1
|
Lin J, Callender JA, Mayfield JE, McClatchy DB, Ojeda-Juárez D, Pourhamzeh M, Soldau K, Kurt TD, Danque GA, Khuu H, Ronson JE, Pizzo DP, Du Y, Gruber MA, Sevillano AM, Wang J, Orrú CD, Chen J, Funk G, Aguilar-Calvo P, Aulston BD, Roy S, Rho JM, Bui JD, Newton AC, Lipton SA, Caughey B, Patrick GN, Doré K, Yates JR, Sigurdson CJ. Mutant prion protein enhances NMDA receptor activity, activates PKC, and triggers rapid excitotoxicity in mice. J Clin Invest 2025; 135:e186432. [PMID: 40185484 PMCID: PMC12077891 DOI: 10.1172/jci186432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Accepted: 03/12/2025] [Indexed: 04/07/2025] Open
Abstract
Neuronal hyperexcitability precedes synapse loss in certain neurodegenerative diseases, yet the synaptic membrane interactions and downstream signaling events remain unclear. The disordered amino terminus of the prion protein (PrPC) has been implicated in aberrant signaling in prion and Alzheimer's disease. To disrupt neuronal interactions and signaling linked to the amino terminus, we CRISPR-engineered a knockin mouse expressing mutant PrPC (G92N), generating an N-linked glycosylation site between 2 functional motifs. Mice developed seizures and necrosis of hippocampal pyramidal neurons, similar to prion-infected mice and consistent with excitotoxicity. Phosphoproteomics analysis revealed phosphorylated glutamate receptors and calcium-sensitive kinases, including protein kinase C (PKC). Additionally, 92N-PrPC-expressing neurons showed persistent calcium influx as well as dendritic beading, which was rescued by an N-methyl-d-aspartate receptor (NMDAR) antagonist. Finally, survival of Prnp92N mice was prolonged by blocking active NMDAR channels. We propose that dysregulated PrPC-NMDAR-induced signaling can trigger an excitatory-inhibitory imbalance, spongiform degeneration, and neurotoxicity and that calcium dysregulation is central to PrPC-linked neurodegeneration.
Collapse
Affiliation(s)
- Joie Lin
- Department of Pathology, UCSD, La Jolla, California, USA
| | | | | | - Daniel B. McClatchy
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California, USA
| | | | | | - Katrin Soldau
- Department of Pathology, UCSD, La Jolla, California, USA
| | | | | | - Helen Khuu
- Department of Pathology, UCSD, La Jolla, California, USA
| | | | | | - Yixing Du
- Department of Neurosciences, UCSD, School of Medicine, La Jolla, California, USA
| | | | | | - Jin Wang
- Department of Pathology, UCSD, La Jolla, California, USA
| | - Christina D. Orrú
- Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases (NIAID), NIH, Hamilton, Montana, USA
| | - Joy Chen
- Department of Pathology, UCSD, La Jolla, California, USA
| | - Gail Funk
- Department of Pathology, UCSD, La Jolla, California, USA
| | | | | | - Subhojit Roy
- Department of Pathology, UCSD, La Jolla, California, USA
- Department of Neurosciences, UCSD, School of Medicine, La Jolla, California, USA
| | - Jong M. Rho
- Department of Neurosciences, UCSD, School of Medicine, La Jolla, California, USA
| | - Jack D. Bui
- Department of Pathology, UCSD, La Jolla, California, USA
| | | | - Stuart A. Lipton
- Department of Neurosciences, UCSD, School of Medicine, La Jolla, California, USA
- Neurodegeneration New Medicines Center and Department of Molecular & Cellular Biology, The Scripps Research Institute, La Jolla, California, USA
| | - Byron Caughey
- Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases (NIAID), NIH, Hamilton, Montana, USA
| | | | - Kim Doré
- Department of Neurosciences, UCSD, School of Medicine, La Jolla, California, USA
| | - John R. Yates
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California, USA
| | - Christina J. Sigurdson
- Department of Pathology, UCSD, La Jolla, California, USA
- Department of Medicine, UCSD, La Jolla, California, USA
- Department of Pathology, Microbiology, and Immunology, UCD, Davis, California, USA
| |
Collapse
|
2
|
Balducci C, Orsini F, Cerovic M, Beeg M, Rocutto B, Dacomo L, Masone A, Busani E, Raimondi I, Lavigna G, Chen PT, Leva S, Colombo L, Zucchelli C, Musco G, Kanaan NM, Gobbi M, Chiesa R, Fioriti L, Forloni G. Tau oligomers impair memory and synaptic plasticity through the cellular prion protein. Acta Neuropathol Commun 2025; 13:17. [PMID: 39871396 PMCID: PMC11773831 DOI: 10.1186/s40478-025-01930-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Accepted: 01/13/2025] [Indexed: 01/29/2025] Open
Abstract
Deposition of abnormally phosphorylated tau aggregates is a central event leading to neuronal dysfunction and death in Alzheimer's disease (AD) and other tauopathies. Among tau aggregates, oligomers (TauOs) are considered the most toxic. AD brains show significant increase in TauOs compared to healthy controls, their concentration correlating with the severity of cognitive deficits and disease progression. In vitro and in vivo neuronal TauO exposure leads to synaptic and cognitive dysfunction, but their mechanisms of action are unclear. Evidence suggests that the cellular prion protein (PrPC) may act as a mediator of TauO neurotoxicity, as previously proposed for β-amyloid and α-synuclein oligomers. To investigate whether PrPC mediates TauO detrimental activities, we compared their effects on memory and synaptic plasticity in wild type (WT) and PrPC knockout (Prnp0/0) mice. Intracerebroventricular injection of TauOs significantly impaired recognition memory in WT but not in Prnp0/0 mice. Similarly, TauOs inhibited long-term potentiation in acute hippocampal slices from WT but not Prnp0/0 mice. Surface plasmon resonance indicated a high-affinity binding between TauOs and PrPC with a KD of 20-50 nM. Immunofluorescence analysis of naïve and PrPC-overexpressing HEK293 cells exposed to TauOs showed a PrPC dose-dependent association of TauOs with cells over time, and their co-localization with PrPC on the plasma membrane and in intracellular compartments, suggesting PrPC-may play a role in TauO internalization. These findings support the concept that PrPC mediates the detrimental activities of TauOs through a direct interaction, suggesting that targeting this interaction might be a promising therapeutic strategy for AD and other tauopathies.
Collapse
Affiliation(s)
- Claudia Balducci
- Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Via Mario Negri 2, 20156, Milan, Italy
| | - Franca Orsini
- Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Via Mario Negri 2, 20156, Milan, Italy
| | - Milica Cerovic
- Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Via Mario Negri 2, 20156, Milan, Italy
| | - Marten Beeg
- Department of Biochemistry and Molecular Pharmacology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Via Mario Negri 2, 20156, Milan, Italy
| | - Beatrice Rocutto
- Department of Biochemistry and Molecular Pharmacology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Via Mario Negri 2, 20156, Milan, Italy
| | - Letizia Dacomo
- Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Via Mario Negri 2, 20156, Milan, Italy
| | - Antonio Masone
- Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Via Mario Negri 2, 20156, Milan, Italy
| | - Eleonora Busani
- Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Via Mario Negri 2, 20156, Milan, Italy
| | - Ilaria Raimondi
- Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Via Mario Negri 2, 20156, Milan, Italy
| | - Giada Lavigna
- Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Via Mario Negri 2, 20156, Milan, Italy
| | - Po-Tao Chen
- Department of Neuroscience, Zuckerman Institute, Columbia University, New York, NY, 10027, USA
| | - Susanna Leva
- Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Via Mario Negri 2, 20156, Milan, Italy
| | - Laura Colombo
- Department of Biochemistry and Molecular Pharmacology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Via Mario Negri 2, 20156, Milan, Italy
| | - Chiara Zucchelli
- Biomolecular NMR Unit, Division of Genetics and Cell Biology, IRCCS Ospedale San Raffaele, 20132, Milan, Italy
| | - Giovanna Musco
- Biomolecular NMR Unit, Division of Genetics and Cell Biology, IRCCS Ospedale San Raffaele, 20132, Milan, Italy
| | - Nicholas M Kanaan
- Department of Translational Neuroscience, College of Human Medicine, Michigan State University, Grand Rapids, MI, 49503, USA
- Neuroscience Program, Michigan State University, East Lansing, MI, 48824, USA
| | - Marco Gobbi
- Department of Biochemistry and Molecular Pharmacology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Via Mario Negri 2, 20156, Milan, Italy
| | - Roberto Chiesa
- Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Via Mario Negri 2, 20156, Milan, Italy.
| | - Luana Fioriti
- Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Via Mario Negri 2, 20156, Milan, Italy.
- Department of Neuroscience, Zuckerman Institute, Columbia University, New York, NY, 10027, USA.
| | - Gianluigi Forloni
- Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Via Mario Negri 2, 20156, Milan, Italy.
| |
Collapse
|
3
|
Eid S, Lee S, Verkuyl CE, Almanza D, Hanna J, Shenouda S, Belotserkovsky A, Zhao W, Watts JC. The importance of prion research. Biochem Cell Biol 2024; 102:448-471. [PMID: 38996387 DOI: 10.1139/bcb-2024-0018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/14/2024] Open
Abstract
Over the past four decades, prion diseases have received considerable research attention owing to their potential to be transmitted within and across species as well as their consequences for human and animal health. The unprecedented nature of prions has led to the discovery of a paradigm of templated protein misfolding that underlies a diverse range of both disease-related and normal biological processes. Indeed, the "prion-like" misfolding and propagation of protein aggregates is now recognized as a common underlying disease mechanism in human neurodegenerative disorders such as Alzheimer's and Parkinson's disease, and the prion principle has led to the development of novel diagnostic and therapeutic strategies for these illnesses. Despite these advances, research into the fundamental biology of prion diseases has declined, likely due to their rarity and the absence of an acute human health crisis. Given the past translational influence, continued research on the etiology, pathogenesis, and transmission of prion disease should remain a priority. In this review, we highlight several important "unsolved mysteries" in the prion disease research field and how solving them may be crucial for the development of effective therapeutics, preventing future outbreaks of prion disease, and understanding the pathobiology of more common human neurodegenerative disorders.
Collapse
Affiliation(s)
- Shehab Eid
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Seojin Lee
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Claire E Verkuyl
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Dustin Almanza
- Sunnybrook Research Institute, Toronto, ON, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
| | - Joseph Hanna
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
- Sunnybrook Research Institute, Toronto, ON, Canada
| | - Sandra Shenouda
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Ari Belotserkovsky
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Wenda Zhao
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Joel C Watts
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, ON, Canada
- Department of Biochemistry, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
4
|
Gojanovich AD, Le NTT, Mercer RCC, Park S, Wu B, Anane A, Vultaggio JS, Mostoslavsky G, Harris DA. Abnormal synaptic architecture in iPSC-derived neurons from a multi-generational family with genetic Creutzfeldt-Jakob disease. Stem Cell Reports 2024; 19:1474-1488. [PMID: 39332406 PMCID: PMC11561462 DOI: 10.1016/j.stemcr.2024.08.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 08/28/2024] [Accepted: 08/29/2024] [Indexed: 09/29/2024] Open
Abstract
Genetic prion diseases are caused by mutations in PRNP, which encodes the prion protein (PrPC). Why these mutations are pathogenic, and how they alter the properties of PrPC are poorly understood. We have consented and accessed 22 individuals of a multi-generational Israeli family harboring the highly penetrant E200K PRNP mutation and generated a library of induced pluripotent stem cells (iPSCs) representing nine carriers and four non-carriers. iPSC-derived neurons from E200K carriers display abnormal synaptic architecture characterized by misalignment of postsynaptic NMDA receptors with the cytoplasmic scaffolding protein PSD95. Differentiated neurons from mutation carriers do not produce PrPSc, the aggregated and infectious conformer of PrP, suggesting that loss of a physiological function of PrPC may contribute to the disease phenotype. Our study shows that iPSC-derived neurons can provide important mechanistic insights into the pathogenesis of genetic prion diseases and can offer a powerful platform for testing candidate therapeutics.
Collapse
Affiliation(s)
- Aldana D Gojanovich
- Center for Regenerative Medicine of Boston University and Boston Medical Center, Boston, MA, USA
| | - Nhat T T Le
- Department of Biochemistry & Cell Biology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Robert C C Mercer
- Department of Biochemistry & Cell Biology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Seonmi Park
- Center for Regenerative Medicine of Boston University and Boston Medical Center, Boston, MA, USA
| | - Bei Wu
- Department of Biochemistry & Cell Biology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Alice Anane
- Creutzfeldt-Jakob Disease Foundation, Pardes Hanna-Karkur, Israel
| | - Janelle S Vultaggio
- Department of Biochemistry & Cell Biology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Gustavo Mostoslavsky
- Center for Regenerative Medicine of Boston University and Boston Medical Center, Boston, MA, USA; Department of Microbiology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA; Department of Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA.
| | - David A Harris
- Department of Biochemistry & Cell Biology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA.
| |
Collapse
|
5
|
Mehra S, Bourkas ME, Kaczmarczyk L, Stuart E, Arshad H, Griffin JK, Frost KL, Walsh DJ, Supattapone S, Booth SA, Jackson WS, Watts JC. Convergent generation of atypical prions in knockin mouse models of genetic prion disease. J Clin Invest 2024; 134:e176344. [PMID: 39087478 PMCID: PMC11291267 DOI: 10.1172/jci176344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 06/11/2024] [Indexed: 08/02/2024] Open
Abstract
Most cases of human prion disease arise due to spontaneous misfolding of WT or mutant prion protein, yet recapitulating this event in animal models has proven challenging. It remains unclear whether spontaneous prion generation can occur within the mouse lifespan in the absence of protein overexpression and how disease-causing mutations affect prion strain properties. To address these issues, we generated knockin mice that express the misfolding-prone bank vole prion protein (BVPrP). While mice expressing WT BVPrP (I109 variant) remained free from neurological disease, a subset of mice expressing BVPrP with mutations (D178N or E200K) causing genetic prion disease developed progressive neurological illness. Brains from spontaneously ill knockin mice contained prion disease-specific neuropathological changes as well as atypical protease-resistant BVPrP. Moreover, brain extracts from spontaneously ill D178N- or E200K-mutant BVPrP-knockin mice exhibited prion seeding activity and transmitted disease to mice expressing WT BVPrP. Surprisingly, the properties of the D178N- and E200K-mutant prions appeared identical before and after transmission, suggesting that both mutations guide the formation of a similar atypical prion strain. These findings imply that knockin mice expressing mutant BVPrP spontaneously develop a bona fide prion disease and that mutations causing prion diseases may share a uniform initial mechanism of action.
