1
|
Aβ selectively impairs mGluR7 modulation of NMDA signaling in basal forebrain cholinergic neurons: implication in Alzheimer's disease. J Neurosci 2015; 34:13614-28. [PMID: 25297090 DOI: 10.1523/jneurosci.1204-14.2014] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Degeneration of basal forebrain (BF) cholinergic neurons is one of the early pathological events in Alzheimer's disease (AD) and is thought to be responsible for the cholinergic and cognitive deficits in AD. The functions of this group of neurons are highly influenced by glutamatergic inputs from neocortex. We found that activation of metabotropic glutamate receptor 7 (mGluR7) decreased NMDAR-mediated currents and NR1 surface expression in rodent BF neurons via a mechanism involving cofilin-regulated actin dynamics. In BF cholinergic neurons, β-amyloid (Aβ) selectively impaired mGluR7 regulation of NMDARs by increasing p21-activated kinase activity and decreasing cofilin-mediated actin depolymerization through a p75(NTR)-dependent mechanism. Cell viability assays showed that activation of mGluR7 protected BF neurons from NMDA-induced excitotoxicity, which was selectively impaired by Aβ in BF cholinergic neurons. It provides a potential basis for the Aβ-induced disruption of calcium homeostasis that might contribute to the selective degeneration of BF cholinergic neurons in the early stage of AD.
Collapse
|
2
|
Cholinergic receptor blockade by scopolamine and mecamylamine exacerbates global cerebral ischemia induced memory dysfunction in C57BL/6J mice. Nitric Oxide 2014; 43:62-73. [DOI: 10.1016/j.niox.2014.08.009] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2014] [Revised: 08/16/2014] [Accepted: 08/21/2014] [Indexed: 12/19/2022]
|
3
|
Cholinergic markers in the cortex and hippocampus of some animal species and their correlation to Alzheimer's disease. NEUROLOGÍA (ENGLISH EDITION) 2014. [DOI: 10.1016/j.nrleng.2012.10.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
4
|
Thiamine deficiency induced neurochemical, neuroanatomical, and neuropsychological alterations: a reappraisal. ScientificWorldJournal 2013; 2013:309143. [PMID: 24235882 PMCID: PMC3818926 DOI: 10.1155/2013/309143] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2013] [Accepted: 09/12/2013] [Indexed: 01/31/2023] Open
Abstract
Nutritional deficiency can cause, mainly in chronic alcoholic subjects, the Wernicke encephalopathy and its chronic neurological sequela, the Wernicke-Korsakoff syndrome (WKS). Long-term chronic ethanol abuse results in hippocampal and cortical cell loss. Thiamine deficiency also alters principally hippocampal- and frontal cortical-dependent neurochemistry; moreover in WKS patients, important pathological damage to the diencephalon can occur. In fact, the amnesic syndrome typical for WKS is mainly due to the damage in the diencephalic-hippocampal circuitry, including thalamic nuclei and mammillary bodies. The loss of cholinergic cells in the basal forebrain region results in decreased cholinergic input to the hippocampus and the cortex and reduced choline acetyltransferase and acetylcholinesterase activities and function, as well as in acetylcholine receptor downregulation within these brain regions. In this narrative review, we will focus on the neurochemical, neuroanatomical, and neuropsychological studies shedding light on the effects of thiamine deficiency in experimental models and in humans.
Collapse
|
5
|
de Rooij SE, van Munster BC. Melatonin Deficiency Hypothesis in Delirium: A Synthesis of Current Evidence. Rejuvenation Res 2013; 16:273-8. [DOI: 10.1089/rej.2012.1405] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Affiliation(s)
- Sophia E. de Rooij
- Department of Internal Medicine, Geriatrics Section, Academic Medical Centre, University of Amsterdam, The Netherlands
| | - Barbara C. van Munster
- Department of Internal Medicine, Geriatrics Section, Academic Medical Centre, University of Amsterdam, The Netherlands
- Department of Geriatrics, Gelre Hospitals, Apeldoorn, The Netherlands
| |
Collapse
|
6
|
Orta-Salazar E, Cuellar-Lemus CA, Díaz-Cintra S, Feria-Velasco AI. Cholinergic markers in the cortex and hippocampus of some animal species and their correlation to Alzheimer's disease. Neurologia 2013; 29:497-503. [PMID: 23433740 DOI: 10.1016/j.nrl.2012.10.007] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2012] [Accepted: 10/04/2012] [Indexed: 11/29/2022] Open
Abstract
INTRODUCTION The cholinergic system includes neurons located in the basal forebrain and their long axons that reach the cerebral cortex and the hippocampus. This system modulates cognitive function. In Alzheimer's disease (AD) and ageing, cognitive impairment is associated with progressive damage to cholinergic fibres, which leads us to the cholinergic hypothesis for AD. DEVELOPMENT The AD produces alterations in the expression and activity of acetyltransferase (ChAT) and acetyl cholinesterase (AChE), enzymes specifically related to cholinergic system function. Both proteins play a role in cholinergic transmission, which is altered in both the cerebral cortex and the hippocampus due to ageing and AD. Dementia disorders are associated with the severe destruction and disorganisation of the cholinergic projections extending to both structures. Specific markers, such as anti-ChAT and anti-AChE antibodies, have been used in light immunohistochemistry and electron microscopy assays to study this system in adult members of certain animal species. CONCLUSIONS This paper reviews the main immunomorphological studies of the cerebral cortex and hippocampus in some animal species with particular emphasis on the cholinergic system and its relationship with the AD.
Collapse
Affiliation(s)
- E Orta-Salazar
- Centro Universitario de Ciencias Biológicas y Agropecuarias (CUCBA), Universidad de Guadalajara, Zapopan, México
| | - C A Cuellar-Lemus
- Centro Universitario de Ciencias Biológicas y Agropecuarias (CUCBA), Universidad de Guadalajara, Zapopan, México
| | - S Díaz-Cintra
- Instituto de Neurobiología (INB), Campus UNAM-Juriquilla, Juriquilla, Querétaro, México
| | - A I Feria-Velasco
- Centro Universitario de Ciencias Biológicas y Agropecuarias (CUCBA), Universidad de Guadalajara, Zapopan, México.
| |
Collapse
|
7
|
Katayama T, Mori D, Miyake H, Fujiwara S, Ono Y, Takahashi T, Onozuka M, Kubo KY. Effect of bite-raised condition on the hippocampal cholinergic system of aged SAMP8 mice. Neurosci Lett 2012; 520:77-81. [PMID: 22640898 DOI: 10.1016/j.neulet.2012.05.035] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2012] [Revised: 04/09/2012] [Accepted: 05/10/2012] [Indexed: 11/30/2022]
Abstract
Occlusal disharmony induces chronic stress, which results in learning deficits in association with the morphologic changes in the hippocampus, e.g., neuronal degeneration and increased hypertrophied glial fibrillary acidic protein-positive cells. To investigate the mechanisms underlying impaired hippocampal function resulting from occlusal disharmony, we examined the effects of the bite-raised condition on the septohippocampal cholinergic system by assessing acetylcholine release in the hippocampus and choline acetyltransferase immunoreactivity in the medial septal nucleus in aged SAMP8 mice that underwent the bite raising procedure. Aged bite-raised mice showed decreased acetylcholine release in the hippocampus and a reduced number of choline acetyltransferase-immunopositive neurons in the medial septal nucleus compared to age-matched control mice. These findings suggest that the bite-raised condition in aged SAMP8 mice enhances the age-related decline in the septohippocampal cholinergic system, leading to impaired learning.
Collapse
Affiliation(s)
- Tasuku Katayama
- Department of Prosthodontics, Asahi University School of Dentistry, 1851 Hozumi, Mizuho, Gifu 501-0296, Japan
| | | | | | | | | | | | | | | |
Collapse
|
8
|
Norman GJ, Karelina K, Berntson GG, Morris JS, Zhang N, DeVries AC. Heart rate variability predicts cell death and inflammatory responses to global cerebral ischemia. Front Physiol 2012; 3:131. [PMID: 22590459 PMCID: PMC3349244 DOI: 10.3389/fphys.2012.00131] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2011] [Accepted: 04/19/2012] [Indexed: 11/14/2022] Open
Abstract
This study examines the relationship between autonomic functioning and neuropathology following cardiac arrest (CA) in mice. Within 24 h of CA, parasympathetic cardiac control, as indexed by high frequency (HF) heart rate variability, rapidly decreases. By day 7 after CA, HF heart rate variability was inversely correlated with neuronal damage and microglial activation in the hippocampus. Thus, by virtue of its sensitivity to central insult, HF heart rate variability may offer an inexpensive, non-invasive method of monitoring neuropathological processes following CA. The inverse linear relationships between heart rate variability and brain damage after CA also may partially explain why low heart rate variability is associated with increased morbidity and mortality in myocardial infarction patients.
