1
|
Kruchinin AA, Kamzeeva PN, Zharkov DO, Aralov AV, Makarova AV. 8-Oxoadenine: A «New» Player of the Oxidative Stress in Mammals? Int J Mol Sci 2024; 25:1342. [PMID: 38279342 PMCID: PMC10816367 DOI: 10.3390/ijms25021342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/13/2024] [Accepted: 01/15/2024] [Indexed: 01/28/2024] Open
Abstract
Numerous studies have shown that oxidative modifications of guanine (7,8-dihydro-8-oxoguanine, 8-oxoG) can affect cellular functions. 7,8-Dihydro-8-oxoadenine (8-oxoA) is another abundant paradigmatic ambiguous nucleobase but findings reported on the mutagenicity of 8-oxoA in bacterial and eukaryotic cells are incomplete and contradictory. Although several genotoxic studies have demonstrated the mutagenic potential of 8-oxoA in eukaryotic cells, very little biochemical and bioinformatics data about the mechanism of 8-oxoA-induced mutagenesis are available. In this review, we discuss dual coding properties of 8-oxoA, summarize historical and recent genotoxicity and biochemical studies, and address the main protective cellular mechanisms of response to 8-oxoA. We also discuss the available structural data for 8-oxoA bypass by different DNA polymerases as well as the mechanisms of 8-oxoA recognition by DNA repair enzymes.
Collapse
Affiliation(s)
- Alexander A. Kruchinin
- Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilova St., 119334 Moscow, Russia; (A.A.K.); (P.N.K.)
- National Research Center, Kurchatov Institute, Kurchatov sq. 2, 123182 Moscow, Russia
| | - Polina N. Kamzeeva
- Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilova St., 119334 Moscow, Russia; (A.A.K.); (P.N.K.)
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya 16/10, 117997 Moscow, Russia;
| | - Dmitry O. Zharkov
- Department of Natural Sciences, Novosibirsk State University, 1 Pirogova St., 630090 Novosibirsk, Russia;
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, 8 Lavrentieva Ave., 630090 Novosibirsk, Russia
| | - Andrey V. Aralov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya 16/10, 117997 Moscow, Russia;
| | - Alena V. Makarova
- Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilova St., 119334 Moscow, Russia; (A.A.K.); (P.N.K.)
- National Research Center, Kurchatov Institute, Kurchatov sq. 2, 123182 Moscow, Russia
| |
Collapse
|
2
|
Bakman AS, Boichenko SS, Kuznetsova AA, Ishchenko AA, Saparbaev M, Kuznetsov NA. Coordination between human DNA polymerase β and apurinic/apyrimidinic endonuclease 1 in the course of DNA repair. Biochimie 2024; 216:126-136. [PMID: 37806619 DOI: 10.1016/j.biochi.2023.10.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 09/08/2023] [Accepted: 10/06/2023] [Indexed: 10/10/2023]
Abstract
Coordination of enzymatic activities in the course of base excision repair (BER) is essential to ensure complete repair of damaged bases. Two major mechanisms underlying the coordination of BER are known today: the "passing the baton" model and a model of preassembled stable multiprotein repair complexes called "repairosomes." In this work, we aimed to elucidate the coordination between human apurinic/apyrimidinic (AP) endonuclease APE1 and DNA polymerase Polβ in BER through studying an impact of APE1 on Polβ-catalyzed nucleotide incorporation into different model substrates that mimic different single-strand break (SSB) intermediates arising along the BER pathway. It was found that APE1's impact on separate stages of Polβ's catalysis depends on the nature of a DNA substrate. In this complex, APE1 removed 3' blocking groups and corrected Polβ-catalyzed DNA synthesis in a coordinated manner. Our findings support the hypothesis that Polβ not only can displace APE1 from damaged DNA within the "passing the baton" model but also performs the gap-filling reaction in the ternary complex with APE1 according to the "repairosome" model. Taken together, our results provide new insights into coordination between APE1 and Polβ during the BER process.
Collapse
Affiliation(s)
- Artemiy S Bakman
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of Russian Academy of Sciences (SB RAS), 8 Prospekt Akad, Lavrentyeva, Novosibirsk, 630090, Russia
| | - Stanislav S Boichenko
- Department of Natural Sciences, Novosibirsk State University, 2 Pirogova Str., Novosibirsk, 630090, Russia
| | - Aleksandra A Kuznetsova
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of Russian Academy of Sciences (SB RAS), 8 Prospekt Akad, Lavrentyeva, Novosibirsk, 630090, Russia
| | - Alexander A Ishchenko
- Group «Mechanisms of DNA Repair and Carcinogenesis», Gustave Roussy Cancer Campus, CNRS UMR9019, Université Paris-Saclay, 94805, Villejuif, France
| | - Murat Saparbaev
- Group «Mechanisms of DNA Repair and Carcinogenesis», Gustave Roussy Cancer Campus, CNRS UMR9019, Université Paris-Saclay, 94805, Villejuif, France
| | - Nikita A Kuznetsov
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of Russian Academy of Sciences (SB RAS), 8 Prospekt Akad, Lavrentyeva, Novosibirsk, 630090, Russia; Department of Natural Sciences, Novosibirsk State University, 2 Pirogova Str., Novosibirsk, 630090, Russia.
| |
Collapse
|
3
|
Kim DV, Diatlova EA, Zharkov TD, Melentyev VS, Yudkina AV, Endutkin AV, Zharkov DO. Back-Up Base Excision DNA Repair in Human Cells Deficient in the Major AP Endonuclease, APE1. Int J Mol Sci 2023; 25:64. [PMID: 38203235 PMCID: PMC10778768 DOI: 10.3390/ijms25010064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 12/15/2023] [Accepted: 12/18/2023] [Indexed: 01/12/2024] Open
Abstract
Apurinic/apyrimidinic (AP) sites are abundant DNA lesions generated both by spontaneous base loss and as intermediates of base excision DNA repair. In human cells, they are normally repaired by an essential AP endonuclease, APE1, encoded by the APEX1 gene. Other enzymes can cleave AP sites by either hydrolysis or β-elimination in vitro, but it is not clear whether they provide the second line of defense in living cells. Here, we studied AP site repairs in APEX1 knockout derivatives of HEK293FT cells using a reporter system based on transcriptional mutagenesis in the enhanced green fluorescent protein gene. Despite an apparent lack of AP site-processing activity in vitro, the cells efficiently repaired the tetrahydrofuran AP site analog resistant to β-elimination. This ability persisted even when the second AP endonuclease homolog, APE2, was also knocked out. Moreover, APEX1 null cells were able to repair uracil, a DNA lesion that is removed via the formation of an AP site. If AP site hydrolysis was chemically blocked, the uracil repair required the presence of NTHL1, an enzyme that catalyzes β-elimination. Our results suggest that human cells possess at least two back-up AP site repair pathways, one of which is NTHL1-dependent.
Collapse
Affiliation(s)
- Daria V. Kim
- Siberian Branch of the Russian Academy of Sciences Institute of Chemical Biology and Fundamental Medicine, 8 Lavrentieva Ave., 630090 Novosibirsk, Russia; (D.V.K.); (E.A.D.); (T.D.Z.); (V.S.M.); (A.V.Y.); (A.V.E.)
- Department of Natural Sciences, Novosibirsk State University, 2 Pirogova St., 630090 Novosibirsk, Russia
| | - Evgeniia A. Diatlova
- Siberian Branch of the Russian Academy of Sciences Institute of Chemical Biology and Fundamental Medicine, 8 Lavrentieva Ave., 630090 Novosibirsk, Russia; (D.V.K.); (E.A.D.); (T.D.Z.); (V.S.M.); (A.V.Y.); (A.V.E.)
| | - Timofey D. Zharkov
- Siberian Branch of the Russian Academy of Sciences Institute of Chemical Biology and Fundamental Medicine, 8 Lavrentieva Ave., 630090 Novosibirsk, Russia; (D.V.K.); (E.A.D.); (T.D.Z.); (V.S.M.); (A.V.Y.); (A.V.E.)
| | - Vasily S. Melentyev
- Siberian Branch of the Russian Academy of Sciences Institute of Chemical Biology and Fundamental Medicine, 8 Lavrentieva Ave., 630090 Novosibirsk, Russia; (D.V.K.); (E.A.D.); (T.D.Z.); (V.S.M.); (A.V.Y.); (A.V.E.)
- Department of Natural Sciences, Novosibirsk State University, 2 Pirogova St., 630090 Novosibirsk, Russia
| | - Anna V. Yudkina
- Siberian Branch of the Russian Academy of Sciences Institute of Chemical Biology and Fundamental Medicine, 8 Lavrentieva Ave., 630090 Novosibirsk, Russia; (D.V.K.); (E.A.D.); (T.D.Z.); (V.S.M.); (A.V.Y.); (A.V.E.)
- Department of Natural Sciences, Novosibirsk State University, 2 Pirogova St., 630090 Novosibirsk, Russia
| | - Anton V. Endutkin
- Siberian Branch of the Russian Academy of Sciences Institute of Chemical Biology and Fundamental Medicine, 8 Lavrentieva Ave., 630090 Novosibirsk, Russia; (D.V.K.); (E.A.D.); (T.D.Z.); (V.S.M.); (A.V.Y.); (A.V.E.)
| | - Dmitry O. Zharkov
- Siberian Branch of the Russian Academy of Sciences Institute of Chemical Biology and Fundamental Medicine, 8 Lavrentieva Ave., 630090 Novosibirsk, Russia; (D.V.K.); (E.A.D.); (T.D.Z.); (V.S.M.); (A.V.Y.); (A.V.E.)
- Department of Natural Sciences, Novosibirsk State University, 2 Pirogova St., 630090 Novosibirsk, Russia
| |
Collapse
|
4
|
Saitoh T, Oda T. DNA Damage Response in Multiple Myeloma: The Role of the Tumor Microenvironment. Cancers (Basel) 2021; 13:504. [PMID: 33525741 PMCID: PMC7865954 DOI: 10.3390/cancers13030504] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 01/21/2021] [Accepted: 01/26/2021] [Indexed: 12/13/2022] Open
Abstract
Multiple myeloma (MM) is an incurable plasma cell malignancy characterized by genomic instability. MM cells present various forms of genetic instability, including chromosomal instability, microsatellite instability, and base-pair alterations, as well as changes in chromosome number. The tumor microenvironment and an abnormal DNA repair function affect genetic instability in this disease. In addition, states of the tumor microenvironment itself, such as inflammation and hypoxia, influence the DNA damage response, which includes DNA repair mechanisms, cell cycle checkpoints, and apoptotic pathways. Unrepaired DNA damage in tumor cells has been shown to exacerbate genomic instability and aberrant features that enable MM progression and drug resistance. This review provides an overview of the DNA repair pathways, with a special focus on their function in MM, and discusses the role of the tumor microenvironment in governing DNA repair mechanisms.
Collapse
Affiliation(s)
- Takayuki Saitoh
- Department of Laboratory Sciences, Graduate School of Health Sciences, Gunma University, 3-39-22 Showa-machi, Maebashi, Gunma 371-8511, Japan
| | - Tsukasa Oda
- Laboratory of Molecular Genetics, Institute for Molecular and Cellular Regulation, Gunma University, 3-39-15 Showa-machi, Maebashi, Gunma 371-8512, Japan;
| |
Collapse
|
5
|
Raper AT, Maxwell BA, Suo Z. Dynamic Processing of a Common Oxidative DNA Lesion by the First Two Enzymes of the Base Excision Repair Pathway. J Mol Biol 2021; 433:166811. [PMID: 33450252 DOI: 10.1016/j.jmb.2021.166811] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Revised: 12/23/2020] [Accepted: 01/02/2021] [Indexed: 01/25/2023]
Abstract
Base excision repair (BER) is the primary pathway by which eukaryotic cells resolve single base damage. One common example of single base damage is 8-oxo-7,8-dihydro-2'-deoxoguanine (8-oxoG). High incidence and mutagenic potential of 8-oxoG necessitate rapid and efficient DNA repair. How BER enzymes coordinate their activities to resolve 8-oxoG damage while limiting cytotoxic BER intermediates from propagating genomic instability remains unclear. Here we use single-molecule Förster resonance energy transfer (smFRET) and ensemble-level techniques to characterize the activities and interactions of consecutive BER enzymes important for repair of 8-oxoG. In addition to characterizing the damage searching and processing mechanisms of human 8-oxoguanine glycosylase 1 (hOGG1), our data support the existence of a ternary complex between hOGG1, the damaged DNA substrate, and human AP endonuclease 1 (APE1). Our results indicate that hOGG1 is actively displaced from its abasic site containing product by protein-protein interactions with APE1 to ensure timely repair of damaged DNA.
