YA. Integration of Multiplexed Microfluidic Electrokinetic Concentrators with a Morpholino Microarray via Reversible Surface Bonding for Enhanced DNA Hybridization. Anal Chem 2016; 88:3539-47. [PMID: 26916577 DOI: 10.1021/acs.analchem.5b03875] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
UNLABELLED We describe a microfluidic concentration device to accelerate the surface hybridization reaction between DNA and morpholinos (MOs) for enhanced detection. The microfluidic concentrator comprises a single polydimethylsiloxane (PDMS) microchannel onto which an ion-selective layer of conductive polymer poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate) ( PEDOT PSS) was directly printed and then reversibly surface bonded onto a morpholino microarray for hybridization. Using this electrokinetic trapping concentrator, we could achieve a maximum concentration factor of ∼800 for DNA and a limit of detection of 10 nM within 15 min. In terms of the detection speed, it enabled faster hybridization by around 10-fold when compared to conventional diffusion-based hybridization. A significant advantage of our approach is that the fabrication of the microfluidic concentrator is completely decoupled from the microarray; by eliminating the need to deposit an ion-selective layer on the microarray surface prior to device integration, interfacing between both modules, the PDMS chip for electrokinetic concentration and the substrate for DNA sensing are easier and applicable to any microarray platform. Furthermore, this fabrication strategy facilitates a multiplexing of concentrators. We have demonstrated the proof-of-concept for multiplexing by building a device with 5 parallel concentrators connected to a single inlet/outlet and applying it to parallel concentration and hybridization. Such device yielded similar concentration and hybridization efficiency compared to that of a single-channel device without adding any complexity to the fabrication and setup. These results demonstrate that our concentrator concept can be applied to the development of a highly multiplexed concentrator-enhanced microarray detection system for either genetic analysis or other diagnostic assays.
Collapse
Affiliation(s)
- Diogo Martins
- Division of Engineering, New York University Abu Dhabi , P.O. Box 129188 , Abu Dhabi, United Arab Emirates
| | - Xi Wei
- Division of Engineering, New York University Abu Dhabi , P.O. Box 129188 , Abu Dhabi, United Arab Emirates.,Department of Chemical and Biomolecular Engineering, New York University Tandon School of Engineering , Brooklyn, New York 11201, United States
| | - Rastislav Levicky
- Department of Chemical and Biomolecular Engineering, New York University Tandon School of Engineering , Brooklyn, New York 11201, United States
| | - Yong-Ak Song
- Division of Engineering, New York University Abu Dhabi , P.O. Box 129188 , Abu Dhabi, United Arab Emirates.,Department of Chemical and Biomolecular Engineering, New York University Tandon School of Engineering , Brooklyn, New York 11201, United States
| |
Collapse
|
28
|
Sritharan D, Chen AS, Aluthgama P, Naved B, Smela E. Bubble-free electrokinetic flow with propylene carbonate. Electrophoresis 2015; 36:2622-9. [DOI: 10.1002/elps.201400443] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2014] [Revised: 05/27/2015] [Accepted: 07/05/2015] [Indexed: 11/06/2022]
Affiliation(s)
- Deepa Sritharan
- Department of Mechanical Engineering; University of Maryland; College Park MD USA
| | - Abraham Simpson Chen
- Department of Mechanical Engineering; University of Maryland; College Park MD USA
| | - Prabhath Aluthgama
- Department of Mechanical Engineering; University of Maryland; College Park MD USA
| | - Bilal Naved
- Department of Bioengineering; University of Maryland; College Park MD USA
| | - Elisabeth Smela
- Department of Mechanical Engineering; University of Maryland; College Park MD USA
- Institute for Systems Research; University of Maryland; College Park MD USA
| |
Collapse
|
29
|
Dirany M, Dies L, Restagno F, Léger L, Poulard C, Miquelard-Garnier G. Chemical modification of PDMS surface without impacting the viscoelasticity: Model systems for a better understanding of elastomer/elastomer adhesion and friction. Colloids Surf A Physicochem Eng Asp 2015. [DOI: 10.1016/j.colsurfa.2014.12.036] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
30
|
Brewer BM, Shi M, Edd JF, Webb DJ, Li D. A microfluidic cell co-culture platform with a liquid fluorocarbon separator. Biomed Microdevices 2014; 16:311-23. [PMID: 24420386 DOI: 10.1007/s10544-014-9834-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
A microfluidic cell co-culture platform that uses a liquid fluorocarbon oil barrier to separate cells into different culture chambers has been developed. Characterization indicates that the oil barrier could be effective for multiple days, and a maximum pressure difference between the oil barrier and aqueous media in the cell culture chamber could be as large as ~3.43 kPa before the oil barrier fails. Biological applications have been demonstrated with the separate transfection of two groups of primary hippocampal neurons with two different fluorescent proteins and subsequent observation of synaptic contacts between the neurons. In addition, the quality of the fluidic seal provided by the oil barrier is shown to be greater than that of an alternative solid-PDMS valve barrier design by testing the ability of each device to block low molecular weight CellTracker dyes used to stain cells in the culture chambers.
