1
|
Conte I, Banfi S, Bovolenta P. Non-coding RNAs in the development of sensory organs and related diseases. Cell Mol Life Sci 2013; 70:4141-55. [PMID: 23588489 PMCID: PMC11113508 DOI: 10.1007/s00018-013-1335-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2013] [Revised: 03/25/2013] [Accepted: 03/27/2013] [Indexed: 12/21/2022]
Abstract
Genomes are transcribed well beyond the conventionally annotated protein-encoding genes and produce many thousands of regulatory non-coding RNAs (ncRNAs). In the last few years, ncRNAs, especially microRNAs and long non-coding RNA, have received increasing attention because of their implication in the function of chromatin-modifying complexes and in the regulation of transcriptional and post-transcriptional events. The morphological events and the genetic networks responsible for the development of sensory organs have been well delineated and therefore sensory organs have provided a useful scenario to address the role of ncRNAs. In this review, we summarize the current information on the importance of microRNAs and long non-coding RNAs during the development of the eye, inner ear, and olfactory system in vertebrates. We will also discuss those cases in which alteration of ncRNA expression has been linked to pathological conditions affecting these organs.
Collapse
Affiliation(s)
- Ivan Conte
- Telethon Institute of Genetics and Medicine, Via Pietro Castellino, 111, 80131 Naples, Italy
| | - Sandro Banfi
- Telethon Institute of Genetics and Medicine, Via Pietro Castellino, 111, 80131 Naples, Italy
- Department of Biochemistry, Biophysics and General Pathology, Second University of Naples, Naples, Italy
| | - Paola Bovolenta
- Centro de Biología Molecular ‘Severo Ochoa’, CSIC–UAM, c/Nicolas Cabrera 1, Cantoblanco, 28049 Madrid, Spain
- CIBER de Enfermedades Raras, ISCIII, Madrid, Spain
| |
Collapse
|
2
|
Richter MW, Roskams AJ. Olfactory ensheathing cell transplantation following spinal cord injury: Hype or hope? Exp Neurol 2008; 209:353-67. [PMID: 17643431 DOI: 10.1016/j.expneurol.2007.06.011] [Citation(s) in RCA: 101] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2007] [Accepted: 06/11/2007] [Indexed: 11/27/2022]
Abstract
Olfactory ensheathing cells (OECs) are unique glia found only in the olfactory system that retain exceptional plasticity, and support olfactory neurogenesis and the re-targeting across the PNS:CNS boundary in the olfactory system. Because they are also relatively accessible in an adult rodent or human, OECs have become a prime candidate for cell-mediated repair following a variety of CNS lesions. A number of different labs across the world have applied OECs prepared in many different ways in several different acute and chronic models of rodent SCI, some of which have suggested surprising degrees of functional recovery. OECs can stimulate tissue sparing and neuroprotection, enhance outgrowth of both intact and lesioned axons (to different degrees), activate angiogenesis, change the response status of endogenous glia after lesion and remyelinate axons after a range of demyelinating insults. Their ability to stimulate regeneration in specific tracts is, however, limited. Despite this, the ongoing clinical use of cell preparations containing OECs has proceeded as a therapeutic approach for human spinal cord injury (SCI). Here, we review the current status of OEC research in SCI, and focus on potential mechanisms for OECs in the SCI repair response that may help to explain the biological reasons underlying the wide variation of results obtained in this promising, yet contentious, field.
Collapse
Affiliation(s)
- Miranda W Richter
- Department of Zoology and Medicine, University of British Columbia, Vancouver, BC, Canada
| | | |
Collapse
|
3
|
Mione M, Baldessari D, Deflorian G, Nappo G, Santoriello C. How neuronal migration contributes to the morphogenesis of the CNS: insights from the zebrafish. Dev Neurosci 2008; 30:65-81. [PMID: 18075256 DOI: 10.1159/000109853] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2006] [Accepted: 06/24/2007] [Indexed: 11/19/2022] Open
Abstract
We used transgenic zebrafish expressing GFP or YFP in subpopulations of neurons to study the migration, homing process and axon extension of groups of CNS neurons in different regions of the zebrafish brain. We found that extensive migration takes place at all levels of the CNS and gives rise to nuclei or cell populations with specific identities. Here, we describe 4 previously unknown or only partially characterized migratory events taking place in the zebrafish telencephalon and rhombic lip, using 3 different transgenic lines, and identify the phenotypes of the cells undertaking these migrations. The migration of a subgroup of mitral cell precursors from the dorsocaudal telencephalon to the olfactory bulb, visualized in the tg(tbr1:YFP) transgenic line, is coupled with morphogenetic transformation of the dorsal telencephalon. The tg(1.4dlx5a-6a:GFP) transgenic line provides a means to analyze the migration of GABAergic interneurons from the ventral to the dorsal telencephalon, thus extending the occurrence of this migration to another vertebrate. The tg(Xeom:GFP) transgenic line provides the first demonstration of the dorsoventral migration of glutamatergic septal neurons, present in mammals and now described in fish, thus reconciling the contrasting evidence of dorsal patterning genes (tbr1, eomes) expressed in a ventral cell population. Furthermore, migration studies in the tg(1.4dlx5a-6a:GFP) and tg(Xeom:GFP) lines help determine the origin of 2 important cell populations in the fish cerebellum: projection neurons and Purkinje cells. These examples reinforce the concept that migratory events contribute to the distribution of cell types with diverse identities through the CNS and that zebrafish transgenic lines represent excellent tools to study these events.
