1
|
Khan MQ, Jamal SB, Faheem M, Bakhtiar SM. 3-Dimensional structure prediction of C-terminal disrupted in schizophrenia 1: a suspected culprit of schizophrenia. J Biomol Struct Dyn 2025:1-11. [PMID: 39987524 DOI: 10.1080/07391102.2025.2460079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 05/15/2024] [Indexed: 02/25/2025]
Abstract
Disrupted in schizophrenia 1 (DISC1) is a scaffolding protein involved in neurogenesis, synaptic development and cell signaling. It acts as a hub protein in different pathways by interacting with multiple proteins and regulates their function it is localized in various subcellular locations, including the nucleus, mitochondria, and cytoskeleton, this 854-amino acid protein comprises two segments: an N-terminal head and a C-terminal coiled-coil region. There are over two hundred interacting partners of DISC1. It is encoded by a gene present on chromosome 1q42.1 and its mutations lead to different genetic defects causing psychiatric conditions. A major genetic defect regarding DISC1 is a translocation event t(1;11) (q42.1;q14.3) which leads to a C-terminal truncated protein residues ∼1-598. This indicates the importance of DISC1 as a therapeutic target but the complete three-dimensional structure of DISC1 is yet not determined only partially reported in complexes or predicted structures are available. To understand the etiology, and pathophysiology of DISC1 the structure of the C-terminus needs to be determined as it participates in major molecular interactions. In this study, different approaches were used to determine the structure of C-terminus DISC1 where threading enabled us to develop a suitable model which was initially refined and later analyzed using quality assessment and validation tools. These findings are a key resource to understand the structural and functional properties of DISC1 and how they can help to identify new therapeutic targets for schizophrenia.
Collapse
Affiliation(s)
- Muhammad Qasim Khan
- Department of Bioinformatics And Biosciences, Capital University of Science And Technology (CUST), Islamabad, Pakistan
| | - Syed Babar Jamal
- Department of Biological Sciences, National University of Medical Sciences, Islamabad, Pakistan
| | - Muhammad Faheem
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND, USA
| | - Syeda Marriam Bakhtiar
- Department of Bioinformatics And Biosciences, Capital University of Science And Technology (CUST), Islamabad, Pakistan
| |
Collapse
|
2
|
Lin J, Zhu X, Li X, Hong Y, Liang Y, Chen S, Feng C, Cao L. Impaired hippocampal neurogenesis associated with regulatory ceRNA network in a mouse model of postoperative cognitive dysfunction. BMC Anesthesiol 2025; 25:60. [PMID: 39915734 PMCID: PMC11800588 DOI: 10.1186/s12871-025-02928-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Accepted: 01/24/2025] [Indexed: 02/11/2025] Open
Abstract
BACKGROUND Postoperative cognitive dysfunction (POCD) represents a post-surgical complication that features progressive cognitive impairment and memory loss, often occurring in elderly patients. This study aimed to investigate the potential biological mechanisms underlying POCD. METHODS Male C57BL/6 mice (2 and 17 months old) were randomly assigned to surgery or control groups. The surgery group underwent laparotomy under 1.5% isoflurane anesthesia, while controls received no intervention. Cognitive function was assessed 7-10 days post-surgery using open field, Y-maze, and novel object recognition tests. Hippocampal mRNA expression was analyzed using Encyclopedia of Genes and Genomes (KEGG) and Gene Ontology (GO) enrichment. A competing endogenous RNA (ceRNA) network was constructed using microRNA (miRNA) target prediction databases (miRanda, miRTarbase, miRcode) and sequencing results. Key findings were validated by RT-qPCR and immunofluorescence. The Connectivity Map (CMap) database was queried to predict potential POCD treatments. RESULTS Aging significantly affected mice's spontaneous activity in the open field test (F1, 28 = 8.933, P < 0.01) and the proportion of time spent in the center area (F1, 28 = 5.387, P < 0.05). Surgery significantly reduced the rate of spontaneous alternations in the Y-maze (F1, 28 = 16.94, P < 0.001) and the recognition index in novel object recognition test (F1, 28 = 6.839, P < 0.05) in aging mice, but had no effect on young mice. Transcriptome analysis revealed that aging and surgery downregulated multiple neurogenesis-related genes in the hippocampus. Doublecortin (DCX) immunofluorescence staining confirmed reduced hippocampal neurogenesis in aging mice, which was further decreased after surgery. We identified several key lncRNAs and miRNAs implicated in neurogenesis regulation. Additionally, drugs were predicted as potential therapeutic candidates for POCD treatment. CONCLUSION Both aging and surgery have complex effects on the hippocampal transcriptome in mice. The significant decrease in neurogenesis may be a potential reason for the increased susceptibility of aging mice to POCD. The identified key regulatory lncRNAs, miRNAs, and drugs provide potential therapeutic targets for POCD prevention and treatment.
Collapse
Affiliation(s)
- Jingrun Lin
- Department of Anesthesiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xiaoqiu Zhu
- Department of Anesthesiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xuan Li
- Department of Anesthesiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yu Hong
- Department of Anesthesiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yaohui Liang
- The Key Laboratory of Virology of Guangzhou, Jinan University, Guangzhou, China
| | - Siqi Chen
- Department of Anesthesiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Chenzhuo Feng
- School of Basic Medical Sciences and Forensic Medicine, Hangzhou Medical College, Hangzhou, China.
| | - Lin Cao
- Department of Anesthesiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.
| |
Collapse
|
3
|
Lissek T. Enhancement of physiology via adaptive transcription. Pflugers Arch 2025; 477:187-199. [PMID: 39482558 PMCID: PMC11761519 DOI: 10.1007/s00424-024-03037-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 09/30/2024] [Accepted: 10/22/2024] [Indexed: 11/03/2024]
Abstract
The enhancement of complex physiological functions such as cognition and exercise performance in healthy individuals represents a challenging goal. Adaptive transcription programs that are naturally activated in animals to mediate cellular plasticity in response to stimulation can be leveraged to enhance physiological function above wild-type levels in young organisms and counteract complex functional decline in aging. In processes such as learning and memory and exercise-dependent muscle remodeling, a relatively small number of molecules such as certain stimulus-responsive transcription factors and immediate early genes coordinate widespread changes in cellular physiology. Adaptive transcription can be targeted by various methods including pharmaceutical compounds and gene transfer technologies. Important problems for leveraging adaptive transcription programs for physiological enhancement include a better understanding of their dynamical organization, more precise methods to influence the underlying molecular components, and the integration of adaptive transcription into multi-scale physiological enhancement concepts.
Collapse
Affiliation(s)
- Thomas Lissek
- Interdisciplinary Center for Neurosciences, Heidelberg University, Im Neuenheimer Feld 366, 69120, Heidelberg, Germany.
| |
Collapse
|
4
|
Bandura J, Chan C, Sun HS, Wheeler AR, Feng ZP. Distinct Proteomic Brain States Underlying Long-Term Memory Formation in Aversive Operant Conditioning. J Proteome Res 2025; 24:27-45. [PMID: 39658033 PMCID: PMC11705228 DOI: 10.1021/acs.jproteome.4c00055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 08/20/2024] [Accepted: 09/03/2024] [Indexed: 12/12/2024]
Abstract
Long-term memory (LTM) formation relies on de novo protein synthesis; however, the full complement of proteins crucial to LTM formation remains unknown in any system. Using an aversive operant conditioning model of aerial respiratory behavior in the pond snail mollusk, Lymnaea stagnalis (L. stagnalis), we conducted a transcriptome-guided proteomic analysis on the central nervous system (CNS) of LTM, no LTM, and control animals. We identified 366 differentially expressed proteins linked to LTM formation, with 88 upregulated and 36 downregulated in LTM compared to both no LTM and controls. Functional annotation highlighted the importance of balancing protein synthesis and degradation for LTM, as indicated by the upregulation of proteins involved in proteasome activity and translation initiation, including EIF2D, mRNA levels of which were confirmed to be upregulated by conditioning and implicated nuclear factor Y as a potential regulator of LTM-related transcription in this model. This study represents the first transcriptome-guided proteomic analysis of LTM formation ability in this model and lays the groundwork for discovering orthologous proteins critical to LTM in mammals.
Collapse
Affiliation(s)
- Julia Bandura
- Department
of Physiology, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Calvin Chan
- Department
of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada
| | - Hong-Shuo Sun
- Department
of Surgery, University of Toronto, Toronto, Ontario M5S 1A1, Canada
| | - Aaron R. Wheeler
- Department
of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada
- Donnelly
Centre for Cellular and Biomedical Research, University of Toronto, Toronto, Ontario M5S 3E1, Canada
- Institute
of Biomedical Engineering, University of
Toronto, Toronto, Ontario M5S 3E2, Canada
| | - Zhong-Ping Feng
- Department
of Physiology, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| |
Collapse
|
5
|
Chen Y, Gao Q, Wang D, Zou X, Li X, Ji J, Liu B. An Overview of Research Advances in Oncology Regarding the Transcription Factor ATF4. Curr Drug Targets 2025; 26:59-72. [PMID: 39350552 DOI: 10.2174/0113894501328461240921062056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 08/09/2024] [Accepted: 09/10/2024] [Indexed: 02/19/2025]
Abstract
This review provides a comprehensive overview of the recent advancements in research on ATF4 (Activating Transcription Factor 4) within the field of oncology. As a crucial transcription factor, ATF4 has garnered increasing attention for its role in cancer research. The review begins with an exploration of the regulatory mechanisms of ATF4, including its transcriptional control, post-translational modifications, and interactions with other transcription factors. It then highlights key research findings on ATF4's involvement in various aspects of tumor biology, such as cell proliferation, differentiation, apoptosis and survival, invasion and metastasis, and the tumor microenvironment. Furthermore, the review discusses the potential of targeting ATF4 as a novel therapeutic strategy for cancer treatment. It also explores how ATF4's interactions with existing anticancer drugs could inform the development of more effective therapeutic agents. By elucidating the role of ATF4 in tumor biology and its potential clinical applications, this review aims to provide new insights and strategies for cancer treatment.
Collapse
Affiliation(s)
- Yulu Chen
- Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang 222005, China
| | - Qi Gao
- Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang 222005, China
| | - Dan Wang
- Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang 222005, China
| | - Xun Zou
- Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang 222005, China
| | - Xiuming Li
- Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang 222005, China
| | - Jing Ji
- Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang 222005, China
| | - Bin Liu
- Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang 222005, China
| |
Collapse
|
6
|
Zimmerman AJ, Serrano-Rodriguez A, Sun M, Wilson SJ, Linsenbardt DN, Brigman JL, Weick JP. Knockout of AMPA receptor binding protein Neuron-specific gene 2 (NSG2) enhances associative learning and cognitive flexibility. Mol Brain 2024; 17:95. [PMID: 39695712 DOI: 10.1186/s13041-024-01158-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 11/12/2024] [Indexed: 12/20/2024] Open
Abstract
The vast majority of gene mutations and/or gene knockouts result in either no observable changes, or significant deficits in molecular, cellular, or organismal function. However, in a small number of cases, mutant animal models display enhancements in specific behaviors such as learning and memory. To date, most gene deletions shown to enhance cognitive ability generally affect a limited number of pathways such as NMDA receptor- and translation-dependent plasticity, or GABA receptor- and potassium channel-mediated inhibition. While endolysosomal trafficking of AMPA receptors is a critical mediator of synaptic plasticity, mutations in genes that affect AMPAR trafficking either have no effect or are deleterious for synaptic plasticity, learning and memory. NSG2 is one of the three-member family of Neuron-specific genes (NSG1-3), which have been shown to regulate endolysosomal trafficking of a number of proteins critical for neuronal function, including AMPAR subunits (GluA1-2). Based on these findings and the largely universal expression throughout mammalian brain, we predicted that genetic knockout of NSG2 would result in significant impairments across multiple behavioral modalities including motor, affective, and learning/memory paradigms. However, in the current study we show that loss of NSG2 had highly selective effects on associative learning and memory, leaving motor and affective behaviors intact. For instance, NSG2 KO animals performed equivalent to wild-type C57Bl/6n mice on rotarod and Catwalk motor tasks, and did not display alterations in anxiety-like behavior on open field and elevated zero maze tasks. However, NSG2 KO animals demonstrated enhanced recall in the Morris water maze, accelerated reversal learning in a touch-screen task, and accelerated acquisition and enhanced recall on a Trace Fear Conditioning task. Together, these data point to a specific involvement of NSG2 on multiple types of associative learning, and expand the repertoire of pathways that can be targeted for cognitive enhancement.
Collapse
Affiliation(s)
- Amber J Zimmerman
- Department of Neurosciences, University of New Mexico School of Medicine, 915 Camino de Salud NE, Fitz Hall 145, Albuquerque, NM, 87131, USA
- Present Address: Division of Sleep Medicine, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Pennsylvania, PA, 19104, USA
- Center for Spatial and Functional Genomics, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Antonio Serrano-Rodriguez
- Department of Neurosciences, University of New Mexico School of Medicine, 915 Camino de Salud NE, Fitz Hall 145, Albuquerque, NM, 87131, USA
| | - Melody Sun
- Department of Neurosciences, University of New Mexico School of Medicine, 915 Camino de Salud NE, Fitz Hall 145, Albuquerque, NM, 87131, USA
| | - Sandy J Wilson
- Department of Neurosciences, University of New Mexico School of Medicine, 915 Camino de Salud NE, Fitz Hall 145, Albuquerque, NM, 87131, USA
| | - David N Linsenbardt
- Department of Neurosciences, University of New Mexico School of Medicine, 915 Camino de Salud NE, Fitz Hall 145, Albuquerque, NM, 87131, USA
| | - Jonathan L Brigman
- Department of Neurosciences, University of New Mexico School of Medicine, 915 Camino de Salud NE, Fitz Hall 145, Albuquerque, NM, 87131, USA
| | - Jason P Weick
- Department of Neurosciences, University of New Mexico School of Medicine, 915 Camino de Salud NE, Fitz Hall 145, Albuquerque, NM, 87131, USA.
| |
Collapse
|
7
|
Wu S, Lin W. The physiological role of the unfolded protein response in the nervous system. Neural Regen Res 2024; 19:2411-2420. [PMID: 38526277 PMCID: PMC11090440 DOI: 10.4103/1673-5374.393105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Accepted: 12/12/2023] [Indexed: 03/26/2024] Open
Abstract
The unfolded protein response (UPR) is a cellular stress response pathway activated when the endoplasmic reticulum, a crucial organelle for protein folding and modification, encounters an accumulation of unfolded or misfolded proteins. The UPR aims to restore endoplasmic reticulum homeostasis by enhancing protein folding capacity, reducing protein biosynthesis, and promoting protein degradation. It also plays a pivotal role in coordinating signaling cascades to determine cell fate and function in response to endoplasmic reticulum stress. Recent research has highlighted the significance of the UPR not only in maintaining endoplasmic reticulum homeostasis but also in influencing various physiological processes in the nervous system. Here, we provide an overview of recent findings that underscore the UPR's involvement in preserving the function and viability of neuronal and myelinating cells under physiological conditions, and highlight the critical role of the UPR in brain development, memory storage, retinal cone development, myelination, and maintenance of myelin thickness.
