1
|
Ultrasound-targeted microbubble destruction (UTMD)-mediated miR-150-5p attenuates oxygen and glucose deprivation-induced cardiomyocyte injury by inhibiting TTC5 expression. Mol Biol Rep 2022; 49:6041-6052. [PMID: 35357625 DOI: 10.1007/s11033-022-07392-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 03/16/2022] [Indexed: 10/18/2022]
Abstract
BACKGROUND Cardiomyocyte injury is a typical feature in cardiovascular diseases. Changes in cardiomyocytes strongly affect the progression of cardiovascular diseases. This work aimed to investigate the biological function and potential mechanism of action of miR-150-5p in cardiomyocytes. METHODS AND RESULTS A myocardial ischemia (MI) injury rat model was constructed to detect miR-150-5p and tetratricopeptide repeat domain 5 (TTC5) expression during heart ischemia injury. Primary cardiomyocytes were isolated for in vitro study. CCK-8 assays were used to detect cardiomyocyte viability. Western blots were used to detect TTC5 and P53 expression. qPCR was utilized to measure RNA expression of miR-150-5p and TTC5. The TUNEL assay was used to determine cell apoptosis. ELISA was used to determine cytokine (TNF-α, IL-1β, IL-6, and IL-8) levels in heart tissues and cell culture supernatants. A dual-luciferase reporter assay was carried out to verify the binding ability between miR-150-5p and TTC5. Oxygen-glucose deprivation (OGD) treatment significantly inhibited cell viability. Ultrasound-targeted microbubble destruction (UTMD)-mediated uptake of miR-150-5p inverted these results. Additionally, UTMD-mediated uptake of miR-150-5p retarded the effects of OGD treatment on cell apoptosis. Besides, UTMD-mediated uptake of miR-150-5p counteracted the effects of OGD treatment on the inflammatory response by regulating cytokine (TNF-α, IL-1β, IL-6, and IL-8) levels. For the mechanism of the protective effect on the heart, we predicted and confirmed that miR-150-5p bound to TTC5 and inhibited TTC5 expression. CONCLUSIONS UTMD-mediated uptake of miR-150-5p attenuated OGD-induced primary cardiomyocyte injury by inhibiting TTC5 expression. This discovery contributes toward further understanding the progression of primary cardiomyocyte injury.
Collapse
|
2
|
Liu D, Liu J, Li C, Li W, Wang W, Liu J. Ultrasound-Aided Targeting Nanoparticles Loaded with miR-181b for Anti-Inflammatory Treatment of TNF-α-Stimulated Endothelial Cells. ACS OMEGA 2020; 5:17102-17110. [PMID: 32715195 PMCID: PMC7376683 DOI: 10.1021/acsomega.0c00823] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 06/22/2020] [Indexed: 06/11/2023]
Abstract
Gene therapy is an emerging therapeutic strategy used in clinics. Ultrasound-mediated gene transfection possesses great potential as a secure and available approach for gene delivery. However, transfection efficiency and targeting ability remain challenging. In this study, we developed a kind of ultrasound-aided and targeting nanoparticles for microRNA delivery. These nanoparticles carrying nucleic acids were prepared with cationic poly-(amino acid) encapsulated with perfluoropentane. The formulated nanoparticles were stabilized with negatively charged PGA-PEG-RGD peptide coating. Ultrasound imaging and specific gene transfection using this nanocarrier could be implemented simultaneously. Upon treatment with ultrasound irradiation, phase transition was induced in the nanoparticles and they generated acoustic cavitation, resulting in enhanced gene transfection against the endothelial cells. With the overexpression of miR-181b loaded by the nanoparticles, the TNF-α-stimulated endothelial cells were effectively rescued from the inflammatory state through the protection of cell viability and suppression of cell adhesion.
Collapse
Affiliation(s)
- Donghong Liu
- Department
of Medical Ultrasonics, The First Affiliated
Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Jia Liu
- Department
of Medical Ultrasonics, The First Affiliated
Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Chao Li
- School
of Biomedical Engineering, Sun Yat-sen University, Guangzhou, Guangdong 510006, China
| | - Wei Li
- Department
of Medical Ultrasonics, The First Affiliated
Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Wei Wang
- Department
of Medical Ultrasonics, The First Affiliated
Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Jie Liu
- School
of Biomedical Engineering, Sun Yat-sen University, Guangzhou, Guangdong 510006, China
| |
Collapse
|
3
|
Rapid nuclear import of short nucleic acids. Bioorg Med Chem Lett 2016; 26:4568-4570. [PMID: 27597250 DOI: 10.1016/j.bmcl.2016.08.085] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Revised: 08/23/2016] [Accepted: 08/26/2016] [Indexed: 01/12/2023]
Abstract
Exogenous short-chain nucleic acids undergo rapid import into the nucleus. Fluorescence-labeled dT1-13 DNA microinjected into the cytoplasm domain of a HeLa cell was rapidly imported into the nucleus domain within 1min. This is much more rapid than what has been observed for intracellular diffusion of small molecules. In contrast, import of longer nucleic acids with a length of over 30nt into the nucleus was suppressed.
Collapse
|
4
|
Adhikari U, Goliaei A, Berkowitz ML. Nanobubbles, cavitation, shock waves and traumatic brain injury. Phys Chem Chem Phys 2016; 18:32638-32652. [DOI: 10.1039/c6cp06704b] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Shock wave induced cavitation denaturates blood–brain barrier tight junction proteins; this may result in various neurological complications.
Collapse
Affiliation(s)
- Upendra Adhikari
- Department of Chemistry
- University of North Carolina at Chapel Hill
- Chapel Hill
- USA
| | - Ardeshir Goliaei
- Department of Biochemistry and Biophysics and Program in Molecular and Cellular Biophysics
- University of North Carolina at Chapel Hill
- Chapel Hill
- USA
| | - Max L. Berkowitz
- Department of Chemistry
- University of North Carolina at Chapel Hill
- Chapel Hill
- USA
| |
Collapse
|
5
|
Dixon AJ, Kilroy JP, Dhanaliwala AH, Chen JL, Phillips LC, Ragosta M, Klibanov AL, Wamhoff BR, Hossack JA. Microbubble-mediated intravascular ultrasound imaging and drug delivery. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2015; 62:1674-1685. [PMID: 26415129 DOI: 10.1109/tuffc.2015.007143] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Intravascular ultrasound (IVUS) provides radiation-free, real-time imaging and assessment of atherosclerotic disease in terms of anatomical, functional, and molecular composition. The primary clinical applications of IVUS imaging include assessment of luminal plaque volume and real-time image guidance for stent placement. When paired with microbubble contrast agents, IVUS technology may be extended to provide nonlinear imaging, molecular imaging, and therapeutic delivery modes. In this review, we discuss the development of emerging imaging and therapeutic applications that are enabled by the combination of IVUS imaging technology and microbubble contrast agents.
Collapse
|
6
|
Zhang L, Sun Z, Ren P, Lee RJ, Xiang G, Lv Q, Han W, Wang J, Ge S, Xie M. Ultrasound-targeted microbubble destruction (UTMD) assisted delivery of shRNA against PHD2 into H9C2 cells. PLoS One 2015; 10:e0134629. [PMID: 26267649 PMCID: PMC4534091 DOI: 10.1371/journal.pone.0134629] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Accepted: 07/11/2015] [Indexed: 12/23/2022] Open
Abstract
Gene therapy has great potential for human diseases. Development of efficient delivery systems is critical to its clinical translation. Recent studies have shown that microbubbles in combination with ultrasound (US) can be used to facilitate gene delivery. An aim of this study is to investigate whether the combination of US-targeted microbubble destruction (UTMD) and polyethylenimine (PEI) (UTMD/PEI) can mediate even greater gene transfection efficiency than UTMD alone and to optimize ultrasonic irradiation parameters. Another aim of this study is to investigate the biological effects of PHD2-shRNA after its transfection into H9C2 cells. pEGFP-N1 or eukaryotic shPHD2-EGFP plasmid was mixed with albumin-coated microbubbles and PEI to form complexes for transfection. After these were added into H9C2 cells, the cells were exposed to US with various sets of parameters. The cells were then harvested and analyzed for gene expression. UTMD/PEI was shown to be highly efficient in gene transfection. An US intensity of 1.5 W/cm2, a microbubble concentration of 300μl/ml, an exposure time of 45s, and a plasmid concentration of 15μg/ml were found to be optimal for transfection. UTMD/PEI-mediated PHD2-shRNA transfection in H9C2 cells significantly down regulated the expression of PHD2 and increased expression of HIF-1α and downstream angiogenesis factors VEGF, TGF-β and bFGF. UTMD/PEI, combined with albumin-coated microbubbles, warrants further investigation for therapeutic gene delivery.
