1
|
Li BZ, Poleg S, Ridenour M, Tollin D, Lei T, Klug A. Computational model for synthesizing auditory brainstem responses to assess neuronal alterations in aging and autistic animal models. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.08.04.606499. [PMID: 39211118 PMCID: PMC11361117 DOI: 10.1101/2024.08.04.606499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Purpose The auditory brainstem response (ABR) is a widely used objective electrophysiology measure for non-invasively assessing auditory function and neural activity in the auditory brainstem, but its ability to reflect detailed neuronal processing is limited due to the averaging nature of the electroencephalogram-type recordings. Method This study addresses this limitation by developing a computational model of the auditory brainstem which is capable of synthesizing ABR traces based on a large, population scale neural extrapolation of a spiking neuronal network of auditory brainstem circuitry. The model was able to recapitulate alterations in ABR waveform morphology that have been shown to be present in two medical conditions: animal models of autism and aging. Moreover, in both of these conditions, these ABR alterations are caused by known distinct changes in auditory brainstem physiology, and the model could recapitulate these changes. Results In the autism model, the simulation revealed myelin deficits and hyperexcitability, which caused a decreased wave III amplitude and a prolonged wave III-V interval, consistent with experimentally recorded ABRs in Fmr1-KO mice. For the aging condition, the model recapitulated ABRs recorded in aged gerbils and indicated a reduction in activity in the medial nucleus of the trapezoid body (MNTB), a finding validated by confocal imaging data. Conclusion These results demonstrate not only the model's accuracy but also its capability of linking features of ABR morphology to underlying neuronal properties and suggesting follow-up physiological experiments.
Collapse
|
2
|
Kwok P, Gleich O, Koch P, Schenkl G, Koch N, Bohr C. Measurement of inferior colliculus volume based on MRI image stacks and its relationship with age and hearing status. PLoS One 2025; 20:e0317363. [PMID: 39874268 PMCID: PMC11774353 DOI: 10.1371/journal.pone.0317363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 12/26/2024] [Indexed: 01/30/2025] Open
Abstract
The inferior colliculus is a key nucleus in the central auditory pathway, integrating acoustic stimuli from both cochleae and playing a crucial role in sound localization. It undergoes functional and structural development in childhood and experiences age-related degeneration later in life, contributing to the progression of age-related hearing loss. This study aims at finding out, whether the volume of the human inferior colliculus can be determined by analysis of routinely performed MRIs and whether there is any age-related variation. A further goal is to detect correlations between volume and existing hearing loss of the patients. A retrospective search in the data of the Regensburg ENT department was done. 123 MRI datasets were used to mark the voxels of the inferior colliculus on the MRI layers. The volumes could then be calculated by using the respective DICOM data and were correlated with age, gender and hearing status of the patients. Results suggested that a voxel-based method on routine clinical MRI stacks to determine the volume of the inferior colliculus is possible. The volume shows an age-dependency. There is a growth from infancy until adulthood and a significant decrease in patients over the age of 60 years. Left and right inferior colliculi do not show any systematic asymmetry in volume. There is no difference between females and males. In the group with asymmetric hearing (n = 13) a significant reduction of the volume on the deprived side (p = 0.036) was found. The proportion of subjects with severe hearing loss at least on one side was significantly higher in the old (>60 years) as compared to younger adults (10 to 60 years), suggesting that severe hearing loss may be associated with a reduced volume of the inferior colliculus in aged humans.
Collapse
Affiliation(s)
- Pingling Kwok
- Department of Otolaryngology, University Hospital Regensburg, Regensburg, Germany
| | - Otto Gleich
- Department of Otolaryngology, University Hospital Regensburg, Regensburg, Germany
| | - Peter Koch
- Department of Otolaryngology, University Hospital Regensburg, Regensburg, Germany
| | - Gudrun Schenkl
- Department of Otolaryngology, University Hospital Regensburg, Regensburg, Germany
| | - Nina Koch
- Department of Otolaryngology, University Hospital Regensburg, Regensburg, Germany
| | - Christopher Bohr
- Department of Otolaryngology, University Hospital Regensburg, Regensburg, Germany
| |
Collapse
|
3
|
McCullagh EA, Peacock J, Lucas A, Poleg S, Greene NT, Gaut A, Lagestee S, Zhang Y, Kaczmarek LK, Park TJ, Tollin DJ, Klug A. Auditory brainstem development of naked mole-rats ( Heterocephalus glaber). Proc Biol Sci 2022; 289:20220878. [PMID: 35946148 PMCID: PMC9363996 DOI: 10.1098/rspb.2022.0878] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 07/15/2022] [Indexed: 01/12/2023] Open
Abstract
Life underground often leads to animals having specialized auditory systems to accommodate the constraints of acoustic transmission in tunnels. Despite living underground, naked mole-rats use a highly vocal communication system, implying that they rely on central auditory processing. However, little is known about these animals' central auditory system, and whether it follows a similar developmental time course as other rodents. Naked mole-rats show slowed development in the hippocampus suggesting they have altered brain development compared to other rodents. Here, we measured morphological characteristics and voltage-gated potassium channel Kv3.3 expression and protein levels at different key developmental time points (postnatal days 9, 14, 21 and adulthood) to determine whether the auditory brainstem (lateral superior olive and medial nucleus of the trapezoid body) develops similarly to two common auditory rodent model species: gerbils and mice. Additionally, we measured the hearing onset of naked mole-rats using auditory brainstem response recordings at the same developmental timepoints. In contrast with other work in naked mole-rats showing that they are highly divergent in many aspects of their physiology, we show that naked mole-rats have a similar hearing onset, between postnatal day (P) 9 and P14, to many other rodents. On the other hand, we show some developmental differences, such as a unique morphology and Kv3.3 protein levels in the brainstem.