Collapse
Affiliation(s)
- Bryson M Brewer
- Department of Mechanical Engineering, Vanderbilt University, Nashville, TN, 37235-1592, USA
| | | | | | | | | |
Collapse
|
31
|
Present state of microchip electrophoresis: state of the art and routine applications. J Chromatogr A 2014; 1382:66-85. [PMID: 25529267 DOI: 10.1016/j.chroma.2014.11.034] [Citation(s) in RCA: 130] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Revised: 11/07/2014] [Accepted: 11/12/2014] [Indexed: 12/20/2022]
Abstract
Microchip electrophoresis (MCE) was one of the earliest applications of the micro-total analysis system (μ-TAS) concept, whose aim is to reduce analysis time and reagent and sample consumption while increasing throughput and portability by miniaturizing analytical laboratory procedures onto a microfluidic chip. More than two decades on, electrophoresis remains the most common separation technique used in microfluidic applications. MCE-based instruments have had some commercial success and have found application in many disciplines. This review will consider the present state of MCE including recent advances in technology and both novel and routine applications in the laboratory. We will also attempt to assess the impact of MCE in the scientific community and its prospects for the future.
Collapse
|
32
|
Variation in diffusion of gases through PDMS due to plasma surface treatment and storage conditions. Biomed Microdevices 2014; 16:91-6. [PMID: 24065585 DOI: 10.1007/s10544-013-9808-2] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Polydimethylsiloxane (PDMS) is a commonly used polymer in the fabrication of microfluidic devices due to such features as transparency, gas permeability, and ease of patterning with soft lithography. The surface characteristics of PDMS can also be easily changed with oxygen or low pressure air plasma converting it from a hydrophobic to a hydrophilic state. As part of such a transformation, surface methyl groups are removed and replaced with hydroxyl groups making the exposed surface to resemble silica, a gas impermeable substance. We have utilized Platinum(II)-tetrakis(pentaflourophenyl)porphyrin immobilized within a thin (~1.5 um thick) polystyrene matrix as an oxygen sensor, Stern-Volmer relationship, and Fick's Law of simple diffusion to measure the effects of PDMS composition, treatment, and storage on oxygen diffusion through PDMS. Results indicate that freshly oxidized PDMS showed a significantly smaller diffusion coefficient, indicating that the SiO2 layer formed on the PDMS surface created an impeding barrier. This barrier disappeared after a 3-day storage in air, but remained significant for up to 3 weeks if PDMS was maintained in contact with water. Additionally, higher density PDMS formulation (5:1 ratio) showed similar diffusion characteristics as normal (10:1 ratio) formulation, but showed 60 % smaller diffusion coefficient after plasma treatment that never recovered to pre-treatment levels even after a 3-week storage in air. Understanding how plasma surface treatments contribute to oxygen diffusion will be useful in exploiting the gas permeability of PDMS to establish defined normoxic and hypoxic oxygen conditions within microfluidic bioreactor systems.