Collapse
Affiliation(s)
- Li Zhang
- Department of Ultrasound, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Hubei Province Key Laboratory of Molecular Imaging, Wuhan, 430022, PR China
| | - Zhenxing Sun
- Department of Ultrasound, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Hubei Province Key Laboratory of Molecular Imaging, Wuhan, 430022, PR China
| | - Pingping Ren
- Department of Ultrasound, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Hubei Province Key Laboratory of Molecular Imaging, Wuhan, 430022, PR China
| | - Robert J. Lee
- Division of Pharmaceutics, College of Pharmacy, The Ohio State University, Columbus, Ohio, 43210, United States of America
| | - Guangya Xiang
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, PR China
| | - Qing Lv
- Department of Ultrasound, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Hubei Province Key Laboratory of Molecular Imaging, Wuhan, 430022, PR China
| | - Wei Han
- Department of Ultrasound, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Hubei Province Key Laboratory of Molecular Imaging, Wuhan, 430022, PR China
| | - Jing Wang
- Department of Ultrasound, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Hubei Province Key Laboratory of Molecular Imaging, Wuhan, 430022, PR China
| | - Shuping Ge
- The Heart Center, St. Christopher's Hospital for Children/Drexel University College of Medicine, Philadelphia, Pennsylvania, United States of America
- * E-mail: (SG); (MXX)
| | - Mingxing Xie
- Department of Ultrasound, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Hubei Province Key Laboratory of Molecular Imaging, Wuhan, 430022, PR China
- * E-mail: (SG); (MXX)
| |
Collapse
|
7
|
Lentacker I, De Cock I, Deckers R, De Smedt SC, Moonen CTW. Understanding ultrasound induced sonoporation: definitions and underlying mechanisms. Adv Drug Deliv Rev 2014; 72:49-64. [PMID: 24270006 DOI: 10.1016/j.addr.2013.11.008] [Citation(s) in RCA: 521] [Impact Index Per Article: 47.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2013] [Accepted: 11/13/2013] [Indexed: 01/01/2023]
Abstract
In the past two decades, research has underlined the potential of ultrasound and microbubbles to enhance drug delivery. However, there is less consensus on the biophysical and biological mechanisms leading to this enhanced delivery. Sonoporation, i.e. the formation of temporary pores in the cell membrane, as well as enhanced endocytosis is reported. Because of the variety of ultrasound settings used and corresponding microbubble behavior, a clear overview is missing. Therefore, in this review, the mechanisms contributing to sonoporation are categorized according to three ultrasound settings: i) low intensity ultrasound leading to stable cavitation of microbubbles, ii) high intensity ultrasound leading to inertial cavitation with microbubble collapse, and iii) ultrasound application in the absence of microbubbles. Using low intensity ultrasound, the endocytotic uptake of several drugs could be stimulated, while short but intense ultrasound pulses can be applied to induce pore formation and the direct cytoplasmic uptake of drugs. Ultrasound intensities may be adapted to create pore sizes correlating with drug size. Small molecules are able to diffuse passively through small pores created by low intensity ultrasound treatment. However, delivery of larger drugs such as nanoparticles and gene complexes, will require higher ultrasound intensities in order to allow direct cytoplasmic entry.
Collapse
Affiliation(s)
- I Lentacker
- Ghent Research Group on Nanomedicines, Department of Pharmaceutics, Ghent University, Harelbekestraat 72, 9000 Ghent, Belgium
| | - I De Cock
- Ghent Research Group on Nanomedicines, Department of Pharmaceutics, Ghent University, Harelbekestraat 72, 9000 Ghent, Belgium
| | - R Deckers
- Imaging Division, University Medical Center Utrecht, PO Box 85500, 3508 GA Utrecht, The Netherlands
| | - S C De Smedt
- Ghent Research Group on Nanomedicines, Department of Pharmaceutics, Ghent University, Harelbekestraat 72, 9000 Ghent, Belgium.
| | - C T W Moonen
- Imaging Division, University Medical Center Utrecht, PO Box 85500, 3508 GA Utrecht, The Netherlands
| |
Collapse
|
8
|
Scimia MC, Cannavo A, Koch WJ. Gene therapy for heart disease: molecular targets, vectors and modes of delivery to myocardium. Expert Rev Cardiovasc Ther 2014; 11:999-1013. [PMID: 23984926 DOI: 10.1586/14779072.2013.818813] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Despite the numerous hurdles that gene therapy has encountered along the way, clinical trials over the last few years are showing promising results in many fields of medicine, including cardiology, where many targets are moving toward clinical development. In this review, the authors discuss the current state of the art in terms of clinical and preclinical development. They also examine vector technology and available vector-delivery strategies.
Collapse
Affiliation(s)
- Maria Cecilia Scimia
- Department of Pharmacology, Center for Translational Medicine, Temple University School of Medicine, 3500 N Broad St, MERB 941, Philadelphia, PA 19140, USA
| | | | | |
Collapse
|
9
|
Munley MT, Kagadis GC, McGee KP, Kirov AS, Jang S, Mutic S, Jeraj R, Xing L, Bourland JD. An introduction to molecular imaging in radiation oncology: a report by the AAPM Working Group on Molecular Imaging in Radiation Oncology (WGMIR). Med Phys 2014; 40:101501. [PMID: 24089890 DOI: 10.1118/1.4819818] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Molecular imaging is the direct or indirect noninvasive monitoring and recording of the spatial and temporal distribution of in vivo molecular, genetic, and/or cellular processes for biochemical, biological, diagnostic, or therapeutic applications. Molecular images that indicate the presence of malignancy can be acquired using optical, ultrasonic, radiologic, radionuclide, and magnetic resonance techniques. For the radiation oncology physicist in particular, these methods and their roles in molecular imaging of oncologic processes are reviewed with respect to their physical bases and imaging characteristics, including signal intensity, spatial scale, and spatial resolution. Relevant molecular terminology is defined as an educational assist. Current and future clinical applications in oncologic diagnosis and treatment are discussed. National initiatives for the development of basic science and clinical molecular imaging techniques and expertise are reviewed, illustrating research opportunities in as well as the importance of this growing field.
Collapse
Affiliation(s)
- Michael T Munley
- Department of Radiation Oncology, Wake Forest School of Medicine, Winston-Salem, North Carolina 27157
| | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Chuang YH, Wang YH, Chang TK, Lin CJ, Li PC. Albumin acts like transforming growth factor β1 in microbubble-based drug delivery. ULTRASOUND IN MEDICINE & BIOLOGY 2014; 40:765-774. [PMID: 24433746 DOI: 10.1016/j.ultrasmedbio.2013.10.022] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2013] [Revised: 07/24/2013] [Accepted: 10/22/2013] [Indexed: 06/03/2023]
Abstract
Unlike lipid-shelled microbubbles (MBs), albumin-shelled microbubbles (MBs) have not been reported to be actively targeted to cells without the assistance of antibodies. Recent studies indicate that the albumin molecule is similar to transforming growth factor β (TGF-β) both structurally and functionally. The TGF-β superfamily is important during early tumor outgrowth, with an elevated TGF-β being tumor suppressive; at later stages, this switches to malignant conversion and progression, including breast cancer. TGF-β receptors I and II play crucial roles in both the binding and endocytosis of albumin. However, until now, no specific albumin receptor has been found. On the basis of the above-mentioned information, we hypothesized that non-antibody-conjugated albumin-shelled MBs can be used to deliver drugs to breast cancer cells. We also studied the possible roles of TGF-β1 and radiation force in the behavior of cells and albumin-shelled MBs. The results indicate that albumin-shelled MBs loaded with paclitaxel (PTX) induce breast cancer cell apoptosis without the specific targeting produced by an antibody. Applying either an acoustic radiation force or cavitation alone to cells with PTX-loaded albumin MBs increased the apoptosis rate to 23.2% and 26.3% (p < 0.05), respectively. We also found that albumin-shelled MBs can enter MDA-MB-231 breast cancer cells and remain there for at least 24 h, even in the presence of PTX loading. Confocal micrographs revealed that 70.5% of the breast cancer cells took up albumin-shelled MBs spontaneously after 1 d of incubation. Applying an acoustic radiation force further increased the percentage to 91.9% in our experiments. However, this process could be blocked by TGF-β1, even with subsequent exposure to the radiation force. From these results, we conclude that TGF-β1 receptors are involved in the endocytotic process by which albumin-shelled MBs enter breast cancer cells. The acoustic radiation force increases the contact rate between albumin-shelled MBs and tumor cells. Combining a radiation force and cavitation yields an apoptosis rate of 31.3%. This in vitro study found that non-antibody-conjugated albumin-shelled MBs provide a useful method of drug delivery. Further in vivo studies of the roles of albumin MBs and TGF-β in different stages of cancer are necessary.
Collapse
Affiliation(s)
- Yueh-Hsun Chuang
- Department of Electrical Engineering, National Taiwan University, Taipei, Taiwan; Department of Anesthesiology, National Taiwan University Hospital, Taipei, Taiwan
| | - Yu-Hsin Wang
- Graduate Institute of Biomedical Electronics and Bioinformatics, National Taiwan University, Taipei, Taiwan
| | - Tien-Kuei Chang
- Graduate Institute of Biomedical Electronics and Bioinformatics, National Taiwan University, Taipei, Taiwan
| | - Ching-Jung Lin
- Graduate Institute of Biomedical Electronics and Bioinformatics, National Taiwan University, Taipei, Taiwan
| | - Pai-Chi Li
- Department of Electrical Engineering, National Taiwan University, Taipei, Taiwan; Graduate Institute of Biomedical Electronics and Bioinformatics, National Taiwan University, Taipei, Taiwan.
| |
Collapse
|
11
|
Lo CW, Desjouy C, Chen SR, Lee JL, Inserra C, Béra JC, Chen WS. Stabilizing in vitro ultrasound-mediated gene transfection by regulating cavitation. ULTRASONICS SONOCHEMISTRY 2014; 21:833-839. [PMID: 24216067 DOI: 10.1016/j.ultsonch.2013.10.017] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2013] [Revised: 10/11/2013] [Accepted: 10/17/2013] [Indexed: 06/02/2023]
Abstract
It is well known that acoustic cavitation can facilitate the inward transport of genetic materials across cell membranes (sonoporation). However, partially due to the unstationary behavior of the initiation and leveling of cavitation, the sonoporation effect is usually unstable, especially in low intensity conditions. A system which is able to regulate the cavitation level during sonication by modulating the applied acoustic intensity with a feedback loop is implemented and its effect on in vitro gene transfection is tested. The regulated system provided better time stability and reproducibility of the cavitation levels than the unregulated conditions. Cultured hepatoma cells (BNL) mixed with 10 μg luciferase plasmids are exposed to 1-MHz pulsed ultrasound with or without cavitation regulation, and the gene transfection efficiency and cell viability are subsequently assessed. Experimental results show that for all exposure intensities (low, medium, and high), stable and intensity dependent, although not higher, gene expression could be achieved in the regulated cavitation system than the unregulated conditions. The cavitation regulation system provides a better control of cavitation and its bioeffect which are crucial important for clinical applications of ultrasound-mediated gene transfection.