Collapse
Affiliation(s)
- Austin T Raper
- The Ohio State Biochemistry Program, The Ohio State University, Columbus, OH 43210, USA
| | - Brian A Maxwell
- The Ohio State Biophysics Ph.D. Program, The Ohio State University, Columbus, OH 43210, USA
| | - Zucai Suo
- The Ohio State Biochemistry Program, The Ohio State University, Columbus, OH 43210, USA; The Ohio State Biophysics Ph.D. Program, The Ohio State University, Columbus, OH 43210, USA; Department of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee, FL 32306, USA.
| |
Collapse
|
6
|
Displacement of Slow-Turnover DNA Glycosylases by Molecular Traffic on DNA. Genes (Basel) 2020; 11:genes11080866. [PMID: 32751599 PMCID: PMC7465369 DOI: 10.3390/genes11080866] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 07/25/2020] [Accepted: 07/28/2020] [Indexed: 12/20/2022] Open
Abstract
In the base excision repair pathway, the initiating enzymes, DNA glycosylases, remove damaged bases and form long-living complexes with the abasic DNA product, but can be displaced by AP endonucleases. However, many nuclear proteins can move along DNA, either actively (such as DNA or RNA polymerases) or by passive one-dimensional diffusion. In most cases, it is not clear whether this movement is disturbed by other bound proteins or how collisions with moving proteins affect the bound proteins, including DNA glycosylases. We have used a two-substrate system to study the displacement of human OGG1 and NEIL1 DNA glycosylases by DNA polymerases in both elongation and diffusion mode and by D4, a passively diffusing subunit of a viral DNA polymerase. The OGG1–DNA product complex was disrupted by DNA polymerase β (POLβ) in both elongation and diffusion mode, Klenow fragment (KF) in the elongation mode and by D4. NEIL1, which has a shorter half-life on DNA, was displaced more efficiently. Hence, both possibly specific interactions with POLβ and nonspecific collisions (KF, D4) can displace DNA glycosylases from DNA. The protein movement along DNA was blocked by very tightly bound Cas9 RNA-targeted nuclease, providing an upper limit on the efficiency of obstacle clearance.
Collapse
|
7
|
Giorgio M, Dellino GI, Gambino V, Roda N, Pelicci PG. On the epigenetic role of guanosine oxidation. Redox Biol 2020; 29:101398. [PMID: 31926624 PMCID: PMC6926346 DOI: 10.1016/j.redox.2019.101398] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 11/23/2019] [Accepted: 12/02/2019] [Indexed: 01/14/2023] Open
Abstract
Chemical modifications of DNA and RNA regulate genome functions or trigger mutagenesis resulting in aging or cancer. Oxidations of macromolecules, including DNA, are common reactions in biological systems and often part of regulatory circuits rather than accidental events. DNA alterations are particularly relevant since the unique role of nuclear and mitochondrial genome is coding enduring and inheritable information. Therefore, an alteration in DNA may represent a relevant problem given its transmission to daughter cells. At the same time, the regulation of gene expression allows cells to continuously adapt to the environmental changes that occur throughout the life of the organism to ultimately maintain cellular homeostasis. Here we review the multiple ways that lead to DNA oxidation and the regulation of mechanisms activated by cells to repair this damage. Moreover, we present the recent evidence suggesting that DNA damage caused by physiological metabolism acts as epigenetic signal for regulation of gene expression. In particular, the predisposition of guanine to oxidation might reflect an adaptation to improve the genome plasticity to redox changes.
Collapse
Affiliation(s)
- Marco Giorgio
- Department of Experimental Oncology, European Institute of Oncology-IRCCS, Via Adamello 16, 20139, Milano, Italy; Department of Biomedical Sciences, University of Padova, Via Ugo Bassi 58/B, 35131, Padova, Italy.
| | - Gaetano Ivan Dellino
- Department of Experimental Oncology, European Institute of Oncology-IRCCS, Via Adamello 16, 20139, Milano, Italy; Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| | - Valentina Gambino
- Department of Experimental Oncology, European Institute of Oncology-IRCCS, Via Adamello 16, 20139, Milano, Italy
| | - Niccolo' Roda
- Department of Experimental Oncology, European Institute of Oncology-IRCCS, Via Adamello 16, 20139, Milano, Italy
| | - Pier Giuseppe Pelicci
- Department of Experimental Oncology, European Institute of Oncology-IRCCS, Via Adamello 16, 20139, Milano, Italy; Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| |
Collapse
|
8
|
Abstract
Cellular damage produced by conditions generating oxidative stress have far-reaching implications in human disease that encompass, but are not restricted to aging, cardiovascular disease, type 2 diabetes, airway inflammation/asthma, cancer, and metabolic syndrome including visceral obesity, insulin resistance, fatty liver disease, and dyslipidemia. Although there are numerous sources and cellular targets of oxidative stress, this review will highlight literature that has investigated downstream consequences of oxidatively-induced DNA damage in both nuclear and mitochondrial genomes. The presence of such damage can in turn, directly and indirectly modulate cellular transcriptional and repair responses to such stressors. As such, the persistence of base damage can serve as a key regulator in coordinated gene-response cascades. Conversely, repair of these DNA lesions serves as both a suppressor of mutagenesis and by inference carcinogenesis, and as a signal for the cessation of ongoing oxidative stress. A key enzyme in all these processes is 8-oxoguanine DNA glycosylase (OGG1), which, via non-catalytic binding to oxidatively-induced DNA damage in promoter regions, serves as a nucleation site around which changes in large-scale regulation of inflammation-associated gene expression can occur. Further, the catalytic function of OGG1 can alter the three-dimensional structure of specialized DNA sequences, leading to changes in transcriptional profiles. This review will concentrate on adverse deleterious health effects that are associated with both the diminution of OGG1 activity via population-specific polymorphic variants and the complete loss of OGG1 in murine models. This mouse model displays diet- and age-related induction of metabolic syndrome, highlighting a key role for OGG1 in protecting against these phenotypes. Conversely, recent investigations using murine models having enhanced global expression of a mitochondrial-targeted OGG1 demonstrate that they are highly resistant to diet-induced disease. These data suggest strategies through which therapeutic interventions could be designed for reducing or limiting adverse human health consequences to these ubiquitous stressors.
Collapse
Affiliation(s)
- Harini Sampath
- Department of Nutritional Sciences and New Jersey Institute for Food, Nutrition, and Health, Rutgers University, New Brunswick, NJ, 08901, United States.
| | - R Stephen Lloyd
- Oregon Institute for Occupational Health Sciences, Department of Molecular and Medical Genetics, Oregon Health & Sciences University, Portland, Oregon, 97239, United States.
| |
Collapse
|
9
|
Endutkin AV, Yudkina AV, Sidorenko VS, Zharkov DO. Transient protein-protein complexes in base excision repair. J Biomol Struct Dyn 2018; 37:4407-4418. [PMID: 30488779 DOI: 10.1080/07391102.2018.1553741] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Transient protein-protein complexes are of great importance for organizing multiple enzymatic reactions into productive reaction pathways. Base excision repair (BER), a process of critical importance for maintaining genome stability against a plethora of DNA-damaging factors, involves several enzymes, including DNA glycosylases, AP endonucleases, DNA polymerases, DNA ligases and accessory proteins acting sequentially on the same damaged site in DNA. Rather than being assembled into one stable multisubunit complex, these enzymes pass the repair intermediates between them in a highly coordinated manner. In this review, we discuss the nature and the role of transient complexes arising during BER as deduced from structural and kinetic data. Almost all of the transient complexes are DNA-mediated, although some may also exist in solution and strengthen under specific conditions. The best-studied example, the interactions between DNA glycosylases and AP endonucleases, is discussed in more detail to provide a framework for distinguishing between stable and transient complexes based on the kinetic data. Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Anton V Endutkin
- SB RAS Institute of Chemical Biology and Fundamental Medicine , Novosibirsk , Russia.,Novosibirsk State University , Novosibirsk , Russia.,Podalirius Ltd. , Novosibirsk , Russia
| | - Anna V Yudkina
- SB RAS Institute of Chemical Biology and Fundamental Medicine , Novosibirsk , Russia.,Novosibirsk State University , Novosibirsk , Russia
| | - Viktoriya S Sidorenko
- Department of Pharmacological Sciences, Stony Brook University , Stony Brook , NY , USA
| | - Dmitry O Zharkov
- SB RAS Institute of Chemical Biology and Fundamental Medicine , Novosibirsk , Russia.,Novosibirsk State University , Novosibirsk , Russia
| |
Collapse
|
10
|
Ba X, Boldogh I. 8-Oxoguanine DNA glycosylase 1: Beyond repair of the oxidatively modified base lesions. Redox Biol 2017; 14:669-678. [PMID: 29175754 PMCID: PMC5975208 DOI: 10.1016/j.redox.2017.11.008] [Citation(s) in RCA: 167] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 10/08/2017] [Accepted: 11/08/2017] [Indexed: 12/11/2022] Open
Abstract
Oxidative stress and the resulting damage to genomic DNA are inevitable consequences of endogenous physiological processes, and they are amplified by cellular responses to environmental exposures. One of the most frequent reactions of reactive oxygen species with DNA is the oxidation of guanine to pre-mutagenic 8-oxo-7,8-dihydroguanine (8-oxoG). Despite the vulnerability of guanine to oxidation, vertebrate genes are primarily embedded in GC-rich genomic regions, and over 72% of the promoters of human genes belong to a class with a high GC content. In the promoter, 8-oxoG may serve as an epigenetic mark, and when complexed with the oxidatively inactivated repair enzyme 8-oxoguanine DNA glycosylase 1, provide a platform for the coordination of the initial steps of DNA repair and the assembly of the transcriptional machinery to launch the prompt and preferential expression of redox-regulated genes. Deviations/variations from this artful coordination may be the etiological links between guanine oxidation and various cellular pathologies and diseases during ageing processes.