Collapse
Affiliation(s)
- Marina Mione
- IFOM, FIRC Institute of Molecular Oncology, Milan, Italy.
| | | | | | | | | |
Collapse
|
4
|
Zaghetto AA, Paina S, Mantero S, Platonova N, Peretto P, Bovetti S, Puche A, Piccolo S, Merlo GR. Activation of the Wnt-beta catenin pathway in a cell population on the surface of the forebrain is essential for the establishment of olfactory axon connections. J Neurosci 2007; 27:9757-68. [PMID: 17804636 PMCID: PMC1986640 DOI: 10.1523/jneurosci.0763-07.2007] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2006] [Revised: 06/29/2007] [Accepted: 07/04/2007] [Indexed: 11/21/2022] Open
Abstract
A variety of signals governing early extension, guidance, and connectivity of olfactory receptor neuron (ORN) axons has been identified; however, little is known about axon-mesoderm and forebrain (FB)-mesoderm signals. Using Wnt-beta catenin reporter mice, we identify a novel Wnt-responsive resident cell population, located in a Frizzled7 expression domain at the surface of the embryonic FB, along the trajectory of incoming ORN axons. Organotypic slice cultures that recapitulate olfactory-associated Wnt-beta catenin activation show that the beta catenin response depends on a placode-derived signal(s). Likewise, in Dlx5-/- embryos, in which the primary connections fail to form, Wnt-beta catenin response on the surface of the FB is strongly reduced. The olfactory placode expresses a number of beta catenin-activating Wnt genes, and the Frizzled7 receptor transduces the "canonical" Wnt signal; using Wnt expression plasmids we show that Wnt5a and Wnt7b are sufficient to rescue beta catenin activation in the absence of incoming axons. Finally, blocking the canonical Wnt pathway with the exogenous application of the antagonists Dikkopf-1 or secreted-Frizzled-receptor protein-2 prevents ORN axon contact to the FB. These data reveal a novel function for Wnt signaling in the establishment of periphery-CNS olfactory connections and highlight a complex interplay between cells of different embryonic origin for ORN axon connectivity.
Collapse
Affiliation(s)
- Ambra A. Zaghetto
- Dulbecco Telethon Institute-Consiglio Nazionale delle Ricerche Institute for Biomedical Technologies Milano, 20090 Segrate, Italy
| | - Sara Paina
- Dulbecco Telethon Institute-Consiglio Nazionale delle Ricerche Institute for Biomedical Technologies Milano, 20090 Segrate, Italy
| | - Stefano Mantero
- Dulbecco Telethon Institute-Consiglio Nazionale delle Ricerche Institute for Biomedical Technologies Milano, 20090 Segrate, Italy
| | - Natalia Platonova
- Dulbecco Telethon Institute-Consiglio Nazionale delle Ricerche Institute for Biomedical Technologies Milano, 20090 Segrate, Italy
| | - Paolo Peretto
- Department of Animal and Human Biology, University of Torino, 10123 Torino, Italy
| | - Serena Bovetti
- Department of Animal and Human Biology, University of Torino, 10123 Torino, Italy
- Department of Anatomy and Neurobiology, School of Medicine, University of Maryland, Baltimore, Maryland 21201, and
| | - Adam Puche
- Department of Anatomy and Neurobiology, School of Medicine, University of Maryland, Baltimore, Maryland 21201, and
| | - Stefano Piccolo
- Department of Histology, Microbiology, and Medical Biotechnologies, School of Medicine, University of Padova, 35122 Padova, Italy
| | - Giorgio R. Merlo
- Dulbecco Telethon Institute-Consiglio Nazionale delle Ricerche Institute for Biomedical Technologies Milano, 20090 Segrate, Italy
| |
Collapse
|
5
|
Merlo GR, Mantero S, Zaghetto AA, Peretto P, Paina S, Gozzo M. The role of Dlx homeogenes in early development of the olfactory pathway. J Mol Histol 2007; 38:347-58. [PMID: 17588208 DOI: 10.1007/s10735-007-9109-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2007] [Accepted: 05/29/2007] [Indexed: 01/19/2023]
Abstract
Development of the olfactory pathway requires interaction between cells and signals of different origin. Olfactory receptor neurons (ORN) in the olfactory placodes (OP) extend axons towards the forebrain (FB); with innervation taking place at a later time following degradation of the basement membrane. Cells from the OP migrate along ORN axons and differentiate into various elements, including ensheathing and Gonadotropin Releasing Hormone (GnRH)+ cells. The importance of the olfactory connection and migration is highlighted by the severe endocrine phenotype in Kallmann's patients who lack this migratory pathway. Little is known about the genetic control of intrinsic ORN properties. Inactivation of the distalless-related Dlx5 prevents connections between ORNs and FB. Using a grafting approach we show that misguidance and lack of connectivity is due to intrinsic defects in ORN neurites and migratory cells (MgC), and not to environmental factors. These data point to a cell-autonomous function of Dlx5 in providing ORN axons with their connectivity properties. Dlx5 also marks a population of early MgC that partly overlaps with the GnRH+ population. In the absence of Dlx5 MgCs of the Dlx5+ lineage migrate, associated with PSA-NCAM+ axons, but fail to reach the FB as a consequence of the lack of axonal connection and not an inability to migrate. These data suggests that Dlx5 is not required to initiate migration and differentiation of MgCs.