Collapse
Affiliation(s)
- Surabhi Mehra
- Tanz Centre for Research in Neurodegenerative Diseases and
| | - Matthew E.C. Bourkas
- Tanz Centre for Research in Neurodegenerative Diseases and
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
| | - Lech Kaczmarczyk
- Wallenberg Center for Molecular Medicine, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Erica Stuart
- Tanz Centre for Research in Neurodegenerative Diseases and
| | - Hamza Arshad
- Tanz Centre for Research in Neurodegenerative Diseases and
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
| | | | - Kathy L. Frost
- One Health Division, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Manitoba, Canada
| | | | - Surachai Supattapone
- Department of Biochemistry and Cell Biology and
- Department of Medicine, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA
| | - Stephanie A. Booth
- One Health Division, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Manitoba, Canada
- Department of Medical Microbiology and Infectious Diseases, Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Walker S. Jackson
- Wallenberg Center for Molecular Medicine, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Joel C. Watts
- Tanz Centre for Research in Neurodegenerative Diseases and
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
6
|
Kamps J, Bader V, Winklhofer KF, Tatzelt J. Liquid-liquid phase separation of the prion protein is regulated by the octarepeat domain independently of histidines and copper. J Biol Chem 2024; 300:107310. [PMID: 38657863 PMCID: PMC11126799 DOI: 10.1016/j.jbc.2024.107310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 04/12/2024] [Accepted: 04/15/2024] [Indexed: 04/26/2024] Open
Abstract
Liquid-liquid phase separation (LLPS) of the mammalian prion protein is mainly driven by its intrinsically disordered N-terminal domain (N-PrP). However, the specific intermolecular interactions that promote LLPS remain largely unknown. Here, we used extensive mutagenesis and comparative analyses of evolutionarily distant PrP species to gain insight into the relationship between protein sequence and phase behavior. LLPS of mouse PrP is dependent on two polybasic motifs in N-PrP that are conserved in all tetrapods. A unique feature of mammalian N-PrP is the octarepeat domain with four histidines that mediate binding to copper ions. We now show that the octarepeat is critical for promoting LLPS and preventing the formation of PrP aggregates. Amphibian N-PrP, which contains the polybasic motifs but lacks a repeat domain and histidines, does not undergo LLPS and forms nondynamic protein assemblies indicative of aggregates. Insertion of the mouse octarepeat domain restored LLPS of amphibian N-PrP, supporting its essential role in regulating the phase transition of PrP. This activity of the octarepeat domain was neither dependent on the four highly conserved histidines nor on copper binding. Instead, the regularly spaced tryptophan residues were critical for regulating LLPS, presumably via cation-π interactions with the polybasic motifs. Our study reveals a novel role for the tryptophan residues in the octarepeat in controlling phase transition of PrP and indicates that the ability of mammalian PrP to undergo LLPS has evolved with the octarepeat in the intrinsically disordered domain but independently of the histidines.
Collapse
Affiliation(s)
- Janine Kamps
- Department Biochemistry of Neurodegenerative Diseases, Institute of Biochemistry and Pathobiochemistry, Ruhr University Bochum, Bochum, Germany; Cluster of Excellence RESOLV, Bochum, Germany
| | - Verian Bader
- Department Biochemistry of Neurodegenerative Diseases, Institute of Biochemistry and Pathobiochemistry, Ruhr University Bochum, Bochum, Germany; Department Molecular Cell Biology, Institute of Biochemistry and Pathobiochemistry, Ruhr University Bochum, Bochum, Germany
| | - Konstanze F Winklhofer
- Cluster of Excellence RESOLV, Bochum, Germany; Department Molecular Cell Biology, Institute of Biochemistry and Pathobiochemistry, Ruhr University Bochum, Bochum, Germany
| | - Jörg Tatzelt
- Department Biochemistry of Neurodegenerative Diseases, Institute of Biochemistry and Pathobiochemistry, Ruhr University Bochum, Bochum, Germany; Cluster of Excellence RESOLV, Bochum, Germany.
| |
Collapse
|
7
|
Paspaltsis I, Kanata E, Sotiriadis S, Correia SS, Schmitz M, Zerr I, Dafou D, Xanthopoulos K, Sklaviadis T. A Comparison of RML Prion Inactivation Efficiency by Heterogeneous and Homogeneous Photocatalysis. Pathogens 2024; 13:420. [PMID: 38787272 PMCID: PMC11124347 DOI: 10.3390/pathogens13050420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 05/10/2024] [Accepted: 05/11/2024] [Indexed: 05/25/2024] Open
Abstract
Prions are proteinaceous pathogens responsible for a variety of devastating diseases in mammals, including scrapie in sheep and goats, chronic wasting disease in cervids, and Creutzfeldt-Jakob disease (CJD) in humans. They are characterized by their exceptional persistence to common inactivation procedures. This applies to all possible sources of prion contamination as prions may be present in the tissues and biological fluids of infected individuals. Hence, efficient prion inactivation procedures are still being sought to minimize the risk of intra- or inter-species transmission. In the past, photocatalytic treatment has been proven to be capable of efficiently oxidizing and inactivating prions. In the present study, the efficacy of homogeneous photo-Fenton-based photocatalysis as well as heterogeneous photocatalysis with TiO2 in reducing RML mouse scrapie infectivity was evaluated. Prion inactivation was assessed by means of a bioassay, and the results were confirmed by in vitro experiments. While the prion infectivity of the RML mouse scrapie was reduced after treatment with the photo-Fenton reagent, the heterogeneous photocatalytic treatment of the same prion strain completely eliminated prion infectivity.
Collapse
Affiliation(s)
- Ioannis Paspaltsis
- Laboratory of Pharmacology, Department of Pharmacy, School of Health Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (I.P.); (E.K.); (S.S.)
| | - Eirini Kanata
- Laboratory of Pharmacology, Department of Pharmacy, School of Health Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (I.P.); (E.K.); (S.S.)
| | - Sotirios Sotiriadis
- Laboratory of Pharmacology, Department of Pharmacy, School of Health Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (I.P.); (E.K.); (S.S.)
| | - Susana Silva Correia
- Department of Neurology, University Medicine Goettingen, German Center for Neurodegenerative Diseases (DZNE), 37075 Göttingen, Germany
| | - Matthias Schmitz
- Department of Neurology, University Medicine Goettingen, German Center for Neurodegenerative Diseases (DZNE), 37075 Göttingen, Germany
| | - Inga Zerr
- Department of Neurology, University Medicine Goettingen, German Center for Neurodegenerative Diseases (DZNE), 37075 Göttingen, Germany
| | - Dimitra Dafou
- Department of Genetics, Development and Molecular Biology, School of Biology, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Konstantinos Xanthopoulos
- Laboratory of Pharmacology, Department of Pharmacy, School of Health Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (I.P.); (E.K.); (S.S.)
- Centre for Research and Technology Hellas, Institute of Applied Biosciences, 57001 Thermi, Greece
| | - Theodoros Sklaviadis
- Laboratory of Pharmacology, Department of Pharmacy, School of Health Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (I.P.); (E.K.); (S.S.)
| |
Collapse
|
8
|
Polido SA, Stuani C, Voigt A, Banik P, Kamps J, Bader V, Grover P, Krause LJ, Zerr I, Matschke J, Glatzel M, Winklhofer KF, Buratti E, Tatzelt J. Cross-seeding by prion protein inactivates TDP-43. Brain 2024; 147:240-254. [PMID: 37669322 DOI: 10.1093/brain/awad289] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 07/14/2023] [Accepted: 08/03/2023] [Indexed: 09/07/2023] Open
Abstract
A common pathological denominator of various neurodegenerative diseases is the accumulation of protein aggregates. Neurotoxic effects are caused by a loss of the physiological activity of the aggregating protein and/or a gain of toxic function of the misfolded protein conformers. In transmissible spongiform encephalopathies or prion diseases, neurodegeneration is caused by aberrantly folded isoforms of the prion protein (PrP). However, it is poorly understood how pathogenic PrP conformers interfere with neuronal viability. Employing in vitro approaches, cell culture, animal models and patients' brain samples, we show that misfolded PrP can induce aggregation and inactivation of TAR DNA-binding protein-43 (TDP-43). Purified PrP aggregates interact with TDP-43 in vitro and in cells and induce the conversion of soluble TDP-43 into non-dynamic protein assemblies. Similarly, mislocalized PrP conformers in the cytosol bind to and sequester TDP-43 in cytosolic aggregates. As a consequence, TDP-43-dependent splicing activity in the nucleus is significantly decreased, leading to altered protein expression in cells with cytosolic PrP aggregates. Finally, we present evidence for cytosolic TDP-43 aggregates in neurons of transgenic flies expressing mammalian PrP and Creutzfeldt-Jakob disease patients. Our study identified a novel mechanism of how aberrant PrP conformers impair physiological pathways by cross-seeding.
Collapse
Affiliation(s)
- Stella A Polido
- Department of Biochemistry of Neurodegenerative Diseases, Institute of Biochemistry and Pathobiochemistry, Ruhr University Bochum, 44801 Bochum, Germany
| | - Cristiana Stuani
- International Centre for Genetic Engineering and Biotechnology (ICGEB), 34149 Trieste, Italy
| | - Aaron Voigt
- Department of Neurology, Medical Faculty, University Hospital, RWTH Aachen University, 52074 Aachen, Germany
| | - Papiya Banik
- Department of Biochemistry of Neurodegenerative Diseases, Institute of Biochemistry and Pathobiochemistry, Ruhr University Bochum, 44801 Bochum, Germany
| | - Janine Kamps
- Department of Biochemistry of Neurodegenerative Diseases, Institute of Biochemistry and Pathobiochemistry, Ruhr University Bochum, 44801 Bochum, Germany
- Cluster of Excellence RESOLV, Ruhr University Bochum, 44801 Bochum, Germany
| | - Verian Bader
- Department of Biochemistry of Neurodegenerative Diseases, Institute of Biochemistry and Pathobiochemistry, Ruhr University Bochum, 44801 Bochum, Germany
- Department of Molecular Cell Biology, Institute of Biochemistry and Pathobiochemistry, Ruhr University Bochum, 44801 Bochum, Germany
| | - Prerna Grover
- Department of Biochemistry of Neurodegenerative Diseases, Institute of Biochemistry and Pathobiochemistry, Ruhr University Bochum, 44801 Bochum, Germany
| | - Laura J Krause
- Cluster of Excellence RESOLV, Ruhr University Bochum, 44801 Bochum, Germany
- Department of Molecular Cell Biology, Institute of Biochemistry and Pathobiochemistry, Ruhr University Bochum, 44801 Bochum, Germany
| | - Inga Zerr
- Department of Neurology, University Medical Center Göttingen, 37075 Göttingen, Germany
| | - Jakob Matschke
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany
| | - Markus Glatzel
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany
| | - Konstanze F Winklhofer
- Cluster of Excellence RESOLV, Ruhr University Bochum, 44801 Bochum, Germany
- Department of Molecular Cell Biology, Institute of Biochemistry and Pathobiochemistry, Ruhr University Bochum, 44801 Bochum, Germany
| | - Emanuele Buratti
- International Centre for Genetic Engineering and Biotechnology (ICGEB), 34149 Trieste, Italy
| | - Jörg Tatzelt
- Department of Biochemistry of Neurodegenerative Diseases, Institute of Biochemistry and Pathobiochemistry, Ruhr University Bochum, 44801 Bochum, Germany
- Cluster of Excellence RESOLV, Ruhr University Bochum, 44801 Bochum, Germany
| |
Collapse
|
9
|
Wu YZ, Gao LP, Chen DD, Liang DL, Chen J, Xiao K, Hu C, Chen C, Shi Q, Dong XP. Spontaneous prion disease in homozygous and heterozygous transgenic mouse models of T188K genetic Creutzfeldt-Jakob disease. Neurobiol Aging 2023; 131:156-169. [PMID: 37660403 DOI: 10.1016/j.neurobiolaging.2023.07.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 07/20/2023] [Accepted: 07/25/2023] [Indexed: 09/05/2023]
Abstract
Genetic Creutzfeldt-Jakob disease with T188K mutation (T188K gCJD) is the most frequent genetic prion disease in China. To explore the penetration of T188K mutation and the pathogenesis of T188K gCJD, we constructed 2 lines of transgenic mouse models: homozygous Tg188K+/+ mice containing T188K mutation in 2 alleles of human PRNP background and heterozygous Tg188K+/- mice containing 1 allele of T188K human PRNP and 1 allele of the wild-type mouse PRNP. Spontaneous neurological illnesses were identified in all Tg188K mice at their old ages (750-800 days old). About half of the Tg188K mice died prior to the final observation (930 days old). Extensive spongiosis, PrPSc deposit, and reactive gliosis of astrocytes and microglia are neuropathologically identified, showing time-dependent exacerbation. Proteinase K-resistant PrP was detected in the brain, muscle, and intestine tissues, and positive real-time quaking-induced conversion reactions were elicited by the brain and muscle tissues of Tg188K mice. Those data verify that the constructed Tg188K mice highly mimic the clinicopathology of human T188K gCJD, strongly indicating the pathogenicity of T188K mutated PrP.
Collapse
Affiliation(s)
- Yue-Zhang Wu
- National Key-Laboratory of Intelligent Tracking and Forecasting for Infectious Disease, NHC Key Laboratory of Medical Virology and Viral Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Li-Ping Gao
- National Key-Laboratory of Intelligent Tracking and Forecasting for Infectious Disease, NHC Key Laboratory of Medical Virology and Viral Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Dong-Dong Chen
- National Key-Laboratory of Intelligent Tracking and Forecasting for Infectious Disease, NHC Key Laboratory of Medical Virology and Viral Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Dong-Lin Liang
- National Key-Laboratory of Intelligent Tracking and Forecasting for Infectious Disease, NHC Key Laboratory of Medical Virology and Viral Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Jia Chen
- National Key-Laboratory of Intelligent Tracking and Forecasting for Infectious Disease, NHC Key Laboratory of Medical Virology and Viral Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Kang Xiao
- National Key-Laboratory of Intelligent Tracking and Forecasting for Infectious Disease, NHC Key Laboratory of Medical Virology and Viral Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Chao Hu
- National Key-Laboratory of Intelligent Tracking and Forecasting for Infectious Disease, NHC Key Laboratory of Medical Virology and Viral Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Cao Chen
- National Key-Laboratory of Intelligent Tracking and Forecasting for Infectious Disease, NHC Key Laboratory of Medical Virology and Viral Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China; Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, China
| | - Qi Shi
- National Key-Laboratory of Intelligent Tracking and Forecasting for Infectious Disease, NHC Key Laboratory of Medical Virology and Viral Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China; China Academy of Chinese Medical Sciences, Beijing, China.
| | - Xiao-Ping Dong
- National Key-Laboratory of Intelligent Tracking and Forecasting for Infectious Disease, NHC Key Laboratory of Medical Virology and Viral Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China; Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, China; China Academy of Chinese Medical Sciences, Beijing, China; Shanghai Institute of Infectious Disease and Biosafety, Shanghai, China.
| |
Collapse
|
10
|
Foliaki ST, Haigh CL. Prion propagation and cellular dysfunction in prion disease: Disconnecting the dots. PLoS Pathog 2023; 19:e1011714. [PMID: 37883332 PMCID: PMC10602321 DOI: 10.1371/journal.ppat.1011714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2023] Open
Affiliation(s)
- Simote T. Foliaki
- Laboratory of Neurological Infections and Immunity, Division of Intramural Research, Rocky Mountain Laboratories, National Institutes of Health, Hamilton, Montana, United States of America
| | - Cathryn L. Haigh
- Laboratory of Neurological Infections and Immunity, Division of Intramural Research, Rocky Mountain Laboratories, National Institutes of Health, Hamilton, Montana, United States of America
| |
Collapse
|
11
|
Wang F, Pritzkow S, Soto C. PMCA for ultrasensitive detection of prions and to study disease biology. Cell Tissue Res 2023; 392:307-321. [PMID: 36567368 PMCID: PMC9790818 DOI: 10.1007/s00441-022-03727-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 12/08/2022] [Indexed: 12/27/2022]
Abstract
The emergence of a novel class of infectious agent composed exclusively of a misfolded protein (termed prions) has been a challenge in modern biomedicine. Despite similarities on the behavior of prions with respect to conventional pathogens, the many uncertainties regarding the biology and virulence of prions make them a worrisome paradigm. Since prions do not contain nucleic acids and rely on a very different way of replication and spreading, it was necessary to invent a novel technology to study them. In this article, we provide an overview of such a technology, termed protein misfolding cyclic amplification (PMCA), and summarize its many applications to detect prions and understand prion biology.