Collapse
Affiliation(s)
- Chia-Wen Lo
- Department of Physical Medicine and Rehabilitation, National Taiwan University Hospital & National Taiwan University College of Medicine, No. 7, Zhongshan S. Rd., Taipei 100, Taiwan
| | | | | | | | | | | | | |
Collapse
|
12
|
Tapping CR, Bratby MJ. The changing face of vascular interventional radiology: the future role of pharmacotherapies and molecular imaging. Cardiovasc Intervent Radiol 2013; 36:904-12. [PMID: 23636247 DOI: 10.1007/s00270-013-0621-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2012] [Accepted: 03/25/2013] [Indexed: 01/22/2023]
Abstract
Interventional radiology has had to evolve constantly because there is the ever-present competition and threat from other specialties within medicine, surgery, and research. The development of new technologies, techniques, and therapies is vital to broaden the horizon of interventional radiology and to ensure its continued success in the future. In part, this change will be due to improved chronic disease prevention altering what we treat and in whom. The most important of these strategies are the therapeutic use of statins, Beta-blockers, angiotensin-converting enzyme inhibitors, and substances that interfere with mast cell degeneration. Molecular imaging and therapeutic strategies will move away from conventional techniques and nano and microparticle molecular technology, tissue factor imaging, gene therapy, endothelial progenitor cells, and photodynamic therapy will become an important part of interventional radiology of the future. This review looks at these new and exciting technologies.
Collapse
Affiliation(s)
- Charles R Tapping
- Department of Radiology, Oxford University Hospitals, John Radcliffe Hospital, Headington, Oxford, OX3 9DU, UK.
| | | |
Collapse
|
13
|
Zheng X, Du L, Wang H, Gu Q. A novel approach to attenuate proliferative vitreoretinopathy using ultrasound-targeted microbubble destruction and recombinant adeno-associated virus-mediated RNA interference targeting transforming growth factor-β2 and platelet-derived growth factor-B. J Gene Med 2012; 14:339-47. [PMID: 22499528 DOI: 10.1002/jgm.2629] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
BACKGROUND To date, with the exception of surgery, there are no satisfactory treatments available for proliferative vitreoretinopathy (PVR). Ultrasound-targeted microbubble destruction (UTMD) represents a new approach for the gene therapy of eye diseases. The present study aimed to investigate the feasibility of the attenuation of PVR by a combinatorial use of UTMD and recombinant adeno-associated virus (rAAV)-mediated RNA interference (RNAi) targeting transforming growth factor (TGF)-β2 and platelet-derived growth factor (PDGF)-B. METHODS One hundred and eighty rats of the PVR model were averagely divided into six groups (G). The left eyes, respectively, received an intravitreal injection as follows: normal saline (G1), rAAV2-control small interfering RNA (siRNA) (G2), rAAV2-TGF-β2-siRNA (G3), rAAV2-PDGF-B-siRNA (G4), rAAV2-TGF-β2-siRNA and rAAV2-PDGF-B-siRNA (G5, G6) on day 3 after PVR induction. In G6, a condition of UTMD was used additionally. On days 14 and 28, pathological changes of eye fundus were assessed by ophthalmoscopic and histopathologic examination, and the protein and mRNA levels of TGF-β2 and PDGF-B expression were tested using enzyme-linked immunosorbent assay and a reverse transcriptase-polymerase chain reaction, respectively. RESULTS The average grade scales of proliferation and the protein and mRNA expression levels of TGF-β2 and PDGF-B in G6 were all lower than that in G5 on day 28 (p<0.05, unpaired t-test). They were all lower in G5 and G6 than in G1, G2, G3 and G4 on day 28 (p<0.05, one-way analysis of variance), although the protein and mRNA expression levels of PDGF-B in G6 did not differ from that in G1, G2, G3, G4 and G5 on day 14. CONCLUSIONS The combinatorial use of UTMD and rAAV2-mediated RNAi targeting TGF-β2 and PDGF-B can serve as a novel approach to attenuate PVR.
Collapse
Affiliation(s)
- Xiaozhi Zheng
- Department of Ultrasound, The Fourth Affiliated Hospital of Nantong University, Yancheng, Jiangsu Province, People's Republic of China
| | | | | | | |
Collapse
|
14
|
Arvanitis CD, Bazan-Peregrino M, Rifai B, Seymour LW, Coussios CC. Cavitation-enhanced extravasation for drug delivery. ULTRASOUND IN MEDICINE & BIOLOGY 2011; 37:1838-52. [PMID: 21963037 DOI: 10.1016/j.ultrasmedbio.2011.08.004] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2011] [Revised: 08/03/2011] [Accepted: 08/07/2011] [Indexed: 05/05/2023]
Abstract
A flow-through tissue-mimicking phantom composed of a biocompatible hydro-gel with embedded tumour cells was used to assess and optimize the role of ultrasound-induced cavitation on the extravasation of a macromolecular compound from a channel mimicking vessel in the gel, namely a non-replicating luciferase-expressing adenovirus (Ad-Luc). Using a 500 KHz therapeutic ultrasound transducer confocally aligned with a focussed passive cavitation detector, different exposure conditions and burst mode timings were selected by performing time and frequency domain analysis of passively recorded acoustic emissions, in the absence and in the presence of ultrasound contrast agents acting as cavitation nuclei. In the presence of Sonovue, maximum ultraharmonic emissions were detected for peak rarefactional pressures of 360 kPa, and maximum broadband emissions occurred at 1250 kPa. The energy of the recorded acoustic emissions was used to optimise the pulse repetition frequency and duty cycle in order to maximize either ultraharmonic or broadband emissions while keeping the acoustic energy delivered to the focus constant. Cell viability measurements indicated that none of the insonation conditions investigated induces cell death in the absence of a therapeutic agent (i.e. virus). Phase contrast images of the tissue-mimicking phantom showed that short range vessel disruption can occur when ultra-harmonic emissions (nf0/2) are maximised whereas formation of a micro-channel perpendicular to the flow can be obtained in the presence of broadband acoustic emissions. Following Ad-Luc delivery, luciferase expression measurements showed that a 60-fold increase in its bioavailability can be achieved when broadband noise emissions are present during insonation, even for modest contrast agent concentrations. The findings of the present study suggest that drug delivery systems based on acoustic cavitation may help enhance the extravasation of anticancer agents, thus increasing their penetration distance to hypoxic regions and poorly vascularised tumour regions.
Collapse
Affiliation(s)
- Costas D Arvanitis
- Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, Headington, Oxford, UK.
| | | | | | | | | |
Collapse
|
15
|
Bazan-Peregrino M, Arvanitis CD, Rifai B, Seymour LW, Coussios CC. Ultrasound-induced cavitation enhances the delivery and therapeutic efficacy of an oncolytic virus in an in vitro model. J Control Release 2011; 157:235-42. [PMID: 21982902 DOI: 10.1016/j.jconrel.2011.09.086] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2011] [Revised: 09/21/2011] [Accepted: 09/23/2011] [Indexed: 01/06/2023]
Abstract
We investigated whether ultrasound-induced cavitation at 0.5 MHz could improve the extravasation and distribution of a potent breast cancer-selective oncolytic adenovirus, AdEHE2F-Luc, to tumour regions that are remote from blood vessels. We developed a novel tumour-mimicking model consisting of a gel matrix containing human breast cancer cells traversed by a fluid channel simulating a tumour blood vessel, through which the virus and microbubbles could be made to flow. Ultrasonic pressures were chosen to maximize either broadband emissions, associated with inertial cavitation, or ultraharmonic emissions, associated with stable cavitation, while varying duty cycle to keep the total acoustic energy delivered constant for comparison across exposures. None of the exposure conditions tested affected cell viability in the absence of the adenovirus. When AdEHE2F-Luc was delivered via the vessel, inertial cavitation increased transgene expression in tumour cells by up to 200 times. This increase was not observed in the absence of Coxsackie and Adenovirus Receptor cell expression, discounting sonoporation as the mechanism of action. In the presence of inertial cavitation, AdEHE2F-Luc distribution was greatly improved in the matrix surrounding the vessel, particularly in the direction of the ultrasound beam; this enabled AdEHE2F-Luc to kill up to 80% of cancer cells within the ultrasound focal volume in the gel 24 hours after delivery, compared to 0% in the absence of cavitation.
Collapse
Affiliation(s)
- Miriam Bazan-Peregrino
- Institute of Biomedical Engineering, Department of Engineering Science, Old Road Campus Research Building, University of Oxford, Headington, Oxford OX3 7DQ, United Kingdom.
| | | | | | | | | |
Collapse
|
16
|
Chen ZY, Liang K, Qiu RX, Luo LP. Ultrasound- and liposome microbubble-mediated targeted gene transfer to cardiomyocytes in vivo accompanied by polyethylenimine. JOURNAL OF ULTRASOUND IN MEDICINE : OFFICIAL JOURNAL OF THE AMERICAN INSTITUTE OF ULTRASOUND IN MEDICINE 2011; 30:1247-1258. [PMID: 21876096 DOI: 10.7863/jum.2011.30.9.1247] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
OBJECTIVES Gene transfer to cardiomyocytes in vivo has received much research attention in the last decade but remains a substantial hurdle. Gene transfer using ultrasound-targeted microbubble destruction is a promising tool for gene therapy. Little data have shown the feasibility and optimization of this method for primary myocardial disease. In this study, we sought to determine the feasibility and efficiency of in vivo gene transfer to the myocardium mediated by ultrasound-targeted microbubble destruction accompanied by polyethylenimine. METHODS Three plasmids (luciferase reporter, red fluorescent protein reporter, and enhanced green fluorescent protein reporter) were used in this study. The ultrasound parameters were also optimized. A solution containing phosphate-buffered saline, a plasmid, plasmid complex, or polyethylenimine/plasmid, and liposome microbubbles was injected via a tail vein with (study) or without (control) transthoracic ultrasound irradiation. The efficiency of reporter gene transfer was determined by detection of luciferase activity or microscopy, and histologic investigations of the tissue specimens were performed. RESULTS Ultrasound-targeted microbubble destruction significantly increased luciferase activity in vivo compared to plasmids and microbubbles alone (P < .001). More importantly, the increase in transgene expression was significantly related to ultrasound-targeted microbubble destruction in the presence of polyethylenimine (P < .001). In addition, fluorescein expression was present in all sections that received ultrasound-targeted microbubble destruction. The fluorescent reporter genes and luciferase plasmid all had similar results. Regardless of ultrasound exposure, expression in other organs was close to a background level except for the liver and lung. Hematoxylin-eosin staining showed no notable myocardial injury or death in control and treated mice. CONCLUSIONS An atraumatic targeted gene delivery technique based on ultrasound-targeted microbubble destruction and polyethylenimine has been developed to transfect cardiomyocytes in vivo. If a suitable target gene is added, the novel technique could be highly effective in many kinds of heart disease.
