1
|
Milos RI, Schmidbauer V, Watzenboeck ML, Stuhr F, Gruber GM, Mitter C, Dovjak GO, Milković-Periša M, Kostovic I, Jovanov-Milošević N, Kasprian G, Prayer D. T1-weighted fast fluid-attenuated inversion-recovery sequence (T1-FFLAIR) enables the visualization and quantification of fetal brain myelination in utero. Eur Radiol 2024; 34:4573-4584. [PMID: 38019312 PMCID: PMC11213743 DOI: 10.1007/s00330-023-10401-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 09/03/2023] [Accepted: 09/16/2023] [Indexed: 11/30/2023]
Abstract
OBJECTIVES To investigate the advantage of T1-weighted fast fluid-attenuated inversion-recovery MRI sequence without (T1-FFLAIR) and with compressed sensing technology (T1-FFLAIR-CS), which shows improved T1-weighted contrast, over standard used T1-weighted fast field echo (T1-FFE) sequence for the assessment of fetal myelination. MATERIALS AND METHODS This retrospective single-center study included 115 consecutive fetal brain MRI examinations (63 axial and 76 coronal, mean gestational age (GA) 28.56 ± 5.23 weeks, range 19-39 weeks). Two raters, blinded to GA, qualitatively assessed a fetal myelin total score (MTS) on each T1-weighted sequence at five brain regions (medulla oblongata, pons, mesencephalon, thalamus, central region). One rater performed region-of-interest quantitative analysis (n = 61) at the same five brain regions. Pearson correlation analysis was applied for correlation of MTS and of the signal intensity ratios (relative to muscle) with GA on each T1-weighted sequence. Fetal MRI-based results were compared with myelination patterns of postmortem fetal human brains (n = 46; GA 18 to 42), processed by histological and immunohistochemical analysis. RESULTS MTS positively correlated with GA on all three sequences (all r between 0.802 and 0.908). The signal intensity ratios measured at the five brain regions correlated best with GA on T1-FFLAIR (r between 0.583 and 0.785). T1-FFLAIR demonstrated significantly better correlations with GA than T1-FFE for both qualitative and quantitative analysis (all p < 0.05). Furthermore, T1-FFLAIR enabled the best visualization of myelinated brain structures when compared to histology. CONCLUSION T1-FFLAIR outperforms the standard T1-FFE sequence in the visualization of fetal brain myelination, as demonstrated by qualitative and quantitative methods. CLINICAL RELEVANCE STATEMENT T1-weighted fast fluid-attenuated inversion-recovery sequence (T1-FFLAIR) provided best visualization and quantification of myelination in utero that, in addition to the relatively short acquisition time, makes feasible its routine application in fetal MRI for the assessment of brain myelination. KEY POINTS • So far, the assessment of fetal myelination in utero was limited due to the insufficient contrast. • T1-weighted fast fluid-attenuated inversion-recovery sequence allows a qualitative and quantitative assessment of fetal brain myelination. • T1-weighted fast fluid-attenuated inversion-recovery sequence outperforms the standard used T1-weighted sequence for visualization and quantification of myelination in utero.
Collapse
Affiliation(s)
- Ruxandra-Iulia Milos
- Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria
| | - Victor Schmidbauer
- Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria
| | - Martin L Watzenboeck
- Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria
| | - Friedrich Stuhr
- Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria
| | - Gerlinde Maria Gruber
- Department of Anatomy and Biomechanics, Karl Landsteiner University of Health Sciences, 3500, Krems, Austria
| | - Christian Mitter
- Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria
| | - Gregor O Dovjak
- Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria
| | - Marija Milković-Periša
- Department of Pathology and Cytology, University Hospital Centre Zagreb, Petrova 13, 10000, Zagreb, Croatia
| | - Ivica Kostovic
- Croatian Institute for Brain Research, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Nataša Jovanov-Milošević
- Croatian Institute for Brain Research, School of Medicine, University of Zagreb, Zagreb, Croatia
- Department of Biology, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Gregor Kasprian
- Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria
| | - Daniela Prayer
- Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria.
| |
Collapse
|
2
|
Coviello C, Lori S, Bertini G, Montano S, Gabbanini S, Bastianelli M, Cossu C, Cavaliere S, Lunardi C, Dani C. Evaluation of the Relationship between Pain Exposure and Somatosensory Evoked Potentials in Preterm Infants: A Prospective Cohort Study. CHILDREN (BASEL, SWITZERLAND) 2024; 11:676. [PMID: 38929255 PMCID: PMC11201689 DOI: 10.3390/children11060676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 05/28/2024] [Accepted: 05/30/2024] [Indexed: 06/28/2024]
Abstract
BACKGROUND AND AIM First, to compare somatosensory evoked potentials (SEPs) in preterm newborns without major brain injury studied at term equivalent age (TEA) with a term historical control group. Second, to investigate the impact of pain exposure during the first 28 days after birth on SEPs. Third, to evaluate the association between SEPs and Bayley-III at 2 years corrected age (CA). METHODS Infants born at <32 weeks' gestational age (GA) were studied with continuous-SEPs. First, SEP differences between preterm and term infants were analyzed. Second, regression analyses were conducted to explore the association between SEPs and painful procedures, and then between SEPs and neurodevelopment. RESULTS 86 preterm infants were prospectively enrolled. Preterm infants exhibited prolonged N1 latencies, central conduction times (CCTs), lower N1-P1 amplitudes, and more recurrently abnormal SEPs compared to term infants. Higher pain exposure predicted longer N1 latency and slower CCT (all p < 0.005), adjusting for clinical risk factors. Younger GA and postmenstrual age (PMA) at SEP recording were associated with longer N1 latency and lower N1-P1 amplitude (all p < 0.005). A normal SEP at TEA positively predicted cognitive outcome at 2 years CA (p < 0.005). CONCLUSION Pain exposure and prematurity were risk factors for altered SEP parameters at TEA. SEPs predicted cognitive outcome.