Collapse
Affiliation(s)
| | - John Peacock
- Department of Physiology and Biophysics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Alexandra Lucas
- Department of Physiology and Biophysics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Shani Poleg
- Department of Physiology and Biophysics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Nathaniel T. Greene
- Department of Otolaryngology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Addison Gaut
- Department of Integrative Biology, Oklahoma State University, Stillwater, OK, USA
| | - Samantha Lagestee
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, IL USA
| | - Yalan Zhang
- Department of Pharmacology, Yale University, New Haven, CT, USA
| | - Leonard K. Kaczmarek
- Department of Pharmacology, Yale University, New Haven, CT, USA
- Department of Cellular and Molecular Physiology, Yale University, New Haven, CT, USA
| | - Thomas J. Park
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, IL USA
| | - Daniel J. Tollin
- Department of Physiology and Biophysics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- Department of Otolaryngology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Achim Klug
- Department of Physiology and Biophysics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- Department of Otolaryngology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| |
Collapse
|
4
|
Vicencio-Jimenez S, Weinberg MM, Bucci-Mansilla G, Lauer AM. Olivocochlear Changes Associated With Aging Predominantly Affect the Medial Olivocochlear System. Front Neurosci 2021; 15:704805. [PMID: 34539335 PMCID: PMC8446540 DOI: 10.3389/fnins.2021.704805] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 08/02/2021] [Indexed: 11/13/2022] Open
Abstract
Age-related hearing loss (ARHL) is a public health problem that has been associated with negative health outcomes ranging from increased frailty to an elevated risk of developing dementia. Significant gaps remain in our knowledge of the underlying central neural mechanisms, especially those related to the efferent auditory pathways. Thus, the aim of this study was to quantify and compare age-related alterations in the cholinergic olivocochlear efferent auditory neurons. We assessed, in young-adult and aged CBA mice, the number of cholinergic olivocochlear neurons, auditory brainstem response (ABR) thresholds in silence and in presence of background noise, and the expression of excitatory and inhibitory proteins in the ventral nucleus of the trapezoid body (VNTB) and in the lateral superior olive (LSO). In association with aging, we found a significant decrease in the number of medial olivocochlear (MOC) cholinergic neurons together with changes in the ratio of excitatory and inhibitory proteins in the VNTB. Furthermore, in old mice we identified a correlation between the number of MOC neurons and ABR thresholds in the presence of background noise. In contrast, the alterations observed in the lateral olivocochlear (LOC) system were less significant. The decrease in the number of LOC cells associated with aging was 2.7-fold lower than in MOC and in the absence of changes in the expression of excitatory and inhibitory proteins in the LSO. These differences suggest that aging alters the medial and lateral olivocochlear efferent pathways in a differential manner and that the changes observed may account for some of the symptoms seen in ARHL.