Collapse
Affiliation(s)
- Zhi-Yi Chen
- Department of Medical Imaging Center, First Affiliated Hospital, Jinan University, 613 Huangpu Dadao Xi, 510632 Guangzhou, Guangdong, China
| | | | | | | |
Collapse
|
17
|
Barbato JE, Kibbe MR, Tzeng E. The Emerging Role of Gene Therapy in the Treatment of Cardiovascular Diseases. Crit Rev Clin Lab Sci 2010. [DOI: 10.1080/10408360390250621] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
18
|
Abstract
Gene doping abuses the legitimate approach of gene therapy. While gene therapy aims to correct genetic disorders by introducing a foreign gene to replace an existing faulty one or by manipulating existing gene(s) to achieve a therapeutic benefit, gene doping employs the same concepts to bestow performance advantages on athletes over their competitors. Recent developments in genetic engineering have contributed significantly to the progress of gene therapy research and currently numerous clinical trials are underway. Some athletes and their staff are probably watching this progress closely. Any gene that plays a role in muscle development, oxygen delivery to tissues, neuromuscular coordination, or even pain control is considered a candidate for gene dopers. Unfortunately, detecting gene doping is technically very difficult because the transgenic proteins expressed by the introduced genes are similar to their endogenous counterparts. Researchers today are racing the clock because assuring the continued integrity of sports competition depends on their ability to develop effective detection strategies in preparation for the 2012 Olympics, which may mark the appearance of genetically modified athletes.
Collapse
Affiliation(s)
- Hassan M E Azzazy
- Department of Chemistry, SSE # 1194, AUC Avenue, 74, New Cairo, 11835, Egypt.
| |
Collapse
|
19
|
Zheng XZ, Li HL, Du LF, Wang HP, Gu Q. Comparative analysis of gene transfer to human and rat retinal pigment epithelium cell line by a combinatorial use of recombinant adeno- associated virus and ultrasound or/and microbubbles. Bosn J Basic Med Sci 2009; 9:174-81. [PMID: 19754469 DOI: 10.17305/bjbms.2009.2802] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Ultrasound-targeted microbubble destruction has been utilized to deliver a drug/gene into cells in both in vitro and in vivo studies. This work was performed to investigate the feasibility of gene transfer to human retinal pigment epithelium cell line(ARPE-19) and rat retinal pigment epithelium cell line(RPE-J) by a combinatorial use of recombinant adeno-associated virus (rAAV) and ultrasound (US) or/and microbubbles (MBs) and compare the difference between them. Different doses of serotype 2 rAAV encoding a enhanced green fluorescent protein (rAAV2-EGFP) gene and MBs was administered to ARPE-19 and RPE-J cells under different US conditions. Transfection efficiency and cell viability were assessed by fluorescence microscopy, flow cytometry (FCM) analysis, trypan blue staining. The results indicated that US and MBs could respectively improve rAAV2-mediated gene transfer to RPE-J cells, but neither US nor MBs could do so in ARPE-19 cells. US plus MBs could significantly enhance rAAV2-mediated gene transfer to ARPE-19 cells, however, the same effects were not seen in RPE-J cells. These findings demonstrated it is not always coincident that US, MBs and US plus MBs exert the similar effects on gene transfer in vitro RPE cells. So, it is necessary to choose appropriate RPE cell line for the study of US or/and MBs-mediated rAAV gene transfer in retinal gene therapy.
Collapse
Affiliation(s)
- Xiao-Zhi Zheng
- Department of Medical Ultrasound, Shanghai Jiaotong University Affiliated First People's Hospital, China
| | | | | | | | | |
Collapse
|
20
|
Tsai KC, Fang SY, Yang SJ, Shieh MJ, Lin WL, Chen WS. Time dependency of ultrasound-facilitated gene transfection. J Gene Med 2009; 11:729-36. [DOI: 10.1002/jgm.1347] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
21
|
Forbes MM, Steinberg RL, O'Brien WD. Examination of inertial cavitation of Optison in producing sonoporation of chinese hamster ovary cells. ULTRASOUND IN MEDICINE & BIOLOGY 2008; 34:2009-18. [PMID: 18692296 PMCID: PMC2610271 DOI: 10.1016/j.ultrasmedbio.2008.05.003] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 10/17/2007] [Revised: 05/13/2008] [Accepted: 05/14/2008] [Indexed: 05/11/2023]
Abstract
The objective of this project was to elucidate the relationship between ultrasound contrast agents (UCAs) and sonoporation. Sonoporation is an ultrasound-induced, transient cell membrane permeability change that allows for the uptake of normally impermeable macromolecules. Specifically, this study will determine the role that inertial cavitation plays in eliciting sonoporation. The inertial cavitation thresholds of the UCA, Optison, are compared directly with the results of sonoporation to determine the involvement of inertial cavitation in sonoporation. Chinese hamster ovary (CHO) cells were exposed as a monolayer in a solution of Optison, 500,000 Da fluorescein isothiocyanate-dextran (FITC-dextran), and phosphate-buffered saline (PBS) to 30 s of pulsed ultrasound at 3.15-MHz center frequency, 5-cycle pulse duration and 10-Hz pulse repetition frequency. The peak rarefactional pressure (P(r)) was varied over a range from 120 kPa-3.5 MPa, and five independent replicates were performed at each pressure. As the P(r) was increased, from 120 kPa-3.5 MPa, the fraction of sonoporated cells among the total viable population increased from 0.63-10.21%, with the maximum occurring at 2.4 MPa. The inertial cavitation threshold for Optison at these exposure conditions has previously been shown to be in the range 0.77-0.83 MPa, at which sonoporation activity was found to be 50% of its maximum level. Furthermore, significant sonoporation activity was observed at pressure levels below the threshold for inertial cavitation of Optison. Above 2.4 MPa, a significant drop in sonoporation activity occurred, corresponding to pressures where >95% of the Optison was collapsing. These results demonstrate that sonoporation is not directly a result of inertial cavitation of the UCA, rather that the effect is related to linear and/or nonlinear oscillation of the UCA occurring at pressure levels below the inertial cavitation threshold.
Collapse
Affiliation(s)
- Monica M Forbes
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL, USA.
| | | | | |
Collapse
|
22
|
Su CH, Yeh HI, Hou CJY, Tsai CH. Nonviral Technologies for Gene Therapy in Cardiovascular Research. INT J GERONTOL 2008. [DOI: 10.1016/s1873-9598(08)70009-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
|
23
|
Rome C, Deckers R, Moonen CTW. The use of ultrasound in transfection and transgene expression. Handb Exp Pharmacol 2008:225-243. [PMID: 18626604 DOI: 10.1007/978-3-540-77496-9_9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
The interaction of ultrasound with tissue leads to radiation pressure, heat generation, and cavitation. These phenomena have been utilised for local gene delivery, transfection and control of expression. Specially designed nanocarriers or adapted ultrasound contrast agents can further enhance local delivery by: (1) increased permeability of cell membranes; (2) local release of genes. Biological carriers may also be used for local gene delivery. Stem cells and immune cells appear especially promising because of their homing capabilities to lesion sites. Imaging methods can be employed for pharmacodistribution and pharmacokinetics. MRI contrast agents can serve as non-invasive reporters on gene distribution when co-delivered with the gene. They can be used to label nanocarriers and cellular transport systems in gene therapy strategies such as those based on stem cells. Finally, ultrasound heating together with the use of a temperature sensitive promoter allows a local, physical, spatio-temporal control of transgene expression, in particular when combined with MRI temperature mapping for monitoring and even controlling ultrasound heating.
Collapse
Affiliation(s)
- Claire Rome
- Laboratory for Molecular and Functional Imaging, UMR5231 CNRS, Université Victor Segalen Bordeaux 2, Bordeaux, France
| | | | | |
Collapse
|
24
|
Abstract
Nonviral gene delivery is a promising, safe, therapeutic tool in regenerative medicine. This study is the first to achieve nonviral, ultrasound-based, osteogenic gene delivery that leads to bone tissue formation, in vivo. We hypothesized that direct in vivo sonoporation of naked DNA encoding for the osteogenic gene, recombinant human bone morphogenetic protein-9 (rhBMP-9) would induce bone formation. A luciferase plasmid (Luc), encoding rhBMP-9 or empty pcDNA3 vector mixed with microbubbles, was injected into the thigh muscles of mice. After injection, noninvasive sonoporation was applied. Luc activity was monitored noninvasively, and quantitatively using bioluminescence imaging in vivo, and found for 14 days with a peak expression on day 7. To examine osteogenesis in vivo, rhBMP-9 plasmid was sonoporated into the thigh muscles of transgenic mice that express the Luc gene under the control of a human osteocalcin promoter. Following rhBMP-9 sonoporation, osteocalcin-dependent Luc expression lasted for 24 days and peaked on day 10. Bone tissue was formed in the site of rhBMP-9 delivery, as was shown by micro-computerized tomography and histology. The sonoporation method was also compared with previously developed electrotransfer-based gene delivery and was found significantly inferior in its efficiency of gene delivery. We conclude that ultrasound-mediated osteogenic gene delivery could serve as a therapeutic solution in conditions requiring bone tissue regeneration after further development that will increase the transfection efficiency.