Collapse
Affiliation(s)
- Shuangchan Wu
- Department of Neuroscience, University of Minnesota, Minneapolis, MN, USA
- Institute for Translational Neuroscience, University of Minnesota, Minneapolis, MN, USA
| | - Wensheng Lin
- Department of Neuroscience, University of Minnesota, Minneapolis, MN, USA
- Institute for Translational Neuroscience, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|
8
|
Zimmerman AJ, Serrano-Rodriguez A, Wilson SJ, Linsenbardt DN, Brigman JL, Weick J. Knockout of AMPA receptor binding protein Neuron-Specific Gene 2 (NSG2) enhances associative learning and cognitive flexibility. RESEARCH SQUARE 2024:rs.3.rs-4790348. [PMID: 39257983 PMCID: PMC11384823 DOI: 10.21203/rs.3.rs-4790348/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
Abstract
The vast majority of gene mutations and/or gene knockouts result in either no observable changes, or significant deficits in molecular, cellular, or organismal function. However, in a small number of cases, mutant animal models display enhancements in specific behaviors such as learning and memory. To date, most gene deletions shown to enhance cognitive ability generally affect a limited number of pathways such as NMDA receptor- and translation-dependent plasticity, or GABA receptor- and potassium channel-mediated inhibition. While endolysosomal trafficking of AMPA receptors is a critical mediator of synaptic plasticity, mutations in genes that affect AMPAR trafficking either have no effect or are deleterious for synaptic plasticity, learning and memory. NSG2 is one of the three-member family of Neuron-specific genes (NSG1-3), which have been shown to regulate endolysosomal trafficking of a number of proteins critical for neuronal function, including AMPAR subunits (GluA1-2). Based on these findings and the largely universal expression throughout mammalian brain, we predicted that genetic knockout of NSG2 would result in significant impairments across multiple behavioral modalities including motor, affective, and learning/memory paradigms. However, in the current study we show that loss of NSG2 had highly selective effects on associative learning and memory, leaving motor and affective behaviors intact. For instance, NSG2 KO animals performed equivalent to wild-type C57Bl/6n mice on rotarod and Catwalk motor tasks, and did not display alterations in anxiety-like behavior on open field and elevated zero maze tasks. However, NSG2 KO animals demonstrated enhanced recall in the Morris water maze, accelerated reversal learning in a touch-screen task, and accelerated acquisition and enhanced recall on a Trace Fear Conditioning task. Together, these data point to a specific involvement of NSG2 on multiple types of associative learning, and expand the repertoire of pathways that can be targeted for cognitive enhancement.
Collapse
|
9
|
Xie MX, Rao JH, Tian XY, Liu JK, Li X, Chen ZY, Cao Y, Chen AN, Shu HH, Zhang XL. ATF4 inhibits TRPV4 function and controls itch perception in rodents and nonhuman primates. Pain 2024; 165:1840-1859. [PMID: 38422489 DOI: 10.1097/j.pain.0000000000003189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 01/03/2024] [Indexed: 03/02/2024]
Abstract
ABSTRACT Acute and chronic itch are prevalent and incapacitating, yet the neural mechanisms underlying both acute and chronic itch are just starting to be unraveled. Activated transcription factor 4 (ATF4) belongs to the ATF/CREB transcription factor family and primarily participates in the regulation of gene transcription. Our previous study has demonstrated that ATF4 is expressed in sensory neurons. Nevertheless, the role of ATF4 in itch sensation remains poorly understood. Here, we demonstrate that ATF4 plays a significant role in regulating itch sensation. The absence of ATF4 in dorsal root ganglion (DRG) neurons enhances the itch sensitivity of mice. Overexpression of ATF4 in sensory neurons significantly alleviates the acute and chronic pruritus in mice. Furthermore, ATF4 interacts with the transient receptor potential cation channel subfamily V member 4 (TRPV4) and inhibits its function without altering the expression or membrane trafficking of TRPV4 in sensory neurons. In addition, interference with ATF4 increases the itch sensitivity in nonhuman primates and enhances TRPV4 currents in nonhuman primates DRG neurons; ATF4 and TRPV4 also co-expresses in human sensory neurons. Our data demonstrate that ATF4 controls pruritus by regulating TRPV4 signaling through a nontranscriptional mechanism and identifies a potential new strategy for the treatment of pathological pruritus.
Collapse
Affiliation(s)
- Man-Xiu Xie
- Department of Anesthesiology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Guangzhou, China
| | - Jun-Hua Rao
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, China
| | - Xiao-Yu Tian
- Medical Research Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Jin-Kun Liu
- Medical Research Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Guangzhou, China
| | - Xiao Li
- College of Food Science and Technology, Hainan University, Haikou, China
| | - Zi-Yi Chen
- Zhongshan School of Medicine of Sun Yat-sen University, Guangzhou, China
| | - Yan Cao
- College of Food Science and Technology, Hainan University, Haikou, China
| | - An-Nan Chen
- Zhongshan School of Medicine of Sun Yat-sen University, Guangzhou, China
| | - Hai-Hua Shu
- Department of Anesthesiology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Xiao-Long Zhang
- Medical Research Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| |
Collapse
|
10
|
Mahmood N, Choi JH, Wu PY, Dooling SW, Watkins TA, Huang Z, Lipman J, Zhao H, Yang A, Silversmith J, Inglebert Y, Koumenis C, Sharma V, Lacaille JC, Sossin WS, Khoutorsky A, McKinney RA, Costa-Mattioli M, Sonenberg N. The ISR downstream target ATF4 represses long-term memory in a cell type-specific manner. Proc Natl Acad Sci U S A 2024; 121:e2407472121. [PMID: 39047038 PMCID: PMC11295034 DOI: 10.1073/pnas.2407472121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Accepted: 06/25/2024] [Indexed: 07/27/2024] Open
Abstract
The integrated stress response (ISR), a pivotal protein homeostasis network, plays a critical role in the formation of long-term memory (LTM). The precise mechanism by which the ISR controls LTM is not well understood. Here, we report insights into how the ISR modulates the mnemonic process by using targeted deletion of the activating transcription factor 4 (ATF4), a key downstream effector of the ISR, in various neuronal and non-neuronal cell types. We found that the removal of ATF4 from forebrain excitatory neurons (but not from inhibitory neurons, cholinergic neurons, or astrocytes) enhances LTM formation. Furthermore, the deletion of ATF4 in excitatory neurons lowers the threshold for the induction of long-term potentiation, a cellular model for LTM. Transcriptomic and proteomic analyses revealed that ATF4 deletion in excitatory neurons leads to upregulation of components of oxidative phosphorylation pathways, which are critical for ATP production. Thus, we conclude that ATF4 functions as a memory repressor selectively within excitatory neurons.
Collapse
Affiliation(s)
- Niaz Mahmood
- Department of Biochemistry, McGill University, Montréal, QCH3A 1A3, Canada
- Rosalind and Morris Goodman Cancer Institute, McGill University, Montréal, QCH3A 1A3, Canada
| | - Jung-Hyun Choi
- Department of Biochemistry, McGill University, Montréal, QCH3A 1A3, Canada
- Rosalind and Morris Goodman Cancer Institute, McGill University, Montréal, QCH3A 1A3, Canada
| | - Pei You Wu
- Department of Pharmacology and Therapeutics, McGill University, Montréal, QCH3G 0B1, Canada
| | - Sean W. Dooling
- Department of Neuroscience, Baylor College of Medicine, Houston, TX77030
| | - Trent A. Watkins
- Department of Neuroscience, Baylor College of Medicine, Houston, TX77030
| | - Ziying Huang
- Department of Biochemistry, McGill University, Montréal, QCH3A 1A3, Canada
- Rosalind and Morris Goodman Cancer Institute, McGill University, Montréal, QCH3A 1A3, Canada
| | - Jesse Lipman
- Department of Biochemistry, McGill University, Montréal, QCH3A 1A3, Canada
- Rosalind and Morris Goodman Cancer Institute, McGill University, Montréal, QCH3A 1A3, Canada
| | - Hanjie Zhao
- Department of Biochemistry, McGill University, Montréal, QCH3A 1A3, Canada
- Rosalind and Morris Goodman Cancer Institute, McGill University, Montréal, QCH3A 1A3, Canada
| | - Anqi Yang
- Department of Biochemistry, McGill University, Montréal, QCH3A 1A3, Canada
- Rosalind and Morris Goodman Cancer Institute, McGill University, Montréal, QCH3A 1A3, Canada
| | - Jake Silversmith
- Department of Biochemistry, McGill University, Montréal, QCH3A 1A3, Canada
- Rosalind and Morris Goodman Cancer Institute, McGill University, Montréal, QCH3A 1A3, Canada
| | - Yanis Inglebert
- Department of Pharmacology and Therapeutics, McGill University, Montréal, QCH3G 0B1, Canada
- Department of Neurosciences, Center for Interdisciplinary Research on Brain and Learning, Research Group on Neural Signaling and Circuitry, University of Montréal, Montréal, QCH3T1J4, Canada
| | - Constantinos Koumenis
- Department of Radiation Oncology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA19104-5156
| | - Vijendra Sharma
- Department of Biomedical Sciences, University of Windsor, Windsor, ONN9B 3P4, Canada
| | - Jean-Claude Lacaille
- Department of Neurosciences, Center for Interdisciplinary Research on Brain and Learning, Research Group on Neural Signaling and Circuitry, University of Montréal, Montréal, QCH3T1J4, Canada
| | - Wayne S. Sossin
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montréal, QCH3A 2B4, Canada
| | - Arkady Khoutorsky
- Department of Anesthesia and Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montréal, QCH4A3J1, Canada
- Alan Edwards Centre for Research on Pain, McGill University, Montréal, QCH3A 2B4, Canada
| | - R. Anne McKinney
- Department of Pharmacology and Therapeutics, McGill University, Montréal, QCH3G 0B1, Canada
| | - Mauro Costa-Mattioli
- Department of Neuroscience, Baylor College of Medicine, Houston, TX77030
- Memory and Brain Research Center, Baylor College of Medicine, Houston, TX77030
- Altos Labs Inc., Bay Area Institute of Science, Redwood City, CA94065
| | - Nahum Sonenberg
- Department of Biochemistry, McGill University, Montréal, QCH3A 1A3, Canada
- Rosalind and Morris Goodman Cancer Institute, McGill University, Montréal, QCH3A 1A3, Canada
| |
Collapse
|
11
|
Brito DVC, Kupke J, Sokolov R, Cambridge S, Both M, Bengtson CP, Rozov A, Oliveira AMM. Biphasic Npas4 expression promotes inhibitory plasticity and suppression of fear memory consolidation in mice. Mol Psychiatry 2024; 29:1929-1940. [PMID: 38347124 PMCID: PMC11408256 DOI: 10.1038/s41380-024-02454-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 01/17/2024] [Accepted: 01/23/2024] [Indexed: 02/19/2024]
Abstract
Long-term memories are believed to be encoded by unique transcriptional signatures in the brain. The expression of immediate early genes (IEG) promotes structural and molecular changes required for memory consolidation. Recent evidence has shown that the brain is equipped with mechanisms that not only promote, but actively constrict memory formation. However, it remains unknown whether IEG expression may play a role in memory suppression. Here we uncovered a novel function of the IEG neuronal PAS domain protein 4 (Npas4), as an inducible memory suppressor gene of highly salient aversive experiences. Using a contextual fear conditioning paradigm, we found that low stimulus salience leads to monophasic Npas4 expression, while highly salient learning induces a biphasic expression of Npas4 in the hippocampus. The later phase requires N-methyl-D-aspartate (NMDA) receptor activity and is independent of dopaminergic neurotransmission. Our in vivo pharmacological and genetic manipulation experiments suggested that the later phase of Npas4 expression restricts the consolidation of a fear memory and promote behavioral flexibility, by facilitating fear extinction and the contextual specificity of fear responses. Moreover, immunofluorescence and electrophysiological analysis revealed a concomitant increase in synaptic input from cholecystokinin (CCK)-expressing interneurons. Our results demonstrate how salient experiences evoke unique temporal patterns of IEG expression that fine-tune memory consolidation. Moreover, our study provides evidence for inducible gene expression associated with memory suppression as a possible mechanism to balance the consolidation of highly salient memories, and thereby to evade the formation of maladaptive behavior.
Collapse
Affiliation(s)
- David V C Brito
- Department of Neurobiology, Interdisciplinary Center for Neurosciences (IZN), Heidelberg University, 69120, Heidelberg, Germany
- ABC-RI, Algarve Biomedical Center Research Institute, 8005-139, Faro, Portugal
- Faculdade de Medicina e Ciências Biomédicas, Universidade do Algarve, 8005-139, Faro, Portugal
| | - Janina Kupke
- Department of Neurobiology, Interdisciplinary Center for Neurosciences (IZN), Heidelberg University, 69120, Heidelberg, Germany
- Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam, 1081 HV, the Netherlands
| | - Rostilav Sokolov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997, Moscow, Russia
- Federal Center of Brain Research and Neurotechnology, 117513, Moscow, Russia
- Institute of Neuroscience, Lobachevsky State University of Nizhniy Novgorod, Nizhny, Novgorod, Russia
| | - Sidney Cambridge
- Anatomy II, Dr. Senckenberg Anatomy, Goethe-University Frankfurt, 60590, Frankfurt am Main, Germany
| | - Martin Both
- Institute of Physiology and Pathophysiology, Medical Faculty, Heidelberg University, 69120, Heidelberg, Germany
| | - C Peter Bengtson
- Department of Neurobiology, Interdisciplinary Center for Neurosciences (IZN), Heidelberg University, 69120, Heidelberg, Germany
| | - Andrei Rozov
- Federal Center of Brain Research and Neurotechnology, 117513, Moscow, Russia
- Institute of Physiology and Pathophysiology, Medical Faculty, Heidelberg University, 69120, Heidelberg, Germany
- OpenLab of Neurobiology, Kazan Federal University, 420008, Kazan, Russia
| | - Ana M M Oliveira
- Department of Neurobiology, Interdisciplinary Center for Neurosciences (IZN), Heidelberg University, 69120, Heidelberg, Germany.
- Department of Molecular and Cellular Cognition Research, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, 68159, Mannheim, Germany.
| |
Collapse
|
12
|
Abstract
The brain is designed not only with molecules and cellular processes that help to form memories but also with molecules and cellular processes that suppress the formation and retention of memory. The latter processes are critical for an efficient memory management system, given the vast amount of information that each person experiences in their daily activities and that most of this information becomes irrelevant with time. Thus, efficiency dictates that the brain should have processes for selecting the most critical information for storage and suppressing the irrelevant or forgetting it later should it escape the initial filters. Such memory suppressor molecules and processes are revealed by genetic or pharmacologic insults that lead to enhanced memory expression. We review here the predominant memory suppressor molecules and processes that have recently been discovered. They are diverse, as expected, because the brain is complex and employs many different strategies and mechanisms to form memories. They include the gene-repressive actions of small noncoding RNAs, repressors of protein synthesis, cAMP-mediated gene expression pathways, inter- and intracellular signaling pathways for normal forgetting, and others. A deep understanding of memory suppressor molecules and processes is necessary to fully comprehend how the brain forms, stabilizes, and retrieves memories and to reveal how brain disorders disrupt memory.