Collapse
Affiliation(s)
- Sergio Vicencio-Jimenez
- The Center for Hearing and Balance, Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Madison M Weinberg
- The Center for Hearing and Balance, Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Giuliana Bucci-Mansilla
- Laboratorio de Neurosistemas, Departamento de Neurociencia, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Amanda M Lauer
- The Center for Hearing and Balance, Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| |
Collapse
|
5
|
Ashida G, Tollin DJ, Kretzberg J. Robustness of neuronal tuning to binaural sound localization cues against age-related loss of inhibitory synaptic inputs. PLoS Comput Biol 2021; 17:e1009130. [PMID: 34242210 PMCID: PMC8270189 DOI: 10.1371/journal.pcbi.1009130] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 05/30/2021] [Indexed: 11/19/2022] Open
Abstract
Sound localization relies on minute differences in the timing and intensity of sound arriving at both ears. Neurons of the lateral superior olive (LSO) in the brainstem process these interaural disparities by precisely detecting excitatory and inhibitory synaptic inputs. Aging generally induces selective loss of inhibitory synaptic transmission along the entire auditory pathways, including the reduction of inhibitory afferents to LSO. Electrophysiological recordings in animals, however, reported only minor functional changes in aged LSO. The perplexing discrepancy between anatomical and physiological observations suggests a role for activity-dependent plasticity that would help neurons retain their binaural tuning function despite loss of inhibitory inputs. To explore this hypothesis, we use a computational model of LSO to investigate mechanisms underlying the observed functional robustness against age-related loss of inhibitory inputs. The LSO model is an integrate-and-fire type enhanced with a small amount of low-voltage activated potassium conductance and driven with (in)homogeneous Poissonian inputs. Without synaptic input loss, model spike rates varied smoothly with interaural time and level differences, replicating empirical tuning properties of LSO. By reducing the number of inhibitory afferents to mimic age-related loss of inhibition, overall spike rates increased, which negatively impacted binaural tuning performance, measured as modulation depth and neuronal discriminability. To simulate a recovery process compensating for the loss of inhibitory fibers, the strength of remaining inhibitory inputs was increased. By this modification, effects of inhibition loss on binaural tuning were considerably weakened, leading to an improvement of functional performance. These neuron-level observations were further confirmed by population modeling, in which binaural tuning properties of multiple LSO neurons were varied according to empirical measurements. These results demonstrate the plausibility that homeostatic plasticity could effectively counteract known age-dependent loss of inhibitory fibers in LSO and suggest that behavioral degradation of sound localization might originate from changes occurring more centrally.
Collapse
Affiliation(s)
- Go Ashida
- Cluster of Excellence "Hearing4all", Department of Neuroscience, University of Oldenburg, Oldenburg, Germany
- * E-mail:
| | - Daniel J. Tollin
- Department of Physiology and Biophysics, University of Colorado School of Medicine, Aurora, Colorado, United States of America
| | - Jutta Kretzberg
- Cluster of Excellence "Hearing4all", Department of Neuroscience, University of Oldenburg, Oldenburg, Germany
| |
Collapse
|
6
|
Jeng JY, Carlton A, Johnson SL, Brown SDM, Holley MC, Bowl MR, Marcotti W. Biophysical and morphological changes in inner hair cells and their efferent innervation in the ageing mouse cochlea. J Physiol 2021; 599:269-287. [PMID: 33179774 PMCID: PMC7612127 DOI: 10.1113/jp280256] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 10/01/2020] [Indexed: 09/18/2023] Open
Abstract
KEY POINTS Age-related hearing loss is a progressive hearing loss involving environmental and genetic factors, leading to a decrease in hearing sensitivity, threshold and speech discrimination. We compared age-related changes in inner hair cells (IHCs) between four mouse strains with different levels of progressive hearing loss. The surface area of apical coil IHCs (9-12 kHz cochlear region) decreases by about 30-40% with age. The number of BK channels progressively decreases with age in the IHCs from most mouse strains, but the basolateral membrane current profile remains unchanged. The mechanoelectrical transducer current is smaller in mice harbouring the hypomorphic Cdh23 allele Cdh23ahl (C57BL/6J; C57BL/6NTac), but not in Cdh23-repaired mice (C57BL/6NTacCdh23+ ), indicating that it could contribute to the different progression of hearing loss among mouse strains. The degree of efferent rewiring onto aged IHCs, most likely coming from the lateral olivocochlea fibres, was correlated with hearing loss in the different mouse strains. ABSTRACT Inner hair cells (IHCs) are the primary sensory receptors of the mammalian cochlea, transducing acoustic information into electrical signals that are relayed to the afferent neurons. Functional changes in IHCs are a potential cause of age-related hearing loss. Here, we have investigated the functional characteristics of IHCs from early-onset hearing loss mice harbouring the allele Cdh23ahl (C57BL/6J and C57BL/6NTac), from late-onset hearing loss mice (C3H/HeJ), and from mice corrected for the Cdh23ahl mutation (C57BL/6NTacCdh23+ ) with an intermediate hearing phenotype. There was no significant loss of IHCs in the 9-12 kHz cochlear region up to at least 15 months of age, but their surface area decreased progressively by 30-40% starting from ∼6 months of age. Although the size of the BK current decreased with age, IHCs retained a normal KCNQ4 current and resting membrane potential. These basolateral membrane changes were most severe for C57BL/6J and C57BL/6NTac, less so for C57BL/6NTacCdh23+ and minimal or absent in C3H/HeJ mice. We also found that lateral olivocochlear (LOC) efferent fibres re-form functional axon-somatic connections with aged IHCs, but this was seen only sporadically in C3H/HeJ mice. The efferent post-synaptic SK2 channels appear prior to the establishment of the efferent contacts, suggesting that IHCs may play a direct role in re-establishing the LOC-IHC synapses. Finally, we showed that the size of the mechanoelectrical transducer (MET) current from IHCs decreased significantly with age in mice harbouring the Cdh23ahl allele but not in C57BL/6NTacCdh23+ mice, indicating that the MET apparatus directly contributes to the progression of age-related hearing loss.