Collapse
Affiliation(s)
- Xueqing Ba
- The Key Laboratory of Molecular Epigenetics of Ministry of Education, Northeast Normal University, Changchun, Jilin 130024, China; School of Life Science, Northeast Normal University, Changchun, Jilin 130024, China.
| | - Istvan Boldogh
- Department of Microbiology and Immunology, University of Texas Medical Branch at Galveston, Galveston, TX 77555, USA; Sealy Center for Molecular Medicine, University of Texas Medical Branch at Galveston, Galveston, TX 77555, USA.
| |
Collapse
|
11
|
Repair of oxidatively induced DNA damage by DNA glycosylases: Mechanisms of action, substrate specificities and excision kinetics. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2017; 771:99-127. [PMID: 28342455 DOI: 10.1016/j.mrrev.2017.02.001] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Indexed: 02/07/2023]
Abstract
Endogenous and exogenous reactive species cause oxidatively induced DNA damage in living organisms by a variety of mechanisms. As a result, a plethora of mutagenic and/or cytotoxic products are formed in cellular DNA. This type of DNA damage is repaired by base excision repair, although nucleotide excision repair also plays a limited role. DNA glycosylases remove modified DNA bases from DNA by hydrolyzing the glycosidic bond leaving behind an apurinic/apyrimidinic (AP) site. Some of them also possess an accompanying AP-lyase activity that cleaves the sugar-phosphate chain of DNA. Since the first discovery of a DNA glycosylase, many studies have elucidated the mechanisms of action, substrate specificities and excision kinetics of these enzymes present in all living organisms. For this purpose, most studies used single- or double-stranded oligodeoxynucleotides with a single DNA lesion embedded at a defined position. High-molecular weight DNA with multiple base lesions has been used in other studies with the advantage of the simultaneous investigation of many DNA base lesions as substrates. Differences between the substrate specificities and excision kinetics of DNA glycosylases have been found when these two different substrates were used. Some DNA glycosylases possess varying substrate specificities for either purine-derived lesions or pyrimidine-derived lesions, whereas others exhibit cross-activity for both types of lesions. Laboratory animals with knockouts of the genes of DNA glycosylases have also been used to provide unequivocal evidence for the substrates, which had previously been found in in vitro studies, to be the actual substrates in vivo as well. On the basis of the knowledge gained from the past studies, efforts are being made to discover small molecule inhibitors of DNA glycosylases that may be used as potential drugs in cancer therapy.
Collapse
|
12
|
Tadesse S, Norwitz NG, Guller S, Arcuri F, Toti P, Norwitz ER, Kidane D. Dynamics of Base Excision Repair at the Maternal-Fetal Interface in Pregnancies Complicated by Preeclampsia. Reprod Sci 2016; 24:856-864. [PMID: 27707956 DOI: 10.1177/1933719116670519] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Preeclampsia (PE) (gestational proteinuric hypertension) is the leading cause of maternal and perinatal mortality worldwide. Although placental endothelial dysfunction and oxidative stress are known to contribute to PE, the exact pathological basis for this disorder remains unclear. Previously, we demonstrated that DNA damage at the maternal-fetal interface is more common in the placentas of women with PE than normotensive controls. In this study, we utilized an in vivo comparative study, including 20 preeclamptic women and 8 healthy control subjects, and an in vitro hypoxia/reperfusion model to mimic the effects of oxidative stress at the maternal-fetal interface. We tracked the spatial pattern of expression of 2 base excision repair proteins, 8-oxoguanine glycosylase (OGG1) and apurinic/apyrimidinic endonuclease-1 (APE1), at the maternal-fetal interface in response to oxidative stress. In vivo, we found a significant increase in OGG1 and APE1 concentrations in PE placental tissues as compared to normotensive controls ( P < .0001). Further, our in vitro study revealed that OGG1 and APE1 expression is much greater in maternal cells (decidua) than in fetal cells (cytotrophoblasts) of placental tissue subjected to oxidative stress ( P < .0001). Our results suggest that OGG1 and APE1 likely protect decidual cells from oxidative base damage.
Collapse
Affiliation(s)
- Serkalem Tadesse
- 1 Department of Obstetrics and Gynecology, Tufts University School of Medicine, Boston, MA, USA.,2 Mother Infant Research Institute, Tufts Medical Center, Boston, MA, USA
| | - Nicholas G Norwitz
- 3 Department of Obstetrics, Gynecology and Reproductive Sciences, Yale University School of Medicine, New Haven, CT, USA
| | - Seth Guller
- 3 Department of Obstetrics, Gynecology and Reproductive Sciences, Yale University School of Medicine, New Haven, CT, USA
| | - Felice Arcuri
- 4 Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
| | - Paolo Toti
- 5 Department of Medical Biotechnologies, University of Siena, Siena, Italy
| | - Errol R Norwitz
- 1 Department of Obstetrics and Gynecology, Tufts University School of Medicine, Boston, MA, USA.,2 Mother Infant Research Institute, Tufts Medical Center, Boston, MA, USA
| | - Dawit Kidane
- 6 Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Dell Pediatric Research Institute, Austin, TX, USA
| |
Collapse
|
13
|
Suzuki M, Bandoski C, Bartlett JD. Fluoride induces oxidative damage and SIRT1/autophagy through ROS-mediated JNK signaling. Free Radic Biol Med 2015; 89:369-78. [PMID: 26431905 PMCID: PMC4684823 DOI: 10.1016/j.freeradbiomed.2015.08.015] [Citation(s) in RCA: 180] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2015] [Revised: 08/20/2015] [Accepted: 08/28/2015] [Indexed: 02/07/2023]
Abstract
Fluoride is an effective caries prophylactic, but at high doses can also be an environmental health hazard. Acute or chronic exposure to high fluoride doses can result in dental enamel and skeletal and soft tissue fluorosis. Dental fluorosis is manifested as mottled, discolored, porous enamel that is susceptible to dental caries. Fluoride induces cell stress, including endoplasmic reticulum stress and oxidative stress, which leads to impairment of ameloblasts responsible for dental enamel formation. Recently we reported that fluoride activates SIRT1 and autophagy as an adaptive response to protect cells from stress. However, it still remains unclear how SIRT1/autophagy is regulated in dental fluorosis. In this study, we demonstrate that fluoride exposure generates reactive oxygen species (ROS) and the resulting oxidative damage is counteracted by SIRT1/autophagy induction through c-Jun N-terminal kinase (JNK) signaling in ameloblasts. In the mouse-ameloblast-derived cell line LS8, fluoride induced ROS, mitochondrial damage including cytochrome-c release, up-regulation of UCP2, attenuation of ATP synthesis, and H2AX phosphorylation (γH2AX), which is a marker of DNA damage. We evaluated the effects of the ROS inhibitor N-acetylcysteine (NAC) and the JNK inhibitor SP600125 on fluoride-induced SIRT1/autophagy activation. NAC decreased fluoride-induced ROS generation and attenuated JNK and c-Jun phosphorylation. NAC decreased SIRT1 phosphorylation and formation of the autophagy marker LC3II, which resulted in an increase in the apoptosis mediators γH2AX and cleaved/activated caspase-3. SP600125 attenuated fluoride-induced SIRT1 phosphorylation, indicating that fluoride activates SIRT1/autophagy via the ROS-mediated JNK pathway. In enamel organs from rats or mice treated with 50, 100, or 125 ppm fluoride for 6 weeks, cytochrome-c release and the DNA damage markers 8-oxoguanine, p-ATM, and γH2AX were increased compared to those in controls (0 ppm fluoride). These results suggest that fluoride-induced ROS generation causes mitochondrial damage and DNA damage, which may lead to impairment of ameloblast function. To counteract this impairment, SIRT1/autophagy is induced via JNK signaling to protect cells/ameloblasts from fluoride-induced oxidative damage that may cause dental fluorosis.
Collapse
Affiliation(s)
- Maiko Suzuki
- Department of Mineralized Tissue Biology, The Forsyth Institute & Harvard School of Dental Medicine, 245 First Street, Cambridge, MA
| | - Cheryl Bandoski
- Department of Mineralized Tissue Biology, The Forsyth Institute & Harvard School of Dental Medicine, 245 First Street, Cambridge, MA
| | - John D Bartlett
- Department of Mineralized Tissue Biology, The Forsyth Institute & Harvard School of Dental Medicine, 245 First Street, Cambridge, MA.
| |
Collapse
|
14
|
Bauer NC, Corbett AH, Doetsch PW. The current state of eukaryotic DNA base damage and repair. Nucleic Acids Res 2015; 43:10083-101. [PMID: 26519467 PMCID: PMC4666366 DOI: 10.1093/nar/gkv1136] [Citation(s) in RCA: 104] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Accepted: 10/16/2015] [Indexed: 12/15/2022] Open
Abstract
DNA damage is a natural hazard of life. The most common DNA lesions are base, sugar, and single-strand break damage resulting from oxidation, alkylation, deamination, and spontaneous hydrolysis. If left unrepaired, such lesions can become fixed in the genome as permanent mutations. Thus, evolution has led to the creation of several highly conserved, partially redundant pathways to repair or mitigate the effects of DNA base damage. The biochemical mechanisms of these pathways have been well characterized and the impact of this work was recently highlighted by the selection of Tomas Lindahl, Aziz Sancar and Paul Modrich as the recipients of the 2015 Nobel Prize in Chemistry for their seminal work in defining DNA repair pathways. However, how these repair pathways are regulated and interconnected is still being elucidated. This review focuses on the classical base excision repair and strand incision pathways in eukaryotes, considering both Saccharomyces cerevisiae and humans, and extends to some important questions and challenges facing the field of DNA base damage repair.
Collapse
Affiliation(s)
- Nicholas C Bauer
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322, USA Graduate Program in Biochemistry, Cell, and Developmental Biology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Anita H Corbett
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322, USA Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Paul W Doetsch
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322, USA Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA 30322, USA Department of Radiation Oncology, Emory University School of Medicine, Atlanta, GA 30322, USA Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, GA 30322, USA
| |
Collapse
|
15
|
Edwards SK, Ono T, Wang S, Jiang W, Franzini RM, Jung JW, Chan KM, Kool ET. In Vitro Fluorogenic Real-Time Assay of the Repair of Oxidative DNA Damage. Chembiochem 2015; 16:1637-46. [PMID: 26073452 PMCID: PMC4586133 DOI: 10.1002/cbic.201500184] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Indexed: 01/09/2023]
Abstract
The repair of oxidative damage to DNA is essential to avoid mutations that lead to cancer. Oxidized DNA bases, such as 8-oxoguanine, are a main source of these mutations, and the enzyme 8-oxoguanine glycosylase 1 (OGG1) is the chief human enzyme that excises 8-oxoguanine from DNA. The activity of OGG1 has been linked to human inflammation responses and to cancer, and researchers are beginning to search for inhibitors of the enzyme. However, measuring the activity of the enzyme typically requires laborious gel-based measurements of radiolabeled DNAs. Here we report the design and properties of fluorogenic probes that directly report on the activity of OGG1 (and its bacterial homologue Fpg) in real time as the oxidized base is excised. The probes are short, modified DNA oligomers containing fluorescent DNA bases and are designed to utilize 8-oxoguanine itself as a fluorescence quencher. Screening of combinations of fluorophores and 8-oxoguanine revealed two fluorophores, pyrene and tCo, that are strongly quenched by the damaged base. We tested 42 potential probes containing these fluorophores: the optimum probe, OGR1, yields a 60-fold light-up signal in vitro with OGG1 and Fpg. It can report on oxidative repair activity in mammalian cell lysate and with bacterial cells overexpressing a repair enzyme. Such probes might prove useful in quantifying enzyme activity and performing competitive inhibition assays.