Collapse
Affiliation(s)
- Nathaniel C. Noyes
- Department of Neuroscience, University of Florida Scripps Biomedical Research, Jupiter, FL, USA
| | - Ronald L. Davis
- Department of Neuroscience, University of Florida Scripps Biomedical Research, Jupiter, FL, USA
| |
Collapse
|
13
|
Mulholland PJ, Padula AE, Wilhelm LJ, Park B, Grant KA, Ferguson BM, Cervera-Juanes R. Cross-species epigenetic regulation of nucleus accumbens KCNN3 transcripts by excessive ethanol drinking. Transl Psychiatry 2023; 13:364. [PMID: 38012158 PMCID: PMC10682415 DOI: 10.1038/s41398-023-02676-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 11/14/2023] [Accepted: 11/17/2023] [Indexed: 11/29/2023] Open
Abstract
The underlying genetic and epigenetic mechanisms driving functional adaptations in neuronal excitability and excessive alcohol intake are poorly understood. Small-conductance Ca2+-activated K+ (KCa2 or SK) channels encoded by the KCNN family of genes have emerged from preclinical studies as a key contributor to alcohol-induced functional neuroadaptations in alcohol-drinking monkeys and alcohol-dependent mice. Here, this cross-species analysis focused on KCNN3 DNA methylation, gene expression, and single nucleotide polymorphisms, including alternative promoters in KCNN3, that could influence surface trafficking and function of KCa2 channels. Bisulfite sequencing analysis of the nucleus accumbens tissue from alcohol-drinking monkeys and alcohol-dependent mice revealed a differentially methylated region in exon 1A of KCNN3 that overlaps with a predicted promoter sequence. The hypermethylation of KCNN3 in the accumbens paralleled an increase in the expression of alternative transcripts that encode apamin-insensitive and dominant-negative KCa2 channel isoforms. A polymorphic repeat in macaque KCNN3 encoded by exon 1 did not correlate with alcohol drinking. At the protein level, KCa2.3 channel expression in the accumbens was significantly reduced in very heavy-drinking monkeys. Together, our cross-species findings on epigenetic dysregulation of KCNN3 represent a complex mechanism that utilizes alternative promoters to potentially impact the firing of accumbens neurons. Thus, these results provide support for hypermethylation of KCNN3 as a possible key molecular mechanism underlying harmful alcohol intake and alcohol use disorder.
Collapse
Affiliation(s)
- Patrick J Mulholland
- Department of Neuroscience, Charleston Alcohol Research Center, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - Audrey E Padula
- Department of Neuroscience, Charleston Alcohol Research Center, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - Larry J Wilhelm
- Department of Translational Neuroscience, Atrium Health Wake Forest School of Medicine, Winston-Salem, NC, 27157, USA
| | - Byung Park
- Department of Public Health and Preventive Medicine, Oregon Health & Science University, Portland, OR, 97239, USA
| | - Kathleen A Grant
- Department of Neurosciences, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR, 97006, USA
| | - Betsy M Ferguson
- Department of Neurosciences, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR, 97006, USA
| | - Rita Cervera-Juanes
- Department of Translational Neuroscience, Atrium Health Wake Forest School of Medicine, Winston-Salem, NC, 27157, USA.
- Center for Precision Medicine, Atrium Health Wake Forest School of Medicine, Winston-Salem, NC, 27157, USA.
| |
Collapse
|
14
|
Kumar A, Karuppagounder SS, Chen Y, Corona C, Kawaguchi R, Cheng Y, Balkaya M, Sagdullaev BT, Wen Z, Stuart C, Cho S, Ming GL, Tuvikene J, Timmusk T, Geschwind DH, Ratan RR. 2-Deoxyglucose drives plasticity via an adaptive ER stress-ATF4 pathway and elicits stroke recovery and Alzheimer's resilience. Neuron 2023; 111:2831-2846.e10. [PMID: 37453419 PMCID: PMC10528360 DOI: 10.1016/j.neuron.2023.06.013] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 05/10/2023] [Accepted: 06/20/2023] [Indexed: 07/18/2023]
Abstract
Intermittent fasting (IF) is a diet with salutary effects on cognitive aging, Alzheimer's disease (AD), and stroke. IF restricts a number of nutrient components, including glucose. 2-deoxyglucose (2-DG), a glucose analog, can be used to mimic glucose restriction. 2-DG induced transcription of the pro-plasticity factor, Bdnf, in the brain without ketosis. Accordingly, 2-DG enhanced memory in an AD model (5xFAD) and functional recovery in an ischemic stroke model. 2-DG increased Bdnf transcription via reduced N-linked glycosylation, consequent ER stress, and activity of ATF4 at an enhancer of the Bdnf gene, as well as other regulatory regions of plasticity/regeneration (e.g., Creb5, Cdc42bpa, Ppp3cc, and Atf3) genes. These findings demonstrate an unrecognized role for N-linked glycosylation as an adaptive sensor to reduced glucose availability. They further demonstrate that ER stress induced by 2-DG can, in the absence of ketosis, lead to the transcription of genes involved in plasticity and cognitive resilience as well as proteostasis.
Collapse
Affiliation(s)
- Amit Kumar
- Burke Neurological Institute and Brain and Mind Research Institute, Weill Cornell Medicine, 785 Mamaroneck Ave, White Plains, NY, USA
| | - Saravanan S Karuppagounder
- Burke Neurological Institute and Brain and Mind Research Institute, Weill Cornell Medicine, 785 Mamaroneck Ave, White Plains, NY, USA
| | - Yingxin Chen
- Burke Neurological Institute and Brain and Mind Research Institute, Weill Cornell Medicine, 785 Mamaroneck Ave, White Plains, NY, USA
| | - Carlo Corona
- Burke Neurological Institute and Brain and Mind Research Institute, Weill Cornell Medicine, 785 Mamaroneck Ave, White Plains, NY, USA
| | - Riki Kawaguchi
- Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Yuyan Cheng
- Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Mustafa Balkaya
- Burke Neurological Institute and Brain and Mind Research Institute, Weill Cornell Medicine, 785 Mamaroneck Ave, White Plains, NY, USA
| | - Botir T Sagdullaev
- Burke Neurological Institute and Brain and Mind Research Institute, Weill Cornell Medicine, 785 Mamaroneck Ave, White Plains, NY, USA; Regeneron Pharmaceuticals, Tarrytown, New York, NY, USA
| | - Zhexing Wen
- Departments of Psychiatry and Behavioral Sciences, Cell Biology, and Neurology, Emory University School of Medicine, Atlanta, GA, USA
| | - Charles Stuart
- East Tennessee State University Quillen College of Medicine, Johnson City, TN, USA
| | - Sunghee Cho
- Burke Neurological Institute and Brain and Mind Research Institute, Weill Cornell Medicine, 785 Mamaroneck Ave, White Plains, NY, USA
| | - Guo-Li Ming
- Department of Neuroscience, Perelman School for Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Jürgen Tuvikene
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Tallinn, Estonia
| | - Tõnis Timmusk
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Tallinn, Estonia
| | - Daniel H Geschwind
- Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Rajiv R Ratan
- Burke Neurological Institute and Brain and Mind Research Institute, Weill Cornell Medicine, 785 Mamaroneck Ave, White Plains, NY, USA.
| |
Collapse
|
15
|
Juanes RC, Mulholland P, Padula A, Wilhelm L, Park B, Grant K, Ferguson B. Cross-species epigenetic regulation of nucleus accumbens KCNN3 transcripts by excessive ethanol drinking. RESEARCH SQUARE 2023:rs.3.rs-3315122. [PMID: 37790552 PMCID: PMC10543433 DOI: 10.21203/rs.3.rs-3315122/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
The underlying genetic and epigenetic mechanisms driving functional adaptations in neuronal excitability and excessive alcohol intake are poorly understood. Small-conductance Ca2+-activated K+ (KCa2 or SK) channels encoded by the KCNN family of genes have emerged from preclinical studies as a key contributor to alcohol-induced functional neuroadaptations in alcohol-drinking monkeys and alcohol dependent mice. Here, this cross-species analysis focused on KCNN3 DNA methylation, gene expression, and single nucleotide polymorphisms including alternative promoters in KCNN3 that could influence surface trafficking and function of KCa2 channels. Bisulfite sequencing analysis of the nucleus accumbens tissue from alcohol-drinking monkeys and alcohol dependent mice revealed a differentially methylated region in exon 1A of KCNN3 that overlaps with a predicted promoter sequence. The hypermethylation of KCNN3 in the accumbens paralleled an increase in expression of alternative transcripts that encode apamin-insensitive and dominant-negative KCa2 channel isoforms. A polymorphic repeat in macaque KCNN3 encoded by exon 1 did not correlate with alcohol drinking. At the protein level, KCa2.3 channel expression in the accumbens was significantly reduced in very heavy drinking monkeys. Together, our cross-species findings on epigenetic dysregulation of KCNN3 represent a complex mechanism that utilizes alternative promoters to impact firing of accumbens neurons. Thus, these results provide support for hypermethylation of KCNN3 as a possible key molecular mechanism underlying harmful alcohol intake and alcohol use disorder.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Betsy Ferguson
- Oregon Health & Sciences University/Oregon National Primate Research Center
| |
Collapse
|
16
|
Cohen T, Shomron N. Can RNA Affect Memory Modulation? Implications for PTSD Understanding and Treatment. Int J Mol Sci 2023; 24:12908. [PMID: 37629089 PMCID: PMC10454422 DOI: 10.3390/ijms241612908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 08/13/2023] [Accepted: 08/16/2023] [Indexed: 08/27/2023] Open
Abstract
Memories are a central aspect of our lives, but the mechanisms underlying their formation, consolidation, retrieval, and extinction remain poorly understood. In this review, we explore the molecular mechanisms of memory modulation and investigate the effects of RNA on these processes. Specifically, we examine the effects of time and location on gene expression alterations. We then discuss the potential for harnessing these alterations to modulate memories, particularly fear memories, to alleviate post-traumatic stress disorder (PTSD) symptoms. The current state of research suggests that transcriptional changes play a major role in memory modulation and targeting them through microRNAs may hold promise as a novel approach for treating memory-related disorders such as PTSD.
Collapse
Affiliation(s)
- Tehila Cohen
- Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Noam Shomron
- Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
- Edmond J Safra Center for Bioinformatics, Tel Aviv University, Tel Aviv 6997801, Israel
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 6997801, Israel
- Tel Aviv University Innovation Labs (TILabs), Tel Aviv 6997801, Israel
| |
Collapse
|
17
|
Yang T, Zhang Y, Chen L, Thomas ER, Yu W, Cheng B, Li X. The potential roles of ATF family in the treatment of Alzheimer's disease. Biomed Pharmacother 2023; 161:114544. [PMID: 36934558 DOI: 10.1016/j.biopha.2023.114544] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 03/07/2023] [Accepted: 03/14/2023] [Indexed: 03/20/2023] Open
Abstract
Activating transcription factors, ATFs, is a family of transcription factors that activate gene expression and transcription by recognizing and combining the cAMP response element binding proteins (CREB). It is present in various viruses as a cellular gene promoter. ATFs is involved in regulating the mammalian gene expression that is associated with various cell physiological processes. Therefore, ATFs play an important role in maintaining the intracellular homeostasis. ATF2 and ATF3 is mostly involved in mediating stress responses. ATF4 regulates the oxidative metabolism, which is associated with the survival of cells. ATF5 is presumed to regulate apoptosis, and ATF6 is involved in the regulation of endoplasmic reticulum stress (ERS). ATFs is actively studied in oncology. At present, there has been an increasing amount of research on ATFs for the treatment of neurological diseases. Here, we have focused on the different types of ATFs and their association with Alzheimer's disease (AD). The level of expression of different ATFs have a significant difference in AD patients when compared to healthy control. Recent studies have suggested that ATFs are implicated in the pathogenesis of AD, such as neuronal repair, maintenance of synaptic activity, maintenance of cell survival, inhibition of apoptosis, and regulation of stress responses. In this review, the potential role of ATFs for the treatment of AD has been highlighted. In addition, we have systematically reviewed the progress of research on ATFs in AD. This review will provide a basic and innovative understanding on the pathogenesis and treatment of AD.
Collapse
Affiliation(s)
- Ting Yang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Science, Southwest Medical University, Luzhou 646000, China
| | - Yuhong Zhang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Science, Southwest Medical University, Luzhou 646000, China
| | - Lixuan Chen
- Department of Biochemistry and Molecular Biology, School of Basic Medical Science, Southwest Medical University, Luzhou 646000, China
| | | | - Wenjing Yu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Science, Southwest Medical University, Luzhou 646000, China
| | - Bo Cheng
- Department of Urology, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, China; Sichuan Clinical Research Center for Nephropathy, Luzhou 646000, China.
| | - Xiang Li
- Department of Biochemistry and Molecular Biology, School of Basic Medical Science, Southwest Medical University, Luzhou 646000, China.
| |
Collapse
|
18
|
Gouveia Roque C, Chung KM, McCurdy EP, Jagannathan R, Randolph LK, Herline-Killian K, Baleriola J, Hengst U. CREB3L2-ATF4 heterodimerization defines a transcriptional hub of Alzheimer's disease gene expression linked to neuropathology. SCIENCE ADVANCES 2023; 9:eadd2671. [PMID: 36867706 PMCID: PMC9984184 DOI: 10.1126/sciadv.add2671] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 01/30/2023] [Indexed: 06/18/2023]
Abstract
Gene expression is changed by disease, but how these molecular responses arise and contribute to pathophysiology remains less understood. We discover that β-amyloid, a trigger of Alzheimer's disease (AD), promotes the formation of pathological CREB3L2-ATF4 transcription factor heterodimers in neurons. Through a multilevel approach based on AD datasets and a novel chemogenetic method that resolves the genomic binding profile of dimeric transcription factors (ChIPmera), we find that CREB3L2-ATF4 activates a transcription network that interacts with roughly half of the genes differentially expressed in AD, including subsets associated with β-amyloid and tau neuropathologies. CREB3L2-ATF4 activation drives tau hyperphosphorylation and secretion in neurons, in addition to misregulating the retromer, an endosomal complex linked to AD pathogenesis. We further provide evidence for increased heterodimer signaling in AD brain and identify dovitinib as a candidate molecule for normalizing β-amyloid-mediated transcriptional responses. The findings overall reveal differential transcription factor dimerization as a mechanism linking disease stimuli to the development of pathogenic cellular states.
Collapse
Affiliation(s)
- Cláudio Gouveia Roque
- The Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Kyung Min Chung
- The Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Ethan P. McCurdy
- Integrated Program in Cellular, Molecular, and Biomedical Studies, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Radhika Jagannathan
- Division of Aging and Dementia, Department of Neurology, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Lisa K. Randolph
- Doctoral Program in Neurobiology and Behavior, Columbia University, New York, NY, USA
| | - Krystal Herline-Killian
- The Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Jimena Baleriola
- The Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA
- Achucarro Basque Center for Neuroscience, Leioa, Spain
- IKERBASQUE Basque Foundation for Science, Bilbao, Spain
- Department of Cell Biology and Histology, University of the Basque Country, Leioa, Spain
| | - Ulrich Hengst
- The Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA
- Department of Pathology and Cell Biology, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA
| |
Collapse
|
19
|
Zha C, Sossin WS. The molecular diversity of plasticity mechanisms underlying memory: An evolutionary perspective. J Neurochem 2022; 163:444-460. [PMID: 36326567 DOI: 10.1111/jnc.15717] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 08/29/2022] [Accepted: 10/17/2022] [Indexed: 11/06/2022]
Abstract
Experience triggers molecular cascades in organisms (learning) that lead to alterations (memory) to allow the organism to change its behavior based on experience. Understanding the molecular mechanisms underlying memory, particularly in the nervous system of animals, has been an exciting scientific challenge for neuroscience. We review what is known about forms of neuronal plasticity that underlie memory highlighting important issues in the field: (1) the importance of being able to measure how neurons are activated during learning to identify the form of plasticity that underlies memory, (2) the many distinct forms of plasticity important for memories that naturally decay both within and between organisms, and (3) unifying principles underlying the formation and maintenance of long-term memories. Overall, the diversity of molecular mechanisms underlying memories that naturally decay contrasts with more unified molecular mechanisms implicated in long-lasting changes. Despite many advances, important questions remain as to which mechanisms of neuronal plasticity underlie memory.