Collapse
Affiliation(s)
- Caterina Coviello
- Division of Neonatology, Careggi University Hospital of Florence, 50134 Florence, Italy; (G.B.); (S.M.); (C.L.); (C.D.)
| | - Silvia Lori
- Neurophysiology Unit, Neuro-Musculo-Skeletal Department, Careggi University Hospital, 50134 Florence, Italy; (S.L.); (S.G.); (M.B.); (C.C.); (S.C.)
| | - Giovanna Bertini
- Division of Neonatology, Careggi University Hospital of Florence, 50134 Florence, Italy; (G.B.); (S.M.); (C.L.); (C.D.)
| | - Simona Montano
- Division of Neonatology, Careggi University Hospital of Florence, 50134 Florence, Italy; (G.B.); (S.M.); (C.L.); (C.D.)
| | - Simonetta Gabbanini
- Neurophysiology Unit, Neuro-Musculo-Skeletal Department, Careggi University Hospital, 50134 Florence, Italy; (S.L.); (S.G.); (M.B.); (C.C.); (S.C.)
| | - Maria Bastianelli
- Neurophysiology Unit, Neuro-Musculo-Skeletal Department, Careggi University Hospital, 50134 Florence, Italy; (S.L.); (S.G.); (M.B.); (C.C.); (S.C.)
| | - Cesarina Cossu
- Neurophysiology Unit, Neuro-Musculo-Skeletal Department, Careggi University Hospital, 50134 Florence, Italy; (S.L.); (S.G.); (M.B.); (C.C.); (S.C.)
| | - Sara Cavaliere
- Neurophysiology Unit, Neuro-Musculo-Skeletal Department, Careggi University Hospital, 50134 Florence, Italy; (S.L.); (S.G.); (M.B.); (C.C.); (S.C.)
| | - Clara Lunardi
- Division of Neonatology, Careggi University Hospital of Florence, 50134 Florence, Italy; (G.B.); (S.M.); (C.L.); (C.D.)
| | - Carlo Dani
- Division of Neonatology, Careggi University Hospital of Florence, 50134 Florence, Italy; (G.B.); (S.M.); (C.L.); (C.D.)
- Department of Neurosciences, Psychology, Drug Research and Child Health, Careggi University Hospital of Florence, 50134 Florence, Italy
| |
Collapse
|
3
|
Frazier AP, Mitchell DN, Given KS, Hunn G, Burch AM, Childs CR, Moreno-Garcia M, Corigilano MR, Quillinan N, Macklin WB, Herson PS, Dingman AL. Chronic changes in oligodendrocyte sub-populations after middle cerebral artery occlusion in neonatal mice. Glia 2023; 71:1429-1450. [PMID: 36794545 DOI: 10.1002/glia.24349] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 01/23/2023] [Accepted: 01/25/2023] [Indexed: 02/17/2023]
Abstract
Neonatal stroke is common and causes life-long motor and cognitive sequelae. Because neonates with stroke are not diagnosed until days-months after the injury, chronic targets for repair are needed. We evaluated oligodendrocyte maturity and myelination and assessed oligodendrocyte gene expression changes using single cell RNA sequencing (scRNA seq) at chronic timepoints in a mouse model of neonatal arterial ischemic stroke. Mice underwent 60 min of transient right middle cerebral artery occlusion (MCAO) on postnatal day 10 (p10) and received 5-ethynyl-2'-deoxyuridine (EdU) on post-MCAO days 3-7 to label dividing cells. Animals were sacrificed 14 and 28-30 days post-MCAO for immunohistochemistry and electron microscopy. Oligodendrocytes were isolated from striatum 14 days post-MCAO for scRNA seq and differential gene expression analysis. The density of Olig2+ EdU+ cells was significantly increased in ipsilateral striatum 14 days post-MCAO and the majority of oligodendrocytes were immature. Density of Olig2+ EdU+ cells declined significantly between 14 and 28 days post-MCAO without a concurrent increase in mature Olig2+ EdU+ cells. By 28 days post-MCAO there were significantly fewer myelinated axons in ipsilateral striatum. scRNA seq identified a cluster of "disease associated oligodendrocytes (DOLs)" specific to the ischemic striatum, with increased expression of MHC class I genes. Gene ontology analysis suggested decreased enrichment of pathways involved in myelin production in the reactive cluster. Oligodendrocytes proliferate 3-7 days post-MCAO and persist at 14 days, but fail to mature by 28 days. MCAO induces a subset of oligodendrocytes with reactive phenotype, which may be a therapeutic target to promote white matter repair.
Collapse
Affiliation(s)
- Alexandra P Frazier
- Department of Anesthesiology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Danae N Mitchell
- Department of Pediatrics, Division of Child Neurology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Katherine S Given
- Department of Developmental and Cell Biology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Genevieve Hunn
- Department of Anesthesiology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Amelia M Burch
- Department of Anesthesiology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Christine R Childs
- Department of Dermatology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Myriam Moreno-Garcia
- Department of Anesthesiology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Michael R Corigilano
- Department of Graduate Medical Education, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Nidia Quillinan
- Department of Anesthesiology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Wendy B Macklin
- Department of Developmental and Cell Biology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Paco S Herson
- Department of Neurosurgery, The Ohio State University, Columbus, Ohio, USA
| | - Andra L Dingman
- Department of Pediatrics, Division of Child Neurology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| |
Collapse
|
4
|
Sobierajski E, Lauer G, Czubay K, Grabietz H, Beemelmans C, Beemelmans C, Meyer G, Wahle P. Development of myelin in fetal and postnatal neocortex of the pig, the European wild boar Sus scrofa. Brain Struct Funct 2023; 228:947-966. [PMID: 37000250 PMCID: PMC10147765 DOI: 10.1007/s00429-023-02633-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 03/15/2023] [Indexed: 04/01/2023]
Abstract
Myelination of the neocortex of altricial species is mostly a postnatal event, and the appearance of myelin has been associated with the end of the critical period for ocular dominance plasticity in rodent visual cortex. Due to their precocality, ungulates may tell a different story. Here, we analyzed the development of PDGFRα positive oligodendrocyte precursor cells and expression of myelin proteins in the laminar compartments of fetal and postnatal porcine cortex from E45 onwards. Precursor cell density initially increased and then decreased but remained present at P90. MAG and MBP staining were detectable at E70 in subventricular zone and deep white matter, ascending into gyral white matter at E85, and into the gray matter and marginal zone at E100 (birth in pig at E114). Protein blots confirmed the declining expression of PDGFRα from E65 onwards, and the increase of MBP and MAG expression from E80 onwards. Somatosensory input elicited by spontaneous activity is considered important for the formation of the body representation. Indeed, PDGFRα, MBP and MAG expression started earlier in somatosensory than in visual cortex. Taken together, myelination proceeded in white and gray matter and marginal zone of pig cortex before birth with an areal-specific time course, and an almost mature pattern was present at P5 in visual cortex.