Collapse
Affiliation(s)
- Sarah K Edwards
- Department of Chemistry, Stanford University, Stanford, CA 94305 (USA)
| | - Toshikazu Ono
- Department of Chemistry, Stanford University, Stanford, CA 94305 (USA)
- Present Address: Department of Chemistry and Biochemistry, Graduate School of Engineering, Center for Molecular Systems (CMS), Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395 (Japan)
| | - Shenliang Wang
- Department of Chemistry, Stanford University, Stanford, CA 94305 (USA)
| | - Wei Jiang
- Department of Chemistry, Stanford University, Stanford, CA 94305 (USA)
| | | | - Jong Wha Jung
- Department of Chemistry, Stanford University, Stanford, CA 94305 (USA)
- Present Address: College of Pharmacy, Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu, 702-701 (Republic of Korea)
| | - Ke Min Chan
- Department of Chemistry, Stanford University, Stanford, CA 94305 (USA)
| | - Eric T Kool
- Department of Chemistry, Stanford University, Stanford, CA 94305 (USA).
| |
Collapse
|
16
|
Dietrich AK, Humphreys GI, Nardulli AM. 17β-estradiol increases expression of the oxidative stress response and DNA repair protein apurinic endonuclease (Ape1) in the cerebral cortex of female mice following hypoxia. J Steroid Biochem Mol Biol 2013; 138:410-20. [PMID: 23907014 PMCID: PMC3825811 DOI: 10.1016/j.jsbmb.2013.07.007] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2013] [Revised: 07/18/2013] [Accepted: 07/22/2013] [Indexed: 01/07/2023]
Abstract
While it is well established that 17β-estradiol (E2) protects the rodent brain from ischemia-induced damage, it has been unclear how this neuroprotective effect is mediated. Interestingly, convincing evidence has also demonstrated that maintaining or increasing the expression of the oxidative stress response and DNA repair protein apurinic endonuclease 1 (Ape1) is instrumental in reducing ischemia-induced damage in the brain. Since E2 increases expression of the oxidative stress response proteins Cu/Zn superoxide dismutase and thioredoxin in the brain, we hypothesized that E2 may also increase Ape1 expression and that this E2-induced expression of Ape1 may help to mediate the neuroprotective effects of E2 in the brain. To test this hypothesis, we utilized three model systems including primary cortical neurons, brain slice cultures, and whole animals. Although estrogen receptor α and Ape1 were expressed in primary cortical neurons, E2 did not alter Ape1 expression in these cells. However, immunofluorescent staining and quantitative Western blot analysis demonstrated that estrogen receptor α and Ape1 were expressed in the nuclei of cortical neurons in brain slice cultures and that E2 increased Ape1 expression in the cerebral cortex of these cultures. Furthermore, Ape1 expression was increased and oxidative DNA damage was decreased in the cerebral cortices of ovariectomized female C57Bl/6J mice that had been treated with E2 and exposed to hypoxia. Taken together, our studies demonstrate that the neuronal microenvironment may be required for increased Ape1 expression and that E2 enhances expression of Ape1 and reduces oxidative DNA damage, which may in turn help to reduce ischemia-induced damage in the cerebral cortex and mediate the neuroprotective effects of E2.
Collapse
Affiliation(s)
- Alicia K Dietrich
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, United States
| | | | | |
Collapse
|
17
|
Jacob KD, Noren Hooten N, Tadokoro T, Lohani A, Barnes J, Evans MK. Alzheimer's disease-associated polymorphisms in human OGG1 alter catalytic activity and sensitize cells to DNA damage. Free Radic Biol Med 2013; 63:115-25. [PMID: 23684897 PMCID: PMC3767440 DOI: 10.1016/j.freeradbiomed.2013.05.010] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2012] [Revised: 04/09/2013] [Accepted: 05/06/2013] [Indexed: 12/14/2022]
Abstract
Brain tissues from Alzheimer's disease (AD) patients show increased levels of oxidative DNA damage and 7,8-dihydro-8-oxoguanine (8-oxoG) accumulation. In humans, the base excision repair protein 8-oxoguanine-DNA glycosylase (OGG1) is the major enzyme that recognizes and excises the mutagenic DNA base lesion 8-oxoG. Recently, two polymorphisms of OGG1, A53T and A288V, have been identified in brain tissues of AD patients, but little is known about how these polymorphisms may contribute to AD. We characterized the A53T and A288V polymorphic variants and detected a significant reduction in the catalytic activity for both proteins in vitro and in cells. Additionally, the A53T polymorphism has decreased substrate binding, whereas the A288V polymorphism has reduced AP lyase activity. Both variants have decreased binding to known OGG1 binding partners PARP-1 and XRCC1. We found that OGG1(-/-) cells expressing A53T and A288V OGG1 were significantly more sensitive to DNA damage and had significantly decreased survival. Our results provide both biochemical and cellular evidence that A53T and A288V polymorphic proteins have deficiencies in catalytic and protein-binding activities that could be related to the increase in oxidative damage to DNA found in AD brains.
Collapse
Affiliation(s)
- Kimberly D Jacob
- Laboratory of Epidemiology and Population Sciences, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224-6825, USA
| | | | | | | | | | | |
Collapse
|
18
|
Excision of 8-oxoguanine from methylated CpG dinucleotides by human 8-oxoguanine DNA glycosylase. FEBS Lett 2013; 587:3129-34. [PMID: 23954288 DOI: 10.1016/j.febslet.2013.08.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2013] [Revised: 08/05/2013] [Accepted: 08/06/2013] [Indexed: 12/13/2022]
Abstract
CpG dinucleotides are targets for epigenetic methylation, many of them bearing 5-methylcytosine (mCyt) in the human genome. Guanine in this context can be easily oxidized to 8-oxoguanine (oxoGua), which is repaired by 8-oxoguanine-DNA glycosylase (OGG1). We have studied how methylation affects the efficiency of oxoGua excision from damaged CpG dinucleotides. Methylation of the adjacent cytosine moderately decreased the oxoGua excision rate while methylation opposite oxoGua lowered the rate of product release. Cytosine methylation abolished stimulation of OGG1 by repair endonuclease APEX1. The OGG1 S326C polymorphic variant associated with lung cancer showed poorer base excision and lost sensitivity to the opposite-base methylation. The overall repair in the system reconstituted from purified proteins decreased for CpG with mCyt in the damaged strand.
Collapse
|
19
|
Abedin Z, Louis-Juste M, Stangl M, Field J. The role of base excision repair genes OGG1, APN1 and APN2 in benzo[a]pyrene-7,8-dione induced p53 mutagenesis. Mutat Res 2013; 750:121-8. [PMID: 23117049 PMCID: PMC3931135 DOI: 10.1016/j.mrgentox.2012.10.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2012] [Revised: 10/17/2012] [Accepted: 10/18/2012] [Indexed: 12/17/2022]
Abstract
Lung cancer is primarily caused by exposure to tobacco smoke. Tobacco smoke contains numerous carcinogens, including polycyclic aromatic hydrocarbons (PAH). The most common PAH studied is benzo[a]pyrene (B[a]P). B[a]P is metabolically activated through multiple routes, one of which is catalyzed by aldo-keto reductase (AKR) to B[a]P-7,8-dione (BPQ). BPQ undergoes a futile redox cycle in the presence of NADPH to generate reactive oxygen species (ROS). ROS, in turn, damages DNA. Studies with a yeast p53 mutagenesis system found that the generation of ROS by PAH o-quinones may contribute to lung carcinogenesis because of similarities between the patterns (types of mutations) and spectra (location of mutations) and those seen in lung cancer. The patterns were dominated by G to T transversions, and the spectra in the experimental system have mutations at lung cancer hotspots. To address repair mechanisms that are responsible for BPQ induced damage we observed the effect of mutating two DNA repair genes OGG1 and APE1 (APN1 in yeast) and tested them in a yeast reporter system for p53 mutagenesis. There was an increase in both the mutant frequency and the number of G:C/T:A transversions in p53 treated with BPQ in ogg1 yeast but not in apn1 yeast. Knocking out APN2 increased mutagenesis in the apn1 cells. In addition, we did not find a strand bias on p53 treated with BPQ in ogg1 yeast. These studies suggest that Ogg1 is involved in repairing the oxidative damage caused by BPQ, Apn1 and Apn2 have redundant functions and that the stand bias seen in lung cancer may not be due to impaired repair of oxidative lesions.
Collapse
Affiliation(s)
- Zahidur Abedin
- Department of Pharmacology, Centers for Excellence in Environmental Toxicology and Cancer Pharmacology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6084, USA
| | - Melissa Louis-Juste
- Department of Pharmacology, Centers for Excellence in Environmental Toxicology and Cancer Pharmacology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6084, USA
| | - Melissa Stangl
- Department of Pharmacology, Centers for Excellence in Environmental Toxicology and Cancer Pharmacology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6084, USA
| | - Jeffrey Field
- Department of Pharmacology, Centers for Excellence in Environmental Toxicology and Cancer Pharmacology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6084, USA
| |
Collapse
|
20
|
Seager AL, Shah UK, Mikhail JM, Nelson BC, Marquis BJ, Doak SH, Johnson GE, Griffiths SM, Carmichael PL, Scott SJ, Scott AD, Jenkins GJS. Pro-oxidant induced DNA damage in human lymphoblastoid cells: homeostatic mechanisms of genotoxic tolerance. Toxicol Sci 2012; 128:387-97. [PMID: 22539617 DOI: 10.1093/toxsci/kfs152] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Oxidative stress contributes to many disease etiologies including ageing, neurodegeneration, and cancer, partly through DNA damage induction (genotoxicity). Understanding the i nteractions of free radicals with DNA is fundamental to discern mutation risks. In genetic toxicology, regulatory authorities consider that most genotoxins exhibit a linear relationship between dose and mutagenic response. Yet, homeostatic mechanisms, including DNA repair, that allow cells to tolerate low levels of genotoxic exposure exist. Acceptance of thresholds for genotoxicity has widespread consequences in terms of understanding cancer risk and regulating human exposure to chemicals/drugs. Three pro-oxidant chemicals, hydrogen peroxide (H(2)O(2)), potassium bromate (KBrO(3)), and menadione, were examined for low dose-response curves in human lymphoblastoid cells. DNA repair and antioxidant capacity were assessed as possible threshold mechanisms. H(2)O(2) and KBrO(3), but not menadione, exhibited thresholded responses, containing a range of nongenotoxic low doses. Levels of the DNA glycosylase 8-oxoguanine glycosylase were unchanged in response to pro- oxidant stress. DNA repair-focused gene expression arrays reported changes in ATM and BRCA1, involved in double-strand break repair, in response to low-dose pro-oxidant exposure; however, these alterations were not substantiated at the protein level. Determination of oxidatively induced DNA damage in H(2)O(2)-treated AHH-1 cells reported accumulation of thymine glycol above the genotoxic threshold. Further, the H(2)O(2) dose-response curve was shifted by modulating the antioxidant glutathione. Hence, observed pro- oxidant thresholds were due to protective capacities of base excision repair enzymes and antioxidants against DNA damage, highlighting the importance of homeostatic mechanisms in "genotoxic tolerance."
Collapse
Affiliation(s)
- Anna L Seager
- DNA Damage Research Group, Institute of Life Science, College of Medicine, Swansea University, SA2 8PP, UK
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Miller AS, Balakrishnan L, Buncher NA, Opresko PL, Bambara RA. Telomere proteins POT1, TRF1 and TRF2 augment long-patch base excision repair in vitro. Cell Cycle 2012; 11:998-1007. [PMID: 22336916 PMCID: PMC3323798 DOI: 10.4161/cc.11.5.19483] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2012] [Revised: 01/24/2012] [Accepted: 01/25/2012] [Indexed: 12/13/2022] Open
Abstract
Human telomeres consist of multiple tandem hexameric repeats, each containing a guanine triplet. Guanosine-rich clusters are highly susceptible to oxidative base damage, necessitating base excision repair (BER). Previous demonstration of enhanced strand displacement synthesis by the BER component DNA polymerase β in the presence of telomere protein TRF2 suggests that telomeres employ long-patch (LP) BER. Earlier analyses in vitro showed that efficiency of BER reactions is reduced in the DNA-histone environment of chromatin. Evidence presented here indicates that BER is promoted at telomeres. We found that the three proteins that contact telomere DNA, POT1, TRF1 and TRF2, enhance the rate of individual steps of LP-BER and stimulate the complete reconstituted LP-BER pathway. Thought to protect telomere DNA from degradation, these proteins still apparently evolved to allow selective access of repair proteins.