Collapse
Affiliation(s)
- Fei Wang
- Mitchell Center for Alzheimer's Disease and Related Brain Disorders, Department of Neurology, University of Texas McGovern Medical School, Houston, TX, 77030, USA
| | - Sandra Pritzkow
- Mitchell Center for Alzheimer's Disease and Related Brain Disorders, Department of Neurology, University of Texas McGovern Medical School, Houston, TX, 77030, USA
| | - Claudio Soto
- Mitchell Center for Alzheimer's Disease and Related Brain Disorders, Department of Neurology, University of Texas McGovern Medical School, Houston, TX, 77030, USA.
| |
Collapse
|
12
|
Vallabh SM, Zou D, Pitstick R, O’Moore J, Peters J, Silvius D, Kriz J, Jackson WS, Carlson GA, Minikel EV, Cabin DE. Therapeutic Trial of anle138b in Mouse Models of Genetic Prion Disease. J Virol 2023; 97:e0167222. [PMID: 36651748 PMCID: PMC9973041 DOI: 10.1128/jvi.01672-22] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 12/23/2022] [Indexed: 01/19/2023] Open
Abstract
Phenotypic screening has yielded small-molecule inhibitors of prion replication that are effective in vivo against certain prion strains but not others. Here, we sought to test the small molecule anle138b in multiple mouse models of prion disease. In mice inoculated with the RML strain of prions, anle138b doubled survival and durably suppressed astrogliosis measured by live-animal bioluminescence imaging. In knock-in mouse models of the D178N and E200K mutations that cause genetic prion disease, however, we were unable to identify a clear, quantifiable disease endpoint against which to measure therapeutic efficacy. Among untreated animals, the mutations did not impact overall survival, and bioluminescence remained low out to >20 months of age. Vacuolization and PrP deposition were observed in some brain regions in a subset of mutant animals but appeared to be unable to carry the weight of a primary endpoint in a therapeutic study. We conclude that not all animal models of prion disease are suited to well-powered therapeutic efficacy studies, and care should be taken in choosing the models that will support drug development programs. IMPORTANCE There is an urgent need to develop drugs for prion disease, a currently untreatable neurodegenerative disease. In this effort, there is a debate over which animal models can best support a drug development program. While the study of prion disease benefits from excellent animal models because prions naturally afflict many different mammals, different models have different capabilities and limitations. Here, we conducted a therapeutic efficacy study of the drug candidate anle138b in mouse models with two of the most common mutations that cause genetic prion disease. In a more typical model where prions are injected directly into the brain, we found anle138b to be effective. In the genetic models, however, the animals never reached a clear, measurable point of disease onset. We conclude that not all prion disease animal models are ideally suited to drug efficacy studies, and well-defined, quantitative disease metrics should be a priority.
Collapse
Affiliation(s)
- Sonia M. Vallabh
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
- McCance Center for Brain Health, Massachusetts General Hospital, Boston, Massachusetts, USA
- Department of Neurology, Massachusetts General Hospital, Boston, Massachusetts, USA
- Department of Neurology, Harvard Medical School, Boston, Massachusetts, USA
- Prion Alliance, Cambridge, Massachusetts, USA
| | - Dan Zou
- Montana Veterinary Diagnostic Laboratory, Bozeman, Montana, USA
| | - Rose Pitstick
- McLaughlin Research Institute, Great Falls, Montana, USA
| | - Jill O’Moore
- McLaughlin Research Institute, Great Falls, Montana, USA
| | - Janet Peters
- McLaughlin Research Institute, Great Falls, Montana, USA
| | - Derek Silvius
- McLaughlin Research Institute, Great Falls, Montana, USA
| | - Jasna Kriz
- Cervo Brain Research Center, Université Laval, Québec, Québec, Canada
| | - Walker S. Jackson
- Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - George A. Carlson
- Institute for Neurodegenerative Diseases, University of California—San Francisco, San Francisco, California, USA
| | - Eric Vallabh Minikel
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
- McCance Center for Brain Health, Massachusetts General Hospital, Boston, Massachusetts, USA
- Department of Neurology, Massachusetts General Hospital, Boston, Massachusetts, USA
- Department of Neurology, Harvard Medical School, Boston, Massachusetts, USA
- Prion Alliance, Cambridge, Massachusetts, USA
| | | |
Collapse
|
13
|
Reimann RR, Puzio M, Rosati A, Emmenegger M, Schneider BL, Valdés P, Huang D, Caflisch A, Aguzzi A. Rapid ex vivo reverse genetics identifies the essential determinants of prion protein toxicity. Brain Pathol 2022; 33:e13130. [PMID: 36329611 PMCID: PMC10041163 DOI: 10.1111/bpa.13130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 10/14/2022] [Indexed: 11/06/2022] Open
Abstract
The cellular prion protein PrPC mediates the neurotoxicity of prions and other protein aggregates through poorly understood mechanisms. Antibody-derived ligands against the globular domain of PrPC (GDL) can also initiate neurotoxicity by inducing an intramolecular R208 -H140 hydrogen bond ("H-latch") between the α2-α3 and β2-α2 loops of PrPC . Importantly, GDL that suppresses the H-latch prolong the life of prion-infected mice, suggesting that GDL toxicity and prion infections exploit convergent pathways. To define the structural underpinnings of these phenomena, we transduced 19 individual PrPC variants to PrPC -deficient cerebellar organotypic cultured slices using adenovirus-associated viral vectors (AAV). We report that GDL toxicity requires a single N-proximal cationic residue (K27 or R27 ) within PrPC . Alanine substitution of K27 also prevented the toxicity of PrPC mutants that induce Shmerling syndrome, a neurodegenerative disease that is suppressed by co-expression of wild-type PrPC . K27 may represent an actionable target for compounds aimed at preventing prion-related neurodegeneration.
Collapse
Affiliation(s)
| | - Martina Puzio
- Institute of Neuropathology University of Zurich Zurich Switzerland
| | - Antonella Rosati
- Institute of Neuropathology University of Zurich Zurich Switzerland
| | - Marc Emmenegger
- Institute of Neuropathology University of Zurich Zurich Switzerland
| | - Bernard L. Schneider
- Brain Mind Institute, Ecole Polytechnique Fédérale de Lausanne Lausanne Switzerland
| | - Pamela Valdés
- Brain Mind Institute, Ecole Polytechnique Fédérale de Lausanne Lausanne Switzerland
| | - Danzhi Huang
- Department of Biochemistry University of Zürich Zürich Switzerland
| | - Amedeo Caflisch
- Department of Biochemistry University of Zürich Zürich Switzerland
| | - Adriano Aguzzi
- Institute of Neuropathology University of Zurich Zurich Switzerland
| |
Collapse
|
14
|
Scalabrino G. Newly Identified Deficiencies in the Multiple Sclerosis Central Nervous System and Their Impact on the Remyelination Failure. Biomedicines 2022; 10:biomedicines10040815. [PMID: 35453565 PMCID: PMC9026986 DOI: 10.3390/biomedicines10040815] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 03/18/2022] [Accepted: 03/21/2022] [Indexed: 12/14/2022] Open
Abstract
The pathogenesis of multiple sclerosis (MS) remains enigmatic and controversial. Myelin sheaths in the central nervous system (CNS) insulate axons and allow saltatory nerve conduction. MS brings about the destruction of myelin sheaths and the myelin-producing oligodendrocytes (ODCs). The conundrum of remyelination failure is, therefore, crucial in MS. In this review, the roles of epidermal growth factor (EGF), normal prions, and cobalamin in CNS myelinogenesis are briefly summarized. Thereafter, some findings of other authors and ourselves on MS and MS-like models are recapitulated, because they have shown that: (a) EGF is significantly decreased in the CNS of living or deceased MS patients; (b) its repeated administration to mice in various MS-models prevents demyelination and inflammatory reaction; (c) as was the case for EGF, normal prion levels are decreased in the MS CNS, with a strong correspondence between liquid and tissue levels; and (d) MS cobalamin levels are increased in the cerebrospinal fluid, but decreased in the spinal cord. In fact, no remyelination can occur in MS if these molecules (essential for any form of CNS myelination) are lacking. Lastly, other non-immunological MS abnormalities are reviewed. Together, these results have led to a critical reassessment of MS pathogenesis, partly because EGF has little or no role in immunology.
Collapse
Affiliation(s)
- Giuseppe Scalabrino
- Department of Biomedical Sciences for Health, University of Milan, 20133 Milan, Italy
| |
Collapse
|
15
|
Dematteis G, Restelli E, Vanella VV, Manfredi M, Marengo E, Corazzari M, Genazzani AA, Chiesa R, Lim D, Tapella L. Calcineurin Controls Cellular Prion Protein Expression in Mouse Astrocytes. Cells 2022; 11:cells11040609. [PMID: 35203261 PMCID: PMC8870693 DOI: 10.3390/cells11040609] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 02/04/2022] [Accepted: 02/08/2022] [Indexed: 02/05/2023] Open
Abstract
Prion diseases arise from the conformational conversion of the cellular prion protein (PrPC) into a self-replicating prion isoform (PrPSc). Although this process has been studied mostly in neurons, a growing body of evidence suggests that astrocytes express PrPC and are able to replicate and accumulate PrPSc. Currently, prion diseases remain incurable, while downregulation of PrPC represents the most promising therapy due to the reduction of the substrate for prion conversion. Here we show that the astrocyte-specific genetic ablation or pharmacological inhibition of the calcium-activated phosphatase calcineurin (CaN) reduces PrPC expression in astrocytes. Immunocytochemical analysis of cultured CaN-KO astrocytes and isolation of synaptosomal compartments from the hippocampi of astrocyte-specific CaN-KO (ACN-KO) mice suggest that PrPC is downregulated both in vitro and in vivo. The downregulation occurs without affecting the glycosylation of PrPC and without alteration of its proteasomal or lysosomal degradation. Direct assessment of the protein synthesis rate and shotgun mass spectrometry proteomics analysis suggest that the reduction of PrPC is related to the impairment of global protein synthesis in CaN-KO astrocytes. When WT-PrP and PrP-D177N, a mouse homologue of a human mutation associated with the inherited prion disease fatal familial insomnia, were expressed in astrocytes, CaN-KO astrocytes showed an aberrant localization of both WT-PrP and PrP-D177N variants with predominant localization to the Golgi apparatus, suggesting that ablation of CaN affects both WT and mutant PrP proteins. These results provide new mechanistic details in relation to the regulation of PrP expression in astrocytes, suggesting the therapeutic potential of astroglial cells.
Collapse
Affiliation(s)
- Giulia Dematteis
- Department of Pharmaceutical Sciences, Università del Piemonte Orientale “Amedeo Avogadro”, 28100 Novara, Italy; (G.D.); (A.A.G.)
| | - Elena Restelli
- Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, 20156 Milan, Italy; (E.R.); (R.C.)
| | - Virginia Vita Vanella
- Department of Translational Medicine, Center for Translational Research on Autoimmune and Allergic Disease (CAAD), Università del Piemonte Orientale “Amedeo Avogadro”, 28100 Novara, Italy; (V.V.V.); (M.M.)
| | - Marcello Manfredi
- Department of Translational Medicine, Center for Translational Research on Autoimmune and Allergic Disease (CAAD), Università del Piemonte Orientale “Amedeo Avogadro”, 28100 Novara, Italy; (V.V.V.); (M.M.)
| | - Emilio Marengo
- Department of Sciences and Technological Innovation, Università del Piemonte Orientale “Amedeo Avogadro”, 28100 Novara, Italy;
| | - Marco Corazzari
- Department of Health Science (DSS), Center for Translational Research on Autoimmune and Allergic Disease (CAAD) & Interdisciplinary Research Center of Autoimmune Diseases (IRCAD), Università del Piemonte Orientale “Amedeo Avogadro”, 28100 Novara, Italy;
| | - Armando A. Genazzani
- Department of Pharmaceutical Sciences, Università del Piemonte Orientale “Amedeo Avogadro”, 28100 Novara, Italy; (G.D.); (A.A.G.)
| | - Roberto Chiesa
- Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, 20156 Milan, Italy; (E.R.); (R.C.)
| | - Dmitry Lim
- Department of Pharmaceutical Sciences, Università del Piemonte Orientale “Amedeo Avogadro”, 28100 Novara, Italy; (G.D.); (A.A.G.)
- Correspondence: (D.L.); (L.T.); Tel.: +39-0321-375822 (L.T.)
| | - Laura Tapella
- Department of Pharmaceutical Sciences, Università del Piemonte Orientale “Amedeo Avogadro”, 28100 Novara, Italy; (G.D.); (A.A.G.)
- Correspondence: (D.L.); (L.T.); Tel.: +39-0321-375822 (L.T.)
| |
Collapse
|
16
|
Chassefeyre R, Chaiamarit T, Verhelle A, Novak SW, Andrade LR, Leitão ADG, Manor U, Encalada SE. Endosomal sorting drives the formation of axonal prion protein endoggresomes. SCIENCE ADVANCES 2021; 7:eabg3693. [PMID: 34936461 PMCID: PMC8694590 DOI: 10.1126/sciadv.abg3693] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 11/05/2021] [Indexed: 05/15/2023]
Abstract
The pathogenic aggregation of misfolded prion protein (PrP) in axons underlies prion disease pathologies. The molecular mechanisms driving axonal misfolded PrP aggregate formation leading to neurotoxicity are unknown. We found that the small endolysosomal guanosine triphosphatase (GTPase) Arl8b recruits kinesin-1 and Vps41 (HOPS) onto endosomes carrying misfolded mutant PrP to promote their axonal entry and homotypic fusion toward aggregation inside enlarged endomembranes that we call endoggresomes. This axonal rapid endosomal sorting and transport-dependent aggregation (ARESTA) mechanism forms pathologic PrP endoggresomes that impair calcium dynamics and reduce neuronal viability. Inhibiting ARESTA diminishes endoggresome formation, rescues calcium influx, and prevents neuronal death. Our results identify ARESTA as a key pathway for the regulation of endoggresome formation and a new actionable antiaggregation target to ameliorate neuronal dysfunction in the prionopathies.
Collapse
Affiliation(s)
- Romain Chassefeyre
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA
- Dorris Neuroscience Center, The Scripps Research Institute, La Jolla, CA 92037, USA
- Neurodegeneration New Medicines Center, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Tai Chaiamarit
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA
- Dorris Neuroscience Center, The Scripps Research Institute, La Jolla, CA 92037, USA
- Neurodegeneration New Medicines Center, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Adriaan Verhelle
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA
- Dorris Neuroscience Center, The Scripps Research Institute, La Jolla, CA 92037, USA
- Neurodegeneration New Medicines Center, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Sammy Weiser Novak
- Waitt Advanced Biophotonics Center, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Leonardo R. Andrade
- Waitt Advanced Biophotonics Center, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - André D. G. Leitão
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA
- Dorris Neuroscience Center, The Scripps Research Institute, La Jolla, CA 92037, USA
- Neurodegeneration New Medicines Center, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Uri Manor
- Waitt Advanced Biophotonics Center, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Sandra E. Encalada
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA
- Dorris Neuroscience Center, The Scripps Research Institute, La Jolla, CA 92037, USA
- Neurodegeneration New Medicines Center, The Scripps Research Institute, La Jolla, CA 92037, USA
| |
Collapse
|
17
|
Prion Protein Biology Through the Lens of Liquid-Liquid Phase Separation. J Mol Biol 2021; 434:167368. [PMID: 34808226 DOI: 10.1016/j.jmb.2021.167368] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 11/12/2021] [Accepted: 11/14/2021] [Indexed: 12/29/2022]
Abstract
Conformational conversion of the α-helix-rich cellular prion protein into the misfolded, β-rich, aggregated, scrapie form underlies the molecular basis of prion diseases that represent a class of invariably fatal, untreatable, and transmissible neurodegenerative diseases. However, despite the extensive and rigorous research, there is a significant gap in the understanding of molecular mechanisms that contribute to prion pathogenesis. In this review, we describe the historical perspective of the development of the prion concept and the current state of knowledge of prion biology including structural, molecular, and cellular aspects of the prion protein. We then summarize the putative functional role of the N-terminal intrinsically disordered segment of the prion protein. We next describe the ongoing efforts in elucidating the prion phase behavior and the emerging role of liquid-liquid phase separation that can have potential functional relevance and can offer an alternate non-canonical pathway involving conformational conversion into a disease-associated form. We also attempt to shed light on the evolutionary perspective of the prion protein highlighting the potential role of intrinsic disorder in prion protein biology and summarize a few important questions associated with the phase transitions of the prion protein. Delving deeper into these key aspects can pave the way for a detailed understanding of the critical molecular determinants of the prion phase transition and its relevance to physiology and neurodegenerative diseases.