Collapse
|
33
|
Abstract
A room temperature liquid metal based electroosmotic flow (EOF) pump has been proposed in this work. This low-cost EOF pump is convenient for both fabrication and integration. It utilizes polydimethylsiloxane (PDMS) microchannels filled with the liquid-metal as non-contact pump electrodes. The electrode channels are fabricated symmetrically to both sides of the pumping channel, having no contact with the pumping channel. To test the pumping performance of the EOF pump, the mean flow velocities of the fluid (DI water) in the EOF pumps were experimentally measured by tracing the fluorescent microparticles in the flow. To provide guidance for designing a low voltage EOF pump, parametric studies on dimensions of the electrode and pumping channels were performed in this work. According to the experimental results, the pumping speed can reach 5.93 μm s(-1) at a driving voltage of only 1.6 V, when the gap between the electrode and the pumping channel is 20 μm. Injecting a room temperature liquid metal into microchannels can provide a simple, rapid, low-cost but accurately self-aligned way to fabricate microelectrodes for EOF pumps, which is a promising method to achieve the miniaturization and integration of the EOF pump in microfluidic systems. The non-contact liquid electrodes have no influence on the fluid in the pumping channel when pumping, reducing Joule heat generation and preventing gas bubble formation at the surface of electrodes. The pump has great potential to drive a wide range of fluids, such as drug reagents, cell suspensions and biological macromolecule solutions.
Collapse
Affiliation(s)
- Meng Gao
- Key Laboratory of Cryogenics, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, PR China.
| | | |
Collapse
|
34
|
A cost-effective two-step method for enhancing the hydrophilicity of PDMS surfaces. BIOCHIP JOURNAL 2014. [DOI: 10.1007/s13206-014-8105-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
35
|
Ngo TC, Kalinova R, Cossement D, Hennebert E, Mincheva R, Snyders R, Flammang P, Dubois P, Lazzaroni R, Leclère P. Modification of the adhesive properties of silicone-based coatings by block copolymers. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2014; 30:358-368. [PMID: 24328504 DOI: 10.1021/la403995q] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
The improvement of the (bio)adhesive properties of elastomeric polydimethylsiloxane (PDMS) coatings is reported. This is achieved by a surface modification consisting of the incorporation of block copolymers containing a PDMS block and a poly(2-(dimethylamino)ethyl methacrylate) (PDMAEMA) block in a PDMS matrix, followed by matrix cross-linking and immersion of the obtained materials in water. Contact angle measurements (CA), X-ray photoelectron spectroscopy (XPS), and atomic force microscopy (AFM) showed the presence of the PDMAEMA block at the surface, drastic morphology changes, and improved adhesion properties after immersion in water. Finally, underwater bioadhesion tests show that mussels adhere only to block copolymer-filled coatings and after immersion in water, i.e., when the PDMAEMA blocks have been brought to the coating surface. These observations highlight the significant role of hydrophilic groups in the surface modification of silicone coatings.
Collapse
Affiliation(s)
- T Chinh Ngo
- Laboratory for Chemistry of Novel Materials, Center of Innovation and Research in Materials and Polymers (CIRMAP), Research Institute for Materials Science and Engineering, University of Mons (UMONS) , 20 Place du Parc, 7000 Mons, Belgium
| | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Saedinia S, Nastiuk KL, Krolewski JJ, Li GP, Bachman M. Laminated microfluidic system for small sample protein analysis. BIOMICROFLUIDICS 2014; 8:014107. [PMID: 24753728 PMCID: PMC3977839 DOI: 10.1063/1.4865675] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2013] [Accepted: 02/02/2014] [Indexed: 06/03/2023]
Abstract
We describe a technology based on lamination that allows for the production of highly integrated 3D devices suitable for performing a wide variety of microfluidic assays. This approach uses a suite of microfluidic coupons ("microfloupons") that are intended to be stacked as needed to produce an assay of interest. Microfloupons may be manufactured in paper, plastic, gels, or other materials, in advance, by different manufacturers, then assembled by the assay designer as needed. To demonstrate this approach, we designed, assembled, and characterized a microfloupon device that performs sodium-dodecyl-sulfate polyacrylamide gel electrophoresis on a small sample of protein. This device allowed for the manipulation and transport of small amounts of protein sample, tight injection into a thin polyacrylamide gel, electrophoretic separation of the proteins into bands, and subsequent removal of the gel from the device for imaging and further analysis. The microfloupons are rugged enough to handle and can be easily aligned and laminated, allowing for a variety of different assays to be designed and configured by selecting appropriate microfloupons. This approach provides a convenient way to perform assays that have multiple steps, relieving the need to design highly sophisticated devices that incorporate all functions in a single unit, while still achieving the benefits of small sample size, automation, and high speed operation.