Collapse
Affiliation(s)
- Congyao Zha
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - Wayne S Sossin
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
20
|
Shetty MS, Ris L, Schindler RFR, Mizuno K, Fedele L, Giese KP, Brand T, Abel T. Mice Lacking the cAMP Effector Protein POPDC1 Show Enhanced Hippocampal Synaptic Plasticity. Cereb Cortex 2022; 32:3457-3471. [PMID: 34937090 PMCID: PMC9376866 DOI: 10.1093/cercor/bhab426] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 10/28/2021] [Accepted: 10/29/2021] [Indexed: 11/13/2022] Open
Abstract
Extensive research has uncovered diverse forms of synaptic plasticity and an array of molecular signaling mechanisms that act as positive or negative regulators. Specifically, cyclic 3',5'-cyclic adenosine monophosphate (cAMP)-dependent signaling pathways are crucially implicated in long-lasting synaptic plasticity. In this study, we examine the role of Popeye domain-containing protein 1 (POPDC1) (or blood vessel epicardial substance (BVES)), a cAMP effector protein, in modulating hippocampal synaptic plasticity. Unlike other cAMP effectors, such as protein kinase A (PKA) and exchange factor directly activated by cAMP, POPDC1 is membrane-bound and the sequence of the cAMP-binding cassette differs from canonical cAMP-binding domains, suggesting that POPDC1 may have an unique role in cAMP-mediated signaling. Our results show that Popdc1 is widely expressed in various brain regions including the hippocampus. Acute hippocampal slices from Popdc1 knockout (KO) mice exhibit PKA-dependent enhancement in CA1 long-term potentiation (LTP) in response to weaker stimulation paradigms, which in slices from wild-type mice induce only transient LTP. Loss of POPDC1, while not affecting basal transmission or input-specificity of LTP, results in altered response during high-frequency stimulation. Popdc1 KO mice also show enhanced forskolin-induced potentiation. Overall, these findings reveal POPDC1 as a novel negative regulator of hippocampal synaptic plasticity and, together with recent evidence for its interaction with phosphodiesterases (PDEs), suggest that POPDC1 is involved in modulating activity-dependent local cAMP-PKA-PDE signaling.
Collapse
Affiliation(s)
- Mahesh Shivarama Shetty
- Department of Neuroscience and Pharmacology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
- Iowa Neuroscience Institute, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Laurence Ris
- Department of Neuroscience, University of Mons, Research Institute for Health Sciences and Technology, 7000 Mons, Belgium
| | | | - Keiko Mizuno
- Department of Neuroscience, King’s College, London SE5 9NU, UK
| | - Laura Fedele
- National Heart and Lung Institute, Imperial College London, London W12 ONN, UK
| | | | - Thomas Brand
- National Heart and Lung Institute, Imperial College London, London W12 ONN, UK
| | - Ted Abel
- Department of Neuroscience and Pharmacology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
- Iowa Neuroscience Institute, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| |
Collapse
|
21
|
Kim S, Kim DK, Jeong S, Lee J. The Common Cellular Events in the Neurodegenerative Diseases and the Associated Role of Endoplasmic Reticulum Stress. Int J Mol Sci 2022; 23:5894. [PMID: 35682574 PMCID: PMC9180188 DOI: 10.3390/ijms23115894] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 05/17/2022] [Accepted: 05/20/2022] [Indexed: 12/28/2022] Open
Abstract
Neurodegenerative diseases are inseparably linked with aging and increase as life expectancy extends. There are common dysfunctions in various cellular events shared among neurogenerative diseases, such as calcium dyshomeostasis, neuroinflammation, and age-associated decline in the autophagy-lysosome system. However, most of all, the prominent pathological feature of neurodegenerative diseases is the toxic buildup of misfolded protein aggregates and inclusion bodies accompanied by an impairment in proteostasis. Recent studies have suggested a close association between endoplasmic reticulum (ER) stress and neurodegenerative pathology in cellular and animal models as well as in human patients. The contribution of mutant or misfolded protein-triggered ER stress and its associated signaling events, such as unfolded protein response (UPR), to the pathophysiology of various neurodegenerative disorders, including Alzheimer's, Parkinson's, and Huntington's disease, amyotrophic lateral sclerosis, and prion disease, is described here. Impaired UPR action is commonly attributed to exacerbated ER stress, pathogenic protein aggregate accumulation, and deteriorating neurodegenerative pathologies. Thus, activating certain UPR components has been shown to alleviate ER stress and its associated neurodegeneration. However, uncontrolled activation of some UPR factors has also been demonstrated to worsen neurodegenerative phenotypes, suggesting that detailed molecular mechanisms around ER stress and its related neurodegenerations should be understood to develop effective therapeutics against aging-associated neurological syndromes. We also discuss current therapeutic endeavors, such as the development of small molecules that selectively target individual UPR components and address ER stress in general.
Collapse
Affiliation(s)
- Soojeong Kim
- Department of New Biology, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Korea; (S.K.); (D.K.K.); (S.J.)
| | - Doo Kyung Kim
- Department of New Biology, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Korea; (S.K.); (D.K.K.); (S.J.)
| | - Seho Jeong
- Department of New Biology, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Korea; (S.K.); (D.K.K.); (S.J.)
| | - Jaemin Lee
- Department of New Biology, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Korea; (S.K.); (D.K.K.); (S.J.)
- New Biology Research Center, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Korea
- Well Aging Research Center, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Korea
| |
Collapse
|
22
|
Mayneris-Perxachs J, Castells-Nobau A, Arnoriaga-Rodríguez M, Garre-Olmo J, Puig J, Ramos R, Martínez-Hernández F, Burokas A, Coll C, Moreno-Navarrete JM, Zapata-Tona C, Pedraza S, Pérez-Brocal V, Ramió-Torrentà L, Ricart W, Moya A, Martínez-García M, Maldonado R, Fernández-Real JM. Caudovirales bacteriophages are associated with improved executive function and memory in flies, mice, and humans. Cell Host Microbe 2022; 30:340-356.e8. [PMID: 35176247 DOI: 10.1016/j.chom.2022.01.013] [Citation(s) in RCA: 62] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 11/12/2021] [Accepted: 01/21/2022] [Indexed: 12/13/2022]
Abstract
Growing evidence implicates the gut microbiome in cognition. Viruses, the most abundant life entities on the planet, are a commonly overlooked component of the gut virome, dominated by the Caudovirales and Microviridae bacteriophages. Here, we show in a discovery (n = 114) and a validation cohort (n = 942) that subjects with increased Caudovirales and Siphoviridae levels in the gut microbiome had better performance in executive processes and verbal memory. Conversely, increased Microviridae levels were linked to a greater impairment in executive abilities. Microbiota transplantation from human donors with increased specific Caudovirales (>90% from the Siphoviridae family) levels led to increased scores in the novel object recognition test in mice and up-regulated memory-promoting immediate early genes in the prefrontal cortex. Supplementation of the Drosophila diet with the 936 group of lactococcal Siphoviridae bacteriophages resulted in increased memory scores and upregulation of memory-involved brain genes. Thus, bacteriophages warrant consideration as novel actors in the microbiome-brain axis.
Collapse
Affiliation(s)
- Jordi Mayneris-Perxachs
- Department of Diabetes, Endocrinology, and Nutrition, Dr. Josep Trueta University Hospital, Girona, Spain; Nutrition, Eumetabolism, and Health Group, Girona Biomedical Research Institute (IdibGi), Girona, Spain; Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Madrid, Spain.
| | - Anna Castells-Nobau
- Department of Diabetes, Endocrinology, and Nutrition, Dr. Josep Trueta University Hospital, Girona, Spain; Nutrition, Eumetabolism, and Health Group, Girona Biomedical Research Institute (IdibGi), Girona, Spain; Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Madrid, Spain
| | - María Arnoriaga-Rodríguez
- Department of Diabetes, Endocrinology, and Nutrition, Dr. Josep Trueta University Hospital, Girona, Spain; Nutrition, Eumetabolism, and Health Group, Girona Biomedical Research Institute (IdibGi), Girona, Spain; Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Madrid, Spain; Department of Medical Sciences, School of Medicine, University of Girona, Girona, Spain
| | - Josep Garre-Olmo
- Research Group on Aging, Disability, and Health, Girona Biomedical Research Institute (IdibGi), Girona, Spain; Serra-Hunter Fellow. Department of Nursing, University of Girona, Girona, Spain
| | - Josep Puig
- Department of Medical Sciences, School of Medicine, University of Girona, Girona, Spain; Institute of Diagnostic Imaging (IDI)-Research Unit (IDIR), Parc Sanitari Pere Virgili, Barcelona, Spain; Medical Imaging, Girona Biomedical Research Institute (IdibGi), Girona, Spain; Department of Radiology (IDI), Dr. Josep Trueta University Hospital, Girona, Spain
| | - Rafael Ramos
- Department of Medical Sciences, School of Medicine, University of Girona, Girona, Spain; Vascular Health Research Group of Girona (ISV-Girona), Jordi Gol Institute for Primary Care Research, (Institut Universitari per a la Recerca en Atenció Primària Jordi Gol I Gorina-IDIAPJGol), Girona Biomedical Research Institute, (IDIBGI), Dr. Josep Trueta University Hospital, Catalonia, Spain; Girona Biomedical Research Institute (IDIBGI), Dr. Josep Trueta University Hospital, Catalonia, Spain
| | | | - Aurelijus Burokas
- Laboratory of Neuropharmacology, Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain; Department of Biological Models, Institute of Biochemistry, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Clàudia Coll
- Neuroimmunology and Multiple Sclerosis Unit, Department of Neurology, Dr. Josep Trueta University Hospital, Girona, Spain
| | - José Maria Moreno-Navarrete
- Department of Diabetes, Endocrinology, and Nutrition, Dr. Josep Trueta University Hospital, Girona, Spain; Nutrition, Eumetabolism, and Health Group, Girona Biomedical Research Institute (IdibGi), Girona, Spain; Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Madrid, Spain; Department of Medical Sciences, School of Medicine, University of Girona, Girona, Spain
| | - Cristina Zapata-Tona
- Department of Diabetes, Endocrinology, and Nutrition, Dr. Josep Trueta University Hospital, Girona, Spain; Nutrition, Eumetabolism, and Health Group, Girona Biomedical Research Institute (IdibGi), Girona, Spain; Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Madrid, Spain; Department of Medical Sciences, School of Medicine, University of Girona, Girona, Spain
| | - Salvador Pedraza
- Department of Medical Sciences, School of Medicine, University of Girona, Girona, Spain; Medical Imaging, Girona Biomedical Research Institute (IdibGi), Girona, Spain; Department of Radiology (IDI), Dr. Josep Trueta University Hospital, Girona, Spain
| | - Vicente Pérez-Brocal
- Area of Genomics and Health, Foundation for the Promotion of Sanitary and Biomedical Research of Valencia Region (FISABIO-Public Health), Valencia, Spain; Biomedical Research Networking Center for Epidemiology and Public Health (CIBERESP), Madrid, Spain
| | - Lluís Ramió-Torrentà
- Department of Medical Sciences, School of Medicine, University of Girona, Girona, Spain; Neuroimmunology and Multiple Sclerosis Unit, Department of Neurology, Dr. Josep Trueta University Hospital, Girona, Spain; Neurodegeneration and Neuroinflammation research group. Girona Biomedical Research Institute (IdibGi), Girona, Spain
| | - Wifredo Ricart
- Department of Diabetes, Endocrinology, and Nutrition, Dr. Josep Trueta University Hospital, Girona, Spain; Nutrition, Eumetabolism, and Health Group, Girona Biomedical Research Institute (IdibGi), Girona, Spain; Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Madrid, Spain; Department of Medical Sciences, School of Medicine, University of Girona, Girona, Spain
| | - Andrés Moya
- Area of Genomics and Health, Foundation for the Promotion of Sanitary and Biomedical Research of Valencia Region (FISABIO-Public Health), Valencia, Spain; Biomedical Research Networking Center for Epidemiology and Public Health (CIBERESP), Madrid, Spain; Institute for Integrative Systems Biology (I2SysBio), University of Valencia and Spanish National Research Council (CSIC), Valencia, Spain
| | - Manuel Martínez-García
- Department of Physiology, Genetics, and Microbiology, University of Alicante, Alicante, Spain
| | - Rafael Maldonado
- Laboratory of Neuropharmacology, Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain; Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain.
| | - José-Manuel Fernández-Real
- Department of Diabetes, Endocrinology, and Nutrition, Dr. Josep Trueta University Hospital, Girona, Spain; Nutrition, Eumetabolism, and Health Group, Girona Biomedical Research Institute (IdibGi), Girona, Spain; Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Madrid, Spain; Department of Medical Sciences, School of Medicine, University of Girona, Girona, Spain.
| |
Collapse
|
23
|
Babaei-Abraki S, Karamali F, Nasr-Esfahani MH. The Role of Endoplasmic Reticulum and Mitochondria in Maintaining Redox Status and Glycolytic Metabolism in Pluripotent Stem Cells. Stem Cell Rev Rep 2022; 18:1789-1808. [PMID: 35141862 DOI: 10.1007/s12015-022-10338-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/20/2022] [Indexed: 10/19/2022]
Abstract
Pluripotent stem cells (PSCs), including embryonic stem cells and induced pluripotent stem cells (iPSCs), can be applicable for regenerative medicine. They strangely rely on glycolysis metabolism akin to aerobic glycolysis in cancer cells. Upon differentiation, PSCs undergo a metabolic shift from glycolysis to oxidative phosphorylation (OXPHOS). The metabolic shift depends on organelles maturation, transcriptome modification, and metabolic switching. Besides, metabolism-driven chromatin regulation is necessary for cell survival, self-renewal, proliferation, senescence, and differentiation. In this respect, mitochondria may serve as key organelle to adapt environmental changes with metabolic intermediates which are necessary for maintaining PSCs identity. The endoplasmic reticulum (ER) is another organelle whose role in cellular identity remains under-explored. The purpose of our article is to highlight the recent progress on these two organelles' role in maintaining PSCs redox status focusing on metabolism. Topics include redox status, metabolism regulation, mitochondrial dynamics, and ER stress in PSCs. They relate to the maintenance of stem cell properties and subsequent differentiation of stem cells into specific cell types.
Collapse
Affiliation(s)
- Shahnaz Babaei-Abraki
- Department of Plant and Animal Biology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran.,Department of Animal Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - Fereshteh Karamali
- Department of Animal Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - Mohammad Hossein Nasr-Esfahani
- Department of Animal Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran.
| |
Collapse
|
24
|
Yan D, Wang N, Yao J, Wu X, Yuan J, Yan H. Curcumin Attenuates the PERK-eIF2α Signaling to Relieve Acrylamide-Induced Neurotoxicity in SH‑SY5Y Neuroblastoma Cells. Neurochem Res 2022; 47:1037-1048. [PMID: 35037165 DOI: 10.1007/s11064-021-03504-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 12/01/2021] [Accepted: 12/04/2021] [Indexed: 02/06/2023]
Abstract
Curcumin is a natural polyphenolic compound with neuroprotective and antioxidant properties. Acrylamide (ACR) is a by-product of food processing that produces neurotoxicity in humans and animals. The pancreatic endoplasmic reticulum kinase (PERK)-eukaryotic initiation factor-2α (eIF2α) signaling is involved in the occurrence of neurotoxicities. This study is aimed to investigate the protective effect of curcumin on ACR-induced cytotoxicity and explore the role of PERK-eIF2α signaling in this process. ACR exposure at 2.5 mM for 24 h caused oxidative stress as revealed by the distinct increase in cellular reactive oxygen species (ROS) and malondialdehyde (MDA) level, and a significant decrease in glutathione (GSH) content. ACR induced phosphorylated tau aggregation, phosphorylated cAMP response elements binding protein (CREB) reduction, and Bax/Bcl-2 ratio up-regulation in SH-SY5Y cells. ACR also activated the PERK-eIF2α signaling in SH-SY5Y cells and triggered the activation of glycogen synthase kinase-3β (GSK-3β), up-regulated activating transcription factor 4 (ATF4) and C/EBP homologous protein (CHOP). Curcumin pretreatment significantly attenuated ACR-induced neuronal toxicity as revealed by the ameliorated cell viability, mitigated intracellular ROS and MDA level, and elevated GSH content. Moreover, curcumin pretreatment inhibited PERK-dependent eIF2α phosphorylation, further suppressed GSK-3β and ATF4 function, and abolished abnormal tau phosphorylation, P-CREB reduction, and CHOP-induced apoptosis in SH-SY5Y cells. These results provided empirical evidence between curcumin and PERK-eIF2α signaling in ACR-induced neurotoxicity.