Collapse
|
18
|
Virus Infection, Genetic Mutations, and Prion Infection in Prion Protein Conversion. Int J Mol Sci 2021; 22:ijms222212439. [PMID: 34830321 PMCID: PMC8624980 DOI: 10.3390/ijms222212439] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 11/14/2021] [Accepted: 11/16/2021] [Indexed: 01/04/2023] Open
Abstract
Conformational conversion of the cellular isoform of prion protein, PrPC, into the abnormally folded, amyloidogenic isoform, PrPSc, is an underlying pathogenic mechanism in prion diseases. The diseases manifest as sporadic, hereditary, and acquired disorders. Etiological mechanisms driving the conversion of PrPC into PrPSc are unknown in sporadic prion diseases, while prion infection and specific mutations in the PrP gene are known to cause the conversion of PrPC into PrPSc in acquired and hereditary prion diseases, respectively. We recently reported that a neurotropic strain of influenza A virus (IAV) induced the conversion of PrPC into PrPSc as well as formation of infectious prions in mouse neuroblastoma cells after infection, suggesting the causative role of the neuronal infection of IAV in sporadic prion diseases. Here, we discuss the conversion mechanism of PrPC into PrPSc in different types of prion diseases, by presenting our findings of the IAV infection-induced conversion of PrPC into PrPSc and by reviewing the so far reported transgenic animal models of hereditary prion diseases and the reverse genetic studies, which have revealed the structure-function relationship for PrPC to convert into PrPSc after prion infection.
Collapse
|
19
|
Lavigna G, Masone A, Bouybayoune I, Bertani I, Lucchetti J, Gobbi M, Porcu L, Zordan S, Rigamonti M, Imeri L, Restelli E, Chiesa R. Doxycycline rescues recognition memory and circadian motor rhythmicity but does not prevent terminal disease in fatal familial insomnia mice. Neurobiol Dis 2021; 158:105455. [PMID: 34358614 PMCID: PMC8463834 DOI: 10.1016/j.nbd.2021.105455] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 07/28/2021] [Accepted: 07/29/2021] [Indexed: 01/15/2023] Open
Abstract
Fatal familial insomnia (FFI) is a dominantly inherited prion disease linked to the D178N mutation in the gene encoding the prion protein (PrP). Symptoms, including insomnia, memory loss and motor abnormalities, appear around 50 years of age, leading to death within two years. No treatment is available. A ten-year clinical trial of doxycycline (doxy) is under way in healthy individuals at risk of FFI to test whether presymptomatic doxy prevents or delays the onset of disease. To assess the drug's effect in a tractable disease model, we used Tg(FFI-26) mice, which accumulate aggregated and protease-resistant PrP in their brains and develop a fatal neurological illness highly reminiscent of FFI. Mice were treated daily with 10 mg/kg doxy starting from a presymptomatic stage for twenty weeks. Doxy rescued memory deficits and restored circadian motor rhythmicity in Tg(FFI-26) mice. However, it did not prevent the onset and progression of motor dysfunction, clinical signs and progression to terminal disease. Doxy did not change the amount of aggregated and protease-resistant PrP, but reduced microglial activation in the hippocampus. Presymptomatic doxy treatment rescues cognitive impairment and the motor correlates of sleep dysfunction in Tg(FFI-26) mice but does not prevent fatal disease.
Collapse
Affiliation(s)
- Giada Lavigna
- Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Antonio Masone
- Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Ihssane Bouybayoune
- Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Ilaria Bertani
- Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Jacopo Lucchetti
- Department of Molecular Biochemistry and Pharmacology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Marco Gobbi
- Department of Molecular Biochemistry and Pharmacology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Luca Porcu
- Department of Oncology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | | | | | - Luca Imeri
- Department of Health Sciences, University of Milan, Milan, Italy
| | - Elena Restelli
- Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Roberto Chiesa
- Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy.
| |
Collapse
|
20
|
Shiraishi N, Hirano Y. Combination of Copper Ions and Nucleotide Generates Aggregates from Prion Protein Fragments in the N-Terminal Domain. Protein Pept Lett 2021; 27:782-792. [PMID: 32096738 DOI: 10.2174/0929866527666200225124829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 12/13/2019] [Accepted: 12/17/2019] [Indexed: 11/22/2022]
Abstract
BACKGROUND It has been previously found that PrP23-98, which contains four highly conserved octarepeats (residues 60-91) and one partial repeat (residues 92-96), polymerizes into amyloid-like and proteinase K-resistant spherical aggregates in the presence of NADPH plus copper ions. OBJECTIVE We aimed to determine the requirements for the formation of these aggregates. METHODS In this study, we performed an aggregation experiment using N-acetylated and Camidated PrP fragments of the N-terminal domain, Octa1, Octa2, Octa3, Octa4, PrP84-114, and PrP76-114, in the presence of NADPH with copper ions, and focused on the effect of the number of copper-binding sites on aggregation. RESULTS Among these PrP fragments, Octa4, containing four copper-binding sites, was particularly effective in forming aggregates. We also tested the effect of other pyridine nucleotides and adenine nucleotides on the aggregation of Octa4. ATP was equally effective, but NADH, NADP, ADP, and AMP had no effect. CONCLUSION The phosphate group on the adenine-linked ribose moiety of adenine nucleotides and pyridine nucleotides is presumed to be essential for the observed effect on aggregation. Efficient aggregation requires the presence of the four octarepeats. These insights may be helpful in the eventual development of therapeutic agents against prion-related disorders.
Collapse
Affiliation(s)
- Noriyuki Shiraishi
- Department of Nutrition, Tokai Gakuen University, 2-901 Nakahira, Nagoya 468-8514, Japan
| | - Yoshiaki Hirano
- Department of Nutrition, Tokai Gakuen University, 2-901 Nakahira, Nagoya 468-8514, Japan
| |
Collapse
|
21
|
Restelli E, Capone V, Pozzoli M, Ortolan D, Quaglio E, Corbelli A, Fiordaliso F, Beznoussenko GV, Artuso V, Roiter I, Sallese M, Chiesa R. Activation of Src family kinase ameliorates secretory trafficking in mutant prion protein cells. J Biol Chem 2021; 296:100490. [PMID: 33662396 PMCID: PMC8059059 DOI: 10.1016/j.jbc.2021.100490] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 02/04/2021] [Accepted: 02/26/2021] [Indexed: 11/25/2022] Open
Abstract
Fatal familial insomnia (FFI), genetic Creutzfeldt-Jakob disease (gCJD), and Gerstmann-Sträussler-Scheinker (GSS) syndrome are neurodegenerative disorders linked to prion protein (PrP) mutations. The pathogenic mechanisms are not known, but increasing evidence points to mutant PrP misfolding and retention in the secretory pathway. We previously found that the D178N/M129 mutation associated with FFI accumulates in the Golgi of neuronal cells, impairing post-Golgi trafficking. In this study we further characterized the trafficking defect induced by the FFI mutation and tested the 178N/V129 variant linked to gCJD and a nine-octapeptide repeat insertion associated with GSS. We used transfected HeLa cells, embryonic fibroblasts and primary neurons from transgenic mice, and fibroblasts from carriers of the FFI mutation. In all these cell types, the mutant PrPs showed abnormal intracellular localizations, accumulating in the endoplasmic reticulum (ER) and Golgi. To test the efficiency of the membrane trafficking system, we monitored the intracellular transport of the temperature-sensitive vesicular stomatite virus glycoprotein (VSV-G), a well-established cargo reporter, and of endogenous procollagen I (PC-I). We observed marked alterations in secretory trafficking, with VSV-G accumulating mainly in the Golgi complex and PC-I in the ER and Golgi. A redacted version of mutant PrP with reduced propensity to misfold did not impair VSV-G trafficking, nor did artificial ER or Golgi retention of wild-type PrP; this indicates that both misfolding and intracellular retention were required to induce the transport defect. Pharmacological activation of Src family kinase (SFK) improved intracellular transport, suggesting that mutant PrP impairs secretory trafficking through corruption of SFK-mediated signaling.
Collapse
Affiliation(s)
- Elena Restelli
- Laboratory of Prion Neurobiology, Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Vanessa Capone
- Department of Innovative Technologies in Medicine & Dentistry, University G. D'Annunzio, Chieti, Italy; Center for Advanced Studies and Technology (CAST), University G. D'Annunzio, Chieti, Italy
| | - Manuela Pozzoli
- Laboratory of Prion Neurobiology, Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Davide Ortolan
- Laboratory of Prion Neurobiology, Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Elena Quaglio
- Laboratory of Prion Neurobiology, Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Alessandro Corbelli
- Bio-Imaging Unit, Department of Cardiovascular Medicine, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Fabio Fiordaliso
- Bio-Imaging Unit, Department of Cardiovascular Medicine, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | | | | | - Ignazio Roiter
- ULSS 2 Marca Trevigiana, Ca' Foncello Hospital, Treviso, Italy
| | - Michele Sallese
- Department of Innovative Technologies in Medicine & Dentistry, University G. D'Annunzio, Chieti, Italy; Center for Advanced Studies and Technology (CAST), University G. D'Annunzio, Chieti, Italy
| | - Roberto Chiesa
- Laboratory of Prion Neurobiology, Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy.
| |
Collapse
|
22
|
Cellular Prion Protein (PrPc): Putative Interacting Partners and Consequences of the Interaction. Int J Mol Sci 2020; 21:ijms21197058. [PMID: 32992764 PMCID: PMC7583789 DOI: 10.3390/ijms21197058] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 09/20/2020] [Accepted: 09/23/2020] [Indexed: 02/08/2023] Open
Abstract
Cellular prion protein (PrPc) is a small glycosylphosphatidylinositol (GPI) anchored protein most abundantly found in the outer leaflet of the plasma membrane (PM) in the central nervous system (CNS). PrPc misfolding causes neurodegenerative prion diseases in the CNS. PrPc interacts with a wide range of protein partners because of the intrinsically disordered nature of the protein’s N-terminus. Numerous studies have attempted to decipher the physiological role of the prion protein by searching for proteins which interact with PrPc. Biochemical characteristics and biological functions both appear to be affected by interacting protein partners. The key challenge in identifying a potential interacting partner is to demonstrate that binding to a specific ligand is necessary for cellular physiological function or malfunction. In this review, we have summarized the intracellular and extracellular interacting partners of PrPc and potential consequences of their binding. We also briefly describe prion disease-related mutations at the end of this review.
Collapse
|
23
|
Marín-Moreno A, Espinosa JC, Torres JM. Transgenic mouse models for the study of prion diseases. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2020; 175:147-177. [PMID: 32958231 DOI: 10.1016/bs.pmbts.2020.08.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Prions are unique agents that challenge the molecular biology dogma by transmitting information on the protein level. They cause neurodegenerative diseases that lack of any cure or treatment called transmissible spongiform encephalopathies. The function of the normal form of the prion protein, the exact mechanism of prion propagation between species as well as at the cellular level and neuron degeneration remains elusive. However, great amount of information known for all these aspects has been achieved thanks to the use of animal models and more precisely to transgenic mouse models. In this chapter, the main contributions of these powerful research tools in the prion field are revised.
Collapse
Affiliation(s)
- Alba Marín-Moreno
- Centro de Investigación en Sanidad Animal (CISA-INIA), Madrid, Spain
| | | | - Juan María Torres
- Centro de Investigación en Sanidad Animal (CISA-INIA), Madrid, Spain.
| |
Collapse
|
24
|
Hara H, Sakaguchi S. N-Terminal Regions of Prion Protein: Functions and Roles in Prion Diseases. Int J Mol Sci 2020; 21:ijms21176233. [PMID: 32872280 PMCID: PMC7504422 DOI: 10.3390/ijms21176233] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Revised: 08/25/2020] [Accepted: 08/27/2020] [Indexed: 01/30/2023] Open
Abstract
The normal cellular isoform of prion protein, designated PrPC, is constitutively converted to the abnormally folded, amyloidogenic isoform, PrPSc, in prion diseases, which include Creutzfeldt-Jakob disease in humans and scrapie and bovine spongiform encephalopathy in animals. PrPC is a membrane glycoprotein consisting of the non-structural N-terminal domain and the globular C-terminal domain. During conversion of PrPC to PrPSc, its 2/3 C-terminal region undergoes marked structural changes, forming a protease-resistant structure. In contrast, the N-terminal region remains protease-sensitive in PrPSc. Reverse genetic studies using reconstituted PrPC-knockout mice with various mutant PrP molecules have revealed that the N-terminal domain has an important role in the normal function of PrPC and the conversion of PrPC to PrPSc. The N-terminal domain includes various characteristic regions, such as the positively charged residue-rich polybasic region, the octapeptide repeat (OR) region consisting of five repeats of an octapeptide sequence, and the post-OR region with another positively charged residue-rich polybasic region followed by a stretch of hydrophobic residues. We discuss the normal functions of PrPC, the conversion of PrPC to PrPSc, and the neurotoxicity of PrPSc by focusing on the roles of the N-terminal regions in these topics.
Collapse
|
25
|
Mutant prion proteins increase calcium permeability of AMPA receptors, exacerbating excitotoxicity. PLoS Pathog 2020; 16:e1008654. [PMID: 32673372 PMCID: PMC7365390 DOI: 10.1371/journal.ppat.1008654] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2020] [Accepted: 05/26/2020] [Indexed: 01/26/2023] Open
Abstract
Prion protein (PrP) mutations are linked to genetic prion diseases, a class of phenotypically heterogeneous neurodegenerative disorders with invariably fatal outcome. How mutant PrP triggers neurodegeneration is not known. Synaptic dysfunction precedes neuronal loss but it is not clear whether, and through which mechanisms, disruption of synaptic activity ultimately leads to neuronal death. Here we show that mutant PrP impairs the secretory trafficking of AMPA receptors (AMPARs). Specifically, intracellular retention of the GluA2 subunit results in synaptic exposure of GluA2-lacking, calcium-permeable AMPARs, leading to increased calcium permeability and enhanced sensitivity to excitotoxic cell death. Mutant PrPs linked to different genetic prion diseases affect AMPAR trafficking and function in different ways. Our findings identify AMPARs as pathogenic targets in genetic prion diseases, and support the involvement of excitotoxicity in neurodegeneration. They also suggest a mechanistic explanation for how different mutant PrPs may cause distinct disease phenotypes. Genetic prion diseases are degenerative brain disorders caused by mutations in the gene encoding the prion protein (PrP). Different PrP mutations cause different diseases, including Creutzfeldt-Jakob disease, fatal familial insomnia and Gerstmann-Sträussler-Scheinker syndrome. How mutant PrP causes neuronal death and how different mutants encode distinct disease phenotypes is not known. Here we show that mutant PrP alters the subunit composition of glutamate AMPA receptors, promoting cell surface exposure of GluA2-lacking, calcium-permeable receptors, ultimately increasing neuronal vulnerability to excitotoxic cell death. We also demonstrate that the underlying molecular mechanism is the formation of a GluA2 subunit-PrP complex which is retained in the neuronal secretory pathway. PrP mutants associated with clinically different genetic prion diseases have distinct effects on GluA2 trafficking, depending on their tendency to misfold and aggregate in different intracellular organelles, indicating a possible contribution of this mechanism to the disease phenotype.