Collapse
Affiliation(s)
- Sara Saedinia
- University of California, Irvine, 3317 Engineering Gateway, Irvine, California 92697, USA
| | - Kent L Nastiuk
- University of Rochester Medical Center, 601 Elmwood Ave., Box 626, Rochester, New York 14642, USA
| | - John J Krolewski
- University of Rochester Medical Center, 601 Elmwood Ave., Box 626, Rochester, New York 14642, USA
| | - G P Li
- University of California, Irvine, 3317 Engineering Gateway, Irvine, California 92697, USA
| | - Mark Bachman
- University of California, Irvine, 3317 Engineering Gateway, Irvine, California 92697, USA
| |
Collapse
|
37
|
Borysiak MD, Yuferova E, Posner JD. Simple, low-cost styrene-ethylene/butylene-styrene microdevices for electrokinetic applications. Anal Chem 2013; 85:11700-4. [PMID: 24245911 DOI: 10.1021/ac4027675] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Styrene-ethylene/butylene-styrene (SEBS) copolymers combine thermoplastic and elastomeric properties to provide microdevices with the advantageous properties of hard thermoplastics and ease of fabrication similar to PDMS. This work describes the electrical surface properties of SEBS block copolymers using current monitoring experiments to determine zeta potential. We show that SEBS exhibits a stable and relatively high zeta potential magnitude compared to similar polymers. The zeta potential of SEBS is stable when stored in air over time, and no significant differences are observed between different batches and devices, demonstrating reproducibility of results. We show zeta potential trends for varying pH and counterion concentration and demonstrate that SEBS has a repeatable surface potential comparable to glass. Oxygen plasma treatment greatly increases the zeta potential magnitude immediately following treatment before undergoing a moderate hydrophobic recovery to a stable zeta potential. SEBS copolymers also offer simple rapid prototyping fabrication and mass production potential. The presented electrokinetic properties combined with simple, low-cost fabrication of microdevices make SEBS a quality material for electrokinetic research and application development.
Collapse
Affiliation(s)
- Mark D Borysiak
- Department of Chemical Engineering, University of Washington , Seattle, Washington 98195, United States
| | | | | |
Collapse
|
38
|
Bubendorfer AJ, Ingham B, Kennedy JV, Arnold WM. Contamination of PDMS microchannels by lithographic molds. LAB ON A CHIP 2013; 13:4312-4316. [PMID: 24080639 DOI: 10.1039/c3lc50641j] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
By use of synchrotron X-ray fluorescence and Rutherford backscattering spectrometry, we show the SU-8 soft lithographic process contaminates PDMS. Residues of the antimony containing photoinitiator are transferred from the master mold to the surface of PDMS, uncontrollably intensifying the surface potential, leading to electroosmotic flow variability in PDMS microfluidic devices.
Collapse
|
39
|
Larson BJ, Gillmor SD, Braun JM, Cruz-Barba LE, Savage DE, Denes FS, Lagally MG. Long-term reduction in poly(dimethylsiloxane) surface hydrophobicity via cold-plasma treatments. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2013; 29:12990-12996. [PMID: 24063604 DOI: 10.1021/la403077q] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Poly(dimethylsiloxane), PDMS, a versatile elastomer, is the polymer of choice for microfluidic systems. It is inexpensive, relatively easy to pattern, and permeable to oxygen. Unmodified PDMS is highly hydrophobic. It is typically exposed to an oxygen plasma to reduce this hydrophobicity. Unfortunately, the PDMS surface soon returns to its original hydrophobic state. We present two alternative plasma treatments that yield long-term modification of the wetting properties of a PDMS surface. An oxygen plasma pretreatment followed by exposure to a SiCl4 plasma and an oxygen-CCl4 mixture plasma both cause a permanent reduction in the hydrophobicity of the PDMS surface. We investigate the properties of the plasma-treated surfaces with X-ray photoelectron spectroscopy (XPS) and contact angle measurements. We propose that the plasma treated PDMS surface is a dynamic mosaic of high- and low-contact-angle functionalities. The SiCl4 and CCl4 plasmas attach polar groups that block coverage of the surface by low-molecular-weight groups that exist in PDMS. We describe an application that benefits from these new plasma treatments, the use of a PDMS stencil to form dense arrays of DNA on a surface.