Collapse
Affiliation(s)
- Eric Sobierajski
- Faculty of Biology and Biotechnology, Developmental Neurobiology, Ruhr University Bochum, 44870, Bochum, Germany
| | - German Lauer
- Faculty of Biology and Biotechnology, Developmental Neurobiology, Ruhr University Bochum, 44870, Bochum, Germany
| | - Katrin Czubay
- Faculty of Biology and Biotechnology, Developmental Neurobiology, Ruhr University Bochum, 44870, Bochum, Germany
| | - Hannah Grabietz
- Faculty of Biology and Biotechnology, Developmental Neurobiology, Ruhr University Bochum, 44870, Bochum, Germany
| | - Christa Beemelmans
- Regionalverband Ruhr Grün, Forsthof Üfter Mark, Forsthausweg 306, 46514, Schermbeck, Germany
| | - Christoph Beemelmans
- Regionalverband Ruhr Grün, Forsthof Üfter Mark, Forsthausweg 306, 46514, Schermbeck, Germany
| | - Gundela Meyer
- Department of Basic Medical Science, Faculty of Medicine, University of La Laguna, 38200, Santa Cruz de Tenerife, Tenerife, Spain
| | - Petra Wahle
- Faculty of Biology and Biotechnology, Developmental Neurobiology, Ruhr University Bochum, 44870, Bochum, Germany.
| |
Collapse
|
5
|
Model-Base Estimation of Non-Invasive Ventilation Weaning of Preterm Infants Exposed to Osteopathic Manipulative Treatment: A Propensity-Score-Matched Cohort Study. Healthcare (Basel) 2022; 10:healthcare10122379. [PMID: 36553903 PMCID: PMC9777985 DOI: 10.3390/healthcare10122379] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 11/23/2022] [Accepted: 11/25/2022] [Indexed: 11/29/2022] Open
Abstract
Ventilation weaning is a key intensive care event influencing preterm infants’ discharge from a neonatal intensive care unit (NICU). Osteopathic manipulative treatment (OMT) has been recently introduced in some Italian NICUs. This retrospective cohort study tested if OMT is associated with faster non-invasive ventilation (NIV) weaning. The time to NIV weaning was assessed in very preterm and very low birth weight infants who either received or did not receive OMT. The propensity score model included gender, antenatal steroids, gestational age (GA), birth weight (BW), and Apgar score 5′. Out of 93 infants, 40 were included in the multilevel survival analysis, showing a reduction of time to NIV weaning for GA (HR: 2.58, 95%CI: 3.91 to 1.71, p < 0.001) and OMT (HR: 3.62, 95%CI: 8.13 to 1.61, p = 0.002). Time to independent ventilation (TIV) was modeled with GA and BW as dependent variables and OMT as the factor. A negative linear effect of GA and BW on TIV was shown. OMT exposure studied as the factor of GA had effects on TIV in infants born up to the 32nd gestational week. Preterm infants exposed to OMT were associated with earlier achievement of NIV weaning. This result, together with the demonstrated OMT safety, suggests the conduct of clinical trials in preterm infants younger than 32 weeks of GA.
Collapse
|
6
|
Corroenne R, Arthuis C, Kasprian G, Mahallati H, Ville Y, Millischer Bellaiche AE, Henry C, Grevent D, Salomon LJ. Diffusion tensor imaging of fetal brain: principles, potential and limitations of promising technique. ULTRASOUND IN OBSTETRICS & GYNECOLOGY : THE OFFICIAL JOURNAL OF THE INTERNATIONAL SOCIETY OF ULTRASOUND IN OBSTETRICS AND GYNECOLOGY 2022; 60:470-476. [PMID: 35561129 DOI: 10.1002/uog.24935] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 04/24/2022] [Accepted: 04/29/2022] [Indexed: 06/15/2023]
Abstract
Human brain development is a complex process that begins in the third week of gestation. During early development, the fetal brain undergoes dynamic morphological changes. These changes result from events such as neurogenesis, neuronal migration, synapse formation, axonal growth and myelination. Disruption of any of these processes is thought to be responsible for a wide array of different pathologies. Recent advances in magnetic resonance imaging, especially diffusion-weighted imaging and diffusion tensor imaging (DTI), have enabled characterization and evaluation of brain development in utero. In this review, aimed at practitioners involved in fetal medicine and high-risk pregnancies, we provide a comprehensive overview of fetal DTI studies focusing on characterization of early normal brain development as well as evaluation of brain pathology in utero. We also discuss the reliability and limitations of fetal brain DTI. © 2022 International Society of Ultrasound in Obstetrics and Gynecology.
Collapse
Affiliation(s)
- R Corroenne
- Department of Obstetrics, Fetal Medicine and Surgery, Necker-Enfants Malades Hospital, APHP, Paris, France
- EA FETUS 7328 and LUMIERE Platform, University of Paris, Paris, France
| | - C Arthuis
- EA FETUS 7328 and LUMIERE Platform, University of Paris, Paris, France
- Department of Obstetrics, University Hospital of Nantes, Nantes, France
| | - G Kasprian
- Division of Neuroradiology and Musculoskeletal Radiology, Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, Austria
| | - H Mahallati
- Department of Radiology, University of Calgary, Calgary, Canada
| | - Y Ville
- Department of Obstetrics, Fetal Medicine and Surgery, Necker-Enfants Malades Hospital, APHP, Paris, France
| | | | - C Henry
- EA FETUS 7328 and LUMIERE Platform, University of Paris, Paris, France
| | - D Grevent
- EA FETUS 7328 and LUMIERE Platform, University of Paris, Paris, France
- Department of Radiology, Necker-Enfants Malades Hospital, APHP, Paris, France
| | - L J Salomon
- Department of Obstetrics, Fetal Medicine and Surgery, Necker-Enfants Malades Hospital, APHP, Paris, France
- EA FETUS 7328 and LUMIERE Platform, University of Paris, Paris, France
| |
Collapse
|
7
|
Xu Y, Cao M, Liao X, Xia M, Wang X, Jeon T, Ouyang M, Chalak L, Rollins N, Huang H, He Y. Development and Emergence of Individual Variability in the Functional Connectivity Architecture of the Preterm Human Brain. Cereb Cortex 2020; 29:4208-4222. [PMID: 30534949 DOI: 10.1093/cercor/bhy302] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Revised: 11/07/2018] [Indexed: 01/10/2023] Open
Abstract
Individual variability in human brain networks underlies individual differences in cognition and behaviors. However, researchers have not conclusively determined when individual variability patterns of the brain networks emerge and how they develop in the early phase. Here, we employed resting-state functional MRI data and whole-brain functional connectivity analyses in 40 neonates aged around 31-42 postmenstrual weeks to characterize the spatial distribution and development modes of individual variability in the functional network architecture. We observed lower individual variability in primary sensorimotor and visual areas and higher variability in association regions at the third trimester, and these patterns are generally similar to those of adult brains. Different functional systems showed dramatic differences in the development of individual variability, with significant decreases in the sensorimotor network; decreasing trends in the visual, subcortical, and dorsal and ventral attention networks, and limited change in the default mode, frontoparietal and limbic networks. The patterns of individual variability were negatively correlated with the short- to middle-range connection strength/number and this distance constraint was significantly strengthened throughout development. Our findings highlight the development and emergence of individual variability in the functional architecture of the prenatal brain, which may lay network foundations for individual behavioral differences later in life.