Collapse
|
26
|
Asante EA, Linehan JM, Tomlinson A, Jakubcova T, Hamdan S, Grimshaw A, Smidak M, Jeelani A, Nihat A, Mead S, Brandner S, Wadsworth JDF, Collinge J. Spontaneous generation of prions and transmissible PrP amyloid in a humanised transgenic mouse model of A117V GSS. PLoS Biol 2020; 18:e3000725. [PMID: 32516343 PMCID: PMC7282622 DOI: 10.1371/journal.pbio.3000725] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Accepted: 05/06/2020] [Indexed: 12/02/2022] Open
Abstract
Inherited prion diseases are caused by autosomal dominant coding mutations in the human prion protein (PrP) gene (PRNP) and account for about 15% of human prion disease cases worldwide. The proposed mechanism is that the mutation predisposes to conformational change in the expressed protein, leading to the generation of disease-related multichain PrP assemblies that propagate by seeded protein misfolding. Despite considerable experimental support for this hypothesis, to-date spontaneous formation of disease-relevant, transmissible PrP assemblies in transgenic models expressing only mutant human PrP has not been demonstrated. Here, we report findings from transgenic mice that express human PrP 117V on a mouse PrP null background (117VV Tg30 mice), which model the PRNP A117V mutation causing inherited prion disease (IPD) including Gerstmann-Sträussler-Scheinker (GSS) disease phenotypes in humans. By studying brain samples from uninoculated groups of mice, we discovered that some mice (≥475 days old) spontaneously generated abnormal PrP assemblies, which after inoculation into further groups of 117VV Tg30 mice, produced a molecular and neuropathological phenotype congruent with that seen after transmission of brain isolates from IPD A117V patients to the same mice. To the best of our knowledge, the 117VV Tg30 mouse line is the first transgenic model expressing only mutant human PrP to show spontaneous generation of transmissible PrP assemblies that directly mirror those generated in an inherited prion disease in humans. Transgenic mice expressing the human prion protein containing a mutation linked to the inherited prion disease Gerstmann-Sträussler-Scheinker disease develop spontaneous neuropathology. This represents the first human prion protein transgenic model to show spontaneous generation of transmissible prion assemblies that directly mirror those generated in humans.
Collapse
Affiliation(s)
- Emmanuel A. Asante
- MRC Prion Unit at UCL, UCL Institute of Prion Diseases, London, United Kingdom
- * E-mail: (EAA); (JDFW); (JC)
| | | | - Andrew Tomlinson
- MRC Prion Unit at UCL, UCL Institute of Prion Diseases, London, United Kingdom
| | - Tatiana Jakubcova
- MRC Prion Unit at UCL, UCL Institute of Prion Diseases, London, United Kingdom
| | - Shyma Hamdan
- MRC Prion Unit at UCL, UCL Institute of Prion Diseases, London, United Kingdom
| | - Andrew Grimshaw
- MRC Prion Unit at UCL, UCL Institute of Prion Diseases, London, United Kingdom
| | - Michelle Smidak
- MRC Prion Unit at UCL, UCL Institute of Prion Diseases, London, United Kingdom
| | - Asif Jeelani
- MRC Prion Unit at UCL, UCL Institute of Prion Diseases, London, United Kingdom
| | - Akin Nihat
- MRC Prion Unit at UCL, UCL Institute of Prion Diseases, London, United Kingdom
| | - Simon Mead
- MRC Prion Unit at UCL, UCL Institute of Prion Diseases, London, United Kingdom
| | - Sebastian Brandner
- MRC Prion Unit at UCL, UCL Institute of Prion Diseases, London, United Kingdom
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology and Division of Neuropathology, the National Hospital For Neurology and Neurosurgery, University College London NHS Foundation Trust, Queen Square, London United Kingdom
| | - Jonathan D. F. Wadsworth
- MRC Prion Unit at UCL, UCL Institute of Prion Diseases, London, United Kingdom
- * E-mail: (EAA); (JDFW); (JC)
| | - John Collinge
- MRC Prion Unit at UCL, UCL Institute of Prion Diseases, London, United Kingdom
- * E-mail: (EAA); (JDFW); (JC)
| |
Collapse
|
27
|
Abstract
Mammalian prion diseases are a group of neurodegenerative conditions caused by infection of the central nervous system with proteinaceous agents called prions, including sporadic, variant, and iatrogenic Creutzfeldt-Jakob disease; kuru; inherited prion disease; sheep scrapie; bovine spongiform encephalopathy; and chronic wasting disease. Prions are composed of misfolded and multimeric forms of the normal cellular prion protein (PrP). Prion diseases require host expression of the prion protein gene (PRNP) and a range of other cellular functions to support their propagation and toxicity. Inherited forms of prion disease are caused by mutation of PRNP, whereas acquired and sporadically occurring mammalian prion diseases are controlled by powerful genetic risk and modifying factors. Whereas some PrP amino acid variants cause the disease, others confer protection, dramatically altered incubation times, or changes in the clinical phenotype. Multiple mechanisms, including interference with homotypic protein interactions and the selection of the permissible prion strains in a host, play a role. Several non-PRNP factors have now been uncovered that provide insights into pathways of disease susceptibility or neurotoxicity.
Collapse
Affiliation(s)
- Simon Mead
- Medical Research Council Prion Unit at UCL, Institute of Prion Diseases, University College London, London W1W 7FF, United Kingdom;
| | - Sarah Lloyd
- Medical Research Council Prion Unit at UCL, Institute of Prion Diseases, University College London, London W1W 7FF, United Kingdom;
| | - John Collinge
- Medical Research Council Prion Unit at UCL, Institute of Prion Diseases, University College London, London W1W 7FF, United Kingdom;
| |
Collapse
|
28
|
Altered distribution, aggregation, and protease resistance of cellular prion protein following intracranial inoculation. PLoS One 2019; 14:e0219457. [PMID: 31291644 PMCID: PMC6620108 DOI: 10.1371/journal.pone.0219457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Accepted: 06/24/2019] [Indexed: 11/19/2022] Open
Abstract
Prion protein (PrPC) is a protease-sensitive and soluble cell surface glycoprotein expressed in almost all mammalian cell types. PrPSc, a protease-resistant and insoluble form of PrPC, is the causative agent of prion diseases, fatal and transmissible neurogenerative diseases of mammals. Prion infection is initiated via either ingestion or inoculation of PrPSc or when host PrPC stochastically refolds into PrPSc. In either instance, the early events that occur during prion infection remain poorly understood. We have used transgenic mice expressing mouse PrPC tagged with a unique antibody epitope to monitor the response of host PrPC to prion inoculation. Following intracranial inoculation of either prion-infected or uninfected brain homogenate, we show that host PrPC can accumulate both intra-axonally and within the myelin membrane of axons suggesting that it may play a role in axonal loss following brain injury. Moreover, in response to the inoculation host PrPC exhibits an increased insolubility and protease resistance similar to that of PrPSc, even in the absence of infectious prions. Thus, our results raise the possibility that damage to the brain may be one trigger by which PrPC stochastically refolds into pathogenic PrPSc leading to productive prion infection.
Collapse
|
29
|
Bouybayoune I, Comerio L, Pasetto L, Bertani I, Bonetto V, Chiesa R. Cyclophillin A deficiency accelerates RML-induced prion disease. Neurobiol Dis 2019; 130:104498. [PMID: 31181281 DOI: 10.1016/j.nbd.2019.104498] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 05/14/2019] [Accepted: 06/05/2019] [Indexed: 01/17/2023] Open
Abstract
Prion diseases typically involve brain deposition of abnormally folded prion protein, which is associated with activated glia and increased cytokine production. Cyclophilin A (CypA) is a ubiquitous protein with peptidyl prolyl cis-trans isomerase activity, which regulates protein folding, and can be secreted by cells in response to inflammatory stimuli. On the basis of in vitro studies, CypA was proposed to mediate glial activation during prion infection. To investigate the role of CypA in vivo, we inoculated CypA+/+, CypA+/- and CypA-/- mice with the RML prion strain, and recorded the time to onset of neurological signs and to terminal disease, and the astrocyte and microglia response at presymptomatic and symptomatic stages. Time to onset of disease and survival were significantly shorter in CypA-deficient mice than CypA-expressing controls. CypA-deficient mice had significantly greater microglial activation in the presymptomatic stage, and analysis of anti- and pro-inflammatory microglial markers indicated a shift towards a pro-inflammatory phenotype. There was no difference in astrocyte activation. This suggests that CypA contributes to dampening the pro-inflammatory microglial response during the early stage of RML-induced prion disease.
Collapse
Affiliation(s)
- Ihssane Bouybayoune
- Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, 20156 Milano, Italy
| | - Liliana Comerio
- Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, 20156 Milano, Italy
| | - Laura Pasetto
- Department of Biochemistry and Molecular Pharmacology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, 20156 Milano, Italy
| | - Ilaria Bertani
- Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, 20156 Milano, Italy
| | - Valentina Bonetto
- Department of Biochemistry and Molecular Pharmacology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, 20156 Milano, Italy
| | - Roberto Chiesa
- Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, 20156 Milano, Italy.
| |
Collapse
|
30
|
Qin K, Zhao L, Solanki A, Busch C, Mastrianni J. Anle138b prevents PrP plaque accumulation in Tg(PrP-A116V) mice but does not mitigate clinical disease. J Gen Virol 2019; 100:1027-1037. [PMID: 31045489 DOI: 10.1099/jgv.0.001262] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Anle138b is an anti-aggregating compound previously shown to delay the onset of scrapie, a transmissible prion disease, although its in vivo efficacy against other prion disease subtypes has not been fully assessed. TgGSS mice that model Gerstmann-Sträussler-Scheinker disease (GSS) via expression of mouse PrPA116V accumulate PrP amyloid plaques in their brains and develop progressive ataxia leading to death in ~160 days. When allowed to feed on food pellets containing anle138b from weaning until death, the brains of TgGSS mice displayed significant reductions in PrP plaque burden, insoluble PrP, and proteinase K-resistant PrPSc at end stage, compared with TgGSS mice allowed to feed on placebo food pellets. Despite these effects on biological markers of disease, there was no difference in the onset of symptoms or the age at death between the two treatment groups. In contrast, scrapie-inoculated wild-type mice treated with anle138b survived nearly twice as long (254 days) as scrapie-inoculated mice fed placebo (~136 days). They also displayed greater reductions in insoluble and PK-resistant PrPSc than TgGSS mice. Although these results support an anti-aggregating effect of anle138b, the discordance in clinical efficacy noted between the two prion disease models tested underscores the pathophysiological differences between them and highlights the need to consider differences in susceptibilities among prion subtypes when assessing potential therapies for prion diseases.
Collapse
Affiliation(s)
- Kefeng Qin
- 1 Department of Neurology, The University of Chicago, 5841 S. Maryland Ave., MC2030, Chicago, IL, 60637, USA
| | - Lili Zhao
- 1 Department of Neurology, The University of Chicago, 5841 S. Maryland Ave., MC2030, Chicago, IL, 60637, USA
| | - Ani Solanki
- 1 Department of Neurology, The University of Chicago, 5841 S. Maryland Ave., MC2030, Chicago, IL, 60637, USA
| | - Crystal Busch
- 1 Department of Neurology, The University of Chicago, 5841 S. Maryland Ave., MC2030, Chicago, IL, 60637, USA
| | - James Mastrianni
- 1 Department of Neurology, The University of Chicago, 5841 S. Maryland Ave., MC2030, Chicago, IL, 60637, USA
| |
Collapse
|
31
|
Forloni G, Chiesa R, Bugiani O, Salmona M, Tagliavini F. Review: PrP 106-126 - 25 years after. Neuropathol Appl Neurobiol 2019; 45:430-440. [PMID: 30635947 DOI: 10.1111/nan.12538] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Accepted: 12/10/2018] [Indexed: 12/14/2022]
Abstract
A quarter of a century ago, we proposed an innovative approach to study the pathogenesis of prion disease, one of the most intriguing biomedical problems that remains unresolved. The synthesis of a peptide homologous to residues 106-126 of the human prion protein (PrP106-126), a sequence present in the PrP amyloid protein of Gerstmann-Sträussler-Scheinker syndrome patients, provided a tractable tool for investigating the mechanisms of neurotoxicity. Together with several other discoveries at the beginning of the 1990s, PrP106-126 contributed to underpin the role of amyloid in the pathogenesis of protein-misfolding neurodegenerative disorders. Later, the role of oligomers on one hand and of prion-like spreading of pathology on the other further clarified mechanisms shared by different neurodegenerative conditions. Our original report on PrP106-126 neurotoxicity also highlighted a role for programmed cell death in CNS diseases. In this review, we analyse the prion research context in which PrP106-126 first appeared and the advances in our understanding of prion disease pathogenesis and therapeutic perspectives 25 years later.
Collapse
Affiliation(s)
- G Forloni
- Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milano, Italy
| | - R Chiesa
- Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milano, Italy
| | - O Bugiani
- Department of Biochemistry, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milano, Italy
| | - M Salmona
- Department of Biochemistry, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milano, Italy
| | - F Tagliavini
- Fondazione IRCCS Istituto Neurologico "Carlo Besta", Milano, Italy
| |
Collapse
|
32
|
Le NTT, Wu B, Harris DA. Prion neurotoxicity. Brain Pathol 2019; 29:263-277. [PMID: 30588688 DOI: 10.1111/bpa.12694] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Accepted: 11/28/2018] [Indexed: 01/04/2023] Open
Abstract
Although the mechanisms underlying prion propagation and infectivity are now well established, the processes accounting for prion toxicity and pathogenesis have remained mysterious. These processes are of enormous clinical relevance as they hold the key to identification of new molecular targets for therapeutic intervention. In this review, we will discuss two broad areas of investigation relevant to understanding prion neurotoxicity. The first is the use of in vitro experimental systems that model key events in prion pathogenesis. In this context, we will describe a hippocampal neuronal culture system we developed that reproduces the earliest pathological alterations in synaptic morphology and function in response to PrPSc . This system has allowed us to define a core synaptotoxic signaling pathway involving the activation of NMDA and AMPA receptors, stimulation of p38 MAPK phosphorylation and collapse of the actin cytoskeleton in dendritic spines. The second area concerns a striking and unexpected phenomenon in which certain structural manipulations of the PrPC molecule itself, including introduction of N-terminal deletion mutations or binding of antibodies to C-terminal epitopes, unleash powerful toxic effects in cultured cells and transgenic mice. We will describe our studies of this phenomenon, which led to the recognition that it is related to the induction of large, abnormal ionic currents by the structurally altered PrP molecules. Our results suggest a model in which the flexible N-terminal domain of PrPC serves as a toxic effector which is regulated by intramolecular interactions with the globular C-terminal domain. Taken together, these two areas of study have provided important clues to underlying cellular and molecular mechanisms of prion neurotoxicity. Nevertheless, much remains to be done on this next frontier of prion science.