Collapse
Affiliation(s)
- Greg J. Norman
- Center for Cognitive and Social Neuroscience, The University of ChicagoChicago, IL, USA
| | - Kate Karelina
- Department of Psychology, The Ohio State UniversityColumbus, OH, USA
| | - Gary G. Berntson
- Department of Psychology, The Ohio State UniversityColumbus, OH, USA
| | - John S. Morris
- Department of Psychology, The Ohio State UniversityColumbus, OH, USA
| | - Ning Zhang
- Department of Neuroscience, The Ohio State UniversityColumbus, OH, USA
| | | |
Collapse
|
9
|
Koszegi Z, Szego ÉM, Cheong RY, Tolod-Kemp E, Ábrahám IM. Postlesion estradiol treatment increases cortical cholinergic innervations via estrogen receptor-α dependent nonclassical estrogen signaling in vivo. Endocrinology 2011; 152:3471-82. [PMID: 21791565 DOI: 10.1210/en.2011-1017] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
17β-Estradiol (E2) treatment exerts rapid, nonclassical actions via intracellular signal transduction system in basal forebrain cholinergic (BFC) neurons in vivo. Here we examined the effect of E2 treatment on lesioned BFC neurons in ovariectomized mice and the role of E2-induced nonclassical action in this treatment. Mice given an N-methyl-d-aspartic acid (NMDA) injection into the substantia innominata-nucleus basalis magnocellularis complex (SI-NBM) exhibited cholinergic cell loss in the SI-NBM and ipsilateral cholinergic fiber loss in the cortex. A single injection of E2 after NMDA lesion did not have an effect on cholinergic cell loss in the SI-NBM, but it restored the ipsilateral cholinergic fiber density in the cortex in a time- and dose-dependent manner. The most effective cholinergic fiber restoration was observed with 33 ng/g E2 treatment at 1 h after NMDA lesion. The E2-induced cholinergic fiber restoration was absent in neuron-specific estrogen receptor-α knockout mice in vivo. Selective activation of nonclassical estrogen signaling in vivo by estren induced E2-like restorative actions. Selective blockade of the MAPK or protein kinase A pathway in vivo prevented E2's ability to restore cholinergic fiber loss. Finally, studies in intact female mice revealed an E2-induced restorative effect that was similar to that of E2-treated ovariectomized mice. These observations demonstrate that a single E2 treatment restores the BFC fiber loss in the cortex, regardless of endogenous E2 levels. They also reveal the critical role of nonclassical estrogen signaling via estrogen receptor-α and protein kinase A-MAPK pathways in E2-induced restorative action in the cholinergic system in vivo.
Collapse
Affiliation(s)
- Zsombor Koszegi
- Centre for Neuroendocrinology and Department of Physiology, Otago School of Medical Sciences, University of Otago, 9054 Dunedin, New Zealand
| | | | | | | | | |
Collapse
|
10
|
Cardiopulmonary arrest and resuscitation disrupts cholinergic anti-inflammatory processes: a role for cholinergic α7 nicotinic receptors. J Neurosci 2011; 31:3446-52. [PMID: 21368056 DOI: 10.1523/jneurosci.4558-10.2011] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Cardiac arrest is a leading cause of death worldwide. While survival rates following sudden cardiac arrest remain relatively low, recent advancements in patient care have begun to increase the proportion of individuals who survive cardiac arrest. However, many of these individuals subsequently develop physiological and psychiatric conditions that likely result from ongoing neuroinflammation and neuronal death. The present study was conducted to better understand the pathophysiological effects of cardiac arrest on neuronal cell death and inflammation, and their modulation by the cholinergic system. Using a well validated model of cardiac arrest, here we show that global cerebral ischemia increases microglial activation, proinflammatory cytokine mRNA expression (interleukin-1β, interleukin-6, tumor necrosis factor-α), and neuronal damage. Cardiac arrest also induces alterations in numerous cellular components of central cholinergic signaling, including a reduction in choline acetyltransferase enzymatic activity and the number of choline acetyltransferase-positive neurons, as well as, reduced acetylcholinesterase and vesicular acetylcholine transporter mRNA. However, treatment with a selective agonist of the α7 nicotinic acetylcholine receptor, the primary receptor mediating the cholinergic anti-inflammatory pathway, significantly decreases the neuroinflammation and neuronal damage resulting from cardiac arrest. These data suggest that global cerebral ischemia results in significant declines in central cholinergic signaling, which may in turn diminish the capacity of the cholinergic anti-inflammatory pathway to control inflammation. Furthermore, we provide evidence that pharmacological activation of α7 nicotinic acetylcholine receptors provide significant protection against ischemia-related cell death and inflammation within a clinically relevant time frame.
Collapse
|
11
|
Rammes G, Danysz W, Parsons CG. Pharmacodynamics of memantine: an update. Curr Neuropharmacol 2010; 6:55-78. [PMID: 19305788 PMCID: PMC2645549 DOI: 10.2174/157015908783769671] [Citation(s) in RCA: 123] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2007] [Revised: 05/10/2007] [Accepted: 11/05/2007] [Indexed: 01/12/2023] Open
Abstract
Memantine received marketing authorization from the European Agency for the Evaluation of Medicinal Products (EMEA) for the treatment of moderately severe to severe Alzheimer s disease (AD) in Europe on 17(th) May 2002 and shortly thereafter was also approved by the FDA for use in the same indication in the USA. Memantine is a moderate affinity, uncompetitive N-methyl-D-aspartate (NMDA) receptor antagonist with strong voltage-dependency and fast kinetics. Due to this mechanism of action (MOA), there is a wealth of other possible therapeutic indications for memantine and numerous preclinical data in animal models support this assumption. This review is intended to provide an update on preclinical studies on the pharmacodynamics of memantine, with an additional focus on animal models of diseases aside from the approved indication. For most studies prior to 1999, the reader is referred to a previous review [196].In general, since 1999, considerable additional preclinical evidence has accumulated supporting the use of memantine in AD (both symptomatic and neuroprotective). In addition, there has been further confirmation of the MOA of memantine as an uncompetitive NMDA receptor antagonist and essentially no data contradicting our understanding of the benign side effect profile of memantine.
Collapse
Affiliation(s)
- G Rammes
- Clinical Neuropharmacology, Max Planck Institute of Psychiatry, 80804 Munich, Germany
| | | | | |
Collapse
|
12
|
Action of estrogen on survival of basal forebrain cholinergic neurons: promoting amelioration. Psychoneuroendocrinology 2009; 34 Suppl 1:S104-12. [PMID: 19560872 DOI: 10.1016/j.psyneuen.2009.05.024] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2009] [Revised: 05/30/2009] [Accepted: 05/30/2009] [Indexed: 11/23/2022]
Abstract
Extensive studies during the past two decades provide compelling evidence that the gonadal steroid, estrogen, has the potential to affect the viability of basal forebrain cholinergic neurons. These observations reflect a unique ameliorative feature of estrogen as it restores and protects the cholinergic neurons against noxious stimuli or neurodegenerative processes. Hence, we first address the ameliorative function of estrogen on basal forebrain cholinergic neurons such as the actions of estrogen on neuronal plasticity of cholinergic neurons, estrogen-induced memory enhancement and the ameliorative role of estrogen on cholinergic neuron related neurodegenerative processes such as Alzheimer's disease. Second, we survey recent data as to possible mechanisms underlying the ameliorative actions of estrogen; influencing the amyloid precursor protein processing, enhancement in neurotrophin receptor signaling and estrogen-induced non-classical actions on second messenger systems. In addition, clinical relevance, pitfalls and future aspects of estrogen therapy on basal forebrain cholinergic neurons will be discussed.