Collapse
Affiliation(s)
- Yuehua Xu
- National Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing 100875, China.,Beijing Key Laboratory of Brain Imaging and Connectomics, Beijing Normal University, Beijing 100875 China.,IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875 China
| | - Miao Cao
- National Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing 100875, China.,Beijing Key Laboratory of Brain Imaging and Connectomics, Beijing Normal University, Beijing 100875 China.,IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875 China
| | - Xuhong Liao
- National Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing 100875, China.,Beijing Key Laboratory of Brain Imaging and Connectomics, Beijing Normal University, Beijing 100875 China.,IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875 China
| | - Mingrui Xia
- National Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing 100875, China.,Beijing Key Laboratory of Brain Imaging and Connectomics, Beijing Normal University, Beijing 100875 China.,IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875 China
| | - Xindi Wang
- National Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing 100875, China.,Beijing Key Laboratory of Brain Imaging and Connectomics, Beijing Normal University, Beijing 100875 China.,IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875 China
| | - Tina Jeon
- Department of Radiology, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Minhui Ouyang
- Department of Radiology, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Lina Chalak
- Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Nancy Rollins
- Department of Radiology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Hao Huang
- Department of Radiology, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA.,Department of Radiology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Yong He
- National Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing 100875, China.,Beijing Key Laboratory of Brain Imaging and Connectomics, Beijing Normal University, Beijing 100875 China.,IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875 China
| |
Collapse
|
8
|
Niwa T, Yoneda T, Hayashi M, Suzuki K, Shibukawa S, Okazaki T, Imai Y. Characteristic phase distribution in the white matter of infants on phase difference enhanced imaging. J Neuroradiol 2018; 45:374-379. [PMID: 29604325 DOI: 10.1016/j.neurad.2018.03.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Revised: 02/08/2018] [Accepted: 03/10/2018] [Indexed: 12/17/2022]
Abstract
BACKGROUND AND PURPOSE The infantile brain is continuously undergoing development. Non-invasive methods to assess the neurological development of infants are important for the early detection of abnormalities. Some microstructures in the brain have been demonstrated via phase difference-enhanced imaging (PADRE), which may reflect myelin-related microstructures. We aimed to assess the white matter (WM) signal distribution in infants using PADRE and compared it with that using T1-weighted images (T1WI) and diffusion tensor imaging (DTI) on magnetic resonance imaging (MRI). MATERIALS AND METHOD This study included 18 infants (postmenstrual age at MRI, 37-40 weeks) without abnormal findings on MRI. Signal distribution using T1WI, a fractional anisotropy (FA) map and PADRE was assessed regarding the following intraparenchymal structures: the optic radiation (OR), internal capsule (IC), corpus callosum, corticospinal tract (CST), semiovale center and subcortical regions. RESULTS We found that the signal distribution was significantly different (P<0.001) with a relatively large signal change found at the IC and CST across the three imaging methods. Signal changes were also greater at the OR and rolandic subcortical WM on PADRE, whereas these were smaller on T1WI and FA. CONCLUSION PADRE demonstrated a characteristic phase shift distribution in infantile WM, which was different from that observed on T1WI and FA maps, and may demonstrate the developing myelin-related structures. PADRE can be a unique indicator of infantile brain development.
Collapse
Affiliation(s)
- Tesu Niwa
- Department of Radiology, Tokai University School of Medicine, 143 Shimokasuya, Isehara 259-1193, Japan.
| | - Tetsuya Yoneda
- Department of Medical Physics in Advanced Biomedical Sciences, Faculty of Life Sciences, Kumamoto University, 4-24-1 Kuhonji, Kumamoto 862-0976, Japan
| | - Masaharu Hayashi
- College of Nursing and Nutrition, Shukutoku University, 673 Nitonacho, Chuo-ku, Chiba 260-8703, Japan
| | - Keiji Suzuki
- Department of Pediatrics, Tokai University School of Medicine, 143 Shimokasuya, Isehara 259-1193, Japan
| | - Shuhei Shibukawa
- Department of Radiology, Tokai University Hospital, 143 Shimokasuya, Isehara 259-1193, Japan
| | - Takashi Okazaki
- Department of Radiology, Tokai University School of Medicine, 143 Shimokasuya, Isehara 259-1193, Japan
| | - Yutaka Imai
- Department of Radiology, Tokai University School of Medicine, 143 Shimokasuya, Isehara 259-1193, Japan
| |
Collapse
|
9
|
Ecker C, Schmeisser MJ, Loth E, Murphy DG. Neuroanatomy and Neuropathology of Autism Spectrum Disorder in Humans. ADVANCES IN ANATOMY, EMBRYOLOGY, AND CELL BIOLOGY 2017; 224:27-48. [PMID: 28551749 DOI: 10.1007/978-3-319-52498-6_2] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Autism spectrum disorder (ASD) is a lifelong heterogeneous neurodevelopmental condition that is associated with differences in brain anatomy and connectivity. Yet, the molecular and cellular mechanisms that underpin the atypical developmental of the brain in ASD remain poorly understood. Here, we review the findings of in vivo neuroimaging studies examining the time course of atypical brain development in ASD and relate the different neurodevelopmental stages that are atypical in ASD to the known neurobiological mechanisms that drive the maturation of the typically developing brain. In particular, we focus on the notion of 'early brain overgrowth' in ASD, which may lead to differences in the formation of the brain's micro- and macro-circuitry. Moreover, we attempt to link the in vivo reports describing differences in brain anatomy and connectivity on the macroscopic level to the increasing number of post-mortem studies examining the neural architecture of the brain in ASD on the microscopic level. In addition, we discuss future directions and outstanding questions in this particular field of research and highlight the need for establishing the link between micro- and macro-pathology in the same set of individuals with ASD based on advances in genetic, molecular and imaging techniques. In combination, these may proof to be invaluable for patient stratification and the development of novel pharmacotherapies in the future.