Collapse
|
25
|
Ultrasound-contrast agent mediated naked gene delivery in the peritoneal cavity of adult rat. Gene Ther 2007; 14:1712-20. [DOI: 10.1038/sj.gt.3303040] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
26
|
Duvshani-Eshet M, Benny O, Morgenstern A, Machluf M. Therapeutic ultrasound facilitates antiangiogenic gene delivery and inhibits prostate tumor growth. Mol Cancer Ther 2007; 6:2371-82. [PMID: 17699732 DOI: 10.1158/1535-7163.mct-07-0019] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Gene therapy clinical trials are limited due to several hurdles concerning the type of vector used, particularly, the viral vectors, and transfection efficacy when non-viral vectors are used. Therapeutic ultrasound is a promising non-viral technology that can be used in the clinical setting. Here, for the first time, we show the efficacy of therapeutic ultrasound to deliver genes encoding for hemopexin-like domain fragment (PEX), an inhibitor of angiogenesis, to prostate tumors in vivo. Moreover, the addition of an ultrasound contrast agent (Optison) to the transfection process was evaluated. Prostate cancer cells and endothelial cells (EC) were transfected in vitro with cDNA-PEX using therapeutic ultrasound alone (TUS + pPEX) or with Optison (TUS + pPEX + Optison). The biological activity of the expressed PEX was assessed using proliferation, migration, and apoptosis assays done on EC and prostate cancer cells. TUS + pPEX + Optison led to the inhibition of EC and prostate cancer cell proliferation (<65%), migration (<50%), and an increase in apoptosis. In vivo, C57/black mice were inoculated s.c. with prostate cancer cells. The tumors were treated with TUS + pPEX and TUS + pPEX + Optison either once or repeatedly. Tumor growth was evaluated, after which histology and immunohistochemistry analyses were done. A single treatment of TUS + pPEX led to a 35% inhibition in tumor growth. Using TUS + PEX + Optison led to an inhibition of 50%. Repeated treatments of TUS + pPEX + Optison were found to significantly (P < 0.001) inhibit prostate tumor growth by 80%, along with the angiogenic indices, with no toxicity to the surrounding tissues. These results depict the efficacy of therapeutic ultrasound as a non-viral technology to efficiently deliver genes to tumors in general, and to deliver angiogenic inhibitors to prostate cancer in particular.
Collapse
Affiliation(s)
- Maayan Duvshani-Eshet
- The Faculty of Biotechnology and Food Engineering, Technion-Israel Institute of Technology, Haifa 32000, Israel
| | | | | | | |
Collapse
|
27
|
Abstract
The rapid progress of nanoscience and the application of nanotechnology are changing the foundations of diagnosis, treatment, and prevention of cardiovascular diseases. As the core of nanotechnology, nano- and microparticles offer "three-in-one" functions as imaging agents, target probes, and therapeutic carriers. While nano- and microparticle-based imaging of cardiovascular interventions is still in its developing phase, it has already presented the exciting potential to monitor primary interventional procedures for precise therapeutic delivery, enhance the effectiveness of delivered therapeutics, and monitor therapeutic efficiency after interventions performed to treat cardiovascular diseases. This article provides an overview of the current status of the application of nano- and microparticles in the imaging of cardiovascular interventions.
Collapse
Affiliation(s)
- Xiaoming Yang
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
28
|
Xenariou S, Griesenbach U, Liang HD, Zhu J, Farley R, Somerton L, Singh C, Jeffery PK, Ferrari S, Scheule RK, Cheng SH, Geddes DM, Blomley M, Alton EWFW. Use of ultrasound to enhance nonviral lung gene transfer in vivo. Gene Ther 2007; 14:768-74. [PMID: 17301842 DOI: 10.1038/sj.gt.3302922] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
We have assessed if high-frequency ultrasound (US) can enhance nonviral gene transfer to the mouse lung. Cationic lipid GL67/pDNA, polyethylenimine (PEI)/pDNA and naked plasmid DNA (pDNA) were delivered via intranasal instillation, mixed with Optison microbubbles, and the animals were then exposed to 1 MHz US. Addition of Optison alone significantly reduced the transfection efficiency of all three gene transfer agents. US exposure did not increase GL67/pDNA or PEI/pDNA gene transfer compared to Optison-treated animals. However, it increased naked pDNA transfection efficiency by approximately 15-fold compared to Optison-treated animals, suggesting that despite ultrasound being attenuated by air in the lung, sufficient energy penetrates the tissue to increase gene transfer. US-induced lung haemorrhage, assessed histologically, increased with prolonged US exposure. The left lung was more affected than the right and this was mirrored by a lesser increase in naked pDNA gene transfer, in the left lung. The positive effect of US was dependent on Optison, as in its absence US did not increase naked pDNA transfection efficiency. We have thus established proof of principle that US can increase nonviral gene transfer, in the air-filled murine lung.
Collapse
Affiliation(s)
- S Xenariou
- Department of Gene Therapy, National Heart and Lung Institute, Faculty of Medicine, Imperial College, London, UK
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Hallow DM, Mahajan AD, Prausnitz MR. Ultrasonically targeted delivery into endothelial and smooth muscle cells in ex vivo arteries. J Control Release 2007; 118:285-93. [PMID: 17291619 PMCID: PMC1892790 DOI: 10.1016/j.jconrel.2006.12.029] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2006] [Revised: 12/22/2006] [Accepted: 12/28/2006] [Indexed: 11/24/2022]
Abstract
This study tested the hypothesis that ultrasound can target intracellular uptake of drugs into vascular endothelial cells (ECs) at low to intermediate energy and into smooth muscle cells (SMCs) at high energy. Ultrasound-enhanced delivery has been shown to enhance and target intracellular drug and gene delivery in the vasculature to treat cardiovascular disease, but quantitative studies of the delivery process are lacking. Viable ex vivo porcine carotid arteries were placed in a solution containing a model drug, TO-PRO(R)-1, and Optison microbubbles. Arteries were exposed to ultrasound at 1.1 MHz and acoustic energies of 5.0, 66, or 630 J/cm(2). Using confocal microscopy and fluorescent labeling of cells, the artery endothelium and media were imaged to determine the localization and to quantify intracellular uptake and cell death. At low to intermediate ultrasound energy, ultrasound was shown to target intracellular delivery into viable cells that represented 9-24% of exposed ECs. These conditions also typically caused 7-25% EC death. At high energy, intracellular delivery was targeted to SMCs, which was associated with denuding or death of proximal ECs. This work represents the first known in-depth study to evaluate intracellular uptake into cells in tissue. We conclude that significant intracellular uptake of molecules can be targeted into ECs and SMCs by ultrasound-enhanced delivery suggesting possible applications for treatment of cardiovascular diseases and dysfunctions.
Collapse
MESH Headings
- Animals
- Carotid Arteries/cytology
- Carotid Arteries/drug effects
- Carotid Arteries/physiology
- Drug Delivery Systems/methods
- Endothelium, Vascular/cytology
- Endothelium, Vascular/drug effects
- Endothelium, Vascular/physiology
- Female
- Muscle, Smooth, Vascular/cytology
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/physiology
- Myocytes, Smooth Muscle/cytology
- Myocytes, Smooth Muscle/drug effects
- Myocytes, Smooth Muscle/physiology
- Organic Chemicals/administration & dosage
- Swine
- Ultrasonics
Collapse
Affiliation(s)
- Daniel M Hallow
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA 30332-0100, USA
| | | | | |
Collapse
|
30
|
Abstract
Ultrasonic biophysics is the study of mechanisms responsible for how ultrasound and biological materials interact. Ultrasound-induced bioeffect or risk studies focus on issues related to the effects of ultrasound on biological materials. On the other hand, when biological materials affect the ultrasonic wave, this can be viewed as the basis for diagnostic ultrasound. Thus, an understanding of the interaction of ultrasound with tissue provides the scientific basis for image production and risk assessment. Relative to the bioeffect or risk studies, that is, the biophysical mechanisms by which ultrasound affects biological materials, ultrasound-induced bioeffects are generally separated into thermal and non-thermal mechanisms. Ultrasonic dosimetry is concerned with the quantitative determination of ultrasonic energy interaction with biological materials. Whenever ultrasonic energy is propagated into an attenuating material such as tissue, the amplitude of the wave decreases with distance. This attenuation is due to either absorption or scattering. Absorption is a mechanism that represents that portion of ultrasonic wave that is converted into heat, and scattering can be thought of as that portion of the wave, which changes direction. Because the medium can absorb energy to produce heat, a temperature rise may occur as long as the rate of heat production is greater than the rate of heat removal. Current interest with thermally mediated ultrasound-induced bioeffects has focused on the thermal isoeffect concept. The non-thermal mechanism that has received the most attention is acoustically generated cavitation wherein ultrasonic energy by cavitation bubbles is concentrated. Acoustic cavitation, in a broad sense, refers to ultrasonically induced bubble activity occurring in a biological material that contains pre-existing gaseous inclusions. Cavitation-related mechanisms include radiation force, microstreaming, shock waves, free radicals, microjets and strain. It is more challenging to deduce the causes of mechanical effects in tissues that do not contain gas bodies. These ultrasonic biophysics mechanisms will be discussed in the context of diagnostic ultrasound exposure risk concerns.
Collapse
Affiliation(s)
- William D O'Brien
- Bioacoustics Research Laboratory, Department of Electrical and Computer Engineering, University of Illinois, 405 N. Mathews, Urbana, IL 61801, USA.
| |
Collapse
|
31
|
Paliwal S, Mitragotri S. Ultrasound-induced cavitation: applications in drug and gene delivery. Expert Opin Drug Deliv 2006; 3:713-26. [PMID: 17076594 DOI: 10.1517/17425247.3.6.713] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Ultrasound, which has been conventionally used for diagnostics until recently, is now being extensively used for drug and gene delivery. This transformation has come about primarily due to ultrasound-mediated acoustic cavitation - particularly transient cavitation. Acoustic cavitation has been used to facilitate the delivery of small molecules, as well as macromolecules, including proteins and DNA. Controlled generation of cavitation has also been used for targeting drugs to diseased tissues, including skin, brain, eyes and endothelium. Ultrasound has also been employed for the treatment of several diseases, including thromboembolism, arteriosclerosis and cancer. This review provides a detailed account of mechanisms, current status and future prospects of ultrasonic cavitation in drug and gene delivery applications.