Collapse
|
13
|
Murchison D, McDermott AN, Lasarge CL, Peebles KA, Bizon JL, Griffith WH. Enhanced calcium buffering in F344 rat cholinergic basal forebrain neurons is associated with age-related cognitive impairment. J Neurophysiol 2009; 102:2194-207. [PMID: 19675291 PMCID: PMC2775378 DOI: 10.1152/jn.00301.2009] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2009] [Accepted: 08/05/2009] [Indexed: 12/26/2022] Open
Abstract
Alterations in neuronal Ca(2+) homeostasis are important determinants of age-related cognitive impairment. We examined the Ca(2+) influx, buffering, and electrophysiology of basal forebrain neurons in adult, middle-aged, and aged male F344 behaviorally assessed rats. Middle-aged and aged rats were characterized as cognitively impaired or unimpaired by water maze performance relative to young cohorts. Patch-clamp experiments were conducted on neurons acutely dissociated from medial septum/nucleus of the diagonal band with post hoc identification of phenotypic marker mRNA using single-cell RT-PCR. We measured whole cell calcium and barium currents and dissected these currents using pharmacological agents. We combined Ca(2+) current recording with Ca(2+)-sensitive ratiometric microfluorimetry to measure Ca(2+) buffering. Additionally, we sought changes in neuronal firing properties using current-clamp recording. There were no age- or cognition-related changes in the amplitudes or fractional compositions of the whole cell Ca(2+) channel currents. However, Ca(2+) buffering was significantly enhanced in cholinergic neurons from aged cognitively impaired rats. Moreover, increased Ca(2+) buffering was present in middle-aged rats that were not cognitively impaired. Firing properties were largely unchanged with age or cognitive status, except for an increase in the slow afterhyperpolarization in aged cholinergic neurons, independent of cognitive status. Furthermore, acutely dissociated basal forebrain neurons in which choline acetyltransferase mRNA was detected had the electrophysiological profiles of identified cholinergic neurons. We conclude that enhanced Ca(2+) buffering by cholinergic basal forebrain neurons may be important during aging.
Collapse
Affiliation(s)
- David Murchison
- 1Department of Neuroscience and Experimental Therapeutics, Texas A&M Health Science Center, College Station, Texas77843-1114, USA
| | | | | | | | | | | |
Collapse
|
14
|
Min SS, Quan HY, Ma J, Han JS, Jeon BH, Seol GH. Chronic brain inflammation impairs two forms of long-term potentiation in the rat hippocampal CA1 area. Neurosci Lett 2009; 456:20-4. [PMID: 19429126 DOI: 10.1016/j.neulet.2009.03.079] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2009] [Revised: 03/21/2009] [Accepted: 03/24/2009] [Indexed: 12/01/2022]
Abstract
Neuroinflammation plays an important role in the progression of Alzheimer's disease (AD) and is characterized by the presence of activated microglia. We investigated whether chronic neuroinflammation affects the induction of N-methyl-d-aspartate receptor (NMDAR)-dependent long-term potentiation (LTP) and NMDAR-independent LTP which is expressed by voltage-dependent calcium channel (VDCC). Chronic neuroinflammation was induced by administration of lipopolysaccharide (LPS) (28 days, 0.35 microg/h) to the fourth ventricle. The Morris water maze test was conducted to measure the memory impairment and then excitatory postsynaptic potentials were recorded extracelluarly from stratum radiatum in the rat hippocampal CA1 area to examine the changes in synaptic plasticity induced by LPS infusion. Chronic administration of LPS induced remarkable memory impairment. The field recording experiments revealed that the induction of both NMDAR-dependent LTP and NMDAR-independent LTP were impaired in the hippocampal Schaffer collateral-CA1 synapse in animals chronically infused with LPS. The present results show that chronic neuroinflammation can lead to the impaired spatial memory and attenuation of VDCC-dependent LTP as well as NMDAR-dependent LTP. The attenuation of synaptic plasticity may be caused by the impairment of both NMDAR and L-type Ca2+ via elevated levels of inflammatory proteins, which may underlie aspects of dementia.
Collapse
Affiliation(s)
- Sun Seek Min
- Department of Physiology and Biophysics, Eulji University School of Medicine, Daejeon 301-832, South Korea
| | | | | | | | | | | |
Collapse
|
15
|
Roland JJ, Savage LM. The role of cholinergic and GABAergic medial septal/diagonal band cell populations in the emergence of diencephalic amnesia. Neuroscience 2009; 160:32-41. [PMID: 19264109 DOI: 10.1016/j.neuroscience.2009.02.044] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2008] [Revised: 01/24/2009] [Accepted: 02/15/2009] [Indexed: 01/16/2023]
Abstract
The septohippocampal pathway, which is mostly composed of cholinergic and GABAergic projections between the medial septum/diagonal band (MS/DB) and the hippocampus, has an established role in learning, memory and disorders of cognition. In Wernicke-Korsakoff's syndrome (WKS) and the animal model of the disorder, pyrithiamine-induced thiamine deficiency (PTD), there is both diencephalic damage and basal forebrain cell loss that could contribute to the amnesic state. In the current experiment, we used the PTD animal model to access both cholinergic (choline acetyltransferase [ChAT] immunopositive) and GABAergic (parvalbumin [PV]; calbindin [CaBP]) neuronal loss in the MS/DB in relationship to midline-thalamic pathology. In addition, to gain an understanding about the role of such neuropathology in behavioral dysfunction, animals were tested on a non-rewarded spontaneous alternation task and behavioral performance was correlated to neuropathology. Unbiased stereological assessment of neuronal populations revealed that ChAT-positive neurons were significantly reduced in PTD rats, relative to control pair-fed rats, and thalamic mass and behavioral performance correlated with ChAT neuronal estimates. In contrast, both the PV- and CaBP-positive neurons in the MS/DB were not affected by PTD treatment. These results support an interactive role of both thalamic pathology and cholinergic cell loss in diencephalic amnesia.
Collapse
Affiliation(s)
- J J Roland
- Behavioral Neuroscience Program, Department of Psychology, Binghamton University, State University of New York, Binghamton, NY 13902, USA
| | | |
Collapse
|
16
|
Murchison D, Griffith WH. Calcium buffering systems and calcium signaling in aged rat basal forebrain neurons. Aging Cell 2007; 6:297-305. [PMID: 17517040 PMCID: PMC2810842 DOI: 10.1111/j.1474-9726.2007.00293.x] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Disturbances of neuronal Ca2+ homeostasis are considered to be important determinants of age-related cognitive impairment. Cholinergic neurons of the basal forebrain (BF) are principal targets of decline associated with aging and dementia. During the last several years, we have attempted to link these concepts in a rat model of 'normal' aging. In this review, we will describe some changes that we have observed in Ca2+ signaling of aged BF neurons and the reversal of one of these changes by dietary caloric restriction. Our evidence supports a scenario in which subtle changes in the properties of voltage-gated Ca2+ channels result in increased Ca2+ influx during aging. This increased Ca2+, in turn, triggers an increase in rapid Ca2+ buffering in the somatic compartment of aged BF neurons. However, this nominal 'compensation', along with other changes in Ca2+ handling machinery (notably mitochondria) alters the Ca2+ signal with age in a way that is dependent on the magnitude of the Ca2+ load. By combining whole-cell patch clamp electrophysiology, ratiometric Ca2+-sensitive microfluorimetry and single-cell reverse transcription-polymerase chain reaction, we have determined that age-related rapid buffering changes are present in identified cholinergic BF neurons and that these changes can be prevented by a caloric restriction dietary regimen. Because caloric restriction extends lifespan and retards the progression of age-related dysfunction, these findings suggest that increased Ca2+ buffering in cholinergic neurons may be relevant to cognitive decline during normal aging. Importantly, calcium homeostatic mechanisms of BF cholinergic neurons are amenable to dietary interventions that could promote cognitive health during aging.
Collapse
Affiliation(s)
- David Murchison
- Department of Neuroscience and Experimental Therapeutics, College of Medicine, Texas A&M University System Health Science Center, College Station, TX 77843-1114, USA
| | | |
Collapse
|
17
|
Wenk GL, Parsons CG, Danysz W. Potential role of N-methyl-D-aspartate receptors as executors of neurodegeneration resulting from diverse insults: focus on memantine. Behav Pharmacol 2007; 17:411-24. [PMID: 16940762 DOI: 10.1097/00008877-200609000-00007] [Citation(s) in RCA: 100] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Glutamatergic neurotransmission is critical to normal learning and memory and when the activity of glutamate neurons becomes excessive, or the normal function of its primary receptors becomes dysfunctional, this may lead to pathological changes associated with age-related neurodegenerative diseases. Anomalous glutamatergic activity associated with Alzheimer's disease may be due to a postsynaptic receptor and downstream defects that produce inappropriately timed or sustained glutamate activation of N-methyl-D-aspartate receptors, leading to neuronal injury and death and cognitive deficits associated with dementia. The mechanisms leading to the condition of chronically depolarized membranes on vulnerable neurons in the Alzheimer's disease brain are likely due to a complex interaction between oxidative stress, mitochondrial failure, chronic brain inflammation and the presence of amyloid-beta and hyperphosphorylated-tau; each of these factors are highly interrelated with each other and are discussed with an emphasis upon potential therapeutic mechanisms underlying the neuroprotective actions of memantine.