Collapse
Affiliation(s)
- Christine Ecker
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, University Hospital, Goethe University, Frankfurt am Main, Germany.
- Department of Forensic and Neurodevelopmental Sciences, Sackler Institute for Translational Neurodevelopmental Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College, London, UK.
| | - Michael J Schmeisser
- Institute for Anatomy and Cell Biology, Ulm University, Ulm, Germany
- Division of Neuroanatomy, Institute of Anatomy, Otto-von-Guericke University, Magdeburg, Germany
- Leibniz Institute for Neurobiology, Magdeburg, Germany
| | - Eva Loth
- Department of Forensic and Neurodevelopmental Sciences, Sackler Institute for Translational Neurodevelopmental Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College, London, UK
| | - Declan G Murphy
- Department of Forensic and Neurodevelopmental Sciences, Sackler Institute for Translational Neurodevelopmental Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College, London, UK
| |
Collapse
|
10
|
Wu X, Wei L, Wang N, Hu Z, Wang L, Ma J, Feng S, Cai Y, Song X, Shi Y. Frequency of Spontaneous BOLD Signal Differences between Moderate and Late Preterm Newborns and Term Newborns. Neurotox Res 2016; 30:539-51. [DOI: 10.1007/s12640-016-9642-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Revised: 06/06/2016] [Accepted: 06/09/2016] [Indexed: 11/29/2022]
|
11
|
Koenraads Y, Porro GL, Braun KPJ, Groenendaal F, de Vries LS, van der Aa NE. Prediction of visual field defects in newborn infants with perinatal arterial ischemic stroke using early MRI and DTI-based tractography of the optic radiation. Eur J Paediatr Neurol 2016; 20:309-318. [PMID: 26708504 DOI: 10.1016/j.ejpn.2015.11.010] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2015] [Revised: 10/08/2015] [Accepted: 11/23/2015] [Indexed: 01/16/2023]
Abstract
PURPOSE Visual field (VF) defects are common sequelae of perinatal arterial ischemic stroke (PAIS). The aim of this study was to investigate the predictive value of magnetic resonance imaging (MRI) and diffusion tensor imaging (DTI) for VF defects following PAIS. METHODS Nineteen infants with unilateral PAIS, who underwent conventional MRI (T1/T2) and DTI at three months of age and a VF examination later in life (median age 3.2 yrs) were included. Conventional T1-weighted MRI was used to assess asymmetry of the optic radiation (OR). DTI-based tractography of the bilateral OR was performed, and the average fractional anisotropy (FA), axial (λ1), radial (λ23) and mean diffusivity (MD) were extracted. Asymmetry of the OR on MRI and DTI was used as a predictor of VF defects using receiver operating characteristic (ROC) analysis. RESULTS Of the 19 infants, nine had a normal VF, eight had a VF defect (six hemianopia and two quadrantanopia), and two had an inconclusive VF test. The presence or absence of a VF defect could be correctly predicted using conventional MRI assessment in the majority of the infants, with an area under the curve (AUC) of 0.90 (95% CI 0.66-0.99). Prediction based on DTI parameter asymmetry indices showed an AUC of 0.96 (95% CI 0.74-1.00), 0.78 (95% CI 0.52-0.94), 0.93 (95% CI 0.70-1.00) and 0.90 (95% CI 0.66-0.99) for FA, λ1, λ23 and MD, respectively. CONCLUSIONS VF defects following PAIS can be reliably predicted by assessment of asymmetry of the OR at three months on conventional MRI and DTI-based tractography with comparable predictive values. Conventional T1-weighted MRI can be used in clinical practice.
Collapse
Affiliation(s)
- Yvonne Koenraads
- Department of Ophthalmology, University Medical Center Utrecht, The Netherlands.
| | - Giorgio L Porro
- Department of Ophthalmology, University Medical Center Utrecht, The Netherlands.
| | - Kees P J Braun
- Department of Pediatric Neurology, Brain Center Rudolf Magnus, University Medical Center Utrecht, The Netherlands.
| | - Floris Groenendaal
- Department of Neonatology, Brain Center Rudolf Magnus, University Medical Center Utrecht, The Netherlands.
| | - Linda S de Vries
- Department of Neonatology, Brain Center Rudolf Magnus, University Medical Center Utrecht, The Netherlands.
| | - Niek E van der Aa
- Department of Neonatology, Brain Center Rudolf Magnus, University Medical Center Utrecht, The Netherlands.
| |
Collapse
|
12
|
Morphological features of the neonatal brain following exposure to regional anesthesia during labor and delivery. Magn Reson Imaging 2014; 33:213-21. [PMID: 25179140 DOI: 10.1016/j.mri.2014.08.033] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Accepted: 08/11/2014] [Indexed: 11/24/2022]
Abstract
INTRODUCTION Recent animal and human epidemiological studies suggest that early childhood exposure to anesthesia may have adverse effects on brain development. As more than 50% of pregnant women in the United States and one-third in the United Kingdom receive regional anesthesia during labor and delivery, understanding the effects of perinatal anesthesia on postnatal brain development has important public health relevance. METHODS We used high-resolution magnetic resonance imaging (MRI) to assess the effects of regional anesthesia during labor and delivery as part of a larger study of perinatal exposures on the morphological features of the neonatal brain. We mapped morphological features of the cortical surface in 37 healthy infants, 24 exposed and 13 unexposed to regional anesthesia at delivery, who were scanned within the first 6 weeks of life. RESULTS Infants exposed to maternal anesthesia compared with unexposed infants had greater local volumes in portions of the frontal and occipital lobes bilaterally and right posterior portion of the cingulate gyrus. Longer durations of exposure to anesthesia correlated positively with local volumes in the occipital lobe. CONCLUSIONS Anesthesia exposure during labor and delivery was associated with larger volumes in portions of the frontal and occipital lobes and cingulate gyrus in neonates. Longitudinal MRI studies are needed to determine whether these morphological effects of anesthesia persist and what their consequences on cognition and behavior may be.