Collapse
Affiliation(s)
- B J Larson
- Department of Materials Science and Engineering, University of Wisconsin-Madison , 1509 University Avenue, Madison, Wisconsin 53706, United States
| | | | | | | | | | | | | |
Collapse
|
40
|
Markov DA, Lillie EM, Garbett SP, McCawley LJ. Variation in diffusion of gases through PDMS due to plasma surface treatment and storage conditions. Biomed Microdevices 2013. [PMID: 24065585 DOI: 10.1007/s10544‐013‐9808‐2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Polydimethylsiloxane (PDMS) is a commonly used polymer in the fabrication of microfluidic devices due to such features as transparency, gas permeability, and ease of patterning with soft lithography. The surface characteristics of PDMS can also be easily changed with oxygen or low pressure air plasma converting it from a hydrophobic to a hydrophilic state. As part of such a transformation, surface methyl groups are removed and replaced with hydroxyl groups making the exposed surface to resemble silica, a gas impermeable substance. We have utilized Platinum(II)-tetrakis(pentaflourophenyl)porphyrin immobilized within a thin (~1.5 um thick) polystyrene matrix as an oxygen sensor, Stern-Volmer relationship, and Fick's Law of simple diffusion to measure the effects of PDMS composition, treatment, and storage on oxygen diffusion through PDMS. Results indicate that freshly oxidized PDMS showed a significantly smaller diffusion coefficient, indicating that the SiO2 layer formed on the PDMS surface created an impeding barrier. This barrier disappeared after a 3-day storage in air, but remained significant for up to 3 weeks if PDMS was maintained in contact with water. Additionally, higher density PDMS formulation (5:1 ratio) showed similar diffusion characteristics as normal (10:1 ratio) formulation, but showed 60 % smaller diffusion coefficient after plasma treatment that never recovered to pre-treatment levels even after a 3-week storage in air. Understanding how plasma surface treatments contribute to oxygen diffusion will be useful in exploiting the gas permeability of PDMS to establish defined normoxic and hypoxic oxygen conditions within microfluidic bioreactor systems.
Collapse
Affiliation(s)
- Dmitry A Markov
- Department of Cancer Biology, Vanderbilt University Medical Center, Nashville, TN, 37232, USA,
| | | | | | | |
Collapse
|
41
|
Han SI, Han KH. Microfluidic interface technology based on stereolithography for glass-based lab-on-a-chips. Methods Mol Biol 2013; 949:169-84. [PMID: 23329443 DOI: 10.1007/978-1-62703-134-9_12] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/20/2023]
Abstract
As lab-on-a-chips are developed for on-chip integrated microfluidic systems with multiple functions, the development of microfluidic interface (MFI) technology to enable integration of complex microfluidic systems becomes increasingly important and faces many technical difficulties. Such difficulties include the need for more complex structures, the possibility of biological or chemical cross-contamination between functional compartments, and the possible need for individual compartments fabricated from different substrate materials. This chapter introduces MFI technology, based on rapid stereolithography, for a glass-based miniaturized genetic sample preparation system, as an example of a complex lab-on-a-chip that could include functional elements such as; solid-phase DNA extraction, polymerase chain reaction, and capillary electrophoresis. To enable the integration of a complex lab-on-a-chip system in a single chip, MFI technology based on stereolithography provides a simple method for realizing complex arrangements of one-step plug-in microfluidic interconnects, integrated microvalves for microfluidic control, and optical windows for on-chip optical processes.
Collapse
Affiliation(s)
- Song-I Han
- School of Nano Engineering, Inje University, Gimhae, Republic of Korea
| | | |
Collapse
|
42
|
Cao Z, Yobas L. Microchannel plate as a novel bipolar electrode for high-performance enrichment of anions. Electrophoresis 2013; 34:1991-7. [DOI: 10.1002/elps.201300040] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Zhen Cao
- Department of Electronic and Computer Engineering; Hong Kong University of Science and Technology, Clear Water Bay; Kowloon; Hong Kong
| | - Levent Yobas
- Department of Electronic and Computer Engineering; Hong Kong University of Science and Technology, Clear Water Bay; Kowloon; Hong Kong
| |
Collapse
|
43
|
Abstract
Microfluidic systems allow small volumes of liquids to be manipulated, either by being passed through channels or moved around as liquid droplets. Such systems have been developed to separate, purify, analyze, and deliver molecules to reaction zones. Although volumes are small, reaction rates, catalysis, mixing, and heat transfer can be high, enabling the accurate sensing of tiny quantities of agents and the synthesis of novel products. The incorporation of multiple components, such as pumps, valves, mixers, and heaters, onto a single microfluidic platform has brought about the field of lab-on-a-chip devices or micro total analysis systems (μTAS). Although used in the research laboratory for numerous years, few of these devices have made it into the commercial market, due to their complexity of fabrication and limited choice of material. As the dimensions of these systems become smaller, interfacial interactions begin to dominate in terms of device performance. Appropriate selection of bulk materials, or the application of surface coatings, can allow control over surface properties, such as the adsorption of (bio)molecules. Here we review current microfluidic technology in terms of biocompatibility issues, examining the use of modification strategies to improve device longevity and performance.