Collapse
Affiliation(s)
- Gary L Wenk
- Department Psychology & Neuroscience, Ohio State University, Ohio, USA
| | | | | |
Collapse
|
18
|
Neurodegenerative diseases and memory. Neurobiol Learn Mem 2007. [DOI: 10.1016/b978-012372540-0/50017-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
19
|
Roland JJ, Savage LM. Blunted hippocampal, but not striatal, acetylcholine efflux parallels learning impairment in diencephalic-lesioned rats. Neurobiol Learn Mem 2007; 87:123-32. [PMID: 16978888 PMCID: PMC1892161 DOI: 10.1016/j.nlm.2006.07.007] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2006] [Revised: 07/21/2006] [Accepted: 07/22/2006] [Indexed: 11/28/2022]
Abstract
A rodent model of diencephalic amnesia, pyrithiamine-induced thiamine deficiency (PTD), was used to investigate the dynamic role of hippocampal and striatal acetylcholine (ACh) efflux across acquisition of a nonmatching-to-position (NMTP) T-maze task. Changes in ACh efflux were measured in rats at different time points in the acquisition curve of the task (early=day 1, middle=day 5, and late=day 10). Overall, the control group had higher accuracy scores than the PTD group in the latter sessions of NMTP training. During the three microdialysis sampling points, all animals displayed significant increases in ACh efflux in both hippocampus and striatum, while performing the task. However, on day 10, the PTD group showed a significant behavioral impairment that paralleled their blunted hippocampal--but not striatal--ACh efflux during maze training. The results support selective diencephalic-hippocampal dysfunction in the PTD model. This diencephalic-hippocampal interaction appears to be critical for successful episodic and spatial learning/memory.
Collapse
Affiliation(s)
- Jessica J Roland
- Behavioral Neuroscience Program, Department of Psychology, Binghamton University-SUNY, Binghamton, NY 13902, USA
| | | |
Collapse
|
20
|
Schliebs R, Heidel K, Apelt J, Gniezdzinska M, Kirazov L, Szutowicz A. Interaction of interleukin-1beta with muscarinic acetylcholine receptor-mediated signaling cascade in cholinergically differentiated SH-SY5Y cells. Brain Res 2006; 1122:78-85. [PMID: 17026971 DOI: 10.1016/j.brainres.2006.09.014] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2006] [Revised: 08/28/2006] [Accepted: 09/06/2006] [Indexed: 01/06/2023]
Abstract
Increased expression of interleukin (IL)-1beta has been found in Alzheimer brain, raising the question whether plaque-associated up-regulation of IL-1beta may contribute to neurodegeneration. IL-1beta is capable to induce a number of events that also occur in Alzheimer's disease such as stimulation of the amyloidogenic pathway of amyloid precursor protein processing. However, less is known on participation of IL-1beta in specific cholinergic cell loss. To reveal whether IL-1beta affects muscarinic acetylcholine receptor (mAChR)-mediated intracellular signaling, cholinergically differentiated SH-SY5Y cells were exposed to IL-1beta for various periods of time followed by stimulation of mAChR with carbachol for 1 h, and key molecules of cholinergic signaling cascades were determined including phosphoinositide hydrolysis, DNA-binding capacity of NFkappaB and AP-1, and activity of acetylcholinesterase (AChE). Carbachol stimulation of SH-SY5Y cells dose-dependently stimulated the activation of the transcription factors NFkappaB and AP-1 as revealed by electrophoretic mobility shift assay (EMSA), while pre-exposure of SH-SY5Y cells for 24 h with 1 ng/ml IL-1beta completely suppressed the carbachol response. mAChR-mediated enhancements of AChE activity by carbachol were impaired following pre-exposure of SH-SY5Y cells with IL-1beta, already detectable at a concentration of 1 ng/ml and 1 h of exposure time. The data indicate that IL-1beta may interfere with the cholinergic signal transduction cascade by inhibiting transcription factor activation, thus providing another mechanism by which IL-1beta may induce cholinergic dysfunction in Alzheimer's disease.
Collapse
Affiliation(s)
- Reinhard Schliebs
- Paul Flechsig Institute for Brain Research, Department of Neurochemistry, University of Leipzig, Leipzig, Germany.
| | | | | | | | | | | |
Collapse
|
21
|
Shindo T, Matsumoto Y, Wang Q, Kawai N, Tamiya T, Nagao S. Differences in the neuronal stem cells survival, neuronal differentiation and neurological improvement after transplantation of neural stem cells between mild and severe experimental traumatic brain injury. THE JOURNAL OF MEDICAL INVESTIGATION 2006; 53:42-51. [PMID: 16537995 DOI: 10.2152/jmi.53.42] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
We developed a novel protocol for generation and selective amplification of neural progenitor cells regionally specified to the rostral brain but not the spinal cord from mouse embryonic stem cells (ESCs). The neural progenitors could differentiate in vitro and in vivo into many cholinergic and a few GABAergic neurons but rarely into astrocytes. The transplanted neurospheres could survive in the hippocampus (CA3) of animals with mild traumatic brain injury (TBI). Twelve weeks after transplantation (a week after the behavioral test), we found significant cholinergic differentiation recognized as ChAT immunoreactivity in the eGFP+transplanted cells. Moreover, the grafts contained a few GAD67+cells. However, we barely found GFAP+astrocytes within the grafts. Furthermore, presynaptic formations of graft-derived neurons were recognized by immunohistochemistry of near the grafts around CA3. However, these findings were not observed in severe TBI group. So, we examined NGF, BDNF, and FGF-2 mRNA by RT-PCR in 12 mice including normal, mild TBI and severe TBI group. Increases in the neurotrophic factors' mRNA were evident in the hippocampus on the ipsilateral side in the mild TBI group. Statistical analysis revealed significant differences between the mild and severe TBI groups. The data also revealed significant differences between the mild TBI and normal groups. The transplanted neurospheres could survive in the mild TBI animals, but not in the severe TBI group.
Collapse
Affiliation(s)
- Tokuhisa Shindo
- Department of Neurological Surgery, Faculty of Medicine, Kagawa University, Kita-gun, Japan
| | | | | | | | | | | |
Collapse
|
22
|
Szegő ÉM, Barabás K, Balog J, Szilágyi N, Korach KS, Juhász G, Ábrahám IM. Estrogen induces estrogen receptor alpha-dependent cAMP response element-binding protein phosphorylation via mitogen activated protein kinase pathway in basal forebrain cholinergic neurons in vivo. J Neurosci 2006; 26:4104-10. [PMID: 16611827 PMCID: PMC6673875 DOI: 10.1523/jneurosci.0222-06.2006] [Citation(s) in RCA: 100] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
In addition to classical genomic mechanisms, estrogen also exerts nonclassical effects via a signal transduction system on neurons. To study whether estrogen has a nonclassical effect on basal forebrain cholinergic system, we measured the intensity of cAMP response element-binding protein (CREB) phosphorylation (pCREB) in cholinergic neurons after administration of 17beta-estradiol to ovariectomized (OVX) mice. A significant time-dependent increase in the number of pCREB-positive cholinergic cells was detected after estrogen administration in the medial septum-diagonal band (MS-DB) and the substantia innominata (SI). The increase was first observed 15 min after estrogen administration. The role of classical estrogen receptors (ERs) was evaluated using ER knock-out mice in vivo. The estrogen-induced CREB phosphorylation in cholinergic neurons was present in ERbeta knock-out mice but completely absent in ERalpha knock-out mice in MS-DB and SI. A series of in vitro studies demonstrated that estrogen acted directly on cholinergic neurons. Selective blockade of the mitogen activated protein kinase (MAPK) pathway in vivo completely prevented estrogen-induced CREB phosphorylation in cholinergic neurons in MS-DB and SI. In contrast, blockade of protein kinase A (PKA) was effective only in SI. Finally, studies in intact female mice revealed levels of CREB phosphorylation within cholinergic neurons that were similar to those of estrogen-treated OVX mice. These observations demonstrate an ERalpha-mediated nonclassical effect of estrogen on the cholinergic neurons and that these actions are present under physiological conditions. They also reveal the role of MAPK and PKA-MAPK pathway activation in nonclassical estrogen signaling in the basal forebrain cholinergic neurons in vivo.