Collapse
Affiliation(s)
- Jing-Yi Jeng
- Department of Biomedical Science, University of Sheffield, Sheffield, S10 2TN, UK
| | - Adam Carlton
- Department of Biomedical Science, University of Sheffield, Sheffield, S10 2TN, UK
| | - Stuart L. Johnson
- Department of Biomedical Science, University of Sheffield, Sheffield, S10 2TN, UK
- Neuroscience Institute, University of Sheffield, Sheffield, S10 2TN, UK
| | - Steve D. M. Brown
- Mammalian Genetics Unit, MRC Harwell Institute, Oxfordshire, OX11 0RD, UK
| | - Matthew C. Holley
- Department of Biomedical Science, University of Sheffield, Sheffield, S10 2TN, UK
| | - Michael R. Bowl
- Mammalian Genetics Unit, MRC Harwell Institute, Oxfordshire, OX11 0RD, UK
| | - Walter Marcotti
- Department of Biomedical Science, University of Sheffield, Sheffield, S10 2TN, UK
- Neuroscience Institute, University of Sheffield, Sheffield, S10 2TN, UK
| |
Collapse
|
7
|
Eipert L, Klump GM. Uncertainty-based informational masking in a vowel discrimination task for young and old Mongolian gerbils. Hear Res 2020; 392:107959. [PMID: 32330738 DOI: 10.1016/j.heares.2020.107959] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 03/13/2020] [Accepted: 04/01/2020] [Indexed: 11/25/2022]
Abstract
Informational masking emerges with processing of complex sounds in the central auditory system and can be affected by uncertainty emerging from trial-to-trial variation of stimulus features. Uncertainty can be non-informative but confusing and thus mask otherwise salient stimulus changes resulting in increased discrimination thresholds. With increasing age, the ability for processing of such complex sound scenes degrades. Here, 6 young and 4 old gerbils were tested behaviorally in a vowel discrimination task. Animals were trained to discriminate between sequentially presented target and reference vowels of the vowel pair/I/-/i/. Reference and target vowels were generated shifting the three formants of the reference vowel in steps towards the formants of the target vowels. Non-informative but distracting uncertainty was introduced by random changes in location, level, fundamental frequency or all three features combined. Young gerbils tested with uncertainty for the target or target and reference vowels showed similar informational masking effects for both conditions. Young and old gerbils were tested with uncertainty for the target vowels only. Old gerbils showed no threshold increase discriminating vowels without uncertainty in comparison with young gerbils. Introducing uncertainty, vowel discrimination thresholds increased for young and old gerbils and vowel discrimination thresholds increased most when presenting all three uncertainty features combined. Old gerbils were more susceptible to non-informative uncertainty and their thresholds increased more than thresholds of young gerbils. Gerbils' vowel discrimination thresholds are compared to human performance in the same task (Eipert et al., 2019).
Collapse
Affiliation(s)
- Lena Eipert
- Cluster of Excellence Hearing4all, Division Animal Physiology and Behavior, Department of Neuroscience, School of Medicine and Health Sciences, University of Oldenburg, D-26111, Oldenburg, Germany
| | - Georg M Klump
- Cluster of Excellence Hearing4all, Division Animal Physiology and Behavior, Department of Neuroscience, School of Medicine and Health Sciences, University of Oldenburg, D-26111, Oldenburg, Germany.