Collapse
Affiliation(s)
- Sumit Paliwal
- University of California, Department of Chemical Engineering, Santa Barbara, CA 93106, USA.
| | | |
Collapse
|
32
|
Ultrasound-mediated gene transfection: problems to be solved and future possibilities. J Med Ultrason (2001) 2006; 33:135-42. [DOI: 10.1007/s10396-005-0091-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2005] [Accepted: 12/27/2005] [Indexed: 10/24/2022]
|
33
|
Xenariou S, Griesenbach U, Ferrari S, Dean P, Scheule RK, Cheng SH, Geddes DM, Plank C, Alton EWFW. Using magnetic forces to enhance non-viral gene transfer to airway epithelium in vivo. Gene Ther 2006; 13:1545-52. [PMID: 16738690 DOI: 10.1038/sj.gt.3302803] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
We have assessed whether magnetic forces (magnetofection) can enhance non-viral gene transfer to the airways. TransMAG(PEI), a superparamagnetic particle was coupled to Lipofectamine 2000 or cationic lipid 67 (GL67)/plasmid DNA (pDNA) liposome complexes. In vitro transfection with these formulations resulted in approximately 300- and 30-fold increase in reporter gene expression, respectively, after exposure to a magnetic field, but only at suboptimal pDNA concentrations. Because GL67 has been formulated for in vivo use, we next assessed TransMAG(PEI) in the murine nasal epithelium in vivo, and compared this to naked pDNA. At the concentrations required for in vivo experiments, precipitation of magnetic complexes was seen. After extensive optimization, addition of non-precipitated magnetic particles resulted in approximately seven- and 90-fold decrease in gene expression for naked pDNA and GL67/pDNA liposome complexes, respectively, compared to non-magnetic particles. Thus, whereas exposure to a magnetic field improved in vitro transfection efficiency, translation to the in vivo setting remains difficult.
Collapse
Affiliation(s)
- S Xenariou
- Department of Gene Therapy, National Heart and Lung Institute, Faculty of Medicine, Imperial College, 1B Manresa Road, London SW3 6LR, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Duvshani-Eshet M, Machluf M. Therapeutic ultrasound optimization for gene delivery: A key factor achieving nuclear DNA localization. J Control Release 2005; 108:513-28. [PMID: 16243409 DOI: 10.1016/j.jconrel.2005.08.025] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2005] [Revised: 08/14/2005] [Accepted: 08/16/2005] [Indexed: 10/25/2022]
Abstract
When applying therapeutic-ultrasound (TUS) for gene-delivery, there is a great need to understand the contribution of different parameters to the transfection process. The aim of this study is to optimize a wide range of parameters associated with the TUS system concurrent with parameters associated with the transfection, achieving high transfection level and efficiency (total number of cells), while localizing the DNA in the nucleus. Exposure of different cell-types (BHK, LNCaP, BCE) to TUS resulted in high gene expression (1200 fold) and efficiency (28%) with minimal loss in cell viability (<20%). The optimal transfection level and efficiency was achieved using TUS at 2 W/cm2 (0.159 MPa), 30% duty cycle (DC) for 30 min (1080 J/cm2), by placing the transducer above the cells. Long-term TUS application was found to overcome the rate-limiting step of this technology-driving DNA to the cell nucleus. The effect of cell density and DNA concentrations were studied. Increasing DNA concentration contributes to the increase in total gene expression, but not necessarily to transfection efficiency. Our findings support the feasibility of TUS to deliver genes to cells and contribute to the understanding of wide range of parameters that affect the capability of TUS to efficiently deliver genes.
Collapse
Affiliation(s)
- Maayan Duvshani-Eshet
- Faculty of Biotechnology and Food Engineering, The Technion-Israel Institute of Technology, Haifa, Israel
| | | |
Collapse
|
35
|
Jolesz FA, Hynynen K, McDannold N, Tempany C. MR imaging-controlled focused ultrasound ablation: a noninvasive image-guided surgery. Magn Reson Imaging Clin N Am 2005; 13:545-60. [PMID: 16084419 DOI: 10.1016/j.mric.2005.04.008] [Citation(s) in RCA: 125] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The history of MR-guided FUS demonstrates the need for merging advanced therapy technology with advanced imaging. Without the ability of MR imaging to localize the tumor margins and without the temperature-sensitive imaging that provides the closed-loop control of energy deposition, this method is inadequate for most clinical applications. Given these limitations,high-intensity focused ultrasound initially appeared to have a narrow application area and was not able to compete with other surgical or ablation methods. Today, MR imaging-guided FUS has become a safe and effective means of performing probe-delivered thermal ablations and minimally invasive surgery. Moreover, it has the potential to replace treatments that use ionizing radiation such as radiosurgery and brachytherapy. Although the cost of integrating"big ticket" MR imaging systems with complex and expensive phased arrays is high, this expenditure will largely be offset by eliminating hospitalization and anesthesia and by reducing complications. In effect, an investment in this emerging technology will ultimately redound to the benefit of the health care delivery system and, most important, to the patient. The FUS system provides a safe, repeatable treatment approach for benign tumors (eg, uterine fibroid and breast fibroadenoma) that do not require an aggressive approach. MR-guided FUS can also be used for debulking cancerous tissue. It has already been tested as a breast cancer treatment; its application for other malignancies in the brain, liver, and prostate is under development. MR-guided FUS offers an attractive alternative to conventional surgery because it incorporates intraoperative MR imaging, which provides far more precise target definition than is possible with the surgeon's direct visualization of the lesion. MR-guided FUS is undeniably the most promising interventional MR imaging method in the field of image-guided therapy today. It is applicable not only in the thermal coagulative treatment of tumors but also in several other medical situations for which invasive surgery or radiation may not be treatment options. The use of FUS for treating vascular malformation or functional disorders of the brain is also exciting. It is uniquely applicable for image-guided therapy using targeted drug delivery methods and gene therapy. Further advances in this technology will no doubt improve energy deposition and reduce treatment times. In the near future, FUS will offer a viable alternative to conventional surgery and radiation therapy; in the longer-term, it may also enable a host of targeted treatment methods aimed at eradicating or arresting heretofore intractable diseases such as certain brain malignancies and forms of epilepsy.
Collapse
Affiliation(s)
- Ferenc A Jolesz
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, 75 Francis Street, Boston, MA 02115, USA.
| | | | | | | |
Collapse
|
36
|
Abstract
Given both the accessibility and the genetic basis of several pulmonary diseases, the lungs and airways initially seemed ideal candidates for gene therapy. Several routes of access are available, many of which have been refined and optimized for nongene drug delivery. Two respiratory diseases, cystic fibrosis (CF) and alpha1-antitrypsin (alpha1-AT) deficiency, are relatively common; the single gene responsible has been identified and current treatment strategies are not curative. This type of inherited disease was the obvious initial target for gene therapy, but it has become clear that nongenetic and acquired diseases, including cancer, may also be amenable to this approach. The majority of preclinical and clinical studies in the airway have involved viral vectors, although for diseases such as CF, likely to require repeated application, non-viral delivery systems have clear advantages. However, with both approaches a range of barriers to gene expression have been identified that are limiting success in the airway and alveolar region. This chapter reviews these issues, strategies aimed at overcoming them, and progress into clinical trials with non-viral vectors in a variety of pulmonary diseases.
Collapse
Affiliation(s)
- Jane C Davies
- Department of Gene Therapy, Imperial College London, London SW3 6LR, United Kingdom
| | | |
Collapse
|
37
|
Du X, Qiu B, Zhan X, Kolmakova A, Gao F, Hofmann LV, Cheng L, Chatterjee S, Yang X. Radiofrequency-enhanced vascular gene transduction and expression for intravascular MR imaging-guided therapy: feasibility study in pigs. Radiology 2005; 236:939-44. [PMID: 16040894 DOI: 10.1148/radiol.2363041021] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
PURPOSE To evaluate the feasibility of radiofrequency (RF)-enhanced vascular gene transduction and expression by using a magnetic resonance (MR) imaging-heating guidewire as an intravascular heating vehicle during MR imaging-guided therapy. MATERIALS AND METHODS The institutional committee for animal care and use approved the experimental protocol. The study included in vitro evaluation of the use of RF energy to enhance gene transduction and expression in vascular cells, as well as in vivo validation of the feasibility of intravascular MR imaging-guided RF-enhanced vascular gene transduction and expression in pig arteries. For in vitro experiments, approximately 10(4) vascular smooth muscle cells were seeded in each of four chambers of a cell culture plate. Next, 1 mL of a green fluorescent protein gene (gfp)-bearing lentivirus was added to each chamber. Chamber 4 was heated at approximately 41 degrees C for 15 minutes by using an MR imaging-heating guidewire connected to a custom RF generator. At day 6 after transduction, the four chambers were examined and compared at confocal microscopy to determine the efficiency of gfp transduction and expression. For the in vivo experiments, a lentivirus vector bearing a therapeutic gene, vascular endothelial growth factor 165 (VEGF-165), was transferred by using a gene delivery balloon catheter in 18 femoral-iliac arteries (nine artery pairs) in domestic pigs and Yucatan pigs with atherosclerosis. During gene infusion, one femoral-iliac artery in each pig was heated to approximately 41 degrees C with RF energy transferred via the intravascular MR imaging-heating guidewire, while the contralateral artery was not heated (control condition). At day 6, the 18 arteries were harvested for quantitative Western blot analysis to compare VEGF-165 transduction and expression efficiency between RF-heated and nonheated arterial groups. RESULTS Confocal microscopy showed gfp expression in chamber 4 that was 293% the level of expression in chamber 1 (49.6% +/- 25.8 vs 16.8% +/- 8.0). Results of Western blot analysis showed VEGF-165 expression for normal arteries in the RF-heated group that was 300% the level of expression in the nonheated group (70.4 arbitrary units [au] +/- 107.1 vs 23.5 au +/- 29.8), and, for atherosclerotic arteries in the RF-heated group, 986% the level in the nonheated group (129.2 au +/- 100.3 vs 13.1 au +/- 4.9). CONCLUSION Simultaneous monitoring and enhancement of vascular gene delivery and expression is feasible with the MR imaging-heating guidewire.