Collapse
|
23
|
Menéndez L, Insua D, Rois JL, Santamarina G, Suárez ML, Pesini P. The immunohistochemical localization of neuronal nitric oxide synthase in the basal forebrain of the dog. J Chem Neuroanat 2006; 31:200-9. [PMID: 16488575 DOI: 10.1016/j.jchemneu.2006.01.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2005] [Revised: 01/18/2006] [Accepted: 01/18/2006] [Indexed: 11/24/2022]
Abstract
The present work describes for the first time the anatomical distribution of neuronal nitric oxide synthase (nNOS) immunoreactivity and NADPH-d activity in the basal forebrain of the dog. As in other species, small, intensely nNOS-immunoreactive cells were seen within the olfactory tubercle, caudate nucleus, putamen, nucleus accumbens and amygdala. In addition, a population of mixed large and small nNOS positive cells was found in the medial septum, diagonal band and nucleus basalis overlapping the distribution of the magnocellular cholinergic system of the basal forebrain. Our results show that the distribution of NOS containing neurons in these nuclei in the dog is more extensive and uniform than that reported in rodents and primates. When double labeling of nNOS and NADPH-d was performed in the same tissue section most neurons were double labeled. However, a considerable number of large perikarya in the diagonal band and nucleus basalis appeared to be single labeled for nNOS. Thought a certain degree of interference between the two procedures could not be completely excluded, these findings suggest that NADPH-d histochemistry, which is frequently used to show the presence of NOS, underestimates the potential of basal forebrains neurons to produce nitric oxide. In addition, a few neurons mainly localized among the fibers of the internal capsule, appeared to be labeled only for NADPH-d. These neurons could be expressing a different isoform of NOS, not recognized by our anti-nNOS antibody, as has been reported in healthy humans and AD patients.
Collapse
Affiliation(s)
- Laura Menéndez
- Departamento de Anatomía, Facultad de Veterinaria, Universidad de Santiago, 27002 Lugo, Spain
| | | | | | | | | | | |
Collapse
|
24
|
Schliebs R. Basal forebrain cholinergic dysfunction in Alzheimer's disease--interrelationship with beta-amyloid, inflammation and neurotrophin signaling. Neurochem Res 2006; 30:895-908. [PMID: 16187224 DOI: 10.1007/s11064-005-6962-9] [Citation(s) in RCA: 121] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/14/2005] [Indexed: 12/21/2022]
Abstract
Alzheimer's disease, the most common neurodegenerative disorder of senile dementia, is characterized by two major morpho-pathological hallmarks. Deposition of extracellular neuritic, beta-amyloid peptide-containing plaques (senile plaques) in cerebral cortical regions of Alzheimer patients is accompanied by the presence of intracellular neurofibrillary tangles in cerebral pyramidal neurons. Basal forebrain cholinergic dysfunction is also a consistent feature of Alzheimer's disease, which has been suggested to cause, at least partly, the cognitive deficits observed in patients with Alzheimer's disease. Impaired cortical cholinergic neurotransmission may also contribute to beta-amyloid plaque pathology in Alzheimer's disease by affecting expression and processing of the beta-amyloid precursor protein (APP). Vice versa, low level of soluble beta-amyloid has been observed to inhibit cholinergic synaptic function. Deposition of beta-amyloid plaques in Alzheimer's disease is also accompanied by a significant plaque-associated glial up-regulation of interleukin-1, which has been attributed to affect expression and metabolism of APP and to interfere with cholinergic transmission. Understanding the molecular mechanisms underlying the interrelationship between cortical cholinergic dysfunction, beta-amyloid formation and deposition, as well as local inflammatory upregulation, would allow to derive potential treatment strategies to pharmacologically intervene in the disease-causing signaling cascade.
Collapse
Affiliation(s)
- Reinhard Schliebs
- Paul Flechsig Institute for Brain Research, Department of Neurochemistry, University of Leipzig, Jahnallee 59, D-04109 Leipzig, Germany.
| |
Collapse
|
25
|
Gericke CA, Schulte-Herbrüggen O, Arendt T, Hellweg R. Chronic alcohol intoxication in rats leads to a strong but transient increase in NGF levels in distinct brain regions. J Neural Transm (Vienna) 2005; 113:813-20. [PMID: 16252071 DOI: 10.1007/s00702-005-0361-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2005] [Accepted: 07/23/2005] [Indexed: 10/25/2022]
Abstract
Nerve growth factor (NGF), a member of the neurotrophin family, is an essential mediator of neuronal activity and synaptic plasticity of basal forebrain cholinergic neurons. In this study NGF-protein levels were determined in areas of the basal forebrain cholinergic system, its projection areas as well as the striatum and the cerebellum after long-term exposure (6 and 9 months) to ethanol and a phase of withdrawal in male Sprague-Dawley rats. 6-month alcohol treatment led to an increase of NGF to 650-850% of controls in the basal forebrain and the septum and to a 210-485% increase in the cholinergic projection areas (anterior cortex, hippocampus and olfactory bulb). After 9 months exposure to ethanol, a decrease of NGF by 16% in the frontal cortex was observed compared to controls. In the other brain regions no differences in NGF expression were detectable at this time-point. These results support the idea of an endogenous neuroprotective mechanism acting through a transient NGF induction followed by a decrease in NGF-levels during the course of further neuronal degeneration.
Collapse
Affiliation(s)
- C A Gericke
- Institute of Health Sciences, Berlin University of Technology, Berlin, Germany
| | | | | | | |
Collapse
|
26
|
Wenk GL, McGann-Gramling K, Hauss-Wegrzyniak B. The presence of the APP(swe) mutation in mice does not increase the vulnerability of cholinergic basal forebrain neurons to neuroinflammation. Neuroscience 2004; 125:769-76. [PMID: 15099690 DOI: 10.1016/j.neuroscience.2004.01.050] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/18/2004] [Indexed: 10/26/2022]
Abstract
Neuroinflammation, and elevated levels of inflammatory proteins, such as tumor necrosis factor-alpha, and the deposition of beta-amyloid may interact to contribute to the pathogenesis of Alzheimer's disease. We reproduced a component of the neuroinflammatory state within the basal forebrain cholinergic system, a region that is vulnerable to degeneration in Alzheimer's disease, of transgenic Tg2576 mice that express the Swedish double mutation of the human amyloid precursor protein (APPswe). We have previously shown that basal forebrain cholinergic neurons are selectively vulnerable to the consequences of neuroinflammation. In the current study, tumor necrosis factor-alpha was infused into the basal forebrain region of APPswe and nontransgenic control mice for 20 days with the expectation that the presence of the transgene would enhance the loss of cholinergic neurons. Chronic infusion of tumor necrosis factor-alpha significantly decreased cortical choline acetyltransferase activity, reduced the number of choline acetyltransferase-immunoreactive cells and increased the number of activated astrocytes and microglia within the basal forebrain. The presence of the APPswe gene did not enhance the vulnerability of forebrain cholinergic neurons to the chronic neuroinflammation. Furthermore, combined treatment of these mice with memantine demonstrated that the neurotoxic effects of tumor necrosis factor-alpha upon cholinergic cells did not require the activation of the N-methyl-d-aspartate receptors. In contrast, we have previously shown that memantine was able to provide neuroprotection to cholinergic forebrain neurons from the consequences of exposure to the inflammogen lipopolysaccharide. These results provide insight into the mechanism by which neuroinflammation may selectively target specific neural systems during the progression of Alzheimer's disease.
Collapse
Affiliation(s)
- G L Wenk
- Division of Neural Systems, Memory and Aging, University of Arizona, 350 Life Sciences North Building, Tucson, AZ 85724, USA.
| | | | | |
Collapse
|
27
|
Wenk GL, McGann K, Hauss-Wegrzyniak B, Rosi S. The toxicity of tumor necrosis factor-alpha upon cholinergic neurons within the nucleus basalis and the role of norepinephrine in the regulation of inflammation: implications for Alzheimer's disease. Neuroscience 2004; 121:719-29. [PMID: 14568031 DOI: 10.1016/s0306-4522(03)00545-1] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Inflammation and reduced forebrain norepinephrine are features of Alzheimer's disease that may interact to contribute to the degeneration of specific neural systems. We reproduced these conditions within the basal forebrain cholinergic system, a region that is vulnerable to degeneration in Alzheimer's disease. Tumor necrosis factor-alpha was infused into the basal forebrain of young mice pretreated with a norepinephrine neuronal toxin, N-(2-chloroethyl)-N-ethyl-2 bromobenzylamine (DSP4), with the expectation that the loss of noradrenergic input would enhance the loss of cholinergic neurons. The results indicate that chronic infusion of tumor necrosis factor-alpha alone significantly decreased cortical choline acetyltransferase activity and increased the number of activated microglia and astrocytes within the basal forebrain. The loss of forebrain norepinephrine following systemic treatment with DSP4 did not alter the level of cortical choline acetyltransferase activity or activate microglia but significantly activated astrocytes within the basal forebrain. Infusion of tumor necrosis factor-alpha into DSP4-pretreated mice also reduced cortical choline acetyltransferase activity on the side of the infusion; however, the decline was not significantly greater than that produced by the infusion of tumor necrosis factor-alpha alone. The neurodegeneration seen may be indirect since a double-immunofluorescence investigation did not find evidence for the co-existence of tumor necrosis factor-alpha type I receptors on choline acetyltransferase-positive cells in the basal forebrain. The results suggest that noradrenergic cell loss in Alzheimer's disease does not augment the consequences of the chronic neuroinflammation and does not enhance neurodegeneration of forebrain cholinergic neurons.