Collapse
Affiliation(s)
- Giorgio R Merlo
- Dulbecco Telethon Institute, CNR-ITB Milano, Via F.lli Cervi 93, 20090 Segrate, Milano, Italy.
| | | | | | | | | | | |
Collapse
|
6
|
Nedelec S, Dubacq C, Trembleau A. Morphological and molecular features of the mammalian olfactory sensory neuron axons: What makes these axons so special? ACTA ACUST UNITED AC 2006; 34:49-64. [PMID: 16374709 DOI: 10.1007/s11068-005-5047-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2005] [Revised: 08/05/2005] [Accepted: 08/05/2005] [Indexed: 11/29/2022]
Abstract
The main organization and gross morphology of the mammalian olfactory primary pathway, from the olfactory epithelium to the olfactory bulb, has been initially characterized using classical anatomical and ultrastructural approaches. During the last fifteen years, essentially thanks to the cloning of the odorant receptor genes, and to the characterization of a number of molecules expressed by the olfactory sensory neuron axons and their environment, significant new insights have been gained into the understanding of the development and adult functioning of this system. In the course of these genetic, biochemical and neuroanatomical studies, however, several molecular and structural features were uncovered that appear somehow to be unique to these axons. For example, these axons express odorant receptors in their terminal segment, and transport several mRNA species and at least two transcription factors. In the present paper, we review these unusual structural and molecular features and speculate about their possible functions in the development and maintenance of the olfactory system.
Collapse
Affiliation(s)
- Stéphane Nedelec
- Department of Biology, Ecole Normale Supérieure, CNRS UMR 8542, 46 rue d'Ulm, 75252 Paris Cedex 05, France
| | | | | |
Collapse
|
7
|
Kamiyama T, Yoshioka N, Sakurai M. Synapse elimination in the corticospinal projection during the early postnatal period. J Neurophysiol 2005; 95:2304-13. [PMID: 16267122 DOI: 10.1152/jn.00295.2005] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
In corticospinal synapses reconstructed in vitro by slice co-culture, we previously showed that the synapses were distributed across the gray matter at 6-7 days in vitro (DIV). Thereafter, they began to be eliminated from the ventral side, and dorsal-dominant distribution was nearly complete at 11-12 DIV. The synapse elimination is associated with retraction of the corticospinal (CS) terminals. We studied whether this specific type of synapse elimination is a physiological phenomenon rather than in vitro artifact. The rat corticospinal tract was stimulated at the medullary pyramid, and field potentials were recorded at the cervical cord along an 200-microm interval lattice on the axial plane. Clearly defined negative field potential were identified as field excitatory postsynaptic potentials (fEPSPs) generated by corticospinal synapses. They were recorded from the entire spinal gray matter at postnatal day 7 (P7). These negative fEPSPs reversed to positive in the most ventrolateral part at P8. Reversal extended to the more mediodorsal area at P10, indicative of progressive synapse elimination in the ventrolateral area. To verify that regression of the axons in vivo paralleled the changes in spatial distribution of fEPSPs as observed in vitro, corticospinal axons were anterogradely labeled. Redistribution of the labeled terminals closely paralleled the fEPSP distribution, being present in the ventrolateral spinal cord at P7, decreased at P8, further deceased at P10, but unchanged at P11. Furthermore, double immunostaining for labeled terminals and synaptophysin observed under a confocal microscope suggests that corticospinal fibers at P7 possess presynaptic structures in the ventrolateral area as well as the dorsomedial area. These findings suggest that corticospinal synapses are widely formed in the spinal gray matter at P7, are rapidly eliminated from the ventrolateral side from P8 to P10, a time-course very similar to that observed in vitro, and are associated with axonal regression.