Collapse
Affiliation(s)
- N J Shirtcliffe
- Biomimetic Materials, Hochschule Rhein-Waal, Rhine-Waal University of Applied Sciences, Kleve, Germany
| | | | | |
Collapse
|
44
|
Hamon M, Hanada S, Fujii T, Sakai Y. Direct oxygen supply with polydimethylsiloxane (PDMS) membranes induces a spontaneous organization of thick heterogeneous liver tissues from rat fetal liver cells in vitro. Cell Transplant 2012; 21:401-10. [PMID: 22793047 DOI: 10.3727/096368911x605303] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Oxygen is a vital nutrient for growth and maturation of in vitro cells (e.g., adult hepatocytes). We previously demonstrated that direct oxygenation through a polydimethylsiloxane (PDMS) membrane increases the oxygen supply to cell cultures and improves hepatocyte functions. In this study, we removed limits on oxygen supply to fetal rat liver cells through the use of direct oxygenation through a PDMS membrane to investigate in vitro growth and maturation. We chose fetal liver cells because they are considered a feasible source of liver progenitor cells for regenerative medicine therapy due to their highly efficient maturation and proliferation. Cells from 17-day-old pregnant rats were cultured under 5% and 21% oxygen atmospheres. Some cells were first cultured under 5% oxygen, and then switched to a 21% oxygen atmosphere. When oxygen supply was enhanced by a PDMS membrane, the rat fetal liver cells organized into a complex tissue composed of an epithelium of hepatocytes above a mesenchyme-like tissue. The thickness of this supportive tissue was directly correlated to oxygen concentration and was thicker under 5% oxygen. When cultures were switched from 5% to 21% oxygen, lumen-containing structures were formed in the thick mesenchymal-like tissue and the albumin secretion rate increased. In addition, cells adapted their glycolytic activity to the oxygen concentrations. This system promoted the formation of a functional and organized thick tissue suitable for use in regenerative medicine.
Collapse
Affiliation(s)
- Morgan Hamon
- Laboratory for Integrated Micro-Mechatronic Systems, Institute of Industrial Science, University of Tokyo, Meguro-ku, Tokyo, Japan.
| | | | | | | |
Collapse
|
45
|
Johnson AS, Anderson KB, Halpin ST, Kirkpatrick DC, Spence DM, Martin RS. Integration of multiple components in polystyrene-based microfluidic devices part I: fabrication and characterization. Analyst 2012; 138:129-36. [PMID: 23120747 DOI: 10.1039/c2an36168j] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
In Part I of a two-part series, we describe a simple and inexpensive approach to fabricate polystyrene devices that is based upon melting polystyrene (from either a Petri dish or powder form) against PDMS molds or around electrode materials. The ability to incorporate microchannels in polystyrene and integrate the resulting device with standard laboratory equipment such as an optical plate reader for analyte readout and pipets for fluid propulsion is first described. A simple approach for sample and reagent delivery to the device channels using a standard, multi-channel micropipette and a PDMS-based injection block is detailed. Integration of the microfluidic device with these off-chip functions (sample delivery and readout) enables high-throughput screens and analyses. An approach to fabricate polystyrene-based devices with embedded electrodes is also demonstrated, thereby enabling the integration of microchip electrophoresis with electrochemical detection through the use of a palladium electrode (for a decoupler) and carbon-fiber bundle (for detection). The device was sealed against a PDMS-based microchannel and used for the electrophoretic separation and amperometric detection of dopamine, epinephrine, catechol, and 3,4-dihydroxyphenylacetic acid. Finally, these devices were compared against PDMS-based microchips in terms of their optical transparency and absorption of an anti-platelet drug, clopidogrel. Part I of this series lays the foundation for Part II, where these devices were utilized for various on-chip cellular analysis.