Collapse
Affiliation(s)
- G L Wenk
- Arizona Research Laboratories, Division of Neural Systems, Memory and Aging, University of Arizona, Tucson, AZ 85724, USA.
| | | | | | | |
Collapse
|
28
|
App gene dosage modulates endosomal abnormalities of Alzheimer's disease in a segmental trisomy 16 mouse model of down syndrome. J Neurosci 2003. [PMID: 12890772 DOI: 10.1523/jneurosci.23-17-06788.2003] [Citation(s) in RCA: 172] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Altered neuronal endocytosis is the earliest known pathology in sporadic Alzheimer's disease (AD) and Down syndrome (DS) brain and has been linked to increased Abeta production. Here, we show that a genetic model of DS (trisomy 21), the segmental trisomy 16 mouse Ts65Dn, develops enlarged neuronal early endosomes, increased immunoreactivity for markers of endosome fusion (rab5, early endosomal antigen 1, and rabaptin5), and endosome recycling (rab4) similar to those in AD and DS individuals. These abnormalities are most prominent in neurons of the basal forebrain, which later develop aging-related atrophy and degenerative changes, as in AD and DS. We also show that App, one of the triplicated genes in Ts65Dn mice and human DS, is critical to the development of these endocytic abnormalities. Selectively deleting one copy of App or a small portion of the chromosome 16 segment containing App from Ts65Dn mice eliminated the endosomal phenotype. Overexpressing App at high levels in mice did not alter early endosomes, implying that one or more additional genes on the triplicated segment of chromosome 16 are also required for the Ts65Dn endosomal phenotype. These results identify an essential role for App gene triplication in causing AD-related endosomal abnormalities and further establish the pathogenic significance of endosomal dysfunction in AD.
Collapse
|
29
|
Buccafusco JJ, Jackson WJ, Stone JD, Terry AV. Sex dimorphisms in the cognitive-enhancing action of the Alzheimer's drug donepezil in aged Rhesus monkeys. Neuropharmacology 2003; 44:381-9. [PMID: 12604096 DOI: 10.1016/s0028-3908(02)00378-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Brain acetylcholinesterase has been targeted for the development of novel treatments for memory deficits associated with Alzheimer's disease (AD) and other neurodegenerative disorders. The long-acting AChE inhibitor donepezil (Aricept) is used to improve memory and other aspects of cognition in AD patients. Because donepezil and other cholinesterase inhibitors are effective in a restricted population of AD patients, this study was to designed to determine whether aged females monkeys receive the same level of benefit to the mnemonic action of donepezil as do males. In this study, six male and six female rhesus monkeys (>20 years) who were proficient in the performance of a delayed matching-to-sample task each received an ascending series of four doses of donepezil (0.01-0.1 mg/kg) over 5 weeks. As a group, male subjects exhibited improvement in task accuracy across the three highest doses, with the maximum effect occurring after the 0.025 mg/kg dose. However, the females exhibited increased task accuracy only after the highest dose. When data were combined for sessions run 10 min after drug administration and for sessions run 24 h later (in the absence of drug), improvements in task accuracy were greater on average for males. Most of this difference was attributed to the fact that task accuracy by females actually declined during sessions run after the two lowest doses of donepezil. When task performance after donepezil was determined as the individualized Best Dose, as a group, males responded maximally to less than half the dose that was maximal for females. These findings support the concept that aged males and females respond differently to this class of agents, perhaps representing fundamental sex-related differences in memory processing, or in the manner that age affects these processes.
Collapse
Affiliation(s)
- J J Buccafusco
- Alzheimer's Research Center, Medical College of Georgia, and the Veterans Administration Medical Center, Augusta, GA 30912, USA.
| | | | | | | |
Collapse
|
30
|
Ricceri L, Hohmann C, Berger-Sweeney J. Early neonatal 192 IgG saporin induces learning impairments and disrupts cortical morphogenesis in rats. Brain Res 2002; 954:160-72. [PMID: 12414099 DOI: 10.1016/s0006-8993(02)03172-4] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
We have shown previously that neonatal intraventricular injections of the selective cholinergic immunotoxin 192 IgG saporin on postnatal day 7 (pnd 7) induce marked cholinergic loss in hippocampus and neocortex and a learning impairment on pnd 15. In the present study, we analysed the behavioural, morphological and neurochemical effects of earlier intraventricular injection of the immunotoxin 192 IgG saporin (pnd 1 and 3). We hypothesised that these earlier lesions would interrupt a critical stage in neocortical maturation, and impair behavior more profoundly than the later lesions. Passive avoidance (PA) learning and locomotor activity during the PA test were assessed on pnd 15. Retention of the PA task was assessed on pnd 16. Reactivity to spatial and object novelty was assessed on pnd 180 in a spatial open field test with five objects. Choline acetyltransferase (ChAT) activity was measured in basal forebrain targets on pnd 20 and pnd 180. Neonatal administration of 192 IgG saporin resulted in a slower acquisition of the PA task in females; retention and locomotor activity were not affected. On pnd 180, reaction to spatial novelty was mildly impaired in lesioned rats of both sexes. There was a marked reduction of ChAT in the hippocampus and neocortex of lesioned rats of both sexes, at both ages. Morphological analysis of the somatosensory cortex of lesioned rats revealed alterations in cortical development with sex specific variations in total cortical thickness. These results suggest that interrupting cholinergic basal forebrain innervation of neocortex and hippocampus during the first postnatal days affects the development of cognitive behaviour, neurochemistry and cortical organisation in a sex specific manner. Furthermore, the alterations in cortical organization are more profound than those noted after a lesion later in postnatal development. These behavioural and morphological abnormalities could be considered a model for several neurodevelopmental disorders associated with mental retardation.
Collapse
Affiliation(s)
- Laura Ricceri
- Section of Comparative Psychology, Laboratory Fisiopatologia OS, Istituto Superiore di Sanità, Vle Regina Elena 299, I-00161 Rome, Italy.
| | | | | |
Collapse
|
31
|
Turlejski K, Djavadian R. Life-long stability of neurons: a century of research on neurogenesis, neuronal death and neuron quantification in adult CNS. PROGRESS IN BRAIN RESEARCH 2002; 136:39-65. [PMID: 12143397 DOI: 10.1016/s0079-6123(02)36006-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
In this chapter we provide an extensive review of 100 years of research on the stability of neurons in the mammalian brain, with special emphasis on humans. Although Cajal formulated the Neuronal Doctrine, he was wrong in his beliefs that adult neurogenesis did not occur and adult neurons are dying throughout life. These two beliefs became accepted "common knowledge" and have shaped much of neuroscience research and provided much of the basis for clinical treatment of age-related brain diseases. In this review, we consider adult neurogenesis from a historical and evolutionary perspective. It is concluded, that while adult neurogenesis is a factor in the dynamics of the dentate gyrus and olfactory bulb, it is probably not a major factor during the life-span in most brain areas. Likewise, the acceptance of neuronal death as an explanation for normal age-related senility is challenged with evidence collected over the last fifty years. Much of the problem in changing this common belief of dying neurons was the inadequacies of neuronal counting methods. In this review we discuss in detail implications of recent improvements in neuronal quantification. We conclude: First, age-related neuronal atrophy is the major factor in functional deterioration of existing neurons and could be slowed down, or even reversed by various pharmacological interventions. Second, in most cases neuronal degeneration during aging is a pathology that in principle may be avoided. Third, loss of myelin and of the white matter is more frequent and important than the limited neuronal death in normal aging.
Collapse
Affiliation(s)
- Kris Turlejski
- Department of Neurophysiology, Nencki Institute of Experimental Biology, 3 Pasteur Street, 02-093 Warsaw, Poland.
| | | |
Collapse
|
32
|
Hauss-Wegrzyniak B, Lynch MA, Vraniak PD, Wenk GL. Chronic brain inflammation results in cell loss in the entorhinal cortex and impaired LTP in perforant path-granule cell synapses. Exp Neurol 2002; 176:336-41. [PMID: 12359175 DOI: 10.1006/exnr.2002.7966] [Citation(s) in RCA: 111] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Alzheimer's disease (AD) is characterized by chronic neuroinflammation, significant temporal lobe cell loss, and dementia. We investigated the influence of chronic neuroinflammation produced by chronic infusion of lipopolysaccharide (LPS) into the fourth ventricle for 4 weeks upon the induction and maintenance of long-term potentiation (LTP) in the dentate gyrus of the hippocampus, a well-characterized model of cellular synaptic plasticity. We also examined for pyramidal cell loss within the entorhinal cortex an area of the brain that contains the cell bodies of the perforant path. The results demonstrate that chronic neuroinflammation results in the loss of pyramidal cells within layers II and III of the entorhinal cortex and a significant attenuation of LTP within the dentate gyrus. Similar changes may underlie the temporal lobe pathology and dementia associated with AD.