Collapse
Affiliation(s)
- Tsutomu Kamiyama
- Department of Physiology, Teikyo University, School of Medicine, Tokyo, Japan
| | | | | |
Collapse
|
8
|
Schwarzenbacher K, Fleischer J, Breer H. Odorant receptor proteins in olfactory axons and in cells of the cribriform mesenchyme may contribute to fasciculation and sorting of nerve fibers. Cell Tissue Res 2005; 323:211-9. [PMID: 16175386 DOI: 10.1007/s00441-005-0073-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2005] [Accepted: 08/01/2005] [Indexed: 11/24/2022]
Abstract
Odorant receptors (ORs) have been shown to be present not only in the chemosensory cilia of the olfactory sensory neurons, but also in their axon terminals. This observation has emphasized the notion that the receptor protein may contribute to the precise receptor-specific targeting of olfactory axons in the olfactory bulb. This concept implies a particularly important role for the axonal receptor protein during the onset and early phase of the wiring process during development. In the present study, we have demonstrated, by means of specific antibodies, that, as early as mouse embryonic day E12, the OR protein can be visualized in outgrowing axonal processes of the olfactory epithelium and in cells located in the cribriform mesenchyme. On their trajectory from the olfactory epithelium through the cribriform mesenchyme toward the forebrain, axons with strong OR immunoreactivity have only been seen in the dorsal part of the mesenchyme where they traverse the region of OR-positive cells. Upon visualization by specific antibodies, these cells have been revealed to have long protrusions extending along the surface of nerve fascicles. They are often located at bifurcations where two small axon fascicles merge to form a stronger bundle. Within this region, fascicles coalesce forming a coherent nerve. Moreover, within the now compact nerve bundle, axons visualized by the OR-specific antibody are no longer distributed evenly but are segregated from other axonal populations within the nerve. These findings suggest that OR proteins in the membrane of axonal processes and of cells in the cribriform mesenchyme are involved in crucial processes such as fasciculation and the sorting of outgrowing axons, both of which are fundamental for the initiation and establishment of the precise wiring of the olfactory system during early development.
Collapse
Affiliation(s)
- Karin Schwarzenbacher
- Institute of Physiology, University of Hohenheim, Garbenstrasse 30, 70599 Stuttgart, Germany
| | | | | |
Collapse
|
9
|
López-Mascaraque L, García C, Blanchart A, De Carlos JA. Olfactory epithelium influences the orientation of mitral cell dendrites during development. Dev Dyn 2005; 232:325-35. [PMID: 15614760 DOI: 10.1002/dvdy.20239] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
We have established previously that, although the olfactory epithelium is absent in the homozygous Pax-6 mutant mouse, an olfactory bulb-like structure (OBLS) does develop. Moreover, this OBLS contains cells that correspond to mitral cells, the primary projection neurons in the olfactory bulb. The current study aimed to address whether the dendrites of mitral cells in the olfactory bulb or in the OBLS mitral-like cells, exhibit a change in orientation in the presence of the olfactory epithelium. The underlying hypothesis is that the olfactory epithelium imparts a trophic signal on mitral and mitral-like cell that influences the growth of their primary dendrites, orientating them toward the surface of the olfactory bulb. Hence, we cultured hemibrains from wild-type and Pax 6 mutant mice from two different embryonic stages (embryonic days 14 and 15) either alone or in coculture with normal olfactory epithelial explants or control tissue (cerebellum). Our results indicate that the final dendritic orientation of mitral and mitral-like cells is directly influenced both by age and indeed by the presence of the olfactory epithelium.