Collapse
Affiliation(s)
- Adam S Miller
- Department of Biochemistry and Biophysics, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | | | | | | | | |
Collapse
|
22
|
Svobodová A, Vostálová J. Solar radiation induced skin damage: review of protective and preventive options. Int J Radiat Biol 2010; 86:999-1030. [PMID: 20807180 DOI: 10.3109/09553002.2010.501842] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
PURPOSE Solar energy has a number of short- and long-term detrimental effects on skin that can result in several skin disorders. The aim of this review is to summarise current knowledge on endogenous systems within the skin for protection from solar radiation and present research findings to date, on the exogenous options for such skin photoprotection. RESULTS Endogenous systems for protection from solar radiation include melanin synthesis, epidermal thickening and an antioxidant network. Existing lesions are eliminated via repair mechanisms. Cells with irreparable damage undergo apoptosis. Excessive and chronic sun exposure however can overwhelm these mechanisms leading to photoaging and the development of cutaneous malignancies. Therefore exogenous means are a necessity. Exogenous protection includes sun avoidance, use of photoprotective clothing and sufficient application of broad-spectrum sunscreens as presently the best way to protect the skin. However other strategies that may enhance currently used means of protection are being investigated. These are often based on the endogenous protective response to solar light such as compounds that stimulate pigmentation, antioxidant enzymes, DNA repair enzymes, non-enzymatic antioxidants. CONCLUSION More research is needed to confirm the effectiveness of new alternatives to photoprotection such as use of DNA repair and antioxidant enzymes and plant polyphenols and to find an efficient way for their delivery to the skin. New approaches to the prevention of skin damage are important especially for specific groups of people such as (young) children, photosensitive people and patients on immunosuppressive therapy. Changes in public awareness on the subject too must be made.
Collapse
Affiliation(s)
- Alena Svobodová
- Department of Medical Chemistry and Biochemistry, Faculty of Medicine and Dentistry, Palacký University, Hněvotínská 3, Olomouc, Czech Republic.
| | | |
Collapse
|
23
|
Radak Z, Boldogh I. 8-Oxo-7,8-dihydroguanine: links to gene expression, aging, and defense against oxidative stress. Free Radic Biol Med 2010; 49:587-96. [PMID: 20483371 PMCID: PMC2943936 DOI: 10.1016/j.freeradbiomed.2010.05.008] [Citation(s) in RCA: 108] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2010] [Revised: 05/06/2010] [Accepted: 05/10/2010] [Indexed: 02/07/2023]
Abstract
The one-electron oxidation product of guanine, 8-oxo-7,8-dihydroguanine (8-oxoG), is an abundant lesion in genomic, mitochondrial, and telomeric DNA and RNA. It is considered to be a marker of oxidative stress that preferentially accumulates at the 5' end of guanine strings in the DNA helix, in guanine quadruplexes, and in RNA molecules. 8-OxoG has a lower oxidation potential compared to guanine; thus it is susceptible to oxidation/reduction and, along with its redox products, is traditionally considered to be a major mutagenic DNA base lesion. It does not change the architecture of the DNA double helix and it is specifically recognized and excised by 8-oxoguanine DNA glycosylase (OGG1) during the DNA base excision repair pathway. OGG1 null animals accumulate excess levels of 8-oxoG in their genome, yet they do not have shorter life span nor do they exhibit severe pathological symptoms including tumor formation. In fact they are increasingly resistant to inflammation. Here we address the rarely considered significance of 8-oxoG, such as its optimal levels in DNA and RNA under a given condition, essentiality for normal cellular physiology, evolutionary role, and ability to soften the effects of oxidative stress in DNA, and the harmful consequences of its repair, as well as its importance in transcriptional initiation and chromatin relaxation.
Collapse
Affiliation(s)
- Zsolt Radak
- Research Institute of Sport Science, Faculty of Physical Education and Sport Science, Semmelweis University, Budapest, Hungary.
| | | |
Collapse
|
24
|
Silva JP, Gomes AC, Proença F, Coutinho OP. Novel nitrogen compounds enhance protection and repair of oxidative DNA damage in a neuronal cell model: Comparison with quercetin. Chem Biol Interact 2009; 181:328-37. [DOI: 10.1016/j.cbi.2009.07.024] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2009] [Revised: 07/29/2009] [Accepted: 07/29/2009] [Indexed: 11/24/2022]
|
25
|
Sidorenko VS, Grollman AP, Jaruga P, Dizdaroglu M, Zharkov DO. Substrate specificity and excision kinetics of natural polymorphic variants and phosphomimetic mutants of human 8-oxoguanine-DNA glycosylase. FEBS J 2009; 276:5149-62. [PMID: 19674107 DOI: 10.1111/j.1742-4658.2009.07212.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Human 8-oxoguanine-DNA glycosylase (OGG1) efficiently removes mutagenic 8-oxo-7,8-dihydroguanine (8-oxoGua) and 2,6-diamino-4-hydroxy-5-formamidopyrimidine when paired with cytosine in oxidatively damaged DNA. Excision of 8-oxoGua mispaired with adenine may lead to G-->T transversions. Post-translational modifications such as phosphorylation could affect the cellular distribution and enzymatic activity of OGG1. Mutations and polymorphisms of OGG1 may affect the enzymatic activity and have been associated with increased risk of several cancers. In this study, we used double-stranded oligodeoxynucleotides containing 8-oxoGua:Cyt or 8-oxoGua:Ade pairs, as well as gamma-irradiated calf thymus DNA, to investigate the kinetics and substrate specificity of several known OGG1 polymorphic variants and phosphomimetic Ser-->Glu mutants. Among the polymorphic variants, A288V and S326C displayed opposite-base specificity similar to that of wild-type OGG1, whereas OGG1-D322N was 2.3-fold more specific for the correct opposite base than the wild-type enzyme. All phosphomimetic mutants displayed approximately 1.5-3-fold lower ability to remove 8-oxoGua in both assays, whereas the substrate specificity of the phosphomimetic mutants was similar to that of the wild-type enzyme. OGG1-S326C efficiently excised 8-oxoGua from oligodeoxynucleotides and 2,6-diamino-4-hydroxy-5-formamidopyrimidine from gamma-irradiated DNA, but excised 8-oxoG rather inefficiently from gamma-irradiated DNA. Otherwise, kcat values for 8-oxoGua excision obtained from both types of experiments were similar for all OGG1 variants studied. It is known that the human AP endonuclease APEX1 can stimulate OGG1 activity by increasing its turnover rate. However, when wild-type OGG1 was replaced by one of the phosphomimetic mutants, very little stimulation of 8-oxoGua removal was observed in the presence of APEX1.
Collapse
|
26
|
Salem MMAEL, Shalbaf M, Gibbons NCJ, Chavan B, Thornton JM, Schallreuter KU. Enhanced DNA binding capacity on up‐regulated epidermal wild‐type p53 in vitiligo by H
2
O
2
‐mediated oxidation: a possible repair mechanism for DNA damage. FASEB J 2009; 23:3790-807. [PMID: 19641144 DOI: 10.1096/fj.09-132621] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Mohamed M. A. E. L. Salem
- Clinical and Experimental Dermatology Department of Biomedical Sciences/Centre for Skin Sciences School of Life Sciences University of Bradford Bradford UK
| | - Mohammad Shalbaf
- Clinical and Experimental Dermatology Department of Biomedical Sciences/Centre for Skin Sciences School of Life Sciences University of Bradford Bradford UK
| | - Nicholas C. J. Gibbons
- Clinical and Experimental Dermatology Department of Biomedical Sciences/Centre for Skin Sciences School of Life Sciences University of Bradford Bradford UK
- University of Bradford Bradford UK
| | - Bhaven Chavan
- Clinical and Experimental Dermatology Department of Biomedical Sciences/Centre for Skin Sciences School of Life Sciences University of Bradford Bradford UK
| | - J. M. Thornton
- Clinical and Experimental Dermatology Department of Biomedical Sciences/Centre for Skin Sciences School of Life Sciences University of Bradford Bradford UK
| | - Karin U. Schallreuter
- Clinical and Experimental Dermatology Department of Biomedical Sciences/Centre for Skin Sciences School of Life Sciences University of Bradford Bradford UK
- Institute for Pigmentary Disorders in association with E. M. Arndt University Greifswald Germany
| |
Collapse
|
27
|
Site-specific regulation of cell cycle and DNA repair in post-mitotic GABA cells in schizophrenic versus bipolars. Proc Natl Acad Sci U S A 2009; 106:11731-6. [PMID: 19564623 DOI: 10.1073/pnas.0903066106] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
GABA cell dysfunction in both schizophrenia (SZ) and bipolar disorder (BD) involves decreased GAD(67) expression, although this change involves fundamentally different networks of genes in the 2 disorders. One gene that is common to these 2 networks is cyclin D2, a key component of cell cycle regulation that shows increased expression in SZ, but decreased expression in BD. Because of the importance of cell cycle regulation in maintaining functional differentiation and DNA repair, the current study has examined the genes involved in the G(1) and G(2) checkpoints to generate new hypotheses regarding the regulation of the GABA cell phenotype in the hippocampus of SZ and BD. The results have demonstrated significant changes in cell cycle regulation in both SZ and BD and these changes include the transcriptional complex (TC) that controls the expression of E2F/DP-1 target genes critical for progression to G(2)/M. The methyl-CpG binding domain protein (MBD4) that is pivotal for DNA repair, is significantly up-regulated in the stratum oriens (SO) of CA3/2 and CA1 in SZs and BDs. However, other genes associated with the TC, and the G(1) and G(2) checkpoints, show complex changes in expression in the SO of CA3/2 and CA1 of both SZs and BDS. Overall, the patterns of expression observed have suggested that the regulation of functional differentiation and/or genomic integrity of hippocampal GABA cells varies according to diagnosis and their location within the trisynaptic pathway.
Collapse
|
28
|
Unnikrishnan A, Raffoul JJ, Patel HV, Prychitko TM, Anyangwe N, Meira LB, Friedberg EC, Cabelof DC, Heydari AR. Oxidative stress alters base excision repair pathway and increases apoptotic response in apurinic/apyrimidinic endonuclease 1/redox factor-1 haploinsufficient mice. Free Radic Biol Med 2009; 46:1488-99. [PMID: 19268524 PMCID: PMC2677124 DOI: 10.1016/j.freeradbiomed.2009.02.021] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2008] [Revised: 02/04/2009] [Accepted: 02/23/2009] [Indexed: 12/21/2022]
Abstract
Apurinic/apyrimidinic endonuclease 1/redox factor-1 (APE1/Ref-1) is the redox regulator of multiple stress-inducible transcription factors, such as NF-kappaB, and the major 5'-endonuclease in base excision repair (BER). We utilized mice containing a heterozygous gene-targeted deletion of APE1/Ref-1 (Apex(+/-)) to determine the impact of APE1/Ref-1 haploinsufficiency on the processing of oxidative DNA damage induced by 2-nitropropane (2-NP) in the liver tissue of mice. APE1/Ref-1 haploinsufficiency results in a significant decline in NF-kappaB DNA-binding activity in response to oxidative stress in liver. In addition, loss of APE1/Ref-1 increases the apoptotic response to oxidative stress, in which significant increases in GADD45g expression, p53 protein stability, and caspase activity are observed. Oxidative stress displays a differential impact on monofunctional (UNG) and bifunctional (OGG1) DNA glycosylase-initiated BER in the liver of Apex(+/-) mice. APE1/Ref-1 haploinsufficiency results in a significant decline in the repair of oxidized bases (e.g., 8-OHdG), whereas removal of uracil is increased in liver nuclear extracts of mice using an in vitro BER assay. Apex(+/-) mice exposed to 2-NP displayed a significant decline in 3'-OH-containing single-strand breaks and an increase in aldehydic lesions in their liver DNA, suggesting an accumulation of repair intermediates of failed bifunctional DNA glycosylase-initiated BER.