Collapse
Affiliation(s)
- Xiangying Du
- Department of Radiology, Johns Hopkins University School of Medicine, Traylor Bldg, Room 330, 720 Rutland Ave, Baltimore, MD 21205, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Akowuah EF, Gray C, Lawrie A, Sheridan PJ, Su CH, Bettinger T, Brisken AF, Gunn J, Crossman DC, Francis SE, Baker AH, Newman CM. Ultrasound-mediated delivery of TIMP-3 plasmid DNA into saphenous vein leads to increased lumen size in a porcine interposition graft model. Gene Ther 2005; 12:1154-7. [PMID: 15829995 DOI: 10.1038/sj.gt.3302498] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Progressive saphenous vein graft (SVG) narrowing and occlusion remains a major limitation of coronary artery bypass grafting and is an important target for gene therapy. Ex vivo adenoviral gene transfer of tissue inhibitor of metalloproteinase 3 (TIMP-3) reduces adverse SVG remodelling postarterialization, but concerns remain over the use of viral vectors in patients. Ultrasound exposure (USE) in the presence of echocontrast microbubbles (ECM) substantially enhances nonviral gene delivery. We investigated the effects of ultrasound-enhanced gene delivery (UEGD) of TIMP-3 plasmid on vascular remodelling in porcine SVG. Maximal luciferase activity (3000-fold versus naked plasmid alone) and TIMP-3 transgene expression in porcine vascular smooth muscle cells in vitro was achieved using USE at 1 MHz, 1.8 mechanical index (MI), 6% duty cycle (DC) in the presence of 50% (v/v) BR14 ECM (Bracco). These conditions were therefore utilized for subsequent studies in vivo. Yorkshire White pigs received carotid interposition SVG that were untransfected or had undergone ex vivo UEGD of lacZ (control) or TIMP-3 plasmids. At 28 d postgrafting, lumen and total vessel area were significantly greater in the TIMP-3 group (10.1+/-1.2 and 25.5+/-2.2 mm2, respectively) compared to untransfected (6.34+/-0.5 and 20.8+/-1.9 mm2) or lacZ-transfected (6.1+/-0.7 and 19.7+/-1.2 mm2) controls (P<0.01). These data indicate that nonviral TIMP-3 plasmid delivery by USE achieves significant biological effects in a clinically relevant model of SV grafting, and is the first study to demonstrate the potential for therapeutic UEGD to prevent SVG failure.
Collapse
Affiliation(s)
- E F Akowuah
- Cardiovascular Research Unit, Division of Clinical Sciences (North), Clinical Sciences Centre, University of Sheffield, Northern General Hospital, Sheffield, UK
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Ogawa R, Kagiya G, Feril LB, Nakaya N, Nozaki T, Fuse H, Kondo T. Ultrasound mediated intravesical transfection enhanced by treatment with lidocaine or heat. J Urol 2004; 172:1469-73. [PMID: 15371873 DOI: 10.1097/01.ju.0000139589.52415.3d] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE We have previously reported that cell membrane modification by lidocaine or heat can enhance ultrasound mediated transfection (USMT) on PC-3 cells in vitro. In the current study we investigated whether such enhancement could be observed using the T24 human bladder cancer cell line in vitro along with PC-3 in vivo. MATERIALS AND METHODS For in vitro transfection T24 cells were sonicated with 1 MHz ultrasound at 3.6 W/cm (ISATA) for 20 seconds. For in vivo transfection T24 or PC-3 cells in the bladder were transabdominally sonicated with 1 MHz ultrasound at 0.78 W/cm (ISATA) for 60 seconds. Transfection efficiency was evaluated by the luciferase assay standardized with protein contents of the samples. RESULTS Lidocaine or heat treatment of T24 cells during sonication enhanced luciferase expression significantly. Results indicated that enhancements could be achieved in a different cell line, although to lesser degrees than with PC-3 cells. In addition, membrane fluidity facilitation and cell viability after sonication were also different, presumably influenced by the different structures and/or compositions of the cell membranes. PC-3 and T24 cells were successfully transfected in the bladder. In addition, USMT enhancements were also observed in the 2 cell lines when sonicated with lidocaine or heat. CONCLUSIONS These results suggest that USMT and its enhancement with lidocaine or heat can be applied for gene therapy in the bladder.
Collapse
Affiliation(s)
- Ryohei Ogawa
- Department of Radiological Sciences, Faculty of Medicine, Toyama Medical and Pharmaceutical University, Tsuruga, Japan
| | | | | | | | | | | | | |
Collapse
|
40
|
Abstract
Ultrasound has an ever-increasing role in the delivery of therapeutic agents, including genetic material, protein and chemotherapeutic agents. Cavitating gas bodies, such as microbubbles, are the mediators through which the energy of relatively non-interactive pressure waves is concentrated to produce forces that permeabilise cell membranes and disrupt the vesicles that carry drugs. Thus, the presence of microbubbles enormously enhances ultrasonic delivery of genetic material, proteins and smaller chemical agents. Numerous reports show that the most efficient delivery of genetic material occurs in the presence of cavitating microbubbles. Attaching the DNA directly to the microbubbles, or to gas-containing liposomes, enhances gene uptake even further. Ultrasonic-enhanced gene delivery has been studied in various tissues, including cardiac, vascular, skeletal muscle, tumour and even fetal tissue. Ultrasonic-assisted delivery of proteins has found most application in transdermal transport of insulin. Cavitation events reversibly disrupt the structure of the stratus corneum to allow transport of these large molecules. Other hormones and small proteins could also be delivered transdermally. Small chemotherapeutic molecules are delivered in research settings from micelles and liposomes exposed to ultrasound. Cavitation appears to play two roles: it disrupts the structure of the carrier vesicle and releases the drug; and makes cell membranes and capillaries more permeable to drugs. There remains a need to better understand the physics of cavitation of microbubbles and the impact that such cavitation has on cells and drug-carrying vesicles.
Collapse
Affiliation(s)
- William G Pitt
- Brigham Young University, D350 Clyde Building, Provo, UT 84602, USA.
| | | | | |
Collapse
|
41
|
Unger EC, Porter T, Culp W, Labell R, Matsunaga T, Zutshi R. Therapeutic applications of lipid-coated microbubbles. Adv Drug Deliv Rev 2004; 56:1291-314. [PMID: 15109770 DOI: 10.1016/j.addr.2003.12.006] [Citation(s) in RCA: 388] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2003] [Accepted: 12/20/2003] [Indexed: 11/15/2022]
Abstract
Lipid-coated microbubbles represent a new class of agents with both diagnostic and therapeutic applications. Microbubbles have low density. Stabilization of microbubbles by lipid coatings creates low-density particles with unusual properties for diagnostic imaging and drug delivery. Perfluorocarbon (PFC) gases entrapped within lipid coatings make microbubbles that are sufficiently stable for circulation in the vasculature as blood pool agents. Microbubbles can be cavitated with ultrasound energy for site-specific local delivery of bioactive materials and for treatment of vascular thrombosis. The blood-brain barrier (BBB) can be reversibly opened without damaging the neurons using ultrasound applied across the intact skull to cavitate microbubbles within the cerebral microvasculature for delivery of both low and high molecular weight therapeutic compounds to the brain. The first lipid-coated PFC microbubble product is currently marketed for diagnostic ultrasound imaging. Clinical trials are currently in process for treatment of vascular thrombosis with ultrasound and lipid-coated PFC microbubbles (SonoLysis Therapy). Targeted microbubbles and acoustically active PFC nanoemulsions with specific ligands can be developed for detecting disease at the molecular level and targeted drug and gene delivery. Bioactive compounds can be incorporated into these carriers for site-specific delivery. Our aim is to cover the therapeutic applications of lipid-coated microbubbles and PFC emulsions in this review.
Collapse
|
42
|
García MJ. Therapeutic Application of Ultrasound Contrast Agents. CONTRAST ECHOCARDIOGRAPHY IN CLINICAL PRACTICE 2004:263-286. [DOI: 10.1007/978-88-470-2125-9_16] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
|
43
|
Li T, Tachibana K, Kuroki M, Kuroki M. Gene Transfer with Echo-enhanced Contrast Agents: Comparison between Albunex, Optison, and Levovist in Mice—Initial Results. Radiology 2003; 229:423-8. [PMID: 14512507 DOI: 10.1148/radiol.2292020500] [Citation(s) in RCA: 161] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
PURPOSE To determine if commercially available echo-enhanced microbubble contrast agents could be used to increase gene transfection efficiency by means of relatively low-intensity ultrasound-mediated microbubble destruction in skeletal muscles. MATERIALS AND METHODS Three types of ultrasound microbubble contrast agents (0.01 mL of albumin [Albunex] and human albumin [Optison] and 10 mg/mL of SH U 508A [Levovist]) were each separately mixed with the reporter plasmid DNA (25 microg) encoding green fluorescent protein (GFP) prior to intramuscular injection into the quadriceps muscle of a mouse thigh bilaterally (seven mice per contrast agent). One of the muscle sites that was injected with plasmid DNA was irradiated with low-intensity therapeutic ultrasound (1 MHz) at an intensity of 2.0 W/cm2 for 2 minutes. Mice were sacrificed 7 days after ultrasound treatment for gene expression assay. The number of GFP-expressing muscle fibers was counted. Statistical significance was determined with a two-tailed Student t test. P <.05 was considered to indicate statistically significant difference. RESULTS Muscle tissue exposed to ultrasound with air-filled Albunex or Levovist microbubbles revealed no difference in the number of GFP-expressing muscle fibers compared with the control non-ultrasound-exposed muscle. Albumin-coated octafluoropropane gas-filled Optison microbubbles showed a 10-fold increase in the number of GFP-expressing fibers (P <.05). CONCLUSION Low-intensity ultrasound with echo-enhanced Optison induced efficient gene transfer unlike that with Albunex or Levovist.