Collapse
|
10
|
Wang C, Ohno K, Furukawa T, Ueki T, Ikeda M, Fukuda A, Sato K. Differential expression of KCC2 accounts for the differential GABA responses between relay and intrinsic neurons in the early postnatal rat olfactory bulb. Eur J Neurosci 2005; 21:1449-55. [PMID: 15813956 DOI: 10.1111/j.1460-9568.2005.03975.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The rat olfactory bulb is anatomically immature at birth, and considerable neurogenesis and synaptogenesis are known to take place postnatally. In addition, significant physiological changes have also been reported in this period. For example, granule cell-mediated inhibition following electrical stimulations to the lateral olfactory tract is robust during the first postnatal week, and then decreases abruptly after the second week. However, the mechanism underlying this enhanced inhibition remains to be elucidated. To know the cause of this phenomenon, we investigated the expression patterns of cation-Cl(-) co-transporters (KCC1, KCC2 and NKCC1) mRNAs, which are responsible for the regulation of [Cl(-)](i). In addition, responses to gamma-aminobutyric acid (GABA) were measured by gramicidin-perforated patch-clamp recordings and Ca(2+) imaging using fura-2. We found that in the early postnatal period, mitral cells expressing KCC2 mRNA were inhibited by GABA, while granule cells lacking KCC2 mRNA expression were depolarized or excited by GABA. These results indicate that transient GABA-mediated excitation on granule cells might be the main cause of the enhanced inhibition on mitral cells, and suggest that these differential GABA responses between relay and intrinsic neurons play pivotal roles in the early postnatal rat olfactory bulb.
Collapse
Affiliation(s)
- Cong Wang
- Department of Anatomy & Neuroscience, Hamamatsu University School of Medicine, 1-20-1 Handayama, Hamamatsu, Shizuoka 431-3192, Japan
| | | | | | | | | | | | | |
Collapse
|
11
|
Mizrahi A, Matsunami H, Katz LC. An imaging-based approach to identify ligands for olfactory receptors. Neuropharmacology 2005; 47:661-8. [PMID: 15458837 DOI: 10.1016/j.neuropharm.2004.07.020] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2004] [Revised: 07/19/2004] [Accepted: 07/20/2004] [Indexed: 11/21/2022]
Abstract
Odorant receptors (ORs) form one of the largest gene families in the genome. However, the vast majority are orphan receptors as the ligands that activate them remain unknown. Deorphaning approaches have generally focused on finding ligands for particular receptors expressed in homologous or heterologous cells; these attempts have met with only partial success. Here, we outline a conceptually different strategy in which we search for odorant receptors activated by a known odorant. Intrinsic signal imaging of the main olfactory bulb is first used to locate activated glomeruli in vivo, followed by retrograde tracing to label the sensory neurons in the olfactory epithelium projecting to the activated glomerulus. Subsequently, single cell RT-PCR is used to reveal the identity of the odorant receptors expressed in retrogradely labeled neurons. To demonstrate the applicability of this method, we searched for candidate ORs responding to the aldehyde odorant butanal. This method may be a useful tool to decipher specific ligand--OR interactions in the mouse olfactory bulb.
Collapse
Affiliation(s)
- Adi Mizrahi
- Howard Hughes Medical Institute and Department of Neurobiology, Duke University Medical Center, Durham, NC 27710, USA
| | | | | |
Collapse
|
12
|
Hummel T, Zipursky SL. Afferent induction of olfactory glomeruli requires N-cadherin. Neuron 2004; 42:77-88. [PMID: 15066266 DOI: 10.1016/s0896-6273(04)00158-8] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2003] [Revised: 02/13/2004] [Accepted: 03/04/2004] [Indexed: 11/26/2022]
Abstract
Drosophila olfactory receptor neurons (ORNs) elaborate a precise internal representation of the external olfactory world in the antennal lobe (AL), a structure analagous to the vertebrate olfactory bulb. ORNs expressing the same odorant receptor innervate common targets in a highly organized neuropilar structure inside the AL, the glomerulus. During normal development, ORNs target to specific regions of the AL and segregate into subclass-specific aggregates called protoglomeruli prior to extensive intermingling with target dendrites to form mature glomeruli. Using a panel of ORN subclass-specific markers, we demonstrate that in the adult AL, N-cadherin (N-cad) mutant ORN terminals remain segregated from dendrites of target neurons. N-cad plays a crucial role in protoglomerulus formation but is largely dispensible for targeting to the appropriate region of the AL. We propose that N-cad, a homophilic cell adhesion molecule, acts in a permissive fashion to promote subclass-specific sorting of ORN axon terminals into protoglomeruli.
Collapse
Affiliation(s)
- Thomas Hummel
- Howard Hughes Medical Institute, Department of Biological Chemistry, Geffen School of Medicine, Molecular Biology Institute, Box 951662, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | | |
Collapse
|