Collapse
Affiliation(s)
- B Hauss-Wegrzyniak
- Arizona Research Laboratories, Division of Neural Systems, Memory & Aging, University of Arizona, Tucson 85724, USA
| | | | | | | |
Collapse
|
33
|
Onozuka M, Watanabe K, Fujita M, Tomida M, Ozono S. Changes in the septohippocampal cholinergic system following removal of molar teeth in the aged SAMP8 mouse. Behav Brain Res 2002; 133:197-204. [PMID: 12110453 DOI: 10.1016/s0166-4328(02)00006-2] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
We investigated the effect of dysfunctional teeth on age-related changes in the septohippocampal cholinergic system by assessing acetylcholine (ACh) release and choline acetyltransferase (ChAT) activity in the hippocampus and ChAT immunohistochemistry in the medial septal nucleus and the vertical limb of the diagonal band in young-adult and aged SAMP8 mice after removal of their upper molar teeth (molarless condition). Aged molarless mice showed decreased ACh release and ChAT activity in the hippocampus and a reduced number of ChAT-immunopositive neurons in the medial septal nucleus compared to age-matched control mice, whereas these effects were not seen in young-adult mice. The results suggest that the molarless condition in aged SAMP8 mice may enhance an age-related decline in the septohippocampal cholinergic system.
Collapse
Affiliation(s)
- Minoru Onozuka
- Department of Anatomy (2nd Division), Gifu University School of Medicine, 40 Tsukasa-machi, Japan.
| | | | | | | | | |
Collapse
|
34
|
Weis C, Humpel C. Evidence that toxicity of lipopolysaccharide upon cholinergic basal forebrain neurons requires the presence of glial cells in vitro. Brain Res Bull 2002; 58:91-8. [PMID: 12121818 DOI: 10.1016/s0361-9230(02)00764-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The cholinergic system of the basal forebrain is affected in brains of dementia patients and during neuroinflammation. The aim of this study was to establish a method to cultivate basal forebrain cholinergic neurons in dissociated, pure neuronal cultures and to apply this method to study the effect of acute and chronic experimentally-induced inflammation using lipopolysaccharide. Purity of the cultures, degrees of neuronal dissociation, connectivity and neuronal survival were investigated by immunocytochemistry for microtubule-associated protein-2 (neurons), glial fibrillary acidic protein (astroglia), complement receptor 3 (microglia), choline acetyltransferase and the neurotrophin receptor p75 (cholinergic neurons). Neuronal cultures only contained <7% astrocytes and <1% microglia when using a "sandwich-technique". Acute (1, 10 microg/ml) as well as chronic (0.1, 1 microg/ml) treatment with lipopolysaccharide did neither affect total number of neurons, nor number of p75-positive neurons or enhance expression of major histocompatibility complex I or II. Our results suggest that lipopolysaccharide-induced degeneration of both microtubule-associated protein-2-like immunoreactive as well as specific killing of cholinergic forebrain neurons in vitro are mediated by glial cells.
Collapse
Affiliation(s)
- Carla Weis
- Laboratory of Psychiatry, Department of Psychiatry, University Hospital Innsbruck, A-6020 Innsbruck, Austria
| | | |
Collapse
|
35
|
Harkany T, Grosche J, Mulder J, Horvath KM, Keijser J, Hortobágyi T, Luiten PG, Härtig W. Short-term consequences of N-methyl-D-aspartate excitotoxicity in rat magnocellular nucleus basalis: effects on in vivo labelling of cholinergic neurons. Neuroscience 2002; 108:611-27. [PMID: 11738498 DOI: 10.1016/s0306-4522(01)00443-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Cholinergic neurons of the basal forebrain form one of the neuron populations that are susceptible to excitotoxic injury. Whereas neuropharmacological studies have aimed at rescuing cholinergic neurons from acute excitotoxic attacks, the short-term temporal profile of excitotoxic damage to cholinergic nerve cells remains largely elusive. The effects of N-methyl-D-aspartate (NMDA) infusion on cytochemical markers of cholinergic neurons in rat magnocellular nucleus basalis were therefore determined 4, 24 and 48 h post-lesion. Additionally, the influence of excitotoxic damage on the efficacy of in vivo labelling of cholinergic neurons with carbocyanine 3-192IgG was investigated. Carbocyanine 3-192IgG was unilaterally injected in the lateral ventricle. Twenty-four hours later, NMDA (60 nM/microl) was infused in the right magnocellular nucleus basalis, while control lesions were performed contralaterally. Triple immunofluorescence labelling for carbocyanine 3-192IgG, NMDA receptor 2A and B subunits and choline-acetyltransferase (ChAT) was employed to determine temporal changes in NMDA receptor immunoreactivity on cholinergic neurons. The extent of neuronal degeneration was studied by staining with Fluoro-Jade. Moreover, changes in the numbers of ChAT or p75 low-affinity neurotrophin receptor immunoreactive neurons, and the degree of their co-labelling with carbocyanine 3-192IgG were determined in basal forebrain nuclei. The effects of NMDA-induced lesions on cortical projections of cholinergic nucleus basalis neurons were studied by acetylcholinesterase (AChE) histochemistry. Characteristic signs of cellular damage, as indicated by decreased immunoreactivity for NMDA receptors, ChAT and p75 low-affinity neurotrophin receptors, were already detected at the shortest post-lesion interval investigated. Fluoro-Jade at 4 h post-lesion only labelled the core of the excitotoxic lesion. Longer survival led to enhanced Fluoro-Jade staining, and to the decline of ChAT immunoreactivity reaching a maximum 24 h post-surgery. Significant loss of p75 low-affinity neurotrophin receptor immunoreactivity and of cortical AChE-positive projections only became apparent 48 h post-lesion. Carbocyanine 3-192IgG labelling in the ipsilateral basal forebrain exceeded that of the contralateral hemisphere at all time points investigated and progressively declined in the damaged magnocellular nucleus basalis up to 48 h after NMDA infusion. The present study indicates that excitotoxic lesion-induced alteration of cholinergic neuronal markers is a rapid and gradual process reaching its maximum 24 h post-surgery. Furthermore, in vivo labelling of cholinergic neurons may be applied to indicate neuronal survival under pathological conditions, and enable to follow their degeneration process under a variety of experimental conditions.
Collapse
Affiliation(s)
- T Harkany
- Department of Molecular Neurobiology, University of Groningen, Haren, The Netherlands.
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Selective immunolesions of cholinergic neurons in mice: effects on neuroanatomy, neurochemistry, and behavior. J Neurosci 2001. [PMID: 11588189 DOI: 10.1523/jneurosci.21-20-08164.2001] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The ability to selectively lesion mouse basal forebrain cholinergic neurons would permit experimental examination of interactions between cholinergic functional loss and genetic factors associated with neurodegenerative disease. We developed a selective toxin for mouse basal forebrain cholinergic neurons by conjugating saporin (SAP), a ribosome-inactivating protein, to a rat monoclonal antibody against the mouse p75 nerve growth factor (NGF) receptor (anti-murine-p75). The toxin proved effective and selective in vitro and in vivo. Intracerebroventricular injections of anti-murine-p75-SAP produced a dose-dependent loss of choline acetyltransferase (ChAT) activity in the hippocampus and neocortex without affecting glutamic acid decarboxylase (GAD) activity. Hippocampal ChAT depletions induced by the immunotoxin were consistently greater than neocortical depletions. Immunohistochemical analysis revealed a dose-dependent loss of cholinergic neurons in the medial septum (MS) but no marked loss of cholinergic neurons in the nucleus basalis magnocellularis after intracerebroventricular injection of the toxin. No loss of noncholinergic neurons in the MS was apparent, nor could we detect loss of noncholinergic cerebellar Purkinje cells, which also express p75. Behavioral analysis suggested a spatial learning deficit in anti-murine-p75-SAP-lesioned mice, based on a correlation between a loss of hippocampal ChAT activity and impairment in Morris water maze performance. Our results indicate that we have developed a specific cholinergic immunotoxin for mice. They also suggest possible functional differences in the mouse and rat cholinergic systems, which may be of particular significance in attempts to develop animal models of human diseases, such as Alzheimer's disease, which are associated with impaired cholinergic function.