| |
Collapse
|
8
|
Kessler M, Mamach M, Beutelmann R, Bankstahl JP, Bengel FM, Klump GM, Berding G. Activation in the auditory pathway of the gerbil studied with 18F-FDG PET: effects of anesthesia. Brain Struct Funct 2018; 223:4293-4305. [PMID: 30203305 DOI: 10.1007/s00429-018-1743-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Accepted: 08/29/2018] [Indexed: 01/20/2023]
Abstract
Here, we present results from an 18F-fluorodeoxyglucose (18F-FDG) positron emission tomography (PET) study in the Mongolian gerbil, a preferred animal model in auditory research. One major issue in preclinical nuclear imaging, as well as in most of the neurophysiological methods investigating auditory processing, is the need of anesthesia. We compared the usability of two types of anesthesia which are frequently employed in electrophysiology, ketamine/xylazine (KX), and fentanyl/midazolam/medetomidine (FMM), for valid measurements of auditory activation with 18F-FDG PET. Gerbils were placed in a sound-shielding box and injected with 18F-FDG. Two acoustic free-field conditions were used: (1) baseline (no stimulation, 25 dB background noise) and (2) 90 dB frequency-modulated tones (FM). After 40 min of 18F-FDG uptake, a 30 min acquisition was performed using a small animal PET/CT system. Blood glucose levels were measured after the uptake phase before scanning. Standardized uptake value ratios for relevant regions were determined after implementing image and volume of interest templates. Scans demonstrated a significantly higher uptake in the inferior colliculus with FM stimulation compared to baseline in awake subjects (+ 12%; p = 0.02) and with FMM anesthesia (+ 13%; p = 0.0012), but not with KX anesthesia. In non-auditory brain regions, no significant difference was detected. Blood glucose levels were significantly higher under KX compared to FMM anesthesia (17.29 ± 0.42 mmol/l vs. 14.30 ± 1.91 mmol/l; p = 0.024). These results suggest that valid 18F-FDG PET measurements of auditory activation comparable to electrophysiology can be obtained from gerbils during opioid-based anesthesia due to its limited effects on interfering blood glucose levels.
Collapse
Affiliation(s)
- M Kessler
- Department of Nuclear Medicine, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany.,Cluster of Excellence Hearing4all, University of Oldenburg, Oldenburg, Germany
| | - M Mamach
- Department of Nuclear Medicine, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany.,Cluster of Excellence Hearing4all, University of Oldenburg, Oldenburg, Germany.,Department of Medical Physics and Radiation Protection, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
| | - R Beutelmann
- Cluster of Excellence Hearing4all, University of Oldenburg, Oldenburg, Germany.,Division for animal Physiology and Behaviour Group, Department for Neuroscience, School of Medicine and Health Sciences, University of Oldenburg, Carl von Ossietzky Str. 9-11, 26129, Oldenburg, Germany
| | - J P Bankstahl
- Department of Nuclear Medicine, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
| | - F M Bengel
- Department of Nuclear Medicine, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
| | - G M Klump
- Cluster of Excellence Hearing4all, University of Oldenburg, Oldenburg, Germany.,Division for animal Physiology and Behaviour Group, Department for Neuroscience, School of Medicine and Health Sciences, University of Oldenburg, Carl von Ossietzky Str. 9-11, 26129, Oldenburg, Germany
| | - Georg Berding
- Department of Nuclear Medicine, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany. .,Cluster of Excellence Hearing4all, University of Oldenburg, Oldenburg, Germany.
| |
Collapse
|
9
|
Laumen G, Tollin DJ, Beutelmann R, Klump GM. Aging effects on the binaural interaction component of the auditory brainstem response in the Mongolian gerbil: Effects of interaural time and level differences. Hear Res 2016; 337:46-58. [PMID: 27173973 PMCID: PMC4922418 DOI: 10.1016/j.heares.2016.04.009] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Revised: 04/06/2016] [Accepted: 04/27/2016] [Indexed: 10/21/2022]
Abstract
The effect of interaural time difference (ITD) and interaural level difference (ILD) on wave 4 of the binaural and summed monaural auditory brainstem responses (ABRs) as well as on the DN1 component of the binaural interaction component (BIC) of the ABR in young and old Mongolian gerbils (Meriones unguiculatus) was investigated. Measurements were made at a fixed sound pressure level (SPL) and a fixed level above visually detected ABR threshold to compensate for individual hearing threshold differences. In both stimulation modes (fixed SPL and fixed level above visually detected ABR threshold) an effect of ITD on the latency and the amplitude of wave 4 as well as of the BIC was observed. With increasing absolute ITD values BIC latencies were increased and amplitudes were decreased. ILD had a much smaller effect on these measures. Old animals showed a reduced amplitude of the DN1 component. This difference was due to a smaller wave 4 in the summed monaural ABRs of old animals compared to young animals whereas wave 4 in the binaural-evoked ABR showed no age-related difference. In old animals the small amplitude of the DN1 component was correlated with small binaural-evoked wave 1 and wave 3 amplitudes. This suggests that the reduced peripheral input affects central binaural processing which is reflected in the BIC.