Collapse
|
13
|
Nevalainen P, Lauronen L, Pihko E. Development of Human Somatosensory Cortical Functions - What have We Learned from Magnetoencephalography: A Review. Front Hum Neurosci 2014; 8:158. [PMID: 24672468 PMCID: PMC3955943 DOI: 10.3389/fnhum.2014.00158] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2013] [Accepted: 03/03/2014] [Indexed: 01/01/2023] Open
Abstract
The mysteries of early development of cortical processing in humans have started to unravel with the help of new non-invasive brain research tools like multichannel magnetoencephalography (MEG). In this review, we evaluate, within a wider neuroscientific and clinical context, the value of MEG in studying normal and disturbed functional development of the human somatosensory system. The combination of excellent temporal resolution and good localization accuracy provided by MEG has, in the case of somatosensory studies, enabled the differentiation of activation patterns from the newborn’s primary (SI) and secondary somatosensory (SII) areas. Furthermore, MEG has shown that the functioning of both SI and SII in newborns has particular immature features in comparison with adults. In extremely preterm infants, the neonatal MEG response from SII also seems to potentially predict developmental outcome: those lacking SII responses at term show worse motor performance at age 2 years than those with normal SII responses at term. In older children with unilateral early brain lesions, bilateral alterations in somatosensory cortical activation detected in MEG imply that the impact of a localized insult may have an unexpectedly wide effect on cortical somatosensory networks. The achievements over the last decade show that MEG provides a unique approach for studying the development of the somatosensory system and its disturbances in childhood. MEG well complements other neuroimaging methods in studies of cortical processes in the developing brain.
Collapse
Affiliation(s)
- Päivi Nevalainen
- BioMag Laboratory, Hospital District of Helsinki and Uusimaa, HUS Medical Imaging Center, Helsinki University Central Hospital, University of Helsinki , Helsinki , Finland ; Department of Clinical Neurophysiology, Children's Hospital, HUS Medical Imaging Center, Helsinki University Central Hospital, University of Helsinki , Helsinki , Finland
| | - Leena Lauronen
- BioMag Laboratory, Hospital District of Helsinki and Uusimaa, HUS Medical Imaging Center, Helsinki University Central Hospital, University of Helsinki , Helsinki , Finland ; Department of Clinical Neurophysiology, Children's Hospital, HUS Medical Imaging Center, Helsinki University Central Hospital, University of Helsinki , Helsinki , Finland
| | - Elina Pihko
- Brain Research Unit, O.V. Lounasmaa Laboratory, Aalto University School of Science , Espoo , Finland
| |
Collapse
|
14
|
Aeby A, Van Bogaert P, David P, Balériaux D, Vermeylen D, Metens T, De Tiège X. Nonlinear microstructural changes in the right superior temporal sulcus and lateral occipitotemporal gyrus between 35 and 43 weeks in the preterm brain. Neuroimage 2012; 63:104-10. [PMID: 22713672 DOI: 10.1016/j.neuroimage.2012.06.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2012] [Revised: 05/24/2012] [Accepted: 06/10/2012] [Indexed: 12/20/2022] Open
Abstract
Using diffusion tensor imaging (DTI), we explored microstructural brain maturation in a population of 65 preterm neonates who underwent magnetic resonance imaging between 35 and 43 weeks of corrected gestational age. A voxel-based analysis approach, statistical parametric mapping (SPM8), was used to evidence the nonlinear changes with the corrected gestational age in the regional distribution of mean diffusivity (MD), fractional anisotropy (FA), longitudinal and transverse diffusivities (λ//and λ⊥). We found that FA changes nonlinearly with age around the right superior temporal sulcus and in the right lateral occipitotemporal gyrus, with FA decrease between 34 and 39 weeks followed by FA increase from 40 weeks to 43 weeks. Considering the key role of these brain areas in verbal and non-verbal communicative behaviors, the effect of these microstructural changes in terms of early social network functional maturation needs to be assessed by joint functional and anatomical studies.
Collapse
Affiliation(s)
- Alec Aeby
- Department of Pediatric Neurology, Université Libre de Bruxelles-Hôpital Erasme, Brussels, Belgium.
| | | | | | | | | | | | | |
Collapse
|
15
|
Rangasami R, Chandrasekharan A, Joseph S, Nanda A, Johnson T, Reddy S. Magnetic resonance signal intensity measurements in the diagnosis of fetal central nervous system anomalies. J Matern Fetal Neonatal Med 2011; 25:679-86. [DOI: 10.3109/14767058.2011.594116] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
16
|
Tau GZ, Peterson BS. Normal development of brain circuits. Neuropsychopharmacology 2010; 35:147-68. [PMID: 19794405 PMCID: PMC3055433 DOI: 10.1038/npp.2009.115] [Citation(s) in RCA: 890] [Impact Index Per Article: 59.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2009] [Revised: 07/22/2009] [Accepted: 07/23/2009] [Indexed: 01/05/2023]
Abstract
Spanning functions from the simplest reflex arc to complex cognitive processes, neural circuits have diverse functional roles. In the cerebral cortex, functional domains such as visual processing, attention, memory, and cognitive control rely on the development of distinct yet interconnected sets of anatomically distributed cortical and subcortical regions. The developmental organization of these circuits is a remarkably complex process that is influenced by genetic predispositions, environmental events, and neuroplastic responses to experiential demand that modulates connectivity and communication among neurons, within individual brain regions and circuits, and across neural pathways. Recent advances in neuroimaging and computational neurobiology, together with traditional investigational approaches such as histological studies and cellular and molecular biology, have been invaluable in improving our understanding of these developmental processes in humans in both health and illness. To contextualize the developmental origins of a wide array of neuropsychiatric illnesses, this review describes the development and maturation of neural circuits from the first synapse through critical periods of vulnerability and opportunity to the emergent capacity for cognitive and behavioral regulation, and finally the dynamic interplay across levels of circuit organization and developmental epochs.