Collapse
Affiliation(s)
- Archana Unnikrishnan
- Department of Nutrition & Food Science, Wayne State University, Detroit, MI, 48202, USA
| | - Julian J. Raffoul
- Department of Nutrition & Food Science, Wayne State University, Detroit, MI, 48202, USA
| | - Hiral V. Patel
- Department of Nutrition & Food Science, Wayne State University, Detroit, MI, 48202, USA
| | - Thomas M. Prychitko
- Department of Nutrition & Food Science, Wayne State University, Detroit, MI, 48202, USA
| | - Njwen Anyangwe
- Department of Nutrition & Food Science, Wayne State University, Detroit, MI, 48202, USA
| | - Lisiane B. Meira
- Biological Engineering Division, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Errol C. Friedberg
- Laboratory of Molecular Pathology, Department of Pathology, The University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Diane C. Cabelof
- Department of Nutrition & Food Science, Wayne State University, Detroit, MI, 48202, USA
- Barbara Ann Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI, 48201, USA
| | - Ahmad R. Heydari
- Department of Nutrition & Food Science, Wayne State University, Detroit, MI, 48202, USA
- Barbara Ann Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI, 48201, USA
| |
Collapse
|
29
|
Silva JP, Gomes AC, Coutinho OP. Oxidative DNA damage protection and repair by polyphenolic compounds in PC12 cells. Eur J Pharmacol 2008; 601:50-60. [PMID: 18996367 DOI: 10.1016/j.ejphar.2008.10.046] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2008] [Revised: 10/03/2008] [Accepted: 10/23/2008] [Indexed: 01/10/2023]
Abstract
Biological systems are frequently exposed to excessive reactive oxygen species, causing a disturbance in the cells natural antioxidant defence systems and resulting in damage to all biomolecules, including nucleic acids. In fact, oxidative DNA damage is described as the type of damage most likely to occur in neuronal cells. In this study, three polyphenolic compounds, luteolin, quercetin and rosmarinic acid, were investigated for their protective effects against oxidative DNA damage induced in PC12 cells, a neuronal cell model. Although luteolin and quercetin prevented the formation of strand breaks to a greater extent than rosmarinic acid, this last one presented the highest capacity to repair strand breaks formation. In addition, rosmarinic acid was the only compound tested that increased the repair of oxidized nucleotidic bases induced with the photosensitizer compound [R]-1-[(10-chloro-4-oxo-3-phenyl-4H-benzo[a]quinolizin-1-yl) carbonyl]-2-pyrrolidine-methanol (Ro 19-8022). The activity of repair enzymes was indicated by the in vitro base excision repair assay, using a cell-free extract obtained from cells previously treated with the compounds to incise DNA. The protective effect of rosmarinic acid was further confirmed by the increased expression of OGG1 repair gene, observed through real time RT-PCR. The data obtained is indicative that rosmarinic acid seems to act on the intracellular mechanisms responsible for DNA repair, rather than by a direct effect on reactive oxygen species scavenging, as deducted from the effects observed for luteolin and quercetin. Therefore, these results suggest the importance of these polyphenols, and in particular rosmarinic acid, as protectors of oxidative stress-induced DNA damage that commonly occurs in several pathological conditions, such as neurodegenerative diseases.
Collapse
Affiliation(s)
- João P Silva
- CBMA - Molecular and Environmental Biology Centre/Biology Department, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | | | | |
Collapse
|
30
|
Sidorenko VS, Nevinsky GA, Zharkov DO. Specificity of stimulation of human 8-oxoguanine-DNA glycosylase by AP endonuclease. Biochem Biophys Res Commun 2008; 368:175-9. [PMID: 18222119 DOI: 10.1016/j.bbrc.2008.01.076] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2008] [Accepted: 01/17/2008] [Indexed: 11/29/2022]
Abstract
Human 8-oxoguanine-DNA glycosylase OGG1 is an enzyme that removes abundant oxidative lesion 8-oxoguanine (8-oxoG) from DNA. Excision of 8-oxoG by OGG1 is inhibited by the abasic DNA reaction product and is stimulated by AP endonuclease APEX1. Besides 8-oxoG, OGG1 shows activity towards several other base lesions. Here we report that APEX1 efficiently stimulates OGG1 on good substrates (8-oxoadenine, 8-oxoinosine, or 6-methoxy-8-oxoguanine opposite to cytosine) but the stimulation is low or absent with poor OGG1 substrates (8-oxoadenine or 8-oxoinosine opposite to thymine; 8-oxoG or 8-aminoguanine opposite to adenine; 8-oxonebularine, 8-metoxyguanine, inosine or guanine opposite to cytosine). APEX1 significantly improves the ability of OGG1 to excise 8-aminoguanine from its naturally occurring pair with cytosine, making it possible that OGG1 repairs this lesion. Overall, APEX1 serves to improve specificity of OGG1 for its biologically relevant substrates.
Collapse
Affiliation(s)
- Viktoriya S Sidorenko
- SB RAS Institute of Chemical Biology and Fundamental Medicine, Laboratory of Repair Enzymes, 8 Lavrentieva Avenue, Novosibirsk 630090, Russia
| | | | | |
Collapse
|
31
|
Reduced repair of 8-hydroxyguanine in the human breast cancer cell line, HCC1937. BMC Cancer 2006; 6:297. [PMID: 17192190 PMCID: PMC1770930 DOI: 10.1186/1471-2407-6-297] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2006] [Accepted: 12/27/2006] [Indexed: 11/10/2022] Open
Abstract
Background Breast cancer is the second leading cause of cancer deaths in women in the United States. Although the causes of this disease are incompletely understood, oxidative DNA damage is presumed to play a critical role in breast carcinogenesis. A common oxidatively induced DNA lesion is 8-hydroxyguanine (8-OH-Gua), which has been implicated in carcinogenesis. The aim of this study was to investigate the ability of HCC1937 and MCF-7 breast cancer cell lines to repair 8-OH-Gua relative to a nonmalignant human mammary epithelial cell line, AG11134. Methods We used oligonucleotide incision assay to analyze the ability of the two breast cancer cell lines to incise 8-OH-Gua relative to the control cell line. Liquid chromatography/mass spectrometry (LC/MS) was used to measure the levels of 8-OH-Gua as its nucleoside, 8-OH-dG in the cell lines after exposure to H2O2 followed by 30 min repair period. Protein expression levels were determined by Western blot analysis, while the hOGG1 mRNA levels were analyzed by RT-PCR. Complementation of hOGG1 activity in HCC1937 cells was assessed by addition of the purified protein in the incision assay, and in vivo by transfection of pFlagCMV-4-hOGG1. Clonogenic survival assay was used to determine sensitivity after H2O2-mediated oxidative stress. Results We show that the HCC1937 breast cancer cells have diminished ability to incise 8-OH-Gua and they accumulate higher levels of 8-OH-dG in the nuclear genome after H2O2 treatment despite a 30 min repair period when compared to the nonmalignant mammary cells. The defective incision of 8-OH-Gua was consistent with expression of undetectable amounts of hOGG1 in HCC1937 cells. The reduced incision activity was significantly stimulated by addition of purified hOGG1. Furthermore, transfection of pFlagCMV-4-hOGG1 in HCC1937 cells resulted in enhanced incision of 8-OH-Gua. HCC1937 cells are more sensitive to high levels of H2O2 and have up-regulated SOD1 and SOD2. Conclusion This study provides evidence for inefficient repair of 8-OH-Gua in HCC1937 breast cancer cell line and directly implicates hOGG1 in this defect.
Collapse
|
32
|
Sokhansanj BA, Wilson DM. Estimating the effect of human base excision repair protein variants on the repair of oxidative DNA base damage. Cancer Epidemiol Biomarkers Prev 2006; 15:1000-8. [PMID: 16702383 DOI: 10.1158/1055-9965.epi-05-0817] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Epidemiologic studies have revealed a complex association between human genetic variance and cancer risk. Quantitative biological modeling based on experimental data can play a critical role in interpreting the effect of genetic variation on biochemical pathways relevant to cancer development and progression. Defects in human DNA base excision repair (BER) proteins can reduce cellular tolerance to oxidative DNA base damage caused by endogenous and exogenous sources, such as exposure to toxins and ionizing radiation. If not repaired, DNA base damage leads to cell dysfunction and mutagenesis, consequently leading to cancer, disease, and aging. Population screens have identified numerous single-nucleotide polymorphism variants in many BER proteins and some have been purified and found to exhibit mild kinetic defects. Epidemiologic studies have led to conflicting conclusions on the association between single-nucleotide polymorphism variants in BER proteins and cancer risk. Using experimental data for cellular concentration and the kinetics of normal and variant BER proteins, we apply a previously developed and tested human BER pathway model to (i) estimate the effect of mild variants on BER of abasic sites and 8-oxoguanine, a prominent oxidative DNA base modification, (ii) identify ranges of variation associated with substantial BER capacity loss, and (iii) reveal nonintuitive consequences of multiple simultaneous variants. Our findings support previous work suggesting that mild BER variants have a minimal effect on pathway capacity whereas more severe defects and simultaneous variation in several BER proteins can lead to inefficient repair and potentially deleterious consequences of cellular damage.
Collapse
Affiliation(s)
- Bahrad A Sokhansanj
- School of Biomedical Engineering, Science and Health Systems, Drexel University, 3141 Chestnut Street, Philadelphia, PA 19104, USA.
| | | |
Collapse
|
33
|
Hill JW, Evans MK. Dimerization and opposite base-dependent catalytic impairment of polymorphic S326C OGG1 glycosylase. Nucleic Acids Res 2006; 34:1620-32. [PMID: 16549874 PMCID: PMC1405821 DOI: 10.1093/nar/gkl060] [Citation(s) in RCA: 106] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Human 8-oxoguanine-DNA glycosylase (OGG1) is the major enzyme for repairing 8-oxoguanine (8-oxoG), a mutagenic guanine base lesion produced by reactive oxygen species (ROS). A frequently occurring OGG1 polymorphism in human populations results in the substitution of serine 326 for cysteine (S326C). The 326 C/C genotype is linked to numerous cancers, although the mechanism of carcinogenesis associated with the variant is unclear. We performed detailed enzymatic studies of polymorphic OGG1 and found functional defects in the enzyme. S326C OGG1 excised 8-oxoG from duplex DNA and cleaved abasic sites at rates 2- to 6-fold lower than the wild-type enzyme, depending upon the base opposite the lesion. Binding experiments showed that the polymorphic OGG1 binds DNA damage with significantly less affinity than the wild-type enzyme. Remarkably, gel shift, chemical cross-linking and gel filtration experiments showed that S326C both exists in solution and binds damaged DNA as a dimer. S326C OGG1 enzyme expressed in human cells was also found to have reduced activity and a dimeric conformation. The glycosylase activity of S326C OGG1 was not significantly stimulated by the presence of AP-endonuclease. The altered substrate specificity, lack of stimulation by AP-endonuclease 1 (APE1) and anomalous DNA binding conformation of S326C OGG1 may contribute to its linkage to cancer incidence.
Collapse
Affiliation(s)
| | - Michele K. Evans
- To whom correspondence should be addressed. Tel: +1 410 558 8573; Fax: +1 410 558 8268;
| |
Collapse
|
34
|
|
35
|
Kuznetsov NA, Koval VV, Zharkov DO, Nevinsky GA, Douglas KT, Fedorova OS. Kinetics of substrate recognition and cleavage by human 8-oxoguanine-DNA glycosylase. Nucleic Acids Res 2005; 33:3919-31. [PMID: 16024742 PMCID: PMC1176011 DOI: 10.1093/nar/gki694] [Citation(s) in RCA: 94] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Human 8-oxoguanine-DNA glycosylase (hOgg1) excises 8-oxo-7,8-dihydroguanine (8-oxoG) from damaged DNA. We report a pre-steady-state kinetic analysis of hOgg1 mechanism using stopped-flow and enzyme fluorescence monitoring. The kinetic scheme for hOgg1 processing an 8-oxoG:C-containing substrate was found to include at least three fast equilibrium steps followed by two slow, irreversible steps and another equilibrium step. The second irreversible step was rate-limiting overall. By comparing data from Ogg1 intrinsic fluorescence traces and from accumulation of products of different types, the irreversible steps were attributed to two main chemical steps of the Ogg1-catalyzed reaction: cleavage of the N-glycosidic bond of the damaged nucleotide and β-elimination of its 3′-phosphate. The fast equilibrium steps were attributed to enzyme conformational changes during the recognition of 8-oxoG, and the final equilibrium, to binding of the reaction product by the enzyme. hOgg1 interacted with a substrate containing an aldehydic AP site very slowly, but the addition of 8-bromoguanine (8-BrG) greatly accelerated the reaction, which was best described by two initial equilibrium steps followed by one irreversible chemical step and a final product release equilibrium step. The irreversible step may correspond to β-elimination since it is the very step facilitated by 8-BrG.