Collapse
Affiliation(s)
- Geneviève Laumen
- Cluster of Excellence Hearing4all, Animal Physiology and Behavior Group, Department for Neuroscience, School of Medicine and Health Sciences, Oldenburg University, 26111, Oldenburg, Germany.
| | - Daniel J Tollin
- Department of Physiology and Biophysics, School of Medicine, University of Colorado, Aurora, CO, 80045, USA.
| | - Rainer Beutelmann
- Cluster of Excellence Hearing4all, Animal Physiology and Behavior Group, Department for Neuroscience, School of Medicine and Health Sciences, Oldenburg University, 26111, Oldenburg, Germany.
| | - Georg M Klump
- Cluster of Excellence Hearing4all, Animal Physiology and Behavior Group, Department for Neuroscience, School of Medicine and Health Sciences, Oldenburg University, 26111, Oldenburg, Germany.
| |
Collapse
|
10
|
Ryan SJ, Ehrlich DE, Rainnie DG. Morphology and dendritic maturation of developing principal neurons in the rat basolateral amygdala. Brain Struct Funct 2014; 221:839-54. [PMID: 25381464 DOI: 10.1007/s00429-014-0939-x] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2014] [Accepted: 11/01/2014] [Indexed: 02/08/2023]
Abstract
The basolateral nucleus of the amygdala (BLA) assigns emotional valence to sensory stimuli, and many amygdala-dependent behaviors undergo marked development during postnatal life. We recently showed principal neurons in the rat BLA undergo dramatic changes to their electrophysiological properties during the first postnatal month, but no study to date has thoroughly characterized changes to morphology or gene expression that may underlie the functional development of this neuronal population. We addressed this knowledge gap with reconstructions of biocytin-filled principal neurons in the rat BLA at postnatal days 7 (P7), 14, 21, 28, and 60. BLA principal neurons underwent a number of morphological changes, including a twofold increase in soma volume from P7 to P21. Dendritic arbors expanded significantly during the first postnatal month and achieved a mature distribution around P28, in terms of total dendritic length and distance from soma. The number of primary dendrites and branch points were consistent with age, but branch points were found farther from the soma in older animals. Dendrites of BLA principal neurons at P7 had few spines, and spine density increased nearly fivefold by P21. Given the concurrent increase in dendritic material, P60 neurons had approximately 17 times as many total spines as P7 neurons. Together, these developmental transitions in BLA principal neuron morphology help explain a number of concomitant electrophysiological changes during a critical period in amygdala development.
Collapse
Affiliation(s)
- Steven J Ryan
- Department of Psychiatry and Behavioral Sciences, Division of Behavioral Neuroscience and Psychiatric Disorders, Yerkes Research Center, Emory University School of Medicine, 954 Gatewood Rd., Atlanta, GA, 30033, USA
| | - David E Ehrlich
- Department of Psychiatry and Behavioral Sciences, Division of Behavioral Neuroscience and Psychiatric Disorders, Yerkes Research Center, Emory University School of Medicine, 954 Gatewood Rd., Atlanta, GA, 30033, USA
| | - Donald G Rainnie
- Department of Psychiatry and Behavioral Sciences, Division of Behavioral Neuroscience and Psychiatric Disorders, Yerkes Research Center, Emory University School of Medicine, 954 Gatewood Rd., Atlanta, GA, 30033, USA.
| |
Collapse
|
11
|
Comparing the inferior colliculus of young and old gerbils (Meriones unguiculatus) with an emphasis on GABA. Exp Gerontol 2014; 57:155-62. [DOI: 10.1016/j.exger.2014.05.018] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2014] [Revised: 05/22/2014] [Accepted: 05/28/2014] [Indexed: 11/23/2022]
|
12
|
Gerbils. THE LABORATORY RABBIT, GUINEA PIG, HAMSTER, AND OTHER RODENTS 2012. [PMCID: PMC7158315 DOI: 10.1016/b978-0-12-380920-9.00052-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 03/24/2023]
Abstract
The gerbil is usually nonaggressive and is one of the easiest rodents to maintain and handle. Its disposition, curious nature, relative freedom from naturally occurring infectious diseases, and adaptability to its environment have contributed to its popularity as a laboratory animal. Gerbils are found in deserts and semiarid geographical regions of the world. The Mongolian gerbils that are available today originated from 20 pairs of captured animals that were maintained in 1935 in a closed, random-bred colony at the Kitasato Institute in Japan. Gerbils have several unique anatomical and physiological features. Mature gerbils are smaller than rats, but larger than mice. Mongolian gerbils are attracted to saliva and use salivary cues to discriminate between siblings and nonsiblings, and females use oral cues in the selection of sociosexual partners. Gerbils have been used as experimental models in a number of areas of biomedical research. Gerbils are excellent subjects for laboratory animal research as they are susceptible to bacterial, viral, and parasitic pathogens that affect humans and other species. Gerbils may have spontaneous seizures secondary to stress such as handling, cage change, abrupt noises, or changes in the environment. Cystic ovaries are seen commonly in female gerbils over 1 year of age. Gerbils have unique characteristics, which make them appropriate for a number of animal models. Classically, gerbils have been used in research involving stroke, parasitology, infectious diseases, epilepsy, brain development and behavior, and hearing.