Collapse
Affiliation(s)
- Dandan Yan
- Department of Pathology, Renmin Hospital of Wuhan University, 238 Jiefang-Road, Wuchang District, Wuhan, 430060, China
| | - Na Wang
- Department of Health Toxicology, MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong-Road, Wuhan, 430030, China
| | - Jianling Yao
- Department of Health Toxicology, MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong-Road, Wuhan, 430030, China
| | - Xu Wu
- Department of Health Toxicology, MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong-Road, Wuhan, 430030, China
| | - Jingping Yuan
- Department of Pathology, Renmin Hospital of Wuhan University, 238 Jiefang-Road, Wuchang District, Wuhan, 430060, China.
| | - Hong Yan
- Department of Health Toxicology, MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong-Road, Wuhan, 430030, China.
| |
Collapse
|
25
|
Korneeva NL. Integrated Stress Response in Neuronal Pathology and in Health. BIOCHEMISTRY. BIOKHIMIIA 2022; 87:S111-S127. [PMID: 35501991 DOI: 10.1134/s0006297922140103] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 10/29/2021] [Accepted: 11/02/2021] [Indexed: 06/14/2023]
Abstract
Neurodegeneration involves progressive pathological loss of a specific population of neurons, glial activation, and dysfunction of myelinating oligodendrocytes leading to cognitive impairment and altered movement, breathing, and senses. Neuronal degeneration is a hallmark of aging, stroke, drug abuse, toxic chemical exposure, viral infection, chronic inflammation, and a variety of neurological diseases. Accumulation of intra- and extracellular protein aggregates is a common characteristic of cell pathologies. Excessive production of reactive oxygen species and nitric oxide, induction of endoplasmic reticulum stress, and accumulation of misfolded protein aggregates have been shown to trigger a defensive mechanism called integrated stress response (ISR). Activation of ISR is important for synaptic plasticity in learning and memory formation. However, sustaining of ISR may lead to the development of neuronal pathologies and altered patterns in behavior and perception.
Collapse
Affiliation(s)
- Nadejda L Korneeva
- Louisiana State University Health Science Center, Shreveport, LA 71103, USA.
| |
Collapse
|
26
|
Pharmacological targeting of endoplasmic reticulum stress in disease. Nat Rev Drug Discov 2021; 21:115-140. [PMID: 34702991 DOI: 10.1038/s41573-021-00320-3] [Citation(s) in RCA: 287] [Impact Index Per Article: 71.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/15/2021] [Indexed: 02/08/2023]
Abstract
The accumulation of misfolded proteins in the endoplasmic reticulum (ER) leads to ER stress, resulting in activation of the unfolded protein response (UPR) that aims to restore protein homeostasis. However, the UPR also plays an important pathological role in many diseases, including metabolic disorders, cancer and neurological disorders. Over the last decade, significant effort has been invested in targeting signalling proteins involved in the UPR and an array of drug-like molecules is now available. However, these molecules have limitations, the understanding of which is crucial for their development into therapies. Here, we critically review the existing ER stress and UPR-directed drug-like molecules, highlighting both their value and their limitations.
Collapse
|
27
|
Noyes NC, Phan A, Davis RL. Memory suppressor genes: Modulating acquisition, consolidation, and forgetting. Neuron 2021; 109:3211-3227. [PMID: 34450024 PMCID: PMC8542634 DOI: 10.1016/j.neuron.2021.08.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 07/15/2021] [Accepted: 07/30/2021] [Indexed: 02/06/2023]
Abstract
The brain has a remarkable but underappreciated capacity to limit memory formation and expression. The term "memory suppressor gene" was coined in 1998 as an attempt to explain emerging reports that some genes appeared to limit memory. At that time, only a handful of memory suppressor genes were known, and they were understood to work by limiting cAMP-dependent consolidation. In the intervening decades, almost 100 memory suppressor genes with diverse functions have been discovered that affect not only consolidation but also acquisition and forgetting. Here we highlight the surprising extent to which biological limits are placed on memory formation through reviewing the literature on memory suppressor genes. In this review, we present memory suppressors within the framework of their actions on different memory operations: acquisition, consolidation, and forgetting. This is followed by a discussion of the reasons why there may be a biological need to limit memory formation.
Collapse
Affiliation(s)
- Nathaniel C Noyes
- Department of Neuroscience, Scripps Research Institute Florida, Jupiter, FL 33458, USA
| | - Anna Phan
- Department of Biological Sciences, University of Alberta, 11355 Saskatchewan Drive, Edmonton, AB T6G 2E9, Canada
| | - Ronald L Davis
- Department of Neuroscience, Scripps Research Institute Florida, Jupiter, FL 33458, USA.
| |
Collapse
|
28
|
Lopez-Grancha M, Bernardelli P, Moindrot N, Genet E, Vincent C, Roudieres V, Krick AI, Sabuco JF, Machnik D, Ibghi D, Pradier L, Taupin V. A Novel Selective PKR Inhibitor Restores Cognitive Deficits and Neurodegeneration in Alzheimer Disease Experimental Models. J Pharmacol Exp Ther 2021; 378:262-275. [PMID: 34531308 DOI: 10.1124/jpet.121.000590] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 06/09/2021] [Indexed: 11/22/2022] Open
Abstract
In Alzheimer disease (AD), the double-strand RNA-dependent kinase protein kinase R (PKR )/EIF2AK2 is activated in brain with increased phosphorylation of its substrate eukaryotic initiation factor 2α (eIF2α). AD risk-promoting factors, such as ApoE4 allele or the accumulation of neurotoxic amyloid-β oligomers (AβOs), have been associated with activation of PKR-dependent signaling. Here, we report the discovery of a novel potent and selective PKR inhibitor (SAR439883) and demonstrate its neuroprotective pharmacological activity in AD experimental models. In ApoE4 human replacement male mice, 1-week oral treatment with SAR439883 rescued short-term memory impairment in the spatial object recognition test and dose-dependently reduced learning and memory deficits in the Barnes maze test. Moreover, in AβO-injected male mice, a 2-week administration of SAR439883 in diet dose-dependently ameliorated the AβO-induced cognitive impairment in both Y-maze and Morris Water Maze, prevented loss of synaptic proteins, and reduced levels of the proinflammatory cytokine interleukin-1β In both mouse models, these effects were associated with a dose-dependent inhibition of brain PKR activity as measured by both PKR occupancy and partial lowering of peIF2α levels. Our results provide evidence that selective pharmacological inhibition of PKR by a small selective molecule can rescue memory deficits and prevent neurodegeneration in animal models of AD-like pathology, suggesting that inhibition of PKR is a potential therapeutic approach for AD. SIGNIFICANCE STATEMENT: This study reports the identification of a new small molecule potent and selective protein kinase R (PKR) inhibitor that can prevent cognitive deficits and neurodegeneration in Alzheimer disease (AD) experimental models, including a mouse model expressing the most prevalent AD genetic risk factor ApoE4. With high potency and selectivity, this PKR inhibitor represents a unique tool for investigating the physiological role of PKR and a starting point for developing new drug candidates for AD.
Collapse
Affiliation(s)
- Matilde Lopez-Grancha
- Neurodegeneration Cluster, Rare and Neurologic Disease Research TA (M.L.-G., N.M., E.G., C.V., V.R., D.I., L.P., V.T.), Integrated Drug Discovery (P.B., J.-F.S., D.M.), and DMPK (A.K.), Sanofi R&D, Chilly-Mazarin, France
| | - Patrick Bernardelli
- Neurodegeneration Cluster, Rare and Neurologic Disease Research TA (M.L.-G., N.M., E.G., C.V., V.R., D.I., L.P., V.T.), Integrated Drug Discovery (P.B., J.-F.S., D.M.), and DMPK (A.K.), Sanofi R&D, Chilly-Mazarin, France
| | - Nicolas Moindrot
- Neurodegeneration Cluster, Rare and Neurologic Disease Research TA (M.L.-G., N.M., E.G., C.V., V.R., D.I., L.P., V.T.), Integrated Drug Discovery (P.B., J.-F.S., D.M.), and DMPK (A.K.), Sanofi R&D, Chilly-Mazarin, France
| | - Elisabeth Genet
- Neurodegeneration Cluster, Rare and Neurologic Disease Research TA (M.L.-G., N.M., E.G., C.V., V.R., D.I., L.P., V.T.), Integrated Drug Discovery (P.B., J.-F.S., D.M.), and DMPK (A.K.), Sanofi R&D, Chilly-Mazarin, France
| | - Carine Vincent
- Neurodegeneration Cluster, Rare and Neurologic Disease Research TA (M.L.-G., N.M., E.G., C.V., V.R., D.I., L.P., V.T.), Integrated Drug Discovery (P.B., J.-F.S., D.M.), and DMPK (A.K.), Sanofi R&D, Chilly-Mazarin, France
| | - Valerie Roudieres
- Neurodegeneration Cluster, Rare and Neurologic Disease Research TA (M.L.-G., N.M., E.G., C.V., V.R., D.I., L.P., V.T.), Integrated Drug Discovery (P.B., J.-F.S., D.M.), and DMPK (A.K.), Sanofi R&D, Chilly-Mazarin, France
| | - AIain Krick
- Neurodegeneration Cluster, Rare and Neurologic Disease Research TA (M.L.-G., N.M., E.G., C.V., V.R., D.I., L.P., V.T.), Integrated Drug Discovery (P.B., J.-F.S., D.M.), and DMPK (A.K.), Sanofi R&D, Chilly-Mazarin, France
| | - Jean-François Sabuco
- Neurodegeneration Cluster, Rare and Neurologic Disease Research TA (M.L.-G., N.M., E.G., C.V., V.R., D.I., L.P., V.T.), Integrated Drug Discovery (P.B., J.-F.S., D.M.), and DMPK (A.K.), Sanofi R&D, Chilly-Mazarin, France
| | - David Machnik
- Neurodegeneration Cluster, Rare and Neurologic Disease Research TA (M.L.-G., N.M., E.G., C.V., V.R., D.I., L.P., V.T.), Integrated Drug Discovery (P.B., J.-F.S., D.M.), and DMPK (A.K.), Sanofi R&D, Chilly-Mazarin, France
| | - Delphine Ibghi
- Neurodegeneration Cluster, Rare and Neurologic Disease Research TA (M.L.-G., N.M., E.G., C.V., V.R., D.I., L.P., V.T.), Integrated Drug Discovery (P.B., J.-F.S., D.M.), and DMPK (A.K.), Sanofi R&D, Chilly-Mazarin, France
| | - Laurent Pradier
- Neurodegeneration Cluster, Rare and Neurologic Disease Research TA (M.L.-G., N.M., E.G., C.V., V.R., D.I., L.P., V.T.), Integrated Drug Discovery (P.B., J.-F.S., D.M.), and DMPK (A.K.), Sanofi R&D, Chilly-Mazarin, France
| | - Veronique Taupin
- Neurodegeneration Cluster, Rare and Neurologic Disease Research TA (M.L.-G., N.M., E.G., C.V., V.R., D.I., L.P., V.T.), Integrated Drug Discovery (P.B., J.-F.S., D.M.), and DMPK (A.K.), Sanofi R&D, Chilly-Mazarin, France
| |
Collapse
|
29
|
Rapid ATF4 Depletion Resets Synaptic Responsiveness after cLTP. eNeuro 2021; 8:ENEURO.0239-20.2021. [PMID: 33980608 PMCID: PMC8177969 DOI: 10.1523/eneuro.0239-20.2021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 04/14/2021] [Accepted: 04/24/2021] [Indexed: 12/14/2022] Open
Abstract
Activating transcription factor 4 [ATF4 (also called CREB2)], in addition to its well studied role in stress responses, is proposed to play important physiologic functions in regulating learning and memory. However, the nature of these functions has not been well defined and is subject to apparently disparate views. Here, we provide evidence that ATF4 is a regulator of excitability during synaptic plasticity. We evaluated the role of ATF4 in mature hippocampal cultures subjected to a brief chemically induced LTP (cLTP) protocol that results in changes in mEPSC properties and synaptic AMPA receptor density 1 h later, with return to baseline by 24 h. We find that ATF4 protein, but not its mRNA, is rapidly depleted by ∼50% in response to cLTP induction via NMDA receptor activation. Depletion is detectable in dendrites within 15 min and in cell bodies by 1 h, and returns to baseline by 8 h. Such changes correlate with a parallel depletion of phospho-eIF2a, suggesting that ATF4 loss is driven by decreased translation. To probe the physiologic role of cLTP-induced ATF4 depletion, we constitutively overexpressed the protein. Reversing ATF4 depletion by overexpression blocked the recovery of synaptic activity and AMPA receptor density to baseline values that would otherwise occur 24 h after cLTP induction. This reversal was not reproduced by a transcriptionally inactive ATF4 mutant. These findings support the role of ATF4 as a required element in resetting baseline synaptic responsiveness after cLTP.
Collapse
|
30
|
Doornbos C, Roepman R. Moonlighting of mitotic regulators in cilium disassembly. Cell Mol Life Sci 2021; 78:4955-4972. [PMID: 33860332 PMCID: PMC8233288 DOI: 10.1007/s00018-021-03827-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 03/03/2021] [Accepted: 03/27/2021] [Indexed: 02/07/2023]
Abstract
Correct timing of cellular processes is essential during embryological development and to maintain the balance between healthy proliferation and tumour formation. Assembly and disassembly of the primary cilium, the cell’s sensory signalling organelle, are linked to cell cycle timing in the same manner as spindle pole assembly and chromosome segregation. Mitotic processes, ciliary assembly, and ciliary disassembly depend on the centrioles as microtubule-organizing centres (MTOC) to regulate polymerizing and depolymerizing microtubules. Subsequently, other functional protein modules are gathered to potentiate specific protein–protein interactions. In this review, we show that a significant subset of key mitotic regulator proteins is moonlighting at the cilium, among which PLK1, AURKA, CDC20, and their regulators. Although ciliary assembly defects are linked to a variety of ciliopathies, ciliary disassembly defects are more often linked to brain development and tumour formation. Acquiring a better understanding of the overlap in regulators of ciliary disassembly and mitosis is essential in finding therapeutic targets for the different diseases and types of tumours associated with these regulators.
Collapse
Affiliation(s)
- Cenna Doornbos
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands.,Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Ronald Roepman
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands. .,Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands.
| |
Collapse
|
31
|
Nerve impulse transmission pathway-focused genes expression analysis in patients with primary hypothyroidism and autoimmune thyroiditis. Endocr Regul 2021; 54:109-118. [PMID: 32597152 DOI: 10.2478/enr-2020-0013] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
OBJECTIVE Thyroid hormones have important actions in the adult brain. They regulate genes expression in myelination, differentiation of neuronal and glial cells, and neuronal viability and function. METHODS We used the pathway-specific real-time PCR array (Neurotrophins and Receptors RT2 Profiler PCR Array, QIAGEN, Germany) to identify and verify nerve impulse transmission pathway-focused genes expression in peripheral white blood cells of patients with postoperative hypothyroidism, hypothyroidism as a result of autoimmune thyroiditis (AIT) and AIT with elevated serum an anti-thyroglobulin (anti-Tg) and anti-thyroid peroxidase (anti-TPO) antibodies. RESULTS It was shown that patients with postoperative hypothyroidism and hypothyroidism resulting from AIT had significantly lower expression of BDNF and CBLN1. In patients with AIT with elevated serum anti-Tg and anti-TPO antibodies, the expression of GDNF was significantly down-regulated and the expression of PNOC was up-regulated. The expression levels of MEF2C and NTSR1 were decreased in the group of patients with postoperative hypothyroidism and AIT, correspondingly. CONCLUSIONS The results of this study demonstrate that AIT and hypothyroidism can affect the expression of mRNA nerve impulse transmission genes in gene specific manner and that these changes in gene expressions can be playing a role in the development of neurological complications associated with thyroid pathology. Detection of the transcriptional activity of nerve impulse transmission genes in peripheral white blood cells can be used as an important minimally invasive prognostic marker of the risk for developing neurological complications comorbid with thyroid pathology.