Collapse
Affiliation(s)
- Nikita A. Kuznetsov
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of SciencesNovosibirsk 630090, Russia
- Novosibirsk State UniversityNovosibirsk 630090, Russia
| | - Vladimir V. Koval
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of SciencesNovosibirsk 630090, Russia
- Novosibirsk State UniversityNovosibirsk 630090, Russia
| | - Dmitry O. Zharkov
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of SciencesNovosibirsk 630090, Russia
- Novosibirsk State UniversityNovosibirsk 630090, Russia
| | - Georgy A. Nevinsky
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of SciencesNovosibirsk 630090, Russia
- Novosibirsk State UniversityNovosibirsk 630090, Russia
| | - Kenneth T. Douglas
- School of Pharmacy and Pharmaceutical Sciences, University of ManchesterManchester M13 9PL, UK
| | - Olga S. Fedorova
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of SciencesNovosibirsk 630090, Russia
- Novosibirsk State UniversityNovosibirsk 630090, Russia
- To whom correspondence should be addressed. Tel: +7 383 330 92 74; Fax: +7 383 333 36 77;
| |
Collapse
|
36
|
Evans MD, Dizdaroglu M, Cooke MS. Oxidative DNA damage and disease: induction, repair and significance. MUTATION RESEARCH/REVIEWS IN MUTATION RESEARCH 2004; 567:1-61. [PMID: 15341901 DOI: 10.1016/j.mrrev.2003.11.001] [Citation(s) in RCA: 902] [Impact Index Per Article: 43.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2003] [Revised: 11/12/2003] [Accepted: 11/12/2003] [Indexed: 04/08/2023]
Abstract
The generation of reactive oxygen species may be both beneficial to cells, performing a function in inter- and intracellular signalling, and detrimental, modifying cellular biomolecules, accumulation of which has been associated with numerous diseases. Of the molecules subject to oxidative modification, DNA has received the greatest attention, with biomarkers of exposure and effect closest to validation. Despite nearly a quarter of a century of study, and a large number of base- and sugar-derived DNA lesions having been identified, the majority of studies have focussed upon the guanine modification, 7,8-dihydro-8-oxo-2'-deoxyguanosine (8-OH-dG). For the most part, the biological significance of other lesions has not, as yet, been investigated. In contrast, the description and characterisation of enzyme systems responsible for repairing oxidative DNA base damage is growing rapidly, being the subject of intense study. However, there remain notable gaps in our knowledge of which repair proteins remove which lesions, plus, as more lesions identified, new processes/substrates need to be determined. There are many reports describing elevated levels of oxidatively modified DNA lesions, in various biological matrices, in a plethora of diseases; however, for the majority of these the association could merely be coincidental, and more detailed studies are required. Nevertheless, even based simply upon reports of studies investigating the potential role of 8-OH-dG in disease, the weight of evidence strongly suggests a link between such damage and the pathogenesis of disease. However, exact roles remain to be elucidated.
Collapse
Affiliation(s)
- Mark D Evans
- Oxidative Stress Group, Department of Clinical Biochemistry, University of Leicester, Leicester Royal Infirmary, University Hospitals of Leicester NHS Trust, LE2 7LX, UK
| | | | | |
Collapse
|
37
|
Zhou XM, Lin JS, Zhang JY, Zhang L, Zhou HJ. Expression of hOGG1 mRNA and protein in hepatocellular carcinoma. Shijie Huaren Xiaohua Zazhi 2004; 12:280-282. [DOI: 10.11569/wcjd.v12.i2.280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To study the expression of DNA repair enzyme hOGG1 mRNA and protein in nomal liver cell, hepatoma cell lines and hepatocellular carcinoma (HCC) tissues, and to investigate their function in the progress of HCC.
METHODS: Expression of hOGG1 in normal liver cell L-02, hepatoma cell lines HepG2, SMMC7721 and HCC tissues (26 cases) as well as surrouding tissues of HCC (21 cases) were detected by semi-quantitative reverse-transcription polymerase chain reaction. hOGG1 protein was detected in corresponding HT tissues (17 cases HT) and their surrouding liver tissues (15 cases HST) by immunohistochemistry.
RESULTS: The expression level of hOGG1 mRNA in nomal liver cell line was lower than that in two hepatoma cell lines (0.270±0.014 vs 0.662±0.011, 0.624±0.020, P < 0.05). The expression of hOGG1 mRNA in HepG2 was similar to that in SMMC7721. The expression of hOGG1 mRNA in HT was lower than that in HST (P < 0.05). hOGG1 protein was 87.2% (41 of 47) positive in HT and HST and was mainly distributed in liver cells. The protein level of hOGG1 in HCC tissues was correspondingly lower than in their surrouding tissues (P < 0.05).
CONCLUSION: Overexpression of hOGG1 in hepatoma cell lines and the surrouding liver tissuses of HCC may be one of the key events which promote the malignant growth. These results suggest a role for hOGG1 expression in the course of the multistage process of carcinogenesis in hepatocellular carcinoma.
Collapse
|
38
|
Izumi T, Wiederhold LR, Roy G, Roy R, Jaiswal A, Bhakat KK, Mitra S, Hazra TK. Mammalian DNA base excision repair proteins: their interactions and role in repair of oxidative DNA damage. Toxicology 2003; 193:43-65. [PMID: 14599767 DOI: 10.1016/s0300-483x(03)00289-0] [Citation(s) in RCA: 141] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
The DNA base excision repair (BER) is a ubiquitous mechanism for removing damage from the genome induced by spontaneous chemical reaction, reactive oxygen species (ROS) and also DNA damage induced by a variety of environmental genotoxicants. DNA repair is essential for maintaining genomic integrity. As we learn more about BER, a more complex mechanism emerges which supersedes the classical, simple pathway requiring only four enzymatic reactions. The key to understand the complete BER process is to elucidate how multiple proteins interact with one another in a coordinated process under specific physiological conditions.
Collapse
Affiliation(s)
- Tadahide Izumi
- Sealy Center for Molecular Science, University of Texas Medical Branch, Galveston, TX 77555-1079, USA.
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Leipold MD, Workman H, Muller JG, Burrows CJ, David SS. Recognition and removal of oxidized guanines in duplex DNA by the base excision repair enzymes hOGG1, yOGG1, and yOGG2. Biochemistry 2003; 42:11373-81. [PMID: 14503888 DOI: 10.1021/bi034951b] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
8-Oxo-7,8-dihydroguanine (OG) is susceptible to further oxidation in vitro to form two secondary oxidation products, guanidinohydantoin (Gh) and spiroiminodihydantoin (Sp). Previous work from this laboratory has shown that OG, Gh, and Sp are recognized and excised from duplex DNA substrates by the Escherichia coli DNA repair enzyme Fpg. In this report, we extend these studies to the functionally related eukaryotic OG glycosylases (OGG) from yeast and humans: yOGG1, yOGG2, and hOGG1. The hOGG1 enzyme was active only toward the removal of 8-oxoguanine, exhibiting a 1000-fold faster rate of removal of 8-oxoguanine from OG.C-containing duplexes relative to their OG.A counterparts. Duplexes containing Gh or Sp opposite any of the four natural bases were not substrates for the hOGG1 enzyme. In contrast, both yOGG1 and yOGG2 enzymes removed Gh and Sp in a relatively efficient manner from an 18 bp duplex. No significant difference was observed in the rate of reaction of Gh- and Sp-containing duplexes with yOGG1. However, yOGG2 removed Sp at a faster rate than Gh. Both yOGG enzymes exhibit a negligible dependence on the base opposite the lesion, suggesting that the activity of these enzymes may be promutagenic. Surprisingly, in the 18 bp sequence context, both yOGG enzymes did not exhibit OG removal activity. However, both removed OG in a 30 bp duplex with a different sequence surrounding the OG. The wide range of repair efficiencies observed by these enzymes with different substrates in vitro suggests that this could greatly affect the mutagenicity of these lesions in vivo. Indeed, the greater efficiency of the yOGG proteins for removal of the further oxidized products, Gh and Sp, over their 8-oxoguanine parent, suggests that these lesions may be the preferred substrates in vivo.
Collapse
Affiliation(s)
- Michael D Leipold
- Department of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, Utah 84112, USA
| | | | | | | | | |
Collapse
|
40
|
Affiliation(s)
- Bo Hang
- Life Sciences Division, Lawrence Berkeley National Laboratory, University of California, Berkeley, California 94720, USA
| | | |
Collapse
|
41
|
Mistry P, Herbert KE. Modulation of hOGG1 DNA repair enzyme in human cultured cells in response to pro-oxidant and antioxidant challenge. Free Radic Biol Med 2003; 35:397-405. [PMID: 12899941 DOI: 10.1016/s0891-5849(03)00319-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The putative modulation of the base excision repair enzyme, human 8-oxoguanine glycosylase (hOGG1), important in the removal of the potentially mutagenic lesion 8-oxo-2'-deoxyguanosine (8-oxodG), was investigated in human cell culture models. The expression of specific mRNA and protein was measured following pro-oxidant and antioxidant treatments in one human lymphoblastoid and one keratinocyte line. The measurement of intracellular reactive oxygen species generation was monitored by a fluorogenic assay and potential genotoxic effects confirmed by the dose-dependent increase in formamidopyrimidine-DNA glycosylase (Fpg) sensitive sites by alkaline unwinding following sub-lethal doses of hydrogen peroxide. The generation of a potentially antioxidant environment was assessed by the intracellular increase and extracellular depletion in ascorbic acid, confirmed by capillary electrophoresis. Despite these pro-oxidant and antioxidant treatments no significant change in mRNA of hOGG1 was observed in either cell line. Western analysis revealed that relatively high, yet noncytotoxic, doses of hydrogen peroxide caused a consistent approximate 50% decrease in hOGG1 protein in lymphoblastoid cells. The lack of upregulation of hOGG1 suggests the gene is constitutively expressed, which is further supported by studies examining the sequence of its promoter region. However, hOGG1 protein turnover may be sensitive to intracellular redox changes.
Collapse
Affiliation(s)
- Pratibha Mistry
- Department of Biochemistry, University of Leicester, Leicester, UK
| | | |
Collapse
|
42
|
Shen GP, Galick H, Inoue M, Wallace SS. Decline of nuclear and mitochondrial oxidative base excision repair activity in late passage human diploid fibroblasts. DNA Repair (Amst) 2003; 2:673-93. [PMID: 12767347 DOI: 10.1016/s1568-7864(03)00006-5] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
There are numerous studies documenting the increase of oxidative DNA damage in the nuclei and mitochondria of senescing cells as well as in tissues of aging animals. Here, we show that in IMR 90 human diploid fibroblasts, DNA repair activity is robust in both nuclear and mitochondrial extracts, however, the levels of activity differed against the three substrates tested. In extracts, cleavage of the 8-oxoguanine substrate, and to a lesser extent the dihydrouracil-containing substrate, occurred in a concerted reaction between the DNA glycosylases and the second enzyme in the reaction, hAPE. Cleavage of both the furan and the dihydrouracil-containing substrates was unchanged when nuclear extracts from early and late passage cells were compared. However, cleavage of the 8-oxoguanine substrate was substantially reduced in the nuclear extracts from late passage cells and significantly reduced transcription from the hOGG1 gene was observed. When mitochondrial extracts were examined, activity on all three substrates was significantly reduced, with the reduction in hAPE activity being the most marked. The reduction in cleavage of the furan substrate was not simply due to inactive mitochondrial AP endonuclease but a substantially reduced amount of hAPE protein; transcription from the hAPE gene was also reduced. Confocal microscopic analysis confirmed that hAPE was present in the mitochondria of early passage cells but greatly reduced in the mitochondria of late passage cells. Cytoplasmic extracts from late passage fibroblasts also showed reduced activity with all three substrates suggesting that the residual hAPE, and activities that recognized dihydrouracil, were preferentially targeted to the nuclei. Taken together the data support the concept that the increase in oxidative damage in the mitochondrial DNA of senescing cells and tissues from aging animals is due to reduced base excision repair activity.