Collapse
Affiliation(s)
- Gregory Z Tau
- Division of Child and Adolescent Psychiatry, Columbia University and the New York State Psychiatric Institute, New York, NY, USA.
| | | |
Collapse
|
17
|
Sarret C, Combes P, Micheau P, Gelot A, Boespflug-Tanguy O, Vaurs-Barriere C. Novel neuronal proteolipid protein isoforms encoded by the human myelin proteolipid protein 1 gene. Neuroscience 2009; 166:522-38. [PMID: 20036320 DOI: 10.1016/j.neuroscience.2009.12.047] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2009] [Revised: 12/17/2009] [Accepted: 12/17/2009] [Indexed: 01/21/2023]
Abstract
The human myelin proteolipid protein 1 gene (hPLP1), which encodes the major structural myelin proteins of the central nervous system (CNS), is classically described as expressed in the oligodendrocytes, the CNS myelinating cells. We identified two new exons in the intron 1 of the hPLP1 gene that lead to the expression of additional mRNA and protein isoforms mainly expressed in neurons instead of oligodendrocytes. Those novel neuronal PLP isoforms are detected as soon as human fetal development and their concomitant expression is specific of the human species. As classical PLP proteins, the novel protein isoforms seem to be addressed to the plasma membrane. These results suggest for the first time that PLP may have functions in humans not only in oligodendrocytes but also in neurons and could be implicated in axono-glial communication. Moreover, this neuronal expression of the hPLP1 gene might explain the neuronal dysfunctions in patients carrying hPLP1 gene mutations.
Collapse
Affiliation(s)
- C Sarret
- Faculté de Médecine, Institut National de la Santé et de la Recherche Médicale, U931, GReD CNRS 6247, 63000 Clermont-Ferrand, France
| | | | | | | | | | | |
Collapse
|
18
|
Abstract
OBJECTIVE To determine in fetal sheep the effect of betamethasone on myelination in relation to stage of myelination, number of treatment courses, dose, and route of administration. METHODS Fetal expression of myelin basic protein (MBP), a marker of mature oligodendrocytes and myelin, was determined between 0.27 and 0.93 gestation. Short-term betamethasone effects were examined 24 hours after one maternal intramuscular treatment course (weight adjusted to equal the clinical dose of 2 x 8 mg betamethasone to a 70-kg woman) at 0.63, 0.75, and 0.87 gestation or after continuous 48-hour fetal intravenous infusion at 0.75 and 0.87 gestation. Lasting effects were examined 20 days after one and two treatment courses weight-adapted to the clinical dose of 2 x 8 mg or 2 x 12 mg betamethasone at 0.75 gestation. RESULTS Myelin basic protein immunoreactivity was first detected in the internal capsule at 0.53 gestation, followed by the centrum semiovale, the superficial white matter, and corpus callosum at 0.63 gestation. Within 24 hours after treatment, betamethasone reduced the number of mature oligodendrocytes and MBP immunoreactivity. The effect decreased with gestational age. Maternal and fetal betamethasone administration had similar effects. Loss of MBP immunoreactivity was not reversed 20 days after two treatment courses, independent of dose. CONCLUSION Betamethasone-induced delayed cerebral myelination is dependent on the stage of brain development in sheep. Betamethasone-related disturbances in myelination and any potential contribution to childhood behavior deficits need to be confirmed in clinical studies.
Collapse
|
19
|
de Graaf-Peters VB, Hadders-Algra M. Ontogeny of the human central nervous system: what is happening when? Early Hum Dev 2006; 82:257-66. [PMID: 16360292 DOI: 10.1016/j.earlhumdev.2005.10.013] [Citation(s) in RCA: 381] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2005] [Revised: 06/22/2005] [Accepted: 10/02/2005] [Indexed: 11/21/2022]
Abstract
The present paper reviews current data on the structural development of the human nervous system. Focus is on the timing of ontogenetic events in the telencephalon. Neuronal proliferation and migration especially occur during the first half of gestation; the second half of gestation is the period of the existence of the functionally important transient structure 'subplate' and the major period of glial cell proliferation and programmed cell death. Axon and dendrite sprouting and synapse formation bloom during the last trimester of gestation and the first postnatal year. Major part of telencephalic myelination occurs during the first year after birth. Many developmental processes, such as myelination, synapse formation and synapse elimination continue throughout childhood and adolescence. Evidence is emerging that the peak of synapse elimination occurs between puberty and the onset of adulthood. Neurotransmitter systems are present from early foetal life onwards and their pre- and perinatal development is characterized by periods of transient overexpression. The latter is for instance true for the acetylcholinergic, catecholaminergic and glutamate systems. Thus, the development of the human brain is characterized by a protracted, neatly orchestrated chain of specific ontogenetic events. The continuous changes of the nervous system have consequences for vulnerability to adverse conditions, for diagnostics and for physiotherapeutical intervention.
Collapse
Affiliation(s)
- Victorine B de Graaf-Peters
- Department Neurology-Developmental Neurology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | | |
Collapse
|
20
|
Prayer D, Kasprian G, Krampl E, Ulm B, Witzani L, Prayer L, Brugger PC. MRI of normal fetal brain development. Eur J Radiol 2006; 57:199-216. [PMID: 16413984 DOI: 10.1016/j.ejrad.2005.11.020] [Citation(s) in RCA: 152] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2005] [Revised: 11/14/2005] [Accepted: 11/16/2005] [Indexed: 11/21/2022]
Abstract
Normal fetal brain maturation can be studied by in vivo magnetic resonance imaging (MRI) from the 18th gestational week (GW) to term, and relies primarily on T2-weighted and diffusion-weighted (DW) sequences. These maturational changes must be interpreted with a knowledge of the histological background and the temporal course of the respective developmental steps. In addition, MR presentation of developing and transient structures must be considered. Signal changes associated with maturational processes can mainly be ascribed to the following changes in tissue composition and organization, which occur at the histological level: (1) a decrease in water content and increasing cell-density can be recognized as a shortening of T1- and T2-relaxation times, leading to increased T1-weighted and decreased T2-weighted intensity, respectively; (2) the arrangement of microanatomical structures to create a symmetrical or asymmetrical environment, leading to structural differences that may be demonstrated by DW-anisotropy; (3) changes in non-structural qualities, such as the onset of a membrane potential in premyelinating axons. The latter process also influences the appearance of a structure on DW sequences. Thus, we will review the in vivo MR appearance of different maturational states of the fetal brain and relate these maturational states to anatomical, histological, and in vitro MRI data. Then, the development of the cerebral cortex, white matter, temporal lobe, and cerebellum will be reviewed, and the MR appearance of transient structures of the fetal brain will be shown. Emphasis will be placed on the appearance of the different structures with the various sequences. In addition, the possible utility of dynamic fetal sequences in assessing spontaneous fetal movements is discussed.