Collapse
Affiliation(s)
- Alicia S Johnson
- Department of Chemistry, Saint Louis University, St. Louis, Missouri 63103, USA
| | | | | | | | | | | |
Collapse
|
46
|
Fujii Y, Henares TG, Kawamura K, Endo T, Hisamoto H. Bulk- and surface-modified combinable PDMS capillary sensor array as an easy-to-use sensing device with enhanced sensitivity to elevated concentrations of multiple serum sample components. LAB ON A CHIP 2012; 12:1522-1526. [PMID: 22395813 DOI: 10.1039/c2lc21242k] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
To enhance sensitivity and facilitate easy sample introduction into a combinable poly(dimethylsiloxane) (PDMS) capillary (CPC) sensor array, PDMS was modified in bulk and on its surface to prepare "black" PDMS coated with a silver layer and self-assembled monolayer (SAM). India ink, a traditional Japanese black ink, was added to the PDMS pre-polymer for bulk modification. The surface was modified by a silver mirror reaction followed by SAM formation using cysteine. These modifications enhanced the fluorescence signals by reflecting them from the surface and reducing background interference. A decrease in the water contact angle led to enhanced sensitivity and easy sample introduction. Furthermore, a CPC sensor array for multiplex detection of serum sample components was prepared that could quantify the analytes glucose, potassium, and alkaline phosphatase (ALP). When serum samples were introduced by capillary action, the CPC sensor array showed fluorescence responses for each analyte and successfully identified the components with elevated concentrations in the serum samples.
Collapse
Affiliation(s)
- Yuji Fujii
- Department of Applied Chemistry, Graduate School of Engineering, Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan
| | | | | | | | | |
Collapse
|
47
|
Wu WI, Sask KN, Brash JL, Selvaganapathy PR. Polyurethane-based microfluidic devices for blood contacting applications. LAB ON A CHIP 2012; 12:960-970. [PMID: 22273592 DOI: 10.1039/c2lc21075d] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Protein adsorption on PDMS surfaces poses a significant challenge in microfluidic devices that come into contact with biofluids such as blood. Polyurethane (PU) is often used for the construction of medical devices, but despite having several attractive properties for biointerfacing, it has not been widely used in microfluidic devices. In this work we developed two new fabrication processes for making thin, transparent and flexible PU-based microfluidic devices. Methods for the fabrication and bonding of microchannels, the integration of fluidic interconnections and surface modification with hydrophilic polyethylene oxide (PEO) to reduce protein adsorption are detailed. Using these processes, microchannels were produced having high transparency (96% that of glass in visible light), high bond strength (326.4 kPa) and low protein adsorption (80% reduction in fibrinogen adsorption vs. unmodified PDMS), which is critical for prevention of fouling. Our findings indicate that PEO modified PU could serve as an effective alternative to PDMS in blood contacting microfluidic applications.