Collapse
|
37
|
Kushmerick C, Romano-Silva MA, Gomez MV, Prado MA. Changes in Ca(2+) channel expression upon differentiation of SN56 cholinergic cells. Brain Res 2001; 916:199-210. [PMID: 11597607 DOI: 10.1016/s0006-8993(01)02898-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The SN56 cell line, a fusion of septal neurons and neuroblastoma cells, has been used as a model for central cholinergic neurons. These cells show increased expression of cholinergic neurochemical features upon differentiation, but little is known about how differentiation affects their electrophysiological properties. We examined the changes in Ca(2+) channel expression that occur as these cells undergo morphological differentiation in response to serum withdrawal and exposure to dibutyryl-cAMP. Undifferentiated cells expressed a T-type current with biophysical and pharmacological properties similar, although not identical, to those reported for the current generated by the alpha(1H) (CaV3.2) Ca(2+) channel subunit. Differentiated cells expressed, in addition to this T-type current, high voltage activated currents which were inhibited 38% by the L-type channel antagonist nifedipine (5 microM), 37% by the N-type channel antagonist omega-conotoxin-GVIA (1 microM), and 15% by the P/Q-type channel antagonist omega-agatoxin-IVA (200 nM). Current resistant to these inhibitors accounted for 15% of the high voltage activated current in differentiated SN56 cells. Our data demonstrate that differentiation increases the expression of neuronal type voltage gated Ca(2+) channels in this cell line, and that the channels expressed are comparable to those reported for native basal forebrain cholinergic neurons. This cell line should thus provide a useful model system to study the relationship between calcium currents and cholinergic function and dysfunction.
Collapse
Affiliation(s)
- C Kushmerick
- Departamento de Farmacologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Av. Antonio Carlos 6627, Pampulha, 31270-901 Belo Horizonte, MG, Brazil.
| | | | | | | |
Collapse
|
38
|
Harkany T, Dijkstra IM, Oosterink BJ, Horvath KM, Abrahám I, Keijser J, Van der Zee EA, Luiten PG. Increased amyloid precursor protein expression and serotonergic sprouting following excitotoxic lesion of the rat magnocellular nucleus basalis: neuroprotection by Ca(2+) antagonist nimodipine. Neuroscience 2001; 101:101-14. [PMID: 11068140 DOI: 10.1016/s0306-4522(00)00296-7] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
In the present study plastic neural responses to N-methyl-D-aspartate-induced excitotoxic lesions and the neuroprotective effects of the L-type voltage-dependent Ca(2+) channel antagonist nimodipine were investigated in the rat magnocellular nucleus basalis. Assessment of spontaneous behaviour in the elevated plus maze and small open-field paradigms on day 5 and day 14 post-surgery indicated anxiety and persistent hypoactivity of N-methyl-D-aspartate-lesioned rats, as compared with sham-operated controls. Nimodipine administration significantly alleviated the behavioural deficits. Quantitative histochemical analysis of acetylcholinesterase-positive fibre innervation of the somatosensory cortex and determination of the numbers of choline-acetyltransferase-positive proximal fibre branches of cholinergic projection neurons in the magnocellular nucleus basalis demonstrated a severe cholinergic deficit as a consequence of the excitotoxic lesion 14 days post-surgery. Nimodipine pre-treatment significantly attenuated the loss of cortical cholinergic innervation and preserved the functional integrity of cholinergic projection neurons in the magnocellular nucleus basalis. Double-labelling immunocytochemistry demonstrated increased amyloid precursor protein expression in shrinking and presumably apoptotic choline-acetyltransferase-positive neurons, whereas surviving cholinergic nerve cells were devoid of excessive amyloid precursor protein immunoreactivity. Moreover, as a consequence of N-methyl-D-aspartate infusion, rim-like accumulation of amyloid precursor protein-positive astrocytes was visualized in a penumbra-like zone of the excitotoxic injury. Furthermore, abundant sprouting of serotonergic projection fibres invading the damaged magnocellular nucleus basalis subdivision was demonstrated. Pharmacological blockade by the Ca(2+) antagonist nimodipine significantly attenuated both neuronal and glial amyloid precursor protein immunoreactivity and serotonergic fibre sprouting following N-methyl-D-aspartate infusion. The present data characterize plastic endogenous glial and neuronal responses in the magnocellular nucleus basalis model of acute excitotoxic brain damage. The increased amyloid precursor protein expression may indicate effective means of intrinsic neuroprotection, as secreted amyloid precursor protein isoforms are suggested to play a role in neuronal rescue following excitotoxic injury. From a pharmacological point of view, extensive sprouting of serotonergic projections in the damaged magnocellular nucleus basalis may also counteract N-methyl-D-aspartate excitotoxicity via serotonin-induced inhibition of Ca(2+) currents and membrane hyperpolarization. Hence, lesion-induced changes in spontaneous animal behaviour, such as anxiety and novelty-induced hypoactivity, may well be attributed to the considerable re-distribution of serotonergic projections in the basal forebrain. In conclusion, our present data emphasize a role of neuron-glia and neurotransmitter-system interactions in functional recovery after acute excitotoxic brain injury, and the efficacy of L-type Ca(2+) channel blockade by the selective 1,4-dihydropyridine antagonist nimodipine.
Collapse
Affiliation(s)
- T Harkany
- Department of Animal Physiology, University of Groningen, P.O. Box 14, NL-9750AA Haren, The Netherlands.
| | | | | | | | | | | | | | | |
Collapse
|
39
|
McGaughy J, Everitt BJ, Robbins TW, Sarter M. The role of cortical cholinergic afferent projections in cognition: impact of new selective immunotoxins. Behav Brain Res 2000; 115:251-63. [PMID: 11000424 DOI: 10.1016/s0166-4328(00)00262-x] [Citation(s) in RCA: 112] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Previous investigations aimed at determining the role of corticopetal cholinergic afferents in cognition have relied upon human psychopharmacological studies, neuropsychological analyses of Alzheimer's patients, or psychopharmacological manipulations and excitotoxic lesions in animals. Unfortunately, each approach has its limitations. The interpretation of neuropsychological data relies upon correlations of post-mortem assessments of cholinergic degeneration that may be quite temporally distant from the time of cognitive assessment. In contrast, the use of animals allows direct manipulations of the cholinergic system and the establishment of causal relationships between acetylcholine and cognitive function but is limited by the selectivity of the toxins and drugs available to manipulate the system. The recent introduction of immunotoxins to lesion cortical cholinergic pathways with greater selectivity has allowed the effective testing of these hypotheses of cholinergic functions in cognition. Previous neuropsychological, psychopharmacological and excitotoxic lesion data are reviewed and compared to results produced using the more selective immunotoxins to provide an update to the current hypotheses of the role of corticopetal cholinergic afferents in cognitive function. Additionally, the conceptual and methodological cost and benefits of the methods of infusion used to produce lesions with these immunotoxins is assessed.
Collapse
Affiliation(s)
- J McGaughy
- Department of Experimental Psychology, University of Cambridge, CB2 3EB, Cambridge, UK.
| | | | | | | |
Collapse
|
40
|
Wenk GL, McGann K, Mencarelli A, Hauss-Wegrzyniak B, Del Soldato P, Fiorucci S. Mechanisms to prevent the toxicity of chronic neuroinflammation on forebrain cholinergic neurons. Eur J Pharmacol 2000; 402:77-85. [PMID: 10940360 DOI: 10.1016/s0014-2999(00)00523-9] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Inflammatory processes may play an important role in the degeneration of basal forebrain cholinergic cells Alzheimer's disease. We infused the proinflammagen lipopolysaccharide into the basal forebrain of young rats and determined whether the chronic administration of two novel non-steroidal anti-inflammatory drugs or a pan-caspase synthesis inhibitor, z-Val-Ala-Asp(OMe)-fluoromethyl ketone (zVAD), could provide neuroprotection from the cytotoxic effects of the neuroinflammation. Chronic lipopolysaccharide infusions decreased choline acetyltransferase activity and increased the number of activated microglia within the basal forebrain region. The level of caspases 3, 8 and 9 was increased in ventral caudate/putamen. Non-steroidal anti-inflammatory drug therapy attenuated the toxicity of the inflammation upon cholinergic cells and reduced caspases 3, 8 and 9 activity in the caudate/putamen. zVAD treatment significantly decreased the levels of caspases 3, 8 and 9 but did not provide neuroprotection for the cholinergic neurons. These results suggest that prostaglandins contribute to the degeneration of forebrain cholinergic neurons in Alzheimer's disease.
Collapse
Affiliation(s)
- G L Wenk
- Arizona Research Laboratories, Division of Neural Systems, Memory and Aging, University of Arizona, 384 Life Sciences North Building, Tucson, AZ 85724, USA.
| | | | | | | | | | | |
Collapse
|