Collapse
|
13
|
Nakamura PA, Cramer KS. Formation and maturation of the calyx of Held. Hear Res 2011; 276:70-8. [PMID: 21093567 PMCID: PMC3109188 DOI: 10.1016/j.heares.2010.11.004] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2010] [Revised: 11/03/2010] [Accepted: 11/10/2010] [Indexed: 11/24/2022]
Abstract
Sound localization requires precise and specialized neural circuitry. A prominent and well-studied specialization is found in the mammalian auditory brainstem. Globular bushy cells of the ventral cochlear nucleus (VCN) project contralaterally to neurons of the medial nucleus of the trapezoid body (MNTB), where their large axons terminate on cell bodies of MNTB principal neurons, forming the calyces of Held. The VCN-MNTB pathway is necessary for the accurate computation of interaural intensity and time differences; MNTB neurons provide inhibitory input to the lateral superior olive, which compares levels of excitation from the ipsilateral ear to levels of tonotopically matched inhibition from the contralateral ear, and to the medial superior olive, where precise inhibition from MNTB neurons tunes the delays of binaural excitation. Here we review the morphological and physiological aspects of the development of the VCN-MNTB pathway and its calyceal termination, along with potential mechanisms that give rise to its precision. During embryonic development, VCN axons grow towards the midline, cross the midline into the region of the presumptive MNTB and then form collateral branches that will terminate in calyces of Held. In rodents, immature calyces of Held appear in MNTB during the first few days of postnatal life. These calyces mature morphologically and physiologically over the next three postnatal weeks, enabling fast, high fidelity transmission in the VCN-MNTB pathway.
Collapse
Affiliation(s)
- Paul A. Nakamura
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, CA 92697
| | - Karina S. Cramer
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, CA 92697
| |
Collapse
|
14
|
Maier JK, Kindermann T, Grothe B, Klump GM. Effects of omni-directional noise-exposure during hearing onset and age on auditory spatial resolution in the Mongolian gerbil (Meriones unguiculatus) -- a behavioral approach. Brain Res 2008; 1220:47-57. [PMID: 18343357 DOI: 10.1016/j.brainres.2008.01.083] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2007] [Revised: 01/18/2008] [Accepted: 01/19/2008] [Indexed: 10/22/2022]
Abstract
Inhibitory inputs to the binaural brainstem nuclei medial and lateral superior olives (MSO and LSO, respectively) are thought to be important for sound localization in mammals. Here, we investigate whether aged gerbils that typically exhibit degenerative changes in auditory nuclei providing inhibition to MSO and LSO show diminished localization ability. We also tested the localization ability in gerbils reared in omni-directional white noise during hearing onset, a treatment that affects the adjustment of inhibitory inputs to MSO neurons possibly resulting in weakened sensitivity to interaural time difference. Localization ability of both groups was compared to that of young gerbils raised under control conditions. Stimuli had a duration of 125 ms and were pure tones of 0.5, 1, 2, 4 and 8 kHz, 300-Hz-bands of noise centered at 0.5, 2 and 8 kHz or broad-band noise. Gerbils trained in a two-alternative-forced-choice procedure indicated if sounds were presented from the left or from the right by choosing the respective response compartment of a Y-shaped experimental setup. The minimum resolvable angle (MRA) was calculated as the minimum angle between two loudspeaker locations that a gerbil was able to discriminate. MRAs for aged gerbils were higher compared to controls, whereas MRAs of noise-reared gerbils did not differ from those of the control group. Results are discussed with respect to the progressive degeneration affecting the gerbil's auditory system, changes in the anatomical arrangement of inhibitory inputs on binaural neurons in the MSO, and hearing thresholds.
Collapse
Affiliation(s)
- Julia K Maier
- Zoophysiology and Behaviour Group, Institute for Biology and Environmental Sciences, Carl von Ossietzky University Oldenburg, Carl von Ossietzky Street 9-11, 26129 Oldenburg, Germany
| | | | | | | |
Collapse
|
15
|
Gleich O, Weiss M, Strutz J. Age-dependent changes in the lateral superior olive of the gerbil (Meriones unguiculatus). Hear Res 2004; 194:47-59. [PMID: 15276675 DOI: 10.1016/j.heares.2004.03.016] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2003] [Accepted: 03/24/2004] [Indexed: 11/29/2022]
Abstract
Data from humans and animal models provide evidence for an age-dependent impairment in the ability to localize sound. The lateral superior olive (LSO) in the ascending auditory pathway is one important center involved in processing of binaural auditory stimuli. To identify potential age-dependent changes we characterized the LSO in young (< 15 months) and old (> or =3 years) gerbils with a special emphasis on the expression of GABA- and glycine-like immuno-reactivity. The dimensions of the LSO, as well as the number and density of glycine- and GABA-immuno-reactive neurons, were not significantly different between young and old gerbils. The size of glycine- and GABA-immuno-reactive neurons was significantly reduced in the high-frequency (medial) limb of the LSO. Over all, age-dependent changes in the LSO of the gerbil were small.