Collapse
Affiliation(s)
- Wen-I Wu
- Department of Mechanical Engineering, McMaster University, Hamilton, ON, Canada
| | | | | | | |
Collapse
|
48
|
Ma K, Rivera J, Hirasaki GJ, Biswal SL. Wettability control and patterning of PDMS using UV–ozone and water immersion. J Colloid Interface Sci 2011; 363:371-8. [DOI: 10.1016/j.jcis.2011.07.036] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2011] [Revised: 07/09/2011] [Accepted: 07/12/2011] [Indexed: 11/26/2022]
|
49
|
Gencoglu A, Camacho-Alanis F, Nguyen VT, Nakano A, Ros A, Minerick A. Quantification of pH gradients and implications in insulator-based dielectrophoresis of biomolecules. Electrophoresis 2011; 32:2436-47. [PMID: 21874654 PMCID: PMC3226333 DOI: 10.1002/elps.201100090] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2011] [Revised: 05/04/2011] [Accepted: 05/05/2011] [Indexed: 11/08/2022]
Abstract
Direct current (DC) insulator-based dielectrophoretic (iDEP) microdevices have the potential to replace traditional alternating current dielectrophoretic devices for many cellular and biomolecular separation applications. The use of large DC fields suggest that electrode reactions and ion transport mechanisms can become important and impact ion distributions in the nanoliters of fluid in iDEP microchannels. This work tracked natural pH gradient formation in a 100 μm wide, 1 cm-long microchannel under applicable iDEP protein manipulation conditions. Using fluorescence microscopy with the pH-sensitive dye FITC Isomer I and the pH-insensitive dye TRITC as a reference, pH was observed to drop drastically in the microchannels within 1 min in a 3000 V/cm electric field; pH drops were observed in the range of 6-10 min within a 100 V/cm electric field and varied based on the buffer conductivity. To address concerns of dye transport impacting intensity data, electrokinetic mobilities of FITC were carefully examined and found to be (i) toward the anode and (ii) 1 to 2 orders of magnitude smaller than H⁺ transport which is responsible for pH drops from the anode toward the cathode. COMSOL simulations of ion transport showed qualitative agreement with experimental results. The results indicate that pH changes are severe enough and rapid enough to influence the net charge of a protein or cause aggregation during iDEP experiments. The results also elucidate reasonable time periods over which the phosphate buffering capacity can counter increases in H⁺ and OH⁻ for unperturbed iDEP manipulations.
Collapse
Affiliation(s)
- Aytug Gencoglu
- : Department of Chemical Engineering, Michigan Technological University, Houghton, MI 49931, USA
| | - Fernanda Camacho-Alanis
- : Department of Chemistry and Biochemistry, Arizona State University, Tempe, AZ 85287-1604, USA
| | - Vi Thanh Nguyen
- : Department of Chemistry and Biochemistry, Arizona State University, Tempe, AZ 85287-1604, USA
| | - Asuka Nakano
- : Department of Chemistry and Biochemistry, Arizona State University, Tempe, AZ 85287-1604, USA
| | - Alexandra Ros
- : Department of Chemistry and Biochemistry, Arizona State University, Tempe, AZ 85287-1604, USA
| | - Adrienne Minerick
- : Department of Chemical Engineering, Michigan Technological University, Houghton, MI 49931, USA
| |
Collapse
|
50
|
Viefhues M, Manchanda S, Chao TC, Anselmetti D, Regtmeier J, Ros A. Physisorbed surface coatings for poly(dimethylsiloxane) and quartz microfluidic devices. Anal Bioanal Chem 2011; 401:2113-22. [PMID: 21847528 DOI: 10.1007/s00216-011-5301-z] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2011] [Revised: 07/22/2011] [Accepted: 07/28/2011] [Indexed: 01/20/2023]
Abstract
Surface modifications of microfluidic devices are of essential importance for successful bioanalytical applications. Here, we investigate three different coatings for quartz and poly(dimethylsiloxane) (PDMS) surfaces. We employed a triblock copolymer with trade name F(108), poly(L-lysine)-g-poly(ethylene glycol) (PLL-PEG), as well as the hybrid coating n-dodecyl-β-D-maltoside and methyl cellulose (DDM/MC). The impact of these coatings was characterized by measuring the electroosmotic flow (EOF), contact angle, and prevention of protein adsorption. Furthermore, we investigated the influence of static coatings, i.e., the incubation with the coating agent prior to measurements, and dynamic coatings, where the coating agent was present during the measurement. We found that all coatings on PDMS as well as quartz reduced EOF, increased reproducibility of EOF, reduced protein adsorption, and improved the wettability of the surfaces. Among the coating strategies tested, the dynamic coatings with DDM/MC and F(108) demonstrated maximal reduction of EOF and protein adsorption and simultaneously best long-term stability concerning EOF. For PLL-PEG, a reversal in the EOF direction was observed. Interestingly, the static surface coating strategy with F(108) proved to be as effective to prevent protein adsorption as dynamic coating with this block copolymer. These findings will allow optimized parameter choices for coating strategies on PDMS and quartz microfluidic devices in which control of EOF and reduced biofouling are indispensable.
Collapse
Affiliation(s)
- M Viefhues
- Experimental Biophysics and Applied Nanoscience, Bielefeld University, 33615 Bielefeld, Germany
| | | | | | | | | | | |
Collapse
|