Collapse
|
32
|
Wang X, Ye F, Wen Z, Guo Z, Yu C, Huang WK, Rojas Ringeling F, Su Y, Zheng W, Zhou G, Christian KM, Song H, Zhang M, Ming GL. Structural interaction between DISC1 and ATF4 underlying transcriptional and synaptic dysregulation in an iPSC model of mental disorders. Mol Psychiatry 2021; 26:1346-1360. [PMID: 31444471 PMCID: PMC8444148 DOI: 10.1038/s41380-019-0485-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2018] [Revised: 04/01/2019] [Accepted: 05/17/2019] [Indexed: 01/01/2023]
Abstract
Psychiatric disorders are a collection of heterogeneous mental disorders arising from a contribution of genetic and environmental insults, many of which molecularly converge on transcriptional dysregulation, resulting in altered synaptic functions. The underlying mechanisms linking the genetic lesion and functional phenotypes remain largely unknown. Patient iPSC-derived neurons with a rare frameshift DISC1 (Disrupted-in-schizophrenia 1) mutation have previously been shown to exhibit aberrant gene expression and deficits in synaptic functions. How DISC1 regulates gene expression is largely unknown. Here we show that Activating Transcription Factor 4 (ATF4), a DISC1 binding partner, is more abundant in the nucleus of DISC1 mutant human neurons and exhibits enhanced binding to a collection of dysregulated genes. Functionally, overexpressing ATF4 in control neurons recapitulates deficits seen in DISC1 mutant neurons, whereas transcriptional and synaptic deficits are rescued in DISC1 mutant neurons with CRISPR-mediated heterozygous ATF4 knockout. By solving the high-resolution atomic structure of the DISC1-ATF4 complex, we show that mechanistically, the mutation of DISC1 disrupts normal DISC1-ATF4 interaction, and results in excessive ATF4 binding to DNA targets and deregulated gene expression. Together, our study identifies the molecular and structural basis of an DISC1-ATF4 interaction underlying transcriptional and synaptic dysregulation in an iPSC model of mental disorders.
Collapse
Affiliation(s)
- Xinyuan Wang
- School of Basic Medical Sciences, Fudan University, 200032, Shanghai, China
- Department of Neuroscience and Mahoney Institute for Neurosciences, Perelman School for Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Fei Ye
- Division of Life Science, State Key Laboratory of Molecular Neuroscience, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
- Center of Systems Biology and Human Health, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Zhexing Wen
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, 30322, USA
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Ziyuan Guo
- Department of Neuroscience and Mahoney Institute for Neurosciences, Perelman School for Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Chuan Yu
- Division of Life Science, State Key Laboratory of Molecular Neuroscience, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Wei-Kai Huang
- Department of Neuroscience and Mahoney Institute for Neurosciences, Perelman School for Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Pathology Graduate Program, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Francisca Rojas Ringeling
- The Human Genetics Pre-doctoral Program, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Yijing Su
- Department of Neuroscience and Mahoney Institute for Neurosciences, Perelman School for Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Wei Zheng
- National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Guomin Zhou
- School of Basic Medical Sciences, Fudan University, 200032, Shanghai, China
| | - Kimberly M Christian
- Department of Neuroscience and Mahoney Institute for Neurosciences, Perelman School for Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Hongjun Song
- Department of Neuroscience and Mahoney Institute for Neurosciences, Perelman School for Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.
- Department of Cell and Developmental Biology, Perelman School for Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.
- Institute for Regenerative Medicine, Perelman School for Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.
- The Epigenetics Institute, Perelman School for Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| | - Mingjie Zhang
- Division of Life Science, State Key Laboratory of Molecular Neuroscience, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China.
- Center of Systems Biology and Human Health, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China.
| | - Guo-Li Ming
- Department of Neuroscience and Mahoney Institute for Neurosciences, Perelman School for Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.
- Department of Cell and Developmental Biology, Perelman School for Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.
- Institute for Regenerative Medicine, Perelman School for Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.
- Department of Psychiatry, Perelman School for Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| |
Collapse
|
33
|
Kogel V, Trinh S, Gasterich N, Beyer C, Seitz J. Long-Term Glucose Starvation Induces Inflammatory Responses and Phenotype Switch in Primary Cortical Rat Astrocytes. J Mol Neurosci 2021; 71:2368-2382. [PMID: 33580474 PMCID: PMC8585803 DOI: 10.1007/s12031-021-01800-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 01/15/2021] [Indexed: 12/18/2022]
Abstract
Astrocytes are the most abundant cell type in the brain and crucial to ensure the metabolic supply of neurons and their synapse formation. Overnutrition as present in patients suffering from obesity causes astrogliosis in the hypothalamus. Other diseases accompanied by malnutrition appear to have an impact on the brain and astrocyte function. In the eating disorder anorexia nervosa (AN), patients suffer from undernutrition and develop volume reductions of the cerebral cortex, associated with reduced astrocyte proliferation and cell count. Although an effect on astrocytes and their function has already been shown for overnutrition, their role in long-term undernutrition remains unclear. The present study used primary rat cerebral cortex astrocytes to investigate their response to chronic glucose starvation. Cells were grown with a medium containing a reduced glucose concentration (2 mM) for 15 days. Long-term glucose starvation increased the expression of a subset of pro-inflammatory genes and shifted the primary astrocyte population to the pro-inflammatory A1-like phenotype. Moreover, genes encoding for proteins involved in the unfolded protein response were elevated. Our findings demonstrate that astrocytes under chronic glucose starvation respond with an inflammatory reaction. With respect to the multiple functions of astrocytes, an association between elevated inflammatory responses due to chronic starvation and alterations found in the brain of patients suffering from undernutrition seems possible.
Collapse
Affiliation(s)
- Vanessa Kogel
- Institute of Neuroanatomy, RWTH Aachen University, 52074, Aachen, Germany.
| | - Stefanie Trinh
- Institute of Neuroanatomy, RWTH Aachen University, 52074, Aachen, Germany
| | - Natalie Gasterich
- Institute of Neuroanatomy, RWTH Aachen University, 52074, Aachen, Germany
| | - Cordian Beyer
- Institute of Neuroanatomy, RWTH Aachen University, 52074, Aachen, Germany
| | - Jochen Seitz
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, University Hospital, RWTH Aachen University, 52074, Aachen, Germany
| |
Collapse
|
34
|
Krukowski K, Nolan A, Frias ES, Boone M, Ureta G, Grue K, Paladini MS, Elizarraras E, Delgado L, Bernales S, Walter P, Rosi S. Small molecule cognitive enhancer reverses age-related memory decline in mice. eLife 2020; 9:e62048. [PMID: 33258451 PMCID: PMC7721440 DOI: 10.7554/elife.62048] [Citation(s) in RCA: 94] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 11/10/2020] [Indexed: 12/14/2022] Open
Abstract
With increased life expectancy, age-associated cognitive decline becomes a growing concern, even in the absence of recognizable neurodegenerative disease. The integrated stress response (ISR) is activated during aging and contributes to age-related brain phenotypes. We demonstrate that treatment with the drug-like small-molecule ISR inhibitor ISRIB reverses ISR activation in the brain, as indicated by decreased levels of activating transcription factor 4 (ATF4) and phosphorylated eukaryotic translation initiation factor eIF2. Furthermore, ISRIB treatment reverses spatial memory deficits and ameliorates working memory in old mice. At the cellular level in the hippocampus, ISR inhibition (i) rescues intrinsic neuronal electrophysiological properties, (ii) restores spine density and (iii) reduces immune profiles, specifically interferon and T cell-mediated responses. Thus, pharmacological interference with the ISR emerges as a promising intervention strategy for combating age-related cognitive decline in otherwise healthy individuals.
Collapse
Affiliation(s)
- Karen Krukowski
- Department of Physical Therapy and Rehabilitation Science, University of California at San FranciscoSan FranciscoUnited States
- Brain and Spinal Injury Center, University of California at San FranciscoSan FranciscoUnited States
| | - Amber Nolan
- Brain and Spinal Injury Center, University of California at San FranciscoSan FranciscoUnited States
- Department of Pathology, University of California at San FranciscoSan FranciscoUnited States
| | - Elma S Frias
- Department of Physical Therapy and Rehabilitation Science, University of California at San FranciscoSan FranciscoUnited States
- Brain and Spinal Injury Center, University of California at San FranciscoSan FranciscoUnited States
| | - Morgane Boone
- Biochemistry and Biophysics, University of California at San FranciscoSan FranciscoUnited States
| | | | - Katherine Grue
- Department of Physical Therapy and Rehabilitation Science, University of California at San FranciscoSan FranciscoUnited States
- Brain and Spinal Injury Center, University of California at San FranciscoSan FranciscoUnited States
| | - Maria-Serena Paladini
- Department of Physical Therapy and Rehabilitation Science, University of California at San FranciscoSan FranciscoUnited States
- Brain and Spinal Injury Center, University of California at San FranciscoSan FranciscoUnited States
| | - Edward Elizarraras
- Department of Physical Therapy and Rehabilitation Science, University of California at San FranciscoSan FranciscoUnited States
- Brain and Spinal Injury Center, University of California at San FranciscoSan FranciscoUnited States
| | | | | | - Peter Walter
- Biochemistry and Biophysics, University of California at San FranciscoSan FranciscoUnited States
- Howard Hughes Medical Institute, University of California at San FranciscoSan FranciscoUnited States
| | - Susanna Rosi
- Department of Physical Therapy and Rehabilitation Science, University of California at San FranciscoSan FranciscoUnited States
- Brain and Spinal Injury Center, University of California at San FranciscoSan FranciscoUnited States
- Department of Neurological Surgery, University of California at San FranciscoSan FranciscoUnited States
- Weill Institute for Neuroscience, University of California at San FranciscoSan FranciscoUnited States
- Kavli Institute of Fundamental Neuroscience, University of California at San FranciscoSan FranciscoUnited States
| |
Collapse
|
35
|
Moradi Majd R, Mayeli M, Rahmani F. Pathogenesis and promising therapeutics of Alzheimer disease through eIF2α pathway and correspondent kinases. Metab Brain Dis 2020; 35:1241-1250. [PMID: 32681467 DOI: 10.1007/s11011-020-00600-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 07/05/2020] [Indexed: 01/10/2023]
Abstract
Eukaryotic initiation factor 2 (eIF2α) pathway is overactivated in Alzheimer disease and is probably associated with synaptic and memory deficiencies. EIF2α protein is principally in charge of the regulation of protein synthesis in eukaryotic cells. Four kinases responsible for eIF2α phosphorylation at ser-51 are: General control non-derepressible-2 kinase (GCN2), double-stranded RNA-activated protein kinase (PKR), PKR-like endoplasmic reticulum kinase (PERK), and heme-regulated inhibitor kinase (HRI) are the four kinases. They lead to reduced levels of general translation and paradoxical increase of stress-responsive mRNAs expression including the B-secretase (BACE1) and the transcriptional modulator activating transcription factor 4 (ATF4), which in turn accelerates the beta-amyloidogenesis, tau phosphorylation, proapoptotic pathway induction and autophagy elements formation leading to the main pathological hallmarks of AD. Findings suggest that genetic or pharmacological inhibition of correspondent kinases can restore memory and prevent neurodegeneration. This implies that inhibition of eIF2α phosphorylation through respondent kinases is indeed a feasible prospect of clinical application. This review discusses recent therapeutic approaches targeting eIF2α pathway and provides an overview of the links between correspondent kinases overactivation with neurodegeneration in AD.
Collapse
Affiliation(s)
- Reza Moradi Majd
- Tehran University of Medical Sciences, Tehran, Islamic Republic of Iran
| | - Mahsa Mayeli
- Tehran University of Medical Sciences, Tehran, Islamic Republic of Iran.
| | - Farzaneh Rahmani
- Tehran University of Medical Sciences, Tehran, Islamic Republic of Iran
| |
Collapse
|
36
|
Smith SG, Haynes KA, Hegde AN. Degradation of Transcriptional Repressor ATF4 during Long-Term Synaptic Plasticity. Int J Mol Sci 2020; 21:ijms21228543. [PMID: 33198401 PMCID: PMC7697267 DOI: 10.3390/ijms21228543] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 11/10/2020] [Indexed: 12/16/2022] Open
Abstract
Maintenance of long-term synaptic plasticity requires gene expression mediated by cAMP-responsive element binding protein (CREB). Gene expression driven by CREB can commence only if the inhibition by a transcriptional repressor activating transcription factor 4 (ATF4; also known as CREB2) is relieved. Previous research showed that the removal of ATF4 occurs through ubiquitin-proteasome-mediated proteolysis. Using chemically induced hippocampal long-term potentiation (cLTP) as a model system, we investigate the mechanisms that control ATF4 degradation. We observed that ATF4 phosphorylated at serine-219 increases upon induction of cLTP and decreases about 30 min thereafter. Proteasome inhibitor β-lactone prevents the decrease in ATF4. We found that the phosphorylation of ATF4 is mediated by cAMP-dependent protein kinase. Our initial experiments towards the identification of the ligase that mediates ubiquitination of ATF4 revealed a possible role for β-transducin repeat containing protein (β-TrCP). Regulation of ATF4 degradation is likely to be a mechanism for determining the threshold for gene expression underlying maintenance of long-term synaptic plasticity and by extension, long-term memory.
Collapse
Affiliation(s)
| | | | - Ashok N. Hegde
- Correspondence: ; Tel.: +(478)-445-3464; Fax: +(478)-445-5290
| |
Collapse
|
37
|
Integrated stress response inhibition provides sex-dependent protection against noise-induced cochlear synaptopathy. Sci Rep 2020; 10:18063. [PMID: 33093490 PMCID: PMC7582887 DOI: 10.1038/s41598-020-75058-w] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 09/30/2020] [Indexed: 11/08/2022] Open
Abstract
Noise-induced hearing loss (NIHL) is a common health concern with significant social, psychological, and cognitive implications. Moderate levels of acoustic overstimulation associated with tinnitus and impaired speech perception cause cochlear synaptopathy, characterized physiologically by reduction in wave I of the suprathreshold auditory brainstem response (ABR) and reduced number of synapses between sensory hair cells and auditory neurons. The unfolded protein response (UPR), an endoplasmic reticulum stress response pathway, has been implicated in the pathogenesis and treatment of NIHL as well as neurodegeneration and synaptic damage in the brain. In this study, we used the small molecule UPR modulator Integrated Stress Response InhiBitor (ISRIB) to treat noise-induced cochlear synaptopathy in a mouse model. Mice pretreated with ISRIB prior to noise-exposure were protected against noise-induced synapse loss. Male, but not female, mice also exhibited ISRIB-mediated protection against noise-induced suprathreshold ABR wave-I amplitude reduction. Female mice had higher baseline wave-I amplitudes but greater sensitivity to noise-induced wave-I reduction. Our results suggest that the UPR is implicated in noise-induced cochlear synaptopathy, and can be targeted for treatment.