Collapse
Affiliation(s)
- Daniela Prayer
- Department of Radiodiagnostics, Medical University of Vienna, Vienna, Austria.
| | | | | | | | | | | | | |
Collapse
|
21
|
Santos E, Yanes CM, Monzón-Mayor M, del Mar Romero-Alemán M. Peculiar and typical oligodendrocytes are involved in an uneven myelination pattern during the ontogeny of the lizard visual pathway. ACTA ACUST UNITED AC 2006; 66:1115-24. [PMID: 16929522 DOI: 10.1002/neu.20256] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
We studied the myelination of the visual pathway during the ontogeny of the lizard Gallotia galloti using immunohistochemical methods to stain the myelin basic protein (MBP) and proteolipid protein (PLP/DM20), and electron microscopy. The staining pattern for the PLP/DM20 and MBP overlapped during the lizard ontogeny and was first observed at E39 in cell bodies and fibers located in the temporal optic nerve, optic chiasm, middle optic tract, and in the stratum album centrale of the optic tectum (OT). The expression of these proteins extended to the nerve fiber layer (NFL) of the temporal retina and to the outer strata of the OT at E40. From hatching onwards, the labeling became stronger and extended to the entire visual pathway. Our ultrastructural data in postnatal and adult animals revealed the presence of both myelinated and unmyelinated retinal ganglion cell axons in all visual areas, with a tendency for the larger axons to show the thicker myelin sheaths. Moreover, two kinds of oligodendrocytes were described: peculiar oligodendrocytes displaying loose myelin sheaths were only observed in the NFL, whereas typical medium electron-dense oligodendrocytes displaying compact myelin sheaths were observed in the rest of the visual areas. The weakest expression of the PLP/DM20 in the NFL of the retina appears to be linked to the loose appearance of its myelin sheaths. We conclude that typical and peculiar oligodendrocytes are involved in an uneven myelination process, which follows a temporo-nasal and rostro-caudal gradient in the retina and ON, and a ventro-dorsal gradient in the OT.
Collapse
Affiliation(s)
- Elena Santos
- Department of Cellular Biology, Faculty of Biology, University of La Laguna, 38206 Tenerife, Canary Islands, Spain
| | | | | | | |
Collapse
|
22
|
Shiraishi K, Itoh M, Sano K, Takashima S, Kubota T. Myelination of a fetus with Pelizaeus-Merzbacher disease: immunopathological study. Ann Neurol 2003; 54:259-62. [PMID: 12891682 DOI: 10.1002/ana.10660] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
We report an autopsied case of a 21-gestational-week fetus with duplication of the proteolipid protein (PLP) gene (PLP1). An immunohistochemical study, which can detect the specific expression of PLP, myelin basic protein, myelin-associated glycoprotein, and platelet-derived growth factor receptor alpha subunit in brain tissues, showed that the myelination was almost the same as that of age-matched controls. This result suggests that the development and migration of the oligodendrocyte is normal in Pelizaeus-Merzbacher disease until midgestation. To our knowledge, this is the first report of the myelination of a fetus with duplication of the PLP1 gene.
Collapse
Affiliation(s)
- Kazuhiro Shiraishi
- Department of Mental Retardation and Birth Defect Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo, Japan
| | | | | | | | | |
Collapse
|
23
|
Prayer D, Prayer L. Diffusion-weighted magnetic resonance imaging of cerebral white matter development. Eur J Radiol 2003; 45:235-43. [PMID: 12595108 DOI: 10.1016/s0720-048x(02)00312-1] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Diffusion-weighted magnetic resonance imaging (DWI) has become a sensitive tool to monitor white matter development. Different applications of diffusion-weighted techniques provide information about premyelinating, myelinating, and postmyelinating states of white matter maturation. Mirroring maturational processes on the cellular level, DWI has to be regarded as a morphological method as well as a functional instrument, giving insight into molecular processes during the formation of axons and myelin sheets and into the steric arrangement of white matter tracts the formation of which is strongly influenced by their function.
Collapse
Affiliation(s)
- Daniela Prayer
- University Clinic of Radiodiagnostics, Department of Neuroradiology, Waehringerguertel 18-20, 1090 Wien, Austria.
| | | |
Collapse
|
24
|
Abstract
Insufficient nutrition is known to lead to disturbances in postnatal myelin formation. This study aims to demonstrate that early myelination is altered in human twin pregnancies. Five brains of twins with a symmetric blood supply and three brains of twins with chronic fetal-fetal transfusion syndrome (one hypervolemic acceptor and two hypoxemic donors) were investigated and compared with six brains of singletons. The globus pallidus, where myelination normally starts within the prosencephalon, was studied immunohistochemically using antibodies against myelin basic protein (MBP) and with the aid of electron microscopy. In twins and donors, MBP-immunostained somata of myelin-forming oligodendrocytes were packed densely within the globus pallidus, whereas in singletons and acceptors an intense fibrous immunoreactivity was observed. Electron micrographs revealed noncompacted myelin in twins, whereas in singletons the multilaminar structure of compact myelin was observed. The results demonstrate a distinct qualitative alteration in myelination because of nutritional insufficiency during pregnancy. The lack of MBP-positive fibers (i.e., compact myelin sheaths) may be correlated to impaired maturation of oligodendroglia. The alterations described here may reflect a delayed incorporation of MBP into the processes so that the formation of compact myelin is retarded.
Collapse
Affiliation(s)
- N Ulfig
- Department of Anatomy, University of Rostock, Germany
| | | | | |
Collapse
|