Collapse
Affiliation(s)
- Otto Gleich
- ENT-Department, University of Regensburg, Franz-Joseph-Strauss-Allee 11, Postfach, D-93042 Regensburg, Germany.
| | | | | |
Collapse
|
16
|
Hamann I, Gleich O, Klump GM, Kittel MC, Strutz J. Age-dependent changes of gap detection in the Mongolian gerbil (Meriones unguiculatus). J Assoc Res Otolaryngol 2004; 5:49-57. [PMID: 14976587 PMCID: PMC2538370 DOI: 10.1007/s10162-003-3041-2] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2002] [Accepted: 08/06/2003] [Indexed: 10/26/2022] Open
Abstract
Gap detection using broadband noise was characterized in a group of young gerbils from the breeding colony of the University of Regensburg (RB gerbils), old RB gerbils, and old gerbils from the breeding colony of the University of South Carolina (SC gerbils). Data from old RB and old SC gerbils were not significantly different and were subsequently combined for a comparison with data from the group of young RB gerbils. Level dependence of gap-detection thresholds in young and old domesticated gerbils resembled the typical mammalian pattern of level dependence. Gap-detection thresholds of old gerbils were significantly elevated at 30 dB SL and 50 dB SPL as compared with young gerbils. Compared with young gerbils tested at 30 dB SL and 50 dB SPL, the distribution of gap-detection thresholds in old gerbils was broader with a spread to higher gap-detection thresholds. Some old animals retained excellent temporal resolution, while some showed impaired gap detection. The gap-detection data collected in young and old gerbils resemble previously published data from humans of different age and confirm that gerbils are a useful model to study age-dependent changes in temporal processing.
Collapse
Affiliation(s)
- Ingo Hamann
- />ENT-Department, University of Regensburg,
Franz-Josef-Strauß-Allee 11, 93042 Regensburg, Germany
| | - Otto Gleich
- />ENT-Department, University of Regensburg,
Franz-Josef-Strauß-Allee 11, 93042 Regensburg, Germany
| | - Georg M. Klump
- />Carl von Ossietzky Universität Oldenburg, FB 7, AG Zoophysiologie & Verhalten, Postfach 2503, 26111 Oldenburg, Germany
| | - Malte C. Kittel
- />ENT-Department, University of Regensburg,
Franz-Josef-Strauß-Allee 11, 93042 Regensburg, Germany
| | - Jürgen Strutz
- />ENT-Department, University of Regensburg,
Franz-Josef-Strauß-Allee 11, 93042 Regensburg, Germany
| |
Collapse
|
17
|
Hamann I, Gleich O, Klump GM, Kittel MC, Boettcher FA, Schmiedt RA, Strutz J. Behavioral and evoked-potential thresholds in young and old Mongolian gerbils (Meriones unguiculatus). Hear Res 2002; 171:82-95. [PMID: 12204352 DOI: 10.1016/s0378-5955(02)00454-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Age-dependent hearing loss has been well documented in gerbils exceeding 2 years of age using physiological methods (e.g. [Mills et al. (1990) Hear. Res. 46, 201-210]). We determined behavioral thresholds for broad-band noise and pure-tone pulses in gerbils as a function of age. Contrary to expectations based on previously published physiological data, we found no significant (broad-band noise and 10 kHz) or only a very small hearing loss (7 dB at 2 kHz) in 30-36-month-old animals. In animals over 3 years of age we observed an increased spread of thresholds and threshold shifts exceeding 20 dB in some individuals. Behavioral thresholds of old gerbils from two breeding colonies (University of Regensburg and Medical University of South Carolina) were similar. Data from individual animals where thresholds were determined physiologically and behaviorally indicate that results from auditory brainstem response measurements show no shift at 18 months while subsequent measurements at 28-29 months revealed age-dependent threshold shifts of 10-15 dB. In contrast, thresholds determined by behavioral methods in these same individuals at 31-33 months of age remained stable.
Collapse
Affiliation(s)
- Ingo Hamann
- HNO-Klinik, ENT-Department, University of Regensburg, Franz-Josef-Strauss-Allee 11, 93042 Regensburg, Germany
| | | | | | | | | | | | | |
Collapse
|