Collapse
Affiliation(s)
- Nhat T T Le
- Department of Biochemistry, Boston University School of Medicine, Boston, MA
| | - Bei Wu
- Department of Biochemistry, Boston University School of Medicine, Boston, MA
| | - David A Harris
- Department of Biochemistry, Boston University School of Medicine, Boston, MA
| |
Collapse
|
33
|
Mercer RCC, Daude N, Dorosh L, Fu ZL, Mays CE, Gapeshina H, Wohlgemuth SL, Acevedo-Morantes CY, Yang J, Cashman NR, Coulthart MB, Pearson DM, Joseph JT, Wille H, Safar JG, Jansen GH, Stepanova M, Sykes BD, Westaway D. A novel Gerstmann-Sträussler-Scheinker disease mutation defines a precursor for amyloidogenic 8 kDa PrP fragments and reveals N-terminal structural changes shared by other GSS alleles. PLoS Pathog 2018; 14:e1006826. [PMID: 29338055 PMCID: PMC5786331 DOI: 10.1371/journal.ppat.1006826] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Revised: 01/26/2018] [Accepted: 12/18/2017] [Indexed: 11/29/2022] Open
Abstract
To explore pathogenesis in a young Gerstmann-Sträussler-Scheinker Disease (GSS) patient, the corresponding mutation, an eight-residue duplication in the hydrophobic region (HR), was inserted into the wild type mouse PrP gene. Transgenic (Tg) mouse lines expressing this mutation (Tg.HRdup) developed spontaneous neurologic syndromes and brain extracts hastened disease in low-expressor Tg.HRdup mice, suggesting de novo formation of prions. While Tg.HRdup mice exhibited spongiform change, PrP aggregates and the anticipated GSS hallmark of a proteinase K (PK)-resistant 8 kDa fragment deriving from the center of PrP, the LGGLGGYV insertion also imparted alterations in PrP's unstructured N-terminus, resulting in a 16 kDa species following thermolysin exposure. This species comprises a plausible precursor to the 8 kDa PK-resistant fragment and its detection in adolescent Tg.HRdup mice suggests that an early start to accumulation could account for early disease of the index case. A 16 kDa thermolysin-resistant signature was also found in GSS patients with P102L, A117V, H187R and F198S alleles and has coordinates similar to GSS stop codon mutations. Our data suggest a novel shared pathway of GSS pathogenesis that is fundamentally distinct from that producing structural alterations in the C-terminus of PrP, as observed in other prion diseases such as Creutzfeldt-Jakob Disease and scrapie. Prion diseases can be sporadic, infectious or genetic. The central event of all prion diseases is the structural conversion of the cellular prion protein (PrPC) to its disease associated conformer, PrPSc. Gerstmann-Sträussler-Scheinker Disease (GSS) is a genetic prion disease presenting as a multi-systemic neurological syndrome. A novel mutation, an eight amino acid insertion, was discovered in a young GSS patient. We created transgenic mice expressing this mutation and found that they recapitulate key features of the disease; namely PrP deposition in the brain and a low molecular weight proteinase K (PK) resistant internal PrP fragment. While structural investigations did not reveal a gross alteration in the conformation of this mutant PrP, the insertion lying at the boundary of the globular domain causes alterations in the unstructured amino terminal portion of the protein such that it becomes resistant to digestion by the enzyme thermolysin. We demonstrate by kinetic analysis and sequential digestion that this novel thermolysin resistant species is a precursor to the pathognomonic PK resistant fragment. Analysis of samples from other GSS patients revealed this same signature, suggesting a common molecular pathway.
Collapse
Affiliation(s)
- Robert C. C. Mercer
- Centre for Prions and Protein Folding Diseases, University of Alberta, Edmonton, Alberta, Canada
- Department of Medicine (Neurology), University of Alberta, Edmonton, Alberta, Canada
| | - Nathalie Daude
- Centre for Prions and Protein Folding Diseases, University of Alberta, Edmonton, Alberta, Canada
| | - Lyudmyla Dorosh
- National Research Council of Canada, Edmonton, Alberta, Canada
- Department of Electrical and Computer Engineering, University of Alberta, Edmonton, Alberta, Canada
| | - Ze-Lin Fu
- Centre for Prions and Protein Folding Diseases, University of Alberta, Edmonton, Alberta, Canada
- Department of Biochemistry, University of Alberta, Edmonton, Alberta, Canada
| | - Charles E. Mays
- Centre for Prions and Protein Folding Diseases, University of Alberta, Edmonton, Alberta, Canada
| | - Hristina Gapeshina
- Centre for Prions and Protein Folding Diseases, University of Alberta, Edmonton, Alberta, Canada
| | - Serene L. Wohlgemuth
- Centre for Prions and Protein Folding Diseases, University of Alberta, Edmonton, Alberta, Canada
| | | | - Jing Yang
- Centre for Prions and Protein Folding Diseases, University of Alberta, Edmonton, Alberta, Canada
| | - Neil R. Cashman
- Brain Research Centre, University of British Columbia, Vancouver, British Columbia, Canada
| | - Michael B. Coulthart
- Canadian Creutzfeldt-Jakob Disease Surveillance System, Centre for Foodborne, Environmental and Zoonotic Infectious Diseases, Public Health Agency of Canada, Ottawa, Ontario, Canada
| | - Dawn M. Pearson
- Department of Clinical Neurosciences, University of Calgary, Calgary, Alberta, Canada
| | - Jeffrey T. Joseph
- Hotchkiss Brain Institute and Calgary Laboratory Services, University of Calgary, Calgary, Alberta, Canada
| | - Holger Wille
- Centre for Prions and Protein Folding Diseases, University of Alberta, Edmonton, Alberta, Canada
- Department of Biochemistry, University of Alberta, Edmonton, Alberta, Canada
| | - Jiri G. Safar
- Departments of Pathology and Neurology, School of Medicine Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Gerard H. Jansen
- Canadian Creutzfeldt-Jakob Disease Surveillance System, Centre for Foodborne, Environmental and Zoonotic Infectious Diseases, Public Health Agency of Canada, Ottawa, Ontario, Canada
- Division of Anatomical Pathology, University of Ottawa, Ottawa, Ontario, Canada
| | - Maria Stepanova
- National Research Council of Canada, Edmonton, Alberta, Canada
- Department of Electrical and Computer Engineering, University of Alberta, Edmonton, Alberta, Canada
| | - Brian D. Sykes
- Centre for Prions and Protein Folding Diseases, University of Alberta, Edmonton, Alberta, Canada
- Department of Biochemistry, University of Alberta, Edmonton, Alberta, Canada
| | - David Westaway
- Centre for Prions and Protein Folding Diseases, University of Alberta, Edmonton, Alberta, Canada
- Department of Medicine (Neurology), University of Alberta, Edmonton, Alberta, Canada
- Department of Biochemistry, University of Alberta, Edmonton, Alberta, Canada
- * E-mail:
| |
Collapse
|
34
|
Chandramowlishwaran P, Sun M, Casey KL, Romanyuk AV, Grizel AV, Sopova JV, Rubel AA, Nussbaum-Krammer C, Vorberg IM, Chernoff YO. Mammalian amyloidogenic proteins promote prion nucleation in yeast. J Biol Chem 2018; 293:3436-3450. [PMID: 29330303 DOI: 10.1074/jbc.m117.809004] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Revised: 12/26/2017] [Indexed: 12/26/2022] Open
Abstract
Fibrous cross-β aggregates (amyloids) and their transmissible forms (prions) cause diseases in mammals (including humans) and control heritable traits in yeast. Initial nucleation of a yeast prion by transiently overproduced prion-forming protein or its (typically, QN-rich) prion domain is efficient only in the presence of another aggregated (in most cases, QN-rich) protein. Here, we demonstrate that a fusion of the prion domain of yeast protein Sup35 to some non-QN-rich mammalian proteins, associated with amyloid diseases, promotes nucleation of Sup35 prions in the absence of pre-existing aggregates. In contrast, both a fusion of the Sup35 prion domain to a multimeric non-amyloidogenic protein and the expression of a mammalian amyloidogenic protein that is not fused to the Sup35 prion domain failed to promote prion nucleation, further indicating that physical linkage of a mammalian amyloidogenic protein to the prion domain of a yeast protein is required for the nucleation of a yeast prion. Biochemical and cytological approaches confirmed the nucleation of protein aggregates in the yeast cell. Sequence alterations antagonizing or enhancing amyloidogenicity of human amyloid-β (associated with Alzheimer's disease) and mouse prion protein (associated with prion diseases), respectively, antagonized or enhanced nucleation of a yeast prion by these proteins. The yeast-based prion nucleation assay, developed in our work, can be employed for mutational dissection of amyloidogenic proteins. We anticipate that it will aid in the identification of chemicals that influence initial amyloid nucleation and in searching for new amyloidogenic proteins in a variety of proteomes.
Collapse
Affiliation(s)
| | - Meng Sun
- From the School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia 30332
| | - Kristin L Casey
- From the School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia 30332
| | - Andrey V Romanyuk
- From the School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia 30332
| | - Anastasiya V Grizel
- the Laboratory of Amyloid Biology.,Institute of Translational Biomedicine, and
| | - Julia V Sopova
- the Laboratory of Amyloid Biology.,Department of Genetics and Biotechnology, St. Petersburg State University, 199034 St. Petersburg, Russia.,the St. Petersburg Branch, N. I. Vavilov Institute of General Genetics, Russian Academy of Sciences, 199034 St. Petersburg, Russia
| | - Aleksandr A Rubel
- the Laboratory of Amyloid Biology.,Institute of Translational Biomedicine, and.,Department of Genetics and Biotechnology, St. Petersburg State University, 199034 St. Petersburg, Russia
| | - Carmen Nussbaum-Krammer
- the Zentrum für Molekulare Biologie der Universität Heidelberg, 69120 Heidelberg, Germany, and
| | - Ina M Vorberg
- the Deutsches Zentrum für Neurodegenerative Erkrankungen, 53175 Bonn, Germany
| | - Yury O Chernoff
- From the School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia 30332, .,the Laboratory of Amyloid Biology.,Institute of Translational Biomedicine, and
| |
Collapse
|
35
|
Prion Protein Devoid of the Octapeptide Repeat Region Delays Bovine Spongiform Encephalopathy Pathogenesis in Mice. J Virol 2017; 92:JVI.01368-17. [PMID: 29046443 DOI: 10.1128/jvi.01368-17] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Accepted: 10/05/2017] [Indexed: 12/26/2022] Open
Abstract
Conformational conversion of the cellular isoform of prion protein, PrPC, into the abnormally folded, amyloidogenic isoform, PrPSc, is a key pathogenic event in prion diseases, including Creutzfeldt-Jakob disease in humans and scrapie and bovine spongiform encephalopathy (BSE) in animals. We previously reported that the octapeptide repeat (OR) region could be dispensable for converting PrPC into PrPSc after infection with RML prions. We demonstrated that mice transgenically expressing mouse PrP with deletion of the OR region on the PrP knockout background, designated Tg(PrPΔOR)/Prnp0/0 mice, did not show reduced susceptibility to RML scrapie prions, with abundant accumulation of PrPScΔOR in their brains. We show here that Tg(PrPΔOR)/Prnp0/0 mice were highly resistant to BSE prions, developing the disease with markedly elongated incubation times after infection with BSE prions. The conversion of PrPΔOR into PrPScΔOR was markedly delayed in their brains. These results suggest that the OR region may have a crucial role in the conversion of PrPC into PrPSc after infection with BSE prions. However, Tg(PrPΔOR)/Prnp0/0 mice remained susceptible to RML and 22L scrapie prions, developing the disease without elongated incubation times after infection with RML and 22L prions. PrPScΔOR accumulated only slightly less in the brains of RML- or 22L-infected Tg(PrPΔOR)/Prnp0/0 mice than PrPSc in control wild-type mice. Taken together, these results indicate that the OR region of PrPC could play a differential role in the pathogenesis of BSE prions and RML or 22L scrapie prions.IMPORTANCE Structure-function relationship studies of PrPC conformational conversion into PrPSc are worthwhile to understand the mechanism of the conversion of PrPC into PrPSc We show here that, by inoculating Tg(PrPΔOR)/Prnp0/0 mice with the three different strains of RML, 22L, and BSE prions, the OR region could play a differential role in the conversion of PrPC into PrPSc after infection with RML or 22L scrapie prions and BSE prions. PrPΔOR was efficiently converted into PrPScΔOR after infection with RML and 22L prions. However, the conversion of PrPΔOR into PrPScΔOR was markedly delayed after infection with BSE prions. Further investigation into the role of the OR region in the conversion of PrPC into PrPSc after infection with BSE prions might be helpful for understanding the pathogenesis of BSE prions.
Collapse
|
36
|
Nonno R, Angelo Di Bari M, Agrimi U, Pirisinu L. Transmissibility of Gerstmann-Sträussler-Scheinker syndrome in rodent models: New insights into the molecular underpinnings of prion infectivity. Prion 2017; 10:421-433. [PMID: 27892798 PMCID: PMC5161296 DOI: 10.1080/19336896.2016.1239686] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Prion diseases, or transmissible spongiform encephalopathies, have revealed the bewildering phenomenon of transmissibility in neurodegenerative diseases. Hence, the experimental transmissibility of prion-like neurodegenerative diseases via template directed misfolding has become the focus of intense research. Gerstmann-Sträussler-Scheinker disease (GSS) is an inherited prion disease associated with mutations in the prion protein gene. However, with the exception of a few GSS cases with P102L mutation characterized by co-accumulation of protease-resistant PrP core (PrPres) of ∼21 kDa, attempts to transmit to rodents GSS associated to atypical misfolded prion protein with ∼8 kDa PrPres have been unsuccessful. As a result, these GSS subtypes have often been considered as non-transmissible proteinopathies rather than true prion diseases. In a recent study we inoculated bank voles with GSS cases associated with P102L, A117V and F198S mutations and found that they transmitted efficiently and produced distinct pathological phenotypes, irrespective of the presence of 21 kDa PrPres in the inoculum. This study demonstrates that GSS is a genuine prion disease characterized by both transmissibility and strain variation. We discuss the implications of these findings for the understanding of the heterogeneous clinic-pathological phenotypes of GSS and of the molecular underpinnings of prion infectivity.
Collapse
Affiliation(s)
- Romolo Nonno
- a Department of Veterinary Public Health and Food Safety , Istituto Superiore di Sanità , Rome , Italy
| | - Michele Angelo Di Bari
- a Department of Veterinary Public Health and Food Safety , Istituto Superiore di Sanità , Rome , Italy
| | - Umberto Agrimi
- a Department of Veterinary Public Health and Food Safety , Istituto Superiore di Sanità , Rome , Italy
| | - Laura Pirisinu
- a Department of Veterinary Public Health and Food Safety , Istituto Superiore di Sanità , Rome , Italy
| |
Collapse
|
37
|
Chiesa R, Restelli E, Comerio L, Del Gallo F, Imeri L. Transgenic mice recapitulate the phenotypic heterogeneity of genetic prion diseases without developing prion infectivity: Role of intracellular PrP retention in neurotoxicity. Prion 2017; 10:93-102. [PMID: 26864450 PMCID: PMC4981194 DOI: 10.1080/19336896.2016.1139276] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Genetic prion diseases are degenerative brain disorders caused by mutations in the gene encoding the prion protein (PrP). Different PrP mutations cause different diseases, including Creutzfeldt-Jakob disease (CJD), Gerstmann-Sträussler-Scheinker (GSS) syndrome and fatal familial insomnia (FFI). The reason for this variability is not known. It has been suggested that prion strains with unique self-replicating and neurotoxic properties emerge spontaneously in individuals carrying PrP mutations, dictating the phenotypic expression of disease. We generated transgenic mice expressing the FFI mutation, and found that they developed a fatal neurological illness highly reminiscent of FFI, and different from those of similarly generated mice modeling genetic CJD and GSS. Thus transgenic mice recapitulate the phenotypic differences seen in humans. The mutant PrPs expressed in these mice are misfolded but unable to self-replicate. They accumulate in different compartments of the neuronal secretory pathway, impairing the membrane delivery of ion channels essential for neuronal function. Our results indicate that conversion of mutant PrP into an infectious isoform is not required for pathogenesis, and suggest that the phenotypic variability may be due to different effects of mutant PrP on intracellular transport.
Collapse
Affiliation(s)
- Roberto Chiesa
- a Laboratory of Prion Neurobiology, Department of Neuroscience, IRCCS - "Mario Negri" Institute for Pharmacological Research , Milan , Italy
| | - Elena Restelli
- a Laboratory of Prion Neurobiology, Department of Neuroscience, IRCCS - "Mario Negri" Institute for Pharmacological Research , Milan , Italy
| | - Liliana Comerio
- a Laboratory of Prion Neurobiology, Department of Neuroscience, IRCCS - "Mario Negri" Institute for Pharmacological Research , Milan , Italy
| | - Federico Del Gallo
- b Department of Health Sciences , University of Milan Medical School , Milan , Italy
| | - Luca Imeri
- b Department of Health Sciences , University of Milan Medical School , Milan , Italy
| |
Collapse
|
38
|
Puig B, Altmeppen HC, Glatzel M. Misfolding leads the way to unraveling signaling pathways in the pathophysiology of prion diseases. Prion 2017; 10:434-443. [PMID: 27870599 DOI: 10.1080/19336896.2016.1244593] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
A misfolded version of the prion protein represents an essential component in the pathophysiology of fatal neurodegenerative prion diseases, which affect humans and animals alike. They may be of sporadic origin, acquired through exogenous introduction of infectious misfolded prion protein, or caused by genetic alterations in the prion protein coding gene. We have recently described a novel pathway linking retention of mutant prion protein in the early secretory pathway to activation p38-MAPK and a neurodegenerative phenotype in transgenic mice. Here we review the consequences that mutations in prion protein have on intracellular transport and stress responses focusing on protein quality control. We also discuss the neurotoxic signaling elicited by the accumulation of mutant prion protein in the endoplasmic reticulum and the Golgi apparatus. Improved knowledge about these processes will help us to better understand complex pathogenesis of prion diseases, a prerequisite for therapeutic strategies.