Collapse
|
38
|
Dystonia 16 (DYT16) mutations in PACT cause dysregulated PKR activation and eIF2α signaling leading to a compromised stress response. Neurobiol Dis 2020; 146:105135. [PMID: 33049316 DOI: 10.1016/j.nbd.2020.105135] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 09/17/2020] [Accepted: 10/07/2020] [Indexed: 12/17/2022] Open
Abstract
Dystonia 16 (DYT16) is caused by mutations in PACT, the protein activator of interferon-induced double-stranded RNA-activated protein kinase (PKR). PKR regulates the integrated stress response (ISR) via phosphorylation of the translation initiation factor eIF2α. This post-translational modification attenuates general protein synthesis while concomitantly triggering enhanced translation of a few specific transcripts leading either to recovery and homeostasis or cellular apoptosis depending on the intensity and duration of stress signals. PKR plays a regulatory role in determining the cellular response to viral infections, oxidative stress, endoplasmic reticulum (ER) stress, and growth factor deprivation. In the absence of stress, both PACT and PKR are bound by their inhibitor transactivation RNA-binding protein (TRBP) thereby keeping PKR inactive. Under conditions of cellular stress these inhibitory interactions dissociate facilitating PACT-PACT interactions critical for PKR activation. While both PACT-TRBP and PKR-TRBP interactions are pro-survival, PACT-PACT and PACT-PKR interactions are pro-apoptotic. In this study we evaluate if five DYT16 substitution mutations alter PKR activation and ISR. Our results indicate that the mutant DYT16 proteins show stronger PACT-PACT interactions and enhanced PKR activation. In DYT16 patient derived lymphoblasts the enhanced PACT-PKR interactions and heightened PKR activation leads to a dysregulation of ISR and increased apoptosis. More importantly, this enhanced sensitivity to ER stress can be rescued by luteolin, which disrupts PACT-PKR interactions. Our results not only demonstrate the impact of DYT16 mutations on regulation of ISR and DYT16 etiology but indicate that therapeutic interventions could be possible after a further evaluation of such strategies.
Collapse
|
39
|
Ravanidis S, Bougea A, Papagiannakis N, Koros C, Simitsi AM, Pachi I, Breza M, Stefanis L, Doxakis E. Validation of differentially expressed brain-enriched microRNAs in the plasma of PD patients. Ann Clin Transl Neurol 2020; 7:1594-1607. [PMID: 32860338 PMCID: PMC7480914 DOI: 10.1002/acn3.51146] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 07/06/2020] [Indexed: 12/16/2022] Open
Abstract
Objective There is a pressing need to identify and validate, minimally invasive, molecular biomarkers that will complement current practices and increase the diagnostic accuracy in Parkinson’s disease (PD). Brain‐enriched miRNAs regulate all aspects of neuron development and function; importantly, they are secreted by neurons in amounts that can be readily detected in the plasma. Τhe aim of the present study was to validate a set of previously identified brain‐enriched miRNAs with diagnostic potential for idiopathic PD and recognize the molecular pathways affected by these deregulated miRNAs. Methods RT‐qPCR was performed in the plasma of 92 healthy controls and 108 idiopathic PD subjects. Statistical and in silico analyses were used to validate deregulated miRNAs and pathways in PD, respectively. Results miR‐22‐3p, miR‐124‐3p, miR‐136‐3p, miR‐154‐5p, and miR‐323a‐3p levels were found to be differentially expressed between healthy controls and PD patients. miR‐330‐5p, miR‐433‐3p, and miR‐495‐3p levels were overall higher in male subjects. Most of these miRNAs are clustered at Chr14q32 displaying CREB1, CEBPB, and MAZ transcription factor binding sites. Gene Ontology annotation analysis of deregulated miRNA targets revealed that “Protein modification,” “Transcription factor activity,” and “Cell death” terms were over‐represented. Kyoto Encyclopedia of Genes and Genome analysis revealed that “Long‐term depression,” “TGF‐beta signaling,” and “FoxO signaling” pathways were significantly affected. Interpretation We validated a panel of brain‐enriched miRNAs that can be used along with other measures for the detection of PD, revealed molecular pathways targeted by these deregulated miRNAs, and identified upstream transcription factors that may be directly implicated in PD pathogenesis.
Collapse
Affiliation(s)
- Stylianos Ravanidis
- Center of Basic Research, Biomedical Research Foundation, Academy of Athens, Athens, 11527, Greece
| | - Anastasia Bougea
- Center of Basic Research, Biomedical Research Foundation, Academy of Athens, Athens, 11527, Greece.,Center of Clinical Research, Biomedical Research Foundation, Academy of Athens, Athens, 11527, Greece.,First Department of Neurology, National and Kapodistrian University of Athens Medical School, Athens, 11528, Greece
| | - Nikolaos Papagiannakis
- Center of Clinical Research, Biomedical Research Foundation, Academy of Athens, Athens, 11527, Greece.,First Department of Neurology, National and Kapodistrian University of Athens Medical School, Athens, 11528, Greece
| | - Christos Koros
- First Department of Neurology, National and Kapodistrian University of Athens Medical School, Athens, 11528, Greece
| | - Athina Maria Simitsi
- First Department of Neurology, National and Kapodistrian University of Athens Medical School, Athens, 11528, Greece
| | - Ioanna Pachi
- First Department of Neurology, National and Kapodistrian University of Athens Medical School, Athens, 11528, Greece
| | - Marianthi Breza
- First Department of Neurology, National and Kapodistrian University of Athens Medical School, Athens, 11528, Greece
| | - Leonidas Stefanis
- Center of Clinical Research, Biomedical Research Foundation, Academy of Athens, Athens, 11527, Greece.,First Department of Neurology, National and Kapodistrian University of Athens Medical School, Athens, 11528, Greece
| | - Epaminondas Doxakis
- Center of Basic Research, Biomedical Research Foundation, Academy of Athens, Athens, 11527, Greece
| |
Collapse
|
40
|
Govindarajulu M, Pinky PD, Steinke I, Bloemer J, Ramesh S, Kariharan T, Rella RT, Bhattacharya S, Dhanasekaran M, Suppiramaniam V, Amin RH. Gut Metabolite TMAO Induces Synaptic Plasticity Deficits by Promoting Endoplasmic Reticulum Stress. Front Mol Neurosci 2020; 13:138. [PMID: 32903435 PMCID: PMC7437142 DOI: 10.3389/fnmol.2020.00138] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 07/09/2020] [Indexed: 01/26/2023] Open
Abstract
Dysbiosis of gut microbiota is strongly associated with metabolic diseases including diabetes mellitus, obesity, and cardiovascular disease. Recent studies indicate that Trimethylamine N-oxide (TMAO), a gut microbe-dependent metabolite is implicated in the development of age-related cognitive decline. However, the mechanisms of the impact of TMAO on neuronal function has not been elucidated. In the current study, we investigated the relationship between TMAO and deficits in synaptic plasticity in an Alzheimer’s model (3×Tg-AD) and insulin resistance (Leptin deficient db/db) mouse by measuring plasma and brain levels of TMAO. We observed increased TMAO levels in the plasma and brain of both db/db and 3×Tg-AD mice in comparison to wild-type mice. Besides, TMAO levels further increased as mice progressed in age. Deficits in synaptic plasticity, in the form of reduced long-term potentiation (LTP), were noted in both groups of mice in comparison to wild-type mice. To further explore the impact of TMAO on neuronal function, we utilized an ex-vivo model by incubating wild-type hippocampal brain slices with TMAO and found impaired synaptic transmission. We observed that TMAO induced the PERK-EIF2α-ER stress signaling axis in TMAO treated ex-vivo slices as well as in both db/db and 3×Tg-AD mice. Lastly, we also observed altered presynaptic and reduced postsynaptic receptor expression. Our findings suggest that TMAO may induce deficits in synaptic plasticity through the ER stress-mediated PERK signaling pathway. Our results offer novel insight into the mechanism by which TMAO may induce cognitive deficits by promoting ER stress and identifies potential targets for therapeutic intervention.
Collapse
Affiliation(s)
- Manoj Govindarajulu
- Department of Drug Discovery and Development, Harrison School of Pharmacy, Auburn University, Auburn, AL, United States.,Center for Neuroscience, Auburn University, Auburn, AL, United States
| | - Priyanka D Pinky
- Department of Drug Discovery and Development, Harrison School of Pharmacy, Auburn University, Auburn, AL, United States.,Center for Neuroscience, Auburn University, Auburn, AL, United States
| | - Ian Steinke
- Department of Drug Discovery and Development, Harrison School of Pharmacy, Auburn University, Auburn, AL, United States
| | - Jenna Bloemer
- Department of Drug Discovery and Development, Harrison School of Pharmacy, Auburn University, Auburn, AL, United States.,Department of Pharmaceutical and Biomedical Sciences, Touro College of Pharmacy, New York, NY, United States
| | - Sindhu Ramesh
- Department of Drug Discovery and Development, Harrison School of Pharmacy, Auburn University, Auburn, AL, United States.,Center for Neuroscience, Auburn University, Auburn, AL, United States
| | - Thiruchelvan Kariharan
- Department of Drug Discovery and Development, Harrison School of Pharmacy, Auburn University, Auburn, AL, United States
| | - Robert T Rella
- Department of Drug Discovery and Development, Harrison School of Pharmacy, Auburn University, Auburn, AL, United States
| | - Subhrajit Bhattacharya
- Department of Drug Discovery and Development, Harrison School of Pharmacy, Auburn University, Auburn, AL, United States.,Center for Neuroscience, Auburn University, Auburn, AL, United States
| | - Muralikrishnan Dhanasekaran
- Department of Drug Discovery and Development, Harrison School of Pharmacy, Auburn University, Auburn, AL, United States.,Center for Neuroscience, Auburn University, Auburn, AL, United States
| | - Vishnu Suppiramaniam
- Department of Drug Discovery and Development, Harrison School of Pharmacy, Auburn University, Auburn, AL, United States.,Center for Neuroscience, Auburn University, Auburn, AL, United States
| | - Rajesh H Amin
- Department of Drug Discovery and Development, Harrison School of Pharmacy, Auburn University, Auburn, AL, United States.,Center for Neuroscience, Auburn University, Auburn, AL, United States
| |
Collapse
|
41
|
Bond S, Lopez-Lloreda C, Gannon PJ, Akay-Espinoza C, Jordan-Sciutto KL. The Integrated Stress Response and Phosphorylated Eukaryotic Initiation Factor 2α in Neurodegeneration. J Neuropathol Exp Neurol 2020; 79:123-143. [PMID: 31913484 DOI: 10.1093/jnen/nlz129] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 11/07/2019] [Indexed: 02/06/2023] Open
Abstract
The proposed molecular mechanisms underlying neurodegenerative pathogenesis are varied, precluding the development of effective therapies for these increasingly prevalent disorders. One of the most consistent observations across neurodegenerative diseases is the phosphorylation of eukaryotic initiation factor 2α (eIF2α). eIF2α is a translation initiation factor, involved in cap-dependent protein translation, which when phosphorylated causes global translation attenuation. eIF2α phosphorylation is mediated by 4 kinases, which, together with their downstream signaling cascades, constitute the integrated stress response (ISR). While the ISR is activated by stresses commonly observed in neurodegeneration, such as oxidative stress, endoplasmic reticulum stress, and inflammation, it is a canonically adaptive signaling cascade. However, chronic activation of the ISR can contribute to neurodegenerative phenotypes such as neuronal death, memory impairments, and protein aggregation via apoptotic induction and other maladaptive outcomes downstream of phospho-eIF2α-mediated translation inhibition, including neuroinflammation and altered amyloidogenic processing, plausibly in a feed-forward manner. This review examines evidence that dysregulated eIF2a phosphorylation acts as a driver of neurodegeneration, including a survey of observations of ISR signaling in human disease, inspection of the overlap between ISR signaling and neurodegenerative phenomenon, and assessment of recent encouraging findings ameliorating neurodegeneration using developing pharmacological agents which target the ISR. In doing so, gaps in the field, including crosstalk of the ISR kinases and consideration of ISR signaling in nonneuronal central nervous system cell types, are highlighted.
Collapse
Affiliation(s)
- Sarah Bond
- From the Department of Biochemistry and Biophysics (SB); Department of Neuroscience (CL-L); Department of Pharmacology (PG), Perelman School of Medicine; Department of Basic and Translational Sciences (CA-E); and Department of Basic and Translational Sciences (KLJ-S), School of Dental Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Claudia Lopez-Lloreda
- From the Department of Biochemistry and Biophysics (SB); Department of Neuroscience (CL-L); Department of Pharmacology (PG), Perelman School of Medicine; Department of Basic and Translational Sciences (CA-E); and Department of Basic and Translational Sciences (KLJ-S), School of Dental Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Patrick J Gannon
- From the Department of Biochemistry and Biophysics (SB); Department of Neuroscience (CL-L); Department of Pharmacology (PG), Perelman School of Medicine; Department of Basic and Translational Sciences (CA-E); and Department of Basic and Translational Sciences (KLJ-S), School of Dental Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Cagla Akay-Espinoza
- From the Department of Biochemistry and Biophysics (SB); Department of Neuroscience (CL-L); Department of Pharmacology (PG), Perelman School of Medicine; Department of Basic and Translational Sciences (CA-E); and Department of Basic and Translational Sciences (KLJ-S), School of Dental Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Kelly L Jordan-Sciutto
- From the Department of Biochemistry and Biophysics (SB); Department of Neuroscience (CL-L); Department of Pharmacology (PG), Perelman School of Medicine; Department of Basic and Translational Sciences (CA-E); and Department of Basic and Translational Sciences (KLJ-S), School of Dental Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
42
|
He YX, Shen QY, Tian JH, Wu Q, Xue Q, Zhang GP, Wei W, Liu YH. Zonisamide Ameliorates Cognitive Impairment by Inhibiting ER Stress in a Mouse Model of Type 2 Diabetes Mellitus. Front Aging Neurosci 2020; 12:192. [PMID: 32754028 PMCID: PMC7367218 DOI: 10.3389/fnagi.2020.00192] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 06/02/2020] [Indexed: 01/08/2023] Open
Abstract
Type 2 diabetes mellitus (T2DM) increases the risk of Alzheimer’s disease (AD)-like dementia and pathology. Endoplasmic reticulum stress (ERS) plays a key role in the development of cognitive impairment in T2DM. Zonisamide (ZNS) was found to suppress ERS-induced neuronal cell damage in the experimental models of Parkinson’s disease (PD). However, the protective effect of Zonisamide in the treatment of diabetes-related dementia is not determined. Here, we studied whether ZNS can attenuate cognitive impairments in T2DM mice. C57BL/6J mice were fed with a high-fat diet (HFD) and received one intraperitoneal injection of streptozotocin (STZ) to develop T2DM. After the 9-week diet, the mice were orally gavaged with ZNS or vehicle for 16 consecutive weeks. We found that ZNS improved spatial learning and memory ability and slightly attenuated hyperglycemia. In addition, the expression levels of synaptic-related proteins, such as postsynaptic density 95 (PSD95) and synaptophysin, were increased along with the activation of the cyclic AMP response element-binding (CREB) protein and cAMP-dependent protein kinase (PKA) both in the hippocampus and cortex of T2DM mice. Meanwhile, ZNS attenuated Aβ deposition, Tau hyperphosphorylation at Ser-396/404, and also decreased the activity of Tau upstream kinases including extracellular signal-regulated kinase (ERK) and c-Jun N-terminal kinase (JNK). Moreover, ZNS also decreased the ERS hallmark protein levels. These data suggest that ZNS can efficiently prevent cognitive impairment and improve AD-like pathologies by attenuating ERS in T2DM mice.