Collapse
Affiliation(s)
- Guang-Ping Shen
- Department of Microbiology and Molecular Genetics, The Markey Center for Molecular Genetics, The University of Vermont, 95 Carrigan Drive, Stafford Hall, Burlington, VT 05405-0068, USA
| | | | | | | |
Collapse
|
43
|
Prieto-Álamo MJ, Cabrera-Luque JM, Pueyo C. Absolute quantitation of normal and ROS-induced patterns of gene expression: an in vivo real-time PCR study in mice. Gene Expr 2003; 11:23-34. [PMID: 12691523 PMCID: PMC5991157 DOI: 10.3727/000000003783992315] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/16/2002] [Indexed: 11/24/2022]
Abstract
Most studies using real-time PCR are taken semiquantitatively and assume a steady level of expression forthe so-called housekeeping genes. By absolute real-time PCR we demonstrate that the transcript amounts of two of the most popular internall controls (coding GAPDH and beta-actin) fluctuate dramatically across diverse mouse or human tissues. This raises the question about the inaccuracy of these genes a squantitative references in tissue-specific mRNA profiling. Target genes chosen for absolute real-time PCR analysis are involved in DNA repair, regulation of gene expression, and oxidative stress response. Hence, they code for 8-oxoG-DNA glycosylase/AP-lyase, major AP-endonuclease, and heme oxygenase-1. Quantitations reported: i) determine mouse-to-mouse variability in basal gene expression, ii) establish organ- and embryo-associated differences in mouse, iii) compare mouse and human tissue-specific profiles, iv) examine the time course (30-240 min) expression in liver and lung of mice treated with paraquat (superoxide generator) at 30 mg kg(-1) (one half LD50 value), and v) explore the utility of absolute real-time PCR in field studies with genetically diverse mice. We conclusively establish that real-time PCR is a highly sensitive and reproducible technique for absolute quantitation of transcript levels in vivo and propose its use to quantitate gene expression modulation under mild physiological exposures and for field epidemiological studies.
Collapse
Affiliation(s)
- María-José Prieto-Álamo
- Departamento de Bioquímica y Biología Molecular, Campus de Rabanales edificio C-6, Carretera Madrid-Cádiz Km 396-a, Universidad de Córdoba, 14071-Córdoba, Spain
| | - Juan-Manuel Cabrera-Luque
- Departamento de Bioquímica y Biología Molecular, Campus de Rabanales edificio C-6, Carretera Madrid-Cádiz Km 396-a, Universidad de Córdoba, 14071-Córdoba, Spain
| | - Carmen Pueyo
- Departamento de Bioquímica y Biología Molecular, Campus de Rabanales edificio C-6, Carretera Madrid-Cádiz Km 396-a, Universidad de Córdoba, 14071-Córdoba, Spain
- Address correspondence to Carmen Pueyo, Departamento de Bioquímica y Biología Molecular, Campus de Rabanales edificio C-6, Carretera Madrid-Cádiz Km 396-a, Universidad de Córdoba, 14071-Córdoba, Spain. Tel: +34 957 218695; Fax: +34 957 218688; E-mail:
| |
Collapse
|
44
|
Harrison L, Malyarchuk S. Can DNA repair cause enhanced cell killing following treatment with ionizing radiation? PATHOPHYSIOLOGY : THE OFFICIAL JOURNAL OF THE INTERNATIONAL SOCIETY FOR PATHOPHYSIOLOGY 2002; 8:149-159. [PMID: 12039646 DOI: 10.1016/s0928-4680(01)00079-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Production of DNA damage is the basis of cancer treatments, such as chemotherapy and radiotherapy. The limitation of the treatment dose tends to be how well the normal cells within the body can tolerate the therapy. Although it is possible, to some extent, to localize the treatment area during radiotherapy by targeting the beam of ionizing radiation, chemotherapy usually involves a whole body treatment. In order to improve the effectiveness of treatments, it is important to understand how cells repair the DNA damage. This review will attempt to explain how DNA repair, which would be expected to always enhance cell survival, actually may result in increased cell killing following certain types of cancer treatments, such as ionizing radiation and bleomycin sulfate. Work is underway in many laboratories to unravel how the repair systems handle specific types of DNA damage. Such information will pave the way in designing adjuvant therapies that alter a tumor cell's DNA repair capacity and increase tumor cell killing.
Collapse
Affiliation(s)
- Lynn Harrison
- Department of Molecular and Cellular Physiology, Louisiana Health Sciences Center, 1501 Kings Highway, 71130, Shreveport, LA, USA
| | | |
Collapse
|
45
|
Tyrberg B, Anachkov KA, Dib SA, Wang-Rodriguez J, Yoon KH, Levine F. Islet expression of the DNA repair enzyme 8-oxoguanosine DNA glycosylase (Ogg1) in human type 2 diabetes. BMC Endocr Disord 2002; 2:2. [PMID: 12003641 PMCID: PMC111186 DOI: 10.1186/1472-6823-2-2] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2002] [Accepted: 04/25/2002] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND: It has become increasingly clear that beta-cell failure plays a critical role in the pathogenesis of type 2 diabetes. Free-radical mediated beta-cell damage has been intensively studied in type 1 diabetes, but not in human type 2 diabetes. Therefore, we studied the protein expression of the DNA repair enzyme Ogg1 in pancreases from type 2 diabetics. Ogg1 was studied because it is the major enzyme involved in repairing 7,8-dihydro-8-oxoguanosine DNA adducts, a lesion previously observed in a rat model of type 2 diabetes. Moreover, in a gene expression screen, Ogg1 was over-expressed in islets from a human type 2 diabetic. METHODS: Immunofluorescent staining of Ogg1 was performed on pancreatic specimens from healthy controls and patients with diabetes for 2-23 years. The intensity and islet area stained for Ogg1 was evaluated by semi-quantitative scoring. RESULTS: Both the intensity and the area of islet Ogg1 staining were significantly increased in islets from the type 2 diabetic subjects compared to the healthy controls. A correlation between increased Ogg1 fluorescent staining intensity and duration of diabetes was also found. Most of the staining observed was cytoplasmic, suggesting that mitochondrial Ogg1 accounts primarily for the increased Ogg1 expression. CONCLUSION: We conclude that oxidative stress related DNA damage may be a novel important factor in the pathogenesis of human type 2 diabetes. An increase of Ogg1 in islet cell mitochondria is consistent with a model in which hyperglycemia and consequent increased beta-cell oxidative metabolism lead to DNA damage and the induction of Ogg1 expression.
Collapse
Affiliation(s)
| | - Kamen A Anachkov
- Department of Pathology, Sector Anatomic Pathology, Military Medical Academy, Sofia, Bulgaria
| | - Sergio A Dib
- Brazil Division of Endocrinology, Department of Medicine, Universidade Federal de São Paulo, Escola Paulista de Medicina, São Paulo, SP, Brazil
| | | | - Kun-Ho Yoon
- Kangnam St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Fred Levine
- UCSD Cancer Center, La Jolla, CA 92037-0912, USA
| |
Collapse
|
46
|
Sokhansanj BA, Rodrigue GR, Fitch JP, Wilson DM. A quantitative model of human DNA base excision repair. I. Mechanistic insights. Nucleic Acids Res 2002; 30:1817-25. [PMID: 11937636 PMCID: PMC113225 DOI: 10.1093/nar/30.8.1817] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Base excision repair (BER) is a multistep process involving the sequential activity of several proteins that cope with spontaneous and environmentally induced mutagenic and cytotoxic DNA damage. Quantitative kinetic data on single proteins of BER have been used here to develop a mathematical model of the BER pathway. This model was then employed to evaluate mechanistic issues and to determine the sensitivity of pathway throughput to altered enzyme kinetics. Notably, the model predicts considerably less pathway throughput than observed in experimental in vitro assays. This finding, in combination with the effects of pathway cooperativity on model throughput, supports the hypothesis of cooperation during abasic site repair and between the apurinic/apyrimidinic (AP) endonuclease, Ape1, and the 8-oxoguanine DNA glycosylase, Ogg1. The quantitative model also predicts that for 8-oxoguanine and hydrolytic AP site damage, short-patch Polbeta-mediated BER dominates, with minimal switching to the long-patch subpathway. Sensitivity analysis of the model indicates that the Polbeta-catalyzed reactions have the most control over pathway throughput, although other BER reactions contribute to pathway efficiency as well. The studies within represent a first step in a developing effort to create a predictive model for BER cellular capacity.
Collapse
Affiliation(s)
- Bahrad A Sokhansanj
- Biology and Biotechnology Research Program, L-441, University of California, Lawrence Livermore National Laboratory, Livermore, CA 94551-9900, USA
| | | | | | | |
Collapse
|
47
|
Allinson SL, Dianova II, Dianov GL. DNA polymerase beta is the major dRP lyase involved in repair of oxidative base lesions in DNA by mammalian cell extracts. EMBO J 2001; 20:6919-26. [PMID: 11726527 PMCID: PMC125762 DOI: 10.1093/emboj/20.23.6919] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The repair of oxidative base lesions in DNA is a coordinated chain of reactions that includes removal of the damaged base, incision of the phosphodiester backbone at the abasic sugar residue, incorporation of an undamaged nucleotide and sealing of the DNA strand break. Although removal of a damaged base in mammalian cells is initiated primarily by a damage-specific DNA glycosylase, several lyases and DNA polymerases may contribute to the later stages of repair. DNA polymerase beta (Pol beta) was implicated recently as the major polymerase involved in repair of oxidative base lesions; however, the identity of the lyase participating in the repair of oxidative lesions is unclear. We studied the mechanism by which mammalian cell extracts process DNA substrates containing a single 8-oxoguanine or 5,6-dihydrouracil at a defined position. We find that, when repair synthesis proceeds through a Pol beta-dependent single nucleotide replacement mechanism, the 5'-deoxyribosephosphate lyase activity of Pol beta is essential for repair of both lesions.
Collapse
Affiliation(s)
| | | | - Grigory L. Dianov
- MRC Radiation and Genome Stability Unit, Harwell, Oxfordshire OX11 0RD, UK
Corresponding author e-mail:
| |
Collapse
|
48
|
Dianova II, Bohr VA, Dianov GL. Interaction of human AP endonuclease 1 with flap endonuclease 1 and proliferating cell nuclear antigen involved in long-patch base excision repair. Biochemistry 2001; 40:12639-44. [PMID: 11601988 DOI: 10.1021/bi011117i] [Citation(s) in RCA: 119] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
To understand the mechanism involved in the coordination of the sequential repair reactions that lead to long-patch BER, we have investigated interactions between proteins involved in this pathway. We find that human AP endonuclease 1 (APE1) physically interacts with flap endonuclease 1 (FEN1) and with proliferating cell nuclear antigen. An oligonucleotide substrate containing a reduced abasic site, which was pre-incised with APE1, was employed to reconstitute the excision step of long-patch BER with purified human DNA polymerase beta and FEN1. We demonstrate that addition of APE1 to the excision reaction mixture slightly (1.5-2-fold) stimulates the removal of the displaced flap by FEN1. These results suggest the possibility that long-patch BER is coordinated and directed by protein-protein interactions.
Collapse
Affiliation(s)
- I I Dianova
- MRC Radiation and Genome Stability Unit, Harwell, Oxfordshire OX11 0RD, UK
| | | | | |
Collapse
|