Collapse
Affiliation(s)
- Berta Puig
- a Institute of Neuropathology, University Medical Center Hamburg-Eppendorf , Hamburg , Germany
| | - Hermann C Altmeppen
- a Institute of Neuropathology, University Medical Center Hamburg-Eppendorf , Hamburg , Germany
| | - Markus Glatzel
- a Institute of Neuropathology, University Medical Center Hamburg-Eppendorf , Hamburg , Germany
| |
Collapse
|
39
|
Watts JC, Prusiner SB. Experimental Models of Inherited PrP Prion Diseases. Cold Spring Harb Perspect Med 2017; 7:cshperspect.a027151. [PMID: 28096244 DOI: 10.1101/cshperspect.a027151] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The inherited prion protein (PrP) prion disorders, which include familial Creutzfeldt-Jakob disease, Gerstmann-Sträussler-Scheinker disease, and fatal familial insomnia, constitute ∼10%-15% of all PrP prion disease cases in humans. Attempts to generate animal models of these disorders using transgenic mice expressing mutant PrP have produced variable results. Although many lines of mice develop spontaneous signs of neurological illness with accompanying prion disease-specific neuropathological changes, others do not. Furthermore, demonstrating the presence of protease-resistant PrP species and prion infectivity-two of the hallmarks of the PrP prion disorders-in the brains of spontaneously sick mice has proven particularly challenging. Here, we review the progress that has been made toward developing accurate mouse models of the inherited PrP prion disorders.
Collapse
Affiliation(s)
- Joel C Watts
- Tanz Centre for Research in Neurodegenerative Diseases and Department of Biochemistry, University of Toronto, Toronto, Ontario M5T 2S8, Canada
| | - Stanley B Prusiner
- Institute for Neurodegenerative Diseases, Departments of Neurology and Biochemistry and Biophysics, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, California 94143
| |
Collapse
|
40
|
Genetic human prion disease modelled in PrP transgenic Drosophila. Biochem J 2017; 474:3253-3267. [PMID: 28814578 PMCID: PMC5606059 DOI: 10.1042/bcj20170462] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Revised: 08/07/2017] [Accepted: 08/15/2017] [Indexed: 12/26/2022]
Abstract
Inherited human prion diseases, such as fatal familial insomnia (FFI) and familial Creutzfeldt–Jakob disease (fCJD), are associated with autosomal dominant mutations in the human prion protein gene PRNP and accumulation of PrPSc, an abnormal isomer of the normal host protein PrPC, in the brain of affected individuals. PrPSc is the principal component of the transmissible neurotoxic prion agent. It is important to identify molecular pathways and cellular processes that regulate prion formation and prion-induced neurotoxicity. This will allow identification of possible therapeutic interventions for individuals with, or at risk from, genetic human prion disease. Increasingly, Drosophila has been used to model human neurodegenerative disease. An important unanswered question is whether genetic prion disease with concomitant spontaneous prion formation can be modelled in Drosophila. We have used pUAST/PhiC31-mediated site-directed mutagenesis to generate Drosophila transgenic for murine or hamster PrP (prion protein) that carry single-codon mutations associated with genetic human prion disease. Mouse or hamster PrP harbouring an FFI (D178N) or fCJD (E200K) mutation showed mild Proteinase K resistance when expressed in Drosophila. Adult Drosophila transgenic for FFI or fCJD variants of mouse or hamster PrP displayed a spontaneous decline in locomotor ability that increased in severity as the flies aged. Significantly, this mutant PrP-mediated neurotoxic fly phenotype was transferable to recipient Drosophila that expressed the wild-type form of the transgene. Collectively, our novel data are indicative of the spontaneous formation of a PrP-dependent neurotoxic phenotype in FFI- or CJD-PrP transgenic Drosophila and show that inherited human prion disease can be modelled in this invertebrate host.
Collapse
|
41
|
Fehlinger A, Wolf H, Hossinger A, Duernberger Y, Pleschka C, Riemschoss K, Liu S, Bester R, Paulsen L, Priola SA, Groschup MH, Schätzl HM, Vorberg IM. Prion strains depend on different endocytic routes for productive infection. Sci Rep 2017; 7:6923. [PMID: 28761068 PMCID: PMC5537368 DOI: 10.1038/s41598-017-07260-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Accepted: 06/27/2017] [Indexed: 01/08/2023] Open
Abstract
Prions are unconventional agents composed of misfolded prion protein that cause fatal neurodegenerative diseases in mammals. Prion strains induce specific neuropathological changes in selected brain areas. The mechanism of strain-specific cell tropism is unknown. We hypothesised that prion strains rely on different endocytic routes to invade and replicate within their target cells. Using prion permissive cells, we determined how impairment of endocytosis affects productive infection by prion strains 22L and RML. We demonstrate that early and late stages of prion infection are differentially sensitive to perturbation of clathrin- and caveolin-mediated endocytosis. Manipulation of canonical endocytic pathways only slightly influenced prion uptake. However, blocking the same routes had drastic strain-specific consequences on the establishment of infection. Our data argue that prion strains use different endocytic pathways for infection and suggest that cell type-dependent differences in prion uptake could contribute to host cell tropism.
Collapse
Affiliation(s)
- Andrea Fehlinger
- Deutsches Zentrum für Neurodegenerative Erkrankungen e.V., Sigmund-Freud-Strasse 27, 53127, Bonn, Germany
| | - Hanna Wolf
- Deutsches Zentrum für Neurodegenerative Erkrankungen e.V., Sigmund-Freud-Strasse 27, 53127, Bonn, Germany
| | - André Hossinger
- Deutsches Zentrum für Neurodegenerative Erkrankungen e.V., Sigmund-Freud-Strasse 27, 53127, Bonn, Germany
| | - Yvonne Duernberger
- Deutsches Zentrum für Neurodegenerative Erkrankungen e.V., Sigmund-Freud-Strasse 27, 53127, Bonn, Germany
| | - Catharina Pleschka
- Deutsches Zentrum für Neurodegenerative Erkrankungen e.V., Sigmund-Freud-Strasse 27, 53127, Bonn, Germany
| | - Katrin Riemschoss
- Deutsches Zentrum für Neurodegenerative Erkrankungen e.V., Sigmund-Freud-Strasse 27, 53127, Bonn, Germany
| | - Shu Liu
- Deutsches Zentrum für Neurodegenerative Erkrankungen e.V., Sigmund-Freud-Strasse 27, 53127, Bonn, Germany
| | - Romina Bester
- Institut für Virologie, Technische Universität München, Trogerstr. 30, 81675, München, Germany
| | - Lydia Paulsen
- Deutsches Zentrum für Neurodegenerative Erkrankungen e.V., Sigmund-Freud-Strasse 27, 53127, Bonn, Germany
| | - Suzette A Priola
- Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 903 South 4th Street, Hamilton, MT, 59840, USA
| | - Martin H Groschup
- Friedrich-Loeffler-Institut, Institute of Novel and Emerging Infectious Diseases, 17493, Greifswald-Insel Riems, Germany
| | - Hermann M Schätzl
- Dept. of Comparative Biology & Experimental Medicine, University of Calgary, Calgary, AB T2N 4Z6, Canada
| | - Ina M Vorberg
- Deutsches Zentrum für Neurodegenerative Erkrankungen e.V., Sigmund-Freud-Strasse 27, 53127, Bonn, Germany. .,Department of Neurology, Rheinische Friedrich-Wilhelms-Universität, 53127, Bonn, Germany.
| |
Collapse
|
42
|
Jeffrey M, González L, Simmons MM, Hunter N, Martin S, McGovern G. Altered trafficking of abnormal prion protein in atypical scrapie: prion protein accumulation in oligodendroglial inner mesaxons. Neuropathol Appl Neurobiol 2017; 43:215-226. [PMID: 26750308 DOI: 10.1111/nan.12302] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Revised: 01/04/2016] [Accepted: 01/10/2016] [Indexed: 01/09/2023]
Abstract
AIMS Prion diseases exist in classical and atypical disease forms. Both forms are characterized by disease-associated accumulation of a host membrane sialoglycoprotein known as prion protein (PrPd ). In classical forms of prion diseases, PrPd can accumulate in the extracellular space as fibrillar amyloid, intracellularly within lysosomes, but mainly on membranes in association with unique and characteristic membrane pathology. These membrane changes are found in all species and strains of classical prion diseases and consist of spiral, branched and clathrin-coated membrane invaginations on dendrites. Atypical prion diseases have been described in ruminants and man and have distinct biological, biochemical and pathological properties when compared to classical disease. The purpose of this study was to determine whether the subcellular pattern of PrPd accumulation and membrane changes in atypical scrapie were the same as those found in classical prion diseases. METHODS Immunogold electron microscopy was used to examine brains of atypical scrapie-affected sheep and Tg338 mice. RESULTS Classical prion disease-associated membrane lesions were not found in atypical scrapie-affected sheep, however, white matter PrPd accumulation was localized mainly to the inner mesaxon and paranodal cytoplasm of oligodendroglia. Similar lesions were found in myelinated axons of atypical scrapie Tg338-infected mice. However, Tg338 mice also showed the unique grey matter membrane changes seen in classical forms of disease. CONCLUSIONS These data show that atypical scrapie infection directs a change in trafficking of abnormal PrP to axons and oligodendroglia and that the resulting pathology is an interaction between the agent strain and host genotype.
Collapse
Affiliation(s)
- M Jeffrey
- Pathology Department, Animal and Plant Health Agency, Lasswade, UK
| | - L González
- Pathology Department, Animal and Plant Health Agency, Lasswade, UK
| | - M M Simmons
- Pathology Department, Animal and Plant Health Agency, Addlestone, UK
| | - N Hunter
- The Roslin Institute, University of Edinburgh, Midlothian, UK
| | - S Martin
- Pathology Department, Animal and Plant Health Agency, Lasswade, UK
| | - G McGovern
- Pathology Department, Animal and Plant Health Agency, Lasswade, UK
| |
Collapse
|
43
|
Cellular prion protein is present in mitochondria of healthy mice. Sci Rep 2017; 7:41556. [PMID: 28148964 PMCID: PMC5288712 DOI: 10.1038/srep41556] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Accepted: 12/13/2016] [Indexed: 01/04/2023] Open
Abstract
Cellular prion protein (PrPC) is a mammalian glycoprotein which is usually found anchored to the plasma membrane via a glycophosphatidylinositol (GPI) anchor. PrPC misfolds to a pathogenic isoform PrPSc, the causative agent of neurodegenerative prion diseases. The precise function of PrPC remains elusive but may depend upon its cellular localization. Here we show that PrPC is present in brain mitochondria from 6–12 week old wild-type and transgenic mice in the absence of disease. Mitochondrial PrPC was fully processed with mature N-linked glycans and did not require the GPI anchor for localization. Protease treatment of purified mitochondria suggested that mitochondrial PrPC exists as a transmembrane isoform with the C-terminus facing the mitochondrial matrix and the N-terminus facing the intermembrane space. Taken together, our data suggest that PrPC can be found in mitochondria in the absence of disease, old age, mutation, or overexpression and that PrPC may affect mitochondrial function.
Collapse
|
44
|
Moreno JA, Telling GC. Insights into Mechanisms of Transmission and Pathogenesis from Transgenic Mouse Models of Prion Diseases. Methods Mol Biol 2017; 1658:219-252. [PMID: 28861793 DOI: 10.1007/978-1-4939-7244-9_16] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Prions represent a new paradigm of protein-mediated information transfer. In the case of mammals, prions are the cause of fatal, transmissible neurodegenerative diseases, sometimes referred to as transmissible spongiform encephalopathies (TSEs), which frequently occur as epidemics. An increasing body of evidence indicates that the canonical mechanism of conformational corruption of cellular prion protein (PrPC) by the pathogenic isoform (PrPSc) that is the basis of prion formation in TSEs is common to a spectrum of proteins associated with various additional human neurodegenerative disorders, including the more common Alzheimer's and Parkinson's diseases. The peerless infectious properties of TSE prions, and the unparalleled tools for their study, therefore enable elucidation of mechanisms of template-mediated conformational propagation that are generally applicable to these related disease states. Many unresolved issues remain including the exact molecular nature of the prion, the detailed cellular and molecular mechanisms of prion propagation, and the means by which prion diseases can be both genetic and infectious. In addition, we know little about the mechanism by which neurons degenerate during prion diseases. Tied to this, the physiological role of the normal form of the prion protein remains unclear and it is uncertain whether or not loss of this function contributes to prion pathogenesis. The factors governing the transmission of prions between species remain unclear, in particular the means by which prion strains and PrP primary structure interact to affect interspecies prion transmission. Despite all these unknowns, advances in our understanding of prions have occurred because of their transmissibility to experimental animals, and the development of transgenic (Tg) mouse models has done much to further our understanding about various aspects of prion biology. In this review, we will focus on advances in our understanding of prion biology that occurred in the past 8 years since our last review of this topic.
Collapse
Affiliation(s)
- Julie A Moreno
- Cell and Molecular Biology Graduate Program, Molecular, Cellular and Integrative Neuroscience Graduate Program, Department of Microbiology, Immunology and Pathology, Prion Research Center, Colorado State University, Fort Collins, CO, 80523, USA
| | - Glenn C Telling
- Cell and Molecular Biology Graduate Program, Molecular, Cellular and Integrative Neuroscience Graduate Program, Department of Microbiology, Immunology and Pathology, Prion Research Center, Colorado State University, Fort Collins, CO, 80523, USA.
| |
Collapse
|
45
|
Watts JC, Giles K, Bourkas MEC, Patel S, Oehler A, Gavidia M, Bhardwaj S, Lee J, Prusiner SB. Towards authentic transgenic mouse models of heritable PrP prion diseases. Acta Neuropathol 2016; 132:593-610. [PMID: 27350609 DOI: 10.1007/s00401-016-1585-6] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Revised: 05/24/2016] [Accepted: 05/27/2016] [Indexed: 11/27/2022]
Abstract
Attempts to model inherited human prion disorders such as familial Creutzfeldt-Jakob disease (CJD), Gerstmann-Sträussler-Scheinker (GSS) disease, and fatal familial insomnia (FFI) using genetically modified mice have produced disappointing results. We recently demonstrated that transgenic (Tg) mice expressing wild-type bank vole prion protein (BVPrP) containing isoleucine at polymorphic codon 109 develop a spontaneous neurodegenerative disorder that exhibits many of the hallmarks of prion disease. To determine if mutations causing inherited human prion disease alter this phenotype, we generated Tg mice expressing BVPrP containing the D178N mutation, which causes FFI; the E200K mutation, which causes familial CJD; or an anchorless PrP mutation similar to mutations that cause GSS. Modest expression levels of mutant BVPrP resulted in highly penetrant spontaneous disease in Tg mice, with mean ages of disease onset ranging from ~120 to ~560 days. The brains of spontaneously ill mice exhibited prominent features of prion disease-specific neuropathology that were unique to each mutation and distinct from Tg mice expressing wild-type BVPrP. An ~8-kDa proteinase K-resistant PrP fragment was found in the brains of spontaneously ill Tg mice expressing either wild-type or mutant BVPrP. The spontaneously formed mutant BVPrP prions were transmissible to Tg mice expressing wild-type or mutant BVPrP as well as to Tg mice expressing mouse PrP. Thus, Tg mice expressing mutant BVPrP exhibit many of the hallmarks of heritable prion disorders in humans including spontaneous disease, protease-resistant PrP, and prion infectivity.