Collapse
Affiliation(s)
- Yong-Xiang He
- Department of Pharmacology, Key Laboratory of Molecular Target & Clinical Pharmacology, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Qi-Ying Shen
- Department of Pharmacology, Key Laboratory of Molecular Target & Clinical Pharmacology, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Jia-Hui Tian
- Department of Pharmacology, Key Laboratory of Molecular Target & Clinical Pharmacology, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Qian Wu
- Department of Pharmacology, Key Laboratory of Molecular Target & Clinical Pharmacology, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Qin Xue
- Department of Pharmacology, Key Laboratory of Molecular Target & Clinical Pharmacology, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Gui-Ping Zhang
- Department of Pharmacology, Key Laboratory of Molecular Target & Clinical Pharmacology, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Wei Wei
- Department of Pathophysiology, School of Medicine, Institute of Brain Research, Key Laboratory of State Administration of Traditional Chinese Medicine of China, Jinan University, Guangzhou, China
| | - Ying-Hua Liu
- Department of Pharmacology, Key Laboratory of Molecular Target & Clinical Pharmacology, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
43
|
Krukowski K, Nolan A, Frias ES, Grue K, Becker M, Ureta G, Delgado L, Bernales S, Sohal VS, Walter P, Rosi S. Integrated Stress Response Inhibitor Reverses Sex-Dependent Behavioral and Cell-Specific Deficits after Mild Repetitive Head Trauma. J Neurotrauma 2020; 37:1370-1380. [PMID: 31884883 DOI: 10.1089/neu.2019.6827] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Mild repetitive traumatic brain injury (rTBI) induces chronic behavioral and cognitive alterations and increases the risk for dementia. Currently, there are no therapeutic strategies to prevent or mitigate chronic deficits associated with rTBI. Previously we developed an animal model of rTBI that recapitulates the cognitive and behavioral deficits observed in humans. We now report that rTBI results in an increase in risk-taking behavior in male but not female mice. This behavioral phenotype is associated with chronic activation of the integrated stress response and cell-specific synaptic alterations in the type A subtype of layer V pyramidal neurons in the medial prefrontal cortex. Strikingly, by briefly treating animals weeks after injury with ISRIB, a selective inhibitor of the integrated stress response (ISR), we (1) relieve ISR activation, (2) reverse the increased risk-taking behavioral phenotype and maintain this reversal, and (3) restore cell-specific synaptic function in the affected mice. Our results indicate that targeting the ISR even at late time points after injury can permanently reverse behavioral changes. As such, pharmacological inhibition of the ISR emerges as a promising avenue to combat rTBI-induced behavioral dysfunction.
Collapse
Affiliation(s)
- Karen Krukowski
- Department of Physical Therapy and Rehabilitation Science, University of California, San Francisco, California, USA.,Department of Brain and Spinal Injury Center, University of California, San Francisco, California, USA
| | - Amber Nolan
- Department of Physical Therapy and Rehabilitation Science, University of California, San Francisco, California, USA.,Department of Brain and Spinal Injury Center, University of California, San Francisco, California, USA.,Department of Pathology, University of California, San Francisco, California, USA
| | - Elma S Frias
- Department of Physical Therapy and Rehabilitation Science, University of California, San Francisco, California, USA.,Department of Brain and Spinal Injury Center, University of California, San Francisco, California, USA.,Department of Biomedical Sciences, University of California, San Francisco, California, USA
| | - Katherine Grue
- Department of Physical Therapy and Rehabilitation Science, University of California, San Francisco, California, USA.,Department of Brain and Spinal Injury Center, University of California, San Francisco, California, USA
| | - McKenna Becker
- Department of Physical Therapy and Rehabilitation Science, University of California, San Francisco, California, USA.,Department of Brain and Spinal Injury Center, University of California, San Francisco, California, USA
| | | | | | | | - Vikaas S Sohal
- Department of Psychiatry, University of California, San Francisco, California, USA
| | - Peter Walter
- Department of Biochemistry and Biophysics, University of California, San Francisco, California, USA.,Howard Hughes Medical Institute, University of California, San Francisco, California, USA
| | - Susanna Rosi
- Department of Physical Therapy and Rehabilitation Science, University of California, San Francisco, California, USA.,Department of Brain and Spinal Injury Center, University of California, San Francisco, California, USA.,Department of Neurological Surgery, University of California, San Francisco, California, USA.,Weill Institute for Neuroscience, University of California, San Francisco, California, USA.,Kavli Institute of Fundamental Neuroscience, University of California, San Francisco, California, USA
| |
Collapse
|
44
|
Díaz-Hung ML, Martínez G, Hetz C. Emerging roles of the unfolded protein response (UPR) in the nervous system: A link with adaptive behavior to environmental stress? INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2020; 350:29-61. [PMID: 32138903 DOI: 10.1016/bs.ircmb.2020.01.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Stressors elicit a neuroendocrine response leading to increased levels of glucocorticoids, allowing the organism to adapt to environmental changes and maintain homeostasis. Glucocorticoids have a broad effect in the body, modifying the activity of the immune system, metabolism, and behavior through the activation of receptors in the limbic system. Chronic exposition to stressors operates as a risk factor for psychiatric diseases such as depression and posttraumatic stress disorder. Among the cellular alterations observed as a consequence of environmental stress, alterations to organelle function at the level of mitochondria and endoplasmic reticulum (ER) are emerging as possible factors contributing to neuronal dysfunction. ER proteostasis alterations elicit the unfolded protein response (UPR), a conserved signaling network that re-establish protein homeostasis. In addition, in the context of brain function, the UPR has been associated to neurodevelopment, synaptic plasticity and neuronal connectivity. Recent studies suggest a role of the UPR in the adaptive behavior to stress, suggesting a mechanistic link between environmental and cellular stress. Here, we revise recent evidence supporting an evolutionary connection between the neuroendocrine system and the UPR to modulate behavioral adaptive responses.
Collapse
Affiliation(s)
- Mei-Li Díaz-Hung
- Biomedical Neuroscience Institute, Faculty of Medicine, University of Chile, Santiago, Chile; Program of Cellular and Molecular Biology, Institute of Biomedical Sciences, University of Chile, Santiago, Chile; Center for Geroscience, Brain Health and Metabolism, Santiago, Chile
| | - Gabriela Martínez
- Biomedical Neuroscience Institute, Faculty of Medicine, University of Chile, Santiago, Chile; Program of Cellular and Molecular Biology, Institute of Biomedical Sciences, University of Chile, Santiago, Chile; Center for Geroscience, Brain Health and Metabolism, Santiago, Chile
| | - Claudio Hetz
- Biomedical Neuroscience Institute, Faculty of Medicine, University of Chile, Santiago, Chile; Program of Cellular and Molecular Biology, Institute of Biomedical Sciences, University of Chile, Santiago, Chile; Center for Geroscience, Brain Health and Metabolism, Santiago, Chile; Buck Institute for Research on Aging, Novato, CA, United States.
| |
Collapse
|
45
|
Park H, Kaang BK. Balanced actions of protein synthesis and degradation in memory formation. ACTA ACUST UNITED AC 2019; 26:299-306. [PMID: 31416903 PMCID: PMC6699412 DOI: 10.1101/lm.048785.118] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 07/02/2019] [Indexed: 11/24/2022]
Abstract
Storage of long-term memory requires not only protein synthesis but also protein degradation. In this article, we overview recent publications related to this issue, stressing that the balanced actions of protein synthesis and degradation are critical for long-term memory formation. We particularly focused on the brain-derived neurotrophic factor signaling that leads to protein synthesis; proteasome- and autophagy-dependent protein degradation that removes molecular constraints; the role of Fragile X mental retardation protein in translational suppression; and epigenetic modifications that control gene expression at the genomic level. Numerous studies suggest that an imbalance between protein synthesis and degradation leads to intellectual impairment and cognitive disorders.
Collapse
Affiliation(s)
- Hyungju Park
- Department of Structure and Function of Neural Network, Korea Brain Research Institute (KBRI), Daegu 41062, South Korea.,Department of Brain and Cognitive Sciences, DGIST, Daegu 42988, South Korea
| | - Bong-Kiun Kaang
- School of Biological Sciences, Seoul National University, Seoul 08826, South Korea
| |
Collapse
|
46
|
Hegde AN, Smith SG. Recent developments in transcriptional and translational regulation underlying long-term synaptic plasticity and memory. ACTA ACUST UNITED AC 2019; 26:307-317. [PMID: 31416904 PMCID: PMC6699410 DOI: 10.1101/lm.048769.118] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Accepted: 06/20/2019] [Indexed: 12/16/2022]
Abstract
Formation of long-term synaptic plasticity that underlies long-term memory requires new protein synthesis. Years of research has elucidated some of the transcriptional and translational mechanisms that contribute to the production of new proteins. Early research on transcription focused on the transcription factor cAMP-responsive element binding protein. Since then, other transcription factors, such as the Nuclear Receptor 4 family of proteins that play a role in memory formation and maintenance have been identified. In addition, several studies have revealed details of epigenetic mechanisms consisting of new types of chemical alterations of DNA such as hydroxymethylation, and various histone modifications in long-term synaptic plasticity and memory. Our understanding of translational control critical for memory formation began with the identification of molecules that impinge on the 5′ and 3′ untranslated regions of mRNAs and continued with the appreciation for local translation near synaptic sites. Lately, a role for noncoding RNAs such as microRNAs in regulating translation factors and other molecules critical for memory has been found. This review describes the past research in brief and mainly focuses on the recent work on molecular mechanisms of transcriptional and translational regulation that form the underpinnings of long-term synaptic plasticity and memory.
Collapse
Affiliation(s)
- Ashok N Hegde
- Department of Biological and Environmental Sciences, Georgia College and State University, Milledgeville, Georgia 31061, USA
| | - Spencer G Smith
- Department of Biological and Environmental Sciences, Georgia College and State University, Milledgeville, Georgia 31061, USA
| |
Collapse
|
47
|
Parra-Damas A, Saura CA. Synapse-to-Nucleus Signaling in Neurodegenerative and Neuropsychiatric Disorders. Biol Psychiatry 2019; 86:87-96. [PMID: 30846302 DOI: 10.1016/j.biopsych.2019.01.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 12/18/2018] [Accepted: 01/04/2019] [Indexed: 01/07/2023]
Abstract
Synapse-to-nucleus signaling is critical for converting signals received at synapses into transcriptional programs essential for cognition, memory, and emotion. This neuronal mechanism usually involves activity-dependent translocation of synaptonuclear factors from synapses to the nucleus resulting in regulation of transcriptional programs underlying synaptic plasticity. Acting as synapse-to-nucleus messengers, amyloid precursor protein intracellular domain associated-1 protein, cAMP response element binding protein (CREB)-regulated transcription coactivator-1, Jacob, nuclear factor kappa-light-chain-enhancer of activated B cells, RING finger protein 10, and SH3 and multiple ankyrin repeat domains 3 play essential roles in synapse remodeling and plasticity, which are considered the cellular basis of memory. Other synaptic proteins, such as extracellular signal-regulated kinase, calcium/calmodulin-dependent protein kinase II gamma, and CREB2, translocate from dendrites or cytosol to the nucleus upon synaptic activity, suggesting that they could contribute to synapse-to-nucleus signaling. Notably, some synaptonuclear factors converge on the transcription factor CREB, indicating that CREB signaling is a key hub mediating integration of synaptic signals into transcriptional programs required for neuronal function and plasticity. Although major efforts have been focused on identification and regulatory mechanisms of synaptonuclear factors, the relevance of synapse-to-nucleus communication in brain physiology and pathology is still unclear. Recent evidence, however, indicates that synaptonuclear factors are implicated in neuropsychiatric, neurodevelopmental, and neurodegenerative disorders, suggesting that uncoupling synaptic activity from nuclear signaling may prompt synapse pathology, contributing to a broad spectrum of brain disorders. This review summarizes current knowledge of synapse-to-nucleus signaling in neuron survival, synaptic function and plasticity, and memory. Finally, we discuss how altered synapse-to-nucleus signaling may lead to memory and emotional disturbances, which is relevant for clinical and therapeutic strategies in neurodegenerative and neuropsychiatric diseases.
Collapse
Affiliation(s)
- Arnaldo Parra-Damas
- Institut de Neurociències, Department de Bioquímica i Biologia Molecular, Centro de Investigación Biomédica en Red Enfermedades Neurodegenerativas, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Carlos A Saura
- Institut de Neurociències, Department de Bioquímica i Biologia Molecular, Centro de Investigación Biomédica en Red Enfermedades Neurodegenerativas, Universitat Autònoma de Barcelona, Barcelona, Spain.
| |
Collapse
|
48
|
Clarke JR, Ribeiro FC, Frozza RL, De Felice FG, Lourenco MV. Metabolic Dysfunction in Alzheimer's Disease: From Basic Neurobiology to Clinical Approaches. J Alzheimers Dis 2019; 64:S405-S426. [PMID: 29562518 DOI: 10.3233/jad-179911] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Clinical trials have extensively failed to find effective treatments for Alzheimer's disease (AD) so far. Even after decades of AD research, there are still limited options for treating dementia. Mounting evidence has indicated that AD patients develop central and peripheral metabolic dysfunction, and the underpinnings of such events have recently begun to emerge. Basic and preclinical studies have unveiled key pathophysiological mechanisms that include aberrant brain stress signaling, inflammation, and impaired insulin sensitivity. These findings are in accordance with clinical and neuropathological data suggesting that AD patients undergo central and peripheral metabolic deregulation. Here, we review recent basic and clinical findings indicating that metabolic defects are central to AD pathophysiology. We further propose a view for future therapeutics that incorporates metabolic defects as a core feature of AD pathogenesis. This approach could improve disease understanding and therapy development through drug repurposing and/or identification of novel metabolic targets.
Collapse
Affiliation(s)
- Julia R Clarke
- School of Pharmacy, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Felipe C Ribeiro
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.,Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Rudimar L Frozza
- Oswaldo Cruz Institute, Oswaldo Cruz Foundation, FIOCRUZ, Rio de Janeiro, Brazil
| | - Fernanda G De Felice
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.,Centre for Neuroscience Studies, Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON, Canada
| | - Mychael V Lourenco
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.,Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
49
|
Quercetin Regulates the Integrated Stress Response to Improve Memory. Int J Mol Sci 2019; 20:ijms20112761. [PMID: 31195662 PMCID: PMC6600673 DOI: 10.3390/ijms20112761] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 06/02/2019] [Accepted: 06/03/2019] [Indexed: 12/11/2022] Open
Abstract
The initiation of protein synthesis is suppressed under several stress conditions, inducing phosphorylation of the α-subunit of the eukaryotic initiation factor 2 (eIF2α), thereby inactivating the GTP-GDP recycling protein eIF2B. By contrast, the mammalian activating transcription factor 4 (ATF4, also known as cAMP response element binding protein 2 (CREB2)) is still translated under stress conditions. Four protein kinases (general control nonderepressible-2 (GCN2) kinase, double-stranded RNA-activated protein kinase (PKR), PKR-endoplasmic reticulum (ER)-related kinase (PERK), and heme-regulated inhibitor kinase (HRI)) phosphorylate eIF2α in the presence of stressors such as amino acid starvation, viral infection, ER stress, and heme deficiency. This signaling reaction is known as the integrated stress response (ISR). Here, we review ISR signaling in the brain in a mouse model of Alzheimer’s disease (AD). We propose that targeting ISR signaling with quercetin has therapeutic potential, because it suppresses amyloid-β (Aβ) production in vitro and prevents cognitive impairments in a mouse model of AD.
Collapse
|
50
|
Histone deacetylase 3 inhibitors in learning and memory processes with special emphasis on benzamides. Eur J Med Chem 2019; 166:369-380. [DOI: 10.1016/j.ejmech.2019.01.077] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2018] [Revised: 01/29/2019] [Accepted: 01/29/2019] [Indexed: 12/24/2022]
|