Collapse
Affiliation(s)
- Tieli Li
- Molecular Oncology Center and Department of Anatomy, Fukuoka University School of Medicine, Nanakuma 7-45-1, Jonan-ku, Fukuoka 814-0180, Japan
| | | | | | | |
Collapse
|
44
|
Lawrie A, Brisken AF, Francis SE, Wyllie D, Kiss-Toth E, Qwarnstrom EE, Dower SK, Crossman DC, Newman CM. Ultrasound-enhanced transgene expression in vascular cells is not dependent upon cavitation-induced free radicals. ULTRASOUND IN MEDICINE & BIOLOGY 2003; 29:1453-1461. [PMID: 14597342 DOI: 10.1016/s0301-5629(03)01032-9] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Although acoustic cavitation is clearly important in ultrasound (US)-enhanced gene delivery (UEGD), the relative importance of mechanical and sonochemical (free radical) bioeffects remains unclear, as does the mechanism of gene delivery at the cellular level. Porcine vascular smooth muscle cells (VSMC) were transfected with luciferase or green fluorescent protein (GFP) plasmid +/- pulsed 956 kHz US (2.0 mechanical index (MI), 128 W cm(-2) spatial peak pulse average intensity, ISPPA) for 60 s, in the presence or absence of 20 mM cysteamine or N-acetyl-L-cysteine. Both compounds effectively scavenged free radical production following US, leaving unaffected the 50- to 100-fold enhancements in luciferase expression seen in US-treated VSMC. US exposure enhanced plasmid uptake (25 +/- 4.6 vs. 3 +/- 1.9 cells/field, n=4, p<0.05), most likely directly into the cytoplasm, and increased both the total number (>sevenfold) and average fluorescence intensity (>sixfold) of GFP-transfected cells. UEGD is not dependent upon cavitation-induced free radical generation and has potential for use with a wide range of therapeutic transgenes.
Collapse
Affiliation(s)
- Allan Lawrie
- Cardiovascular Research Group, Division of Clinical Sciences (North), University of Sheffield, Sheffield, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Guzmán HR, McNamara AJ, Nguyen DX, Prausnitz MR. Bioeffects caused by changes in acoustic cavitation bubble density and cell concentration: a unified explanation based on cell-to-bubble ratio and blast radius. ULTRASOUND IN MEDICINE & BIOLOGY 2003; 29:1211-1222. [PMID: 12946524 DOI: 10.1016/s0301-5629(03)00899-8] [Citation(s) in RCA: 103] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Acoustic cavitation has been shown to load drugs, proteins and DNA into viable cells as a complex function of acoustic and nonacoustic parameters. To better understand and quantify this functionality, DU145 prostate cancer cell suspensions at different cell concentrations (2.5 x 10(5) to 4.0 x 10(7) cells/mL) were exposed to 500 kHz ultrasound (US) over a range of acoustic energy exposures (2 to 817 J/cm(2); peak negative pressures of 0.64 to 2.96 MPa; exposure times of 120 to 2000 ms) in the presence of different initial concentrations of Optison contrast agent bubbles (3.6 x 10(4) to 9.3 x 10(7) bubbles/mL). As determined by flow cytometry, molecular uptake of calcein and cell viability both increased with increasing cell density; viability decreased and uptake was unaffected by increasing initial contrast agent concentration. When normalized relative to the initial contrast agent concentration (e.g., cells killed per bubble), bioeffects increased with increasing cell density and decreased with increasing bubble concentration. These varying effects of contrast agent concentration and cell density were unified through an overall correlation with cell-to-bubble ratio. Additional analysis led to estimation of "blast radii" over which bubbles killed or permeabilized cells; these radii were as much as 3 to 90 times the bubble radius. Combined, these results suggest that extensive molecular uptake into cells at high viability occurs for low-energy exposure US applied at a high cell-to-bubble ratio.
Collapse
Affiliation(s)
- Héctor R Guzmán
- School of Chemical Engineering, Georgia Institute of Technology, Atlanta, GA 30332-0100, USA
| | | | | | | |
Collapse
|
46
|
Abstract
Gene therapy is an exciting frontier in medicine today. Many genes have been shown to be useful for treatment of various vascular diseases, including chronic cardiac and limb ischemia syndromes, vasculoproliferative disorder, hypercholesterolemia, atherosclerosis, thrombosis, and hypertension. Precise delivery of genes into target vessels, efficient transfer of genes into vascular cells of the target, and prompt assessment of gene expression over time are three challenging tasks for successful vascular gene therapy. Thus, in vivo imaging methods that can be used to monitor gene delivery and localize gene expression are needed. Modern imaging techniques provide an opportunity to monitor and direct vascular gene therapy. Radiologists play a key role not only in developing and mastering endovascular genetic interventions but also in assessing the success of vascular gene therapy and directing further refinement of vascular gene therapy technology. This article provides an overview of the current status of imaging of vascular gene therapy.
Collapse
Affiliation(s)
- Xiaoming Yang
- Department of Radiology, Johns Hopkins University School of Medicine, Traylor Bldg, Rm 330, 720 Rutland Ave, Baltimore, MD 21205, USA.
| |
Collapse
|
47
|
Bicknell KA, Surry EL, Brooks G. Targeting the cell cycle machinery for the treatment of cardiovascular disease. J Pharm Pharmacol 2003; 55:571-91. [PMID: 12831500 DOI: 10.1211/002235703765344487] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
Cardiovascular disease represents a major clinical problem affecting a significant proportion of the world's population and remains the main cause of death in the UK. The majority of therapies currently available for the treatment of cardiovascular disease do not cure the problem but merely treat the symptoms. Furthermore, many cardioactive drugs have serious side effects and have narrow therapeutic windows that can limit their usefulness in the clinic. Thus, the development of more selective and highly effective therapeutic strategies that could cure specific cardiovascular diseases would be of enormous benefit both to the patient and to those countries where healthcare systems are responsible for an increasing number of patients. In this review, we discuss the evidence that suggests that targeting the cell cycle machinery in cardiovascular cells provides a novel strategy for the treatment of certain cardiovascular diseases. Those cell cycle molecules that are important for regulating terminal differentiation of cardiac myocytes and whether they can be targeted to reinitiate cell division and myocardial repair will be discussed as will the molecules that control vascular smooth muscle cell (VSMC) and endothelial cell proliferation in disorders such as atherosclerosis and restenosis. The main approaches currently used to target the cell cycle machinery in cardiovascular disease have employed gene therapy techniques. We will overview the different methods and routes of gene delivery to the cardiovascular system and describe possible future drug therapies for these disorders. Although the majority of the published data comes from animal studies, there are several instances where potential therapies have moved into the clinical setting with promising results.
Collapse
Affiliation(s)
- Katrina A Bicknell
- Cardiovascular Research Group, School of Animal and Microbial Sciences, The University of Reading, PO Box 228, Whiteknights, Reading, Berkshire, RG6 6AJ, UK
| | | | | |
Collapse
|
48
|
Lu QL, Liang HD, Partridge T, Blomley MJK. Microbubble ultrasound improves the efficiency of gene transduction in skeletal muscle in vivo with reduced tissue damage. Gene Ther 2003; 10:396-405. [PMID: 12601394 DOI: 10.1038/sj.gt.3301913] [Citation(s) in RCA: 196] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2002] [Accepted: 08/29/2002] [Indexed: 11/09/2022]
Abstract
Intramuscular injection of naked plasmid DNA is a safe approach to the systemic delivery of therapeutic gene products, but with limited efficiency. We have investigated the use of microbubble ultrasound to augment naked plasmid DNA delivery by direct injection into mouse skeletal muscle in vivo, in both young (4 weeks) and older (6 months) mice. We observed that the albumin-coated microbubble, Optison (licensed for echocardiography in patients), significantly improves the transfection efficiency even in the absence of ultrasound. The increase in transgene expression is age related as Optison improves transgene expression less efficiently in older mice than in younger mice. More importantly, Optison markedly reduces muscle damage associated with naked plasmid DNA and the presence of cationic polymer PEI 25000. Ultrasound at moderate power (3 W/cm2 1 MHz, 60 s exposure, duty cycle 20%), combined with Optison, increases transfection efficiency in older, but not in young, mice. The safe clinical use of microbubbles and therapeutic ultrasound and, particularly, the protective effect of the microbubbles against tissue damage provide a highly promising approach for gene delivery in muscle in vivo.
Collapse
Affiliation(s)
- Q L Lu
- Muscle Cell Biology, MRC Clinical Sciences Centre, Imperial College, Hammersmith Hospital, London, UK
| | | | | | | |
Collapse
|
49
|
Lu QL, Bou-Gharios G, Partridge TA. Non-viral gene delivery in skeletal muscle: a protein factory. Gene Ther 2003; 10:131-42. [PMID: 12571642 DOI: 10.1038/sj.gt.3301874] [Citation(s) in RCA: 142] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Ever since the publication of the first reports in 1990 using skeletal muscle as a direct target for expressing foreign transgenes, an avalanche of papers has identified a variety of proteins that can be synthesized and correctly processed by skeletal muscle. The impetus to the development of such applications is not only amelioration of muscle diseases, but also a range of therapeutic applications, from immunization to delivery of therapeutic proteins, such as clotting factors and hormones. Although the most efficient way of introducing transgenes into muscle fibres has been by a variety of recombinant viral vectors, there are potential benefits in the use of non-viral vectors. In this review we assess the recent advances in construction and delivery of naked plasmid DNA to skeletal muscle and highlight the options available for further improvements to raise efficiency to therapeutic levels.
Collapse
Affiliation(s)
- Q L Lu
- Muscle Cell Biology Group, MRC Clinical Sciences Center, Faculty of Medicine, Imperial College of Science, Technology and Medicine, Hammersmith Campus, London W12 0NN, UK
| | | | | |
Collapse
|
50
|
Abstract
The success of gene therapy is largely dependent on the development of the gene delivery vector. Recently, gene transfection into target cells using naked DNA, which is a simple and safe approach, has been improved by combining several physical techniques, for example, electroporation, gene gun, ultrasound and hydrodynamic pressure. Chemical approaches have been utilized to improve the efficiency and cell specificity of gene transfer. Novel gene carrier molecules, which facilitate DNA escape from the endosome into the cytosol, have been developed. Several functional polymers, which enable controlled release of DNA in response to an environmental change, have also been reported. Plasmids with reduced number of CpG motifs, the use of PCR fragments and the sequential injection method have been established for the reduction of immune response triggered by plasmid DNA. Construction of a long-lasting gene expression system is also an important theme for nonviral gene therapy. To date, tissue-specific expression, self-replicating and integrating plasmid systems have been reported. Improvement of delivery methods together with intelligent design of the DNA itself has brought about large degrees of enhancement in the efficiency, specificity and temporal control of nonviral vectors.
Collapse
Affiliation(s)
- T Niidome
- Center for Pharmacogenetics, School of Pharmacy, 633 Salk Hall, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | | |
Collapse
|