Collapse
Affiliation(s)
- Joel C Watts
- Institute for Neurodegenerative Diseases, University of California, San Francisco, 675 Nelson Rising Lane, San Francisco, CA, 94143-0518, USA
- Department of Neurology, University of California, San Francisco, San Francisco, CA, 94143, USA
- Tanz Centre for Research in Neurodegenerative Diseases, Department of Biochemistry, University of Toronto, Toronto, ON, M5T 2S8, Canada
| | - Kurt Giles
- Institute for Neurodegenerative Diseases, University of California, San Francisco, 675 Nelson Rising Lane, San Francisco, CA, 94143-0518, USA
- Department of Neurology, University of California, San Francisco, San Francisco, CA, 94143, USA
| | - Matthew E C Bourkas
- Tanz Centre for Research in Neurodegenerative Diseases, Department of Biochemistry, University of Toronto, Toronto, ON, M5T 2S8, Canada
| | - Smita Patel
- Institute for Neurodegenerative Diseases, University of California, San Francisco, 675 Nelson Rising Lane, San Francisco, CA, 94143-0518, USA
| | - Abby Oehler
- Institute for Neurodegenerative Diseases, University of California, San Francisco, 675 Nelson Rising Lane, San Francisco, CA, 94143-0518, USA
| | - Marta Gavidia
- Institute for Neurodegenerative Diseases, University of California, San Francisco, 675 Nelson Rising Lane, San Francisco, CA, 94143-0518, USA
| | - Sumita Bhardwaj
- Institute for Neurodegenerative Diseases, University of California, San Francisco, 675 Nelson Rising Lane, San Francisco, CA, 94143-0518, USA
| | - Joanne Lee
- Institute for Neurodegenerative Diseases, University of California, San Francisco, 675 Nelson Rising Lane, San Francisco, CA, 94143-0518, USA
| | - Stanley B Prusiner
- Institute for Neurodegenerative Diseases, University of California, San Francisco, 675 Nelson Rising Lane, San Francisco, CA, 94143-0518, USA.
- Department of Neurology, University of California, San Francisco, San Francisco, CA, 94143, USA.
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, 94143, USA.
| |
Collapse
|
46
|
Veber D, Scalabrino G. Are PrPCs involved in some human myelin diseases? Relating experimental studies to human pathology. J Neurol Sci 2015; 359:396-403. [DOI: 10.1016/j.jns.2015.09.365] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Revised: 09/04/2015] [Accepted: 09/23/2015] [Indexed: 11/29/2022]
|
47
|
Martínez J, Sánchez R, Castellanos M, Makarava N, Aguzzi A, Baskakov IV, Gasset M. PrP charge structure encodes interdomain interactions. Sci Rep 2015; 5:13623. [PMID: 26323476 PMCID: PMC4555102 DOI: 10.1038/srep13623] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Accepted: 07/31/2015] [Indexed: 11/19/2022] Open
Abstract
Almost all proteins contain charged residues, and their chain distribution is tailored to fulfill essential ionic interactions for folding, binding and catalysis. Among proteins, the hinged two-domain chain of the cellular prion protein (PrPC) exhibits a peculiar charge structure with unclear consequences in its structural malleability. To decipher the charge design role, we generated charge-reverted mutants for each domain and analyzed their effect on conformational and metabolic features. We found that charges contain the information for interdomain interactions. Use of dynamic light scattering and thermal denaturation experiments delineates the compaction of the α-fold by an electrostatic compensation between the polybasic 23–30 region and the α3 electronegative surface. This interaction increases stability and disfavors fibrillation. Independently of this structural effect, the N-terminal electropositive clusters regulate the α-cleavage efficiency. In the fibrillar state, use of circular dichroism, atomic-force and fluorescence microscopies reveal that the N-terminal positive clusters and the α3 electronegative surface dictate the secondary structure, the assembly hierarchy and the growth length of the fibril state. These findings show that the PrP charge structure functions as a code set up to ensure function and reduce pathogenic routes.
Collapse
Affiliation(s)
- Javier Martínez
- Instituto Química-Física "Rocasolano", Consejo Superior de Investigaciones Científicas, Madrid 28006, Spain
| | - Rosa Sánchez
- Instituto Química-Física "Rocasolano", Consejo Superior de Investigaciones Científicas, Madrid 28006, Spain
| | - Milagros Castellanos
- Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas, Madrid, Spain; IMDEA-Nanociencia, Madrid 28049, Spain
| | - Natallia Makarava
- Center for Biomedical Engineering and Technology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Adriano Aguzzi
- Institute of Neuropathology, University Hospital of Zürich, Zürich 8091, Switzerland
| | - Ilia V Baskakov
- Center for Biomedical Engineering and Technology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - María Gasset
- Instituto Química-Física "Rocasolano", Consejo Superior de Investigaciones Científicas, Madrid 28006, Spain
| |
Collapse
|
48
|
Torres M, Medinas DB, Matamala JM, Woehlbier U, Cornejo VH, Solda T, Andreu C, Rozas P, Matus S, Muñoz N, Vergara C, Cartier L, Soto C, Molinari M, Hetz C. The Protein-disulfide Isomerase ERp57 Regulates the Steady-state Levels of the Prion Protein. J Biol Chem 2015; 290:23631-45. [PMID: 26170458 DOI: 10.1074/jbc.m114.635565] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2015] [Indexed: 12/19/2022] Open
Abstract
Although the accumulation of a misfolded and protease-resistant form of the prion protein (PrP) is a key event in prion pathogenesis, the cellular factors involved in its folding and quality control are poorly understood. PrP is a glycosylated and disulfide-bonded protein synthesized at the endoplasmic reticulum (ER). The ER foldase ERp57 (also known as Grp58) is highly expressed in the brain of sporadic and infectious forms of prion-related disorders. ERp57 is a disulfide isomerase involved in the folding of a subset of glycoproteins in the ER as part of the calnexin/calreticulin cycle. Here, we show that levels of ERp57 increase mainly in neurons of Creutzfeldt-Jacob patients. Using gain- and loss-of-function approaches in cell culture, we demonstrate that ERp57 expression controls the maturation and total levels of wild-type PrP and mutant forms associated with human disease. In addition, we found that PrP physically interacts with ERp57, and also with the closest family member PDIA1, but not ERp72. Furthermore, we generated a conditional knock-out mouse for ERp57 in the nervous system and detected a reduction in the steady-state levels of the mono- and nonglycosylated forms of PrP in the brain. In contrast, ERp57 transgenic mice showed increased levels of endogenous PrP. Unexpectedly, ERp57 expression did not affect the susceptibility of cells to ER stress in vitro and in vivo. This study identifies ERp57 as a new modulator of PrP levels and may help with understanding the consequences of ERp57 up-regulation observed in human disease.
Collapse
Affiliation(s)
- Mauricio Torres
- From the Biomedical Neuroscience Institute, Faculty of Medicine, University of Chile, Santiago 8380453, Chile, the Program of Cellular and Molecular Biology, Institute of Biomedical Sciences, Center for Molecular Studies of the Cell, University of Chile, Santiago 8380453, Chile
| | - Danilo B Medinas
- From the Biomedical Neuroscience Institute, Faculty of Medicine, University of Chile, Santiago 8380453, Chile, the Program of Cellular and Molecular Biology, Institute of Biomedical Sciences, Center for Molecular Studies of the Cell, University of Chile, Santiago 8380453, Chile
| | - José Manuel Matamala
- From the Biomedical Neuroscience Institute, Faculty of Medicine, University of Chile, Santiago 8380453, Chile, the Department of Neurological Sciences, Faculty of Medicine, University of Chile, Santiago 7500691, Chile
| | - Ute Woehlbier
- From the Biomedical Neuroscience Institute, Faculty of Medicine, University of Chile, Santiago 8380453, Chile, the Program of Cellular and Molecular Biology, Institute of Biomedical Sciences, Center for Molecular Studies of the Cell, University of Chile, Santiago 8380453, Chile
| | - Víctor Hugo Cornejo
- From the Biomedical Neuroscience Institute, Faculty of Medicine, University of Chile, Santiago 8380453, Chile, the Program of Cellular and Molecular Biology, Institute of Biomedical Sciences, Center for Molecular Studies of the Cell, University of Chile, Santiago 8380453, Chile
| | - Tatiana Solda
- the Institute for Research in Biomedicine, Bellinzona CH6500, Switzerland
| | - Catherine Andreu
- From the Biomedical Neuroscience Institute, Faculty of Medicine, University of Chile, Santiago 8380453, Chile, the Program of Cellular and Molecular Biology, Institute of Biomedical Sciences, Center for Molecular Studies of the Cell, University of Chile, Santiago 8380453, Chile
| | - Pablo Rozas
- From the Biomedical Neuroscience Institute, Faculty of Medicine, University of Chile, Santiago 8380453, Chile, the Program of Cellular and Molecular Biology, Institute of Biomedical Sciences, Center for Molecular Studies of the Cell, University of Chile, Santiago 8380453, Chile
| | - Soledad Matus
- From the Biomedical Neuroscience Institute, Faculty of Medicine, University of Chile, Santiago 8380453, Chile, the Neurounion Biomedical Foundation, CENPAR, Santiago 7630614, Chile
| | - Natalia Muñoz
- From the Biomedical Neuroscience Institute, Faculty of Medicine, University of Chile, Santiago 8380453, Chile, the Neurounion Biomedical Foundation, CENPAR, Santiago 7630614, Chile
| | - Carmen Vergara
- the Department of Neurological Sciences, Faculty of Medicine, University of Chile, Santiago 7500691, Chile
| | - Luis Cartier
- the Department of Neurological Sciences, Faculty of Medicine, University of Chile, Santiago 7500691, Chile
| | - Claudio Soto
- the Department of Neurology, University of Texas Medical School, Houston, Texas 77030, and
| | - Maurizio Molinari
- the Institute for Research in Biomedicine, Bellinzona CH6500, Switzerland, the Università della Svizzera Italiana, Lugano CH6900, Switzerland, the Ecole Polytechnique Fédérale de Lausanne, School of Life Sciences, Lausanne CH1015, Switzerland
| | - Claudio Hetz
- From the Biomedical Neuroscience Institute, Faculty of Medicine, University of Chile, Santiago 8380453, Chile, the Program of Cellular and Molecular Biology, Institute of Biomedical Sciences, Center for Molecular Studies of the Cell, University of Chile, Santiago 8380453, Chile, the Harvard School of Public Health, Boston, Massachusetts 02115
| |
Collapse
|
49
|
Drisaldi B, Colnaghi L, Fioriti L, Rao N, Myers C, Snyder AM, Metzger DJ, Tarasoff J, Konstantinov E, Fraser PE, Manley JL, Kandel ER. SUMOylation Is an Inhibitory Constraint that Regulates the Prion-like Aggregation and Activity of CPEB3. Cell Rep 2015; 11:1694-702. [PMID: 26074071 PMCID: PMC5477225 DOI: 10.1016/j.celrep.2015.04.061] [Citation(s) in RCA: 87] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2015] [Revised: 03/02/2015] [Accepted: 04/28/2015] [Indexed: 11/30/2022] Open
Abstract
Protein synthesis is crucial for the maintenance of long-term-memory-related synaptic plasticity. The prion-like cytoplasmic polyadenylation element-binding protein 3 (CPEB3) regulates the translation of several mRNAs important for long-term synaptic plasticity in the hippocampus. Here, we provide evidence that the prion-like aggregation and activity of CPEB3 is controlled by SUMOylation. In the basal state, CPEB3 is a repressor and is soluble. Under these circumstances, CPEB3 is SUMOylated in hippocampal neurons both in vitro and in vivo. Following neuronal stimulation, CPEB3 is converted into an active form that promotes the translation of target mRNAs, and this is associated with a decrease of SUMOylation and an increase of aggregation. A chimeric CPEB3 protein fused to SUMO cannot form aggregates and cannot activate the translation of target mRNAs. These findings suggest a model whereby SUMO regulates translation of mRNAs and structural synaptic plasticity by modulating the aggregation of the prion-like protein CPEB3.
Collapse
Affiliation(s)
- Bettina Drisaldi
- Department of Neuroscience, Columbia University, 1051 Riverside Drive, New York, NY 10032, USA
| | - Luca Colnaghi
- Department of Neuroscience, Columbia University, 1051 Riverside Drive, New York, NY 10032, USA
| | - Luana Fioriti
- Department of Neuroscience, Columbia University, 1051 Riverside Drive, New York, NY 10032, USA
| | - Nishta Rao
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA
| | - Cory Myers
- Department of Neuroscience, Columbia University, 1051 Riverside Drive, New York, NY 10032, USA
| | - Anna M Snyder
- Department of Neuroscience, Columbia University, 1051 Riverside Drive, New York, NY 10032, USA
| | - Daniel J Metzger
- Department of Neuroscience, Columbia University, 1051 Riverside Drive, New York, NY 10032, USA
| | - Jenna Tarasoff
- Department of Neuroscience, Columbia University, 1051 Riverside Drive, New York, NY 10032, USA
| | - Edward Konstantinov
- Department of Neuroscience, Columbia University, 1051 Riverside Drive, New York, NY 10032, USA
| | - Paul E Fraser
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, ON 4KD481, Canada
| | - James L Manley
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA
| | - Eric R Kandel
- Department of Neuroscience, Columbia University, 1051 Riverside Drive, New York, NY 10032, USA; Howard Hughes Medical Institute, Columbia University, 1051 Riverside Drive, New York, NY 10032, USA; Kavli Institute for Brain Science, Columbia University, 1051 Riverside Drive, New York, NY 10032, USA.
| |
Collapse
|
50
|
Simone R, Fratta P, Neidle S, Parkinson GN, Isaacs AM. G-quadruplexes: Emerging roles in neurodegenerative diseases and the non-coding transcriptome. FEBS Lett 2015; 589:1653-68. [PMID: 25979174 DOI: 10.1016/j.febslet.2015.05.003] [Citation(s) in RCA: 160] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Revised: 04/29/2015] [Accepted: 05/02/2015] [Indexed: 12/14/2022]
Abstract
G-rich sequences in DNA and RNA have a propensity to fold into stable secondary structures termed G-quadruplexes. G-quadruplex forming sequences are widespread throughout the human genome, within both, protein coding and non-coding genes, and regulatory regions. G-quadruplexes have been implicated in multiple cellular functions including chromatin epigenetic regulation, DNA recombination, transcriptional regulation of gene promoters and enhancers, and translation. Here we will review the evidence for the occurrence of G-quadruplexes both in vitro and in vivo; their role in neurological diseases including G-quadruplex-forming repeat expansions in the C9orf72 gene in frontotemporal dementia and amyotrophic lateral sclerosis and loss of the G-quadruplex binding protein FMRP in the intellectual disability fragile X syndrome. We also review mounting evidence that supports a role for G-quadruplexes in regulating the processing or function of a range of non-coding RNAs. Finally we will highlight current perspectives for therapeutic interventions that target G-quadruplexes.
Collapse
Affiliation(s)
- Roberto Simone
- Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK.
| | - Pietro Fratta
- Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK; Sobell Department of Motor Neuroscience and Movement, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK
| | - Stephen Neidle
- UCL School of Pharmacy, 29-39 Brunswick Square, London WC1N 1AX, UK
| | - Gary N Parkinson
- UCL School of Pharmacy, 29-39 Brunswick Square, London WC1N 1AX, UK
| | - Adrian M Isaacs
- Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK.
| |
Collapse
|