1
|
Kumar N, Theil AF, Roginskaya V, Ali Y, Calderon M, Watkins SC, Barnes RP, Opresko PL, Pines A, Lans H, Vermeulen W, Van Houten B. Global and transcription-coupled repair of 8-oxoG is initiated by nucleotide excision repair proteins. Nat Commun 2022; 13:974. [PMID: 35190564 PMCID: PMC8861037 DOI: 10.1038/s41467-022-28642-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 02/03/2022] [Indexed: 12/17/2022] Open
Abstract
UV-DDB, consisting of subunits DDB1 and DDB2, recognizes UV-induced photoproducts during global genome nucleotide excision repair (GG-NER). We recently demonstrated a noncanonical role of UV-DDB in stimulating base excision repair (BER) which raised several questions about the timing of UV-DDB arrival at 8-oxoguanine (8-oxoG), and the dependency of UV-DDB on the recruitment of downstream BER and NER proteins. Using two different approaches to introduce 8-oxoG in cells, we show that DDB2 is recruited to 8-oxoG immediately after damage and colocalizes with 8-oxoG glycosylase (OGG1) at sites of repair. 8-oxoG removal and OGG1 recruitment is significantly reduced in the absence of DDB2. NER proteins, XPA and XPC, also accumulate at 8-oxoG. While XPC recruitment is dependent on DDB2, XPA recruitment is DDB2-independent and transcription-coupled. Finally, DDB2 accumulation at 8-oxoG induces local chromatin unfolding. We propose that DDB2-mediated chromatin decompaction facilitates the recruitment of downstream BER proteins to 8-oxoG lesions. Nucleotide excision repair proteins are involved in the repair of UV-induced DNA damage. Here, the authors show that NER proteins, DDB2, XPC, and XPA play a vital role in the 8-oxoguanine repair by coordinating with base excision repair protein OGG1.
Collapse
|
2
|
Møller P, Wils RS, Di Ianni E, Gutierrez CAT, Roursgaard M, Jacobsen NR. Genotoxicity of multi-walled carbon nanotube reference materials in mammalian cells and animals. MUTATION RESEARCH. REVIEWS IN MUTATION RESEARCH 2021; 788:108393. [PMID: 34893158 DOI: 10.1016/j.mrrev.2021.108393] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 08/19/2021] [Accepted: 08/19/2021] [Indexed: 02/07/2023]
Abstract
Carbon nanotubes (CNTs) were the first nanomaterials to be evaluated by the International Agency for Research on Cancer (IARC). The categorization as possibly carcinogenic agent to humans was only applicable to multi-walled carbon nanotubes called MWCNT-7. Other types of CNTs were not classifiable because of missing data and it was not possible to pinpoint unique CNT characteristics that cause cancer. Importantly, the European Commission's Joint Research Centre (JRC) has established a repository of industrially manufactured nanomaterials that encompasses at least four well-characterized MWCNTs called NM-400 to NM-403 (original JRC code). This review summarizes the genotoxic effects of these JRC materials and MWCNT-7. The review consists of 36 publications with results on cell culture experiments (22 publications), animal models (9 publications) or both (5 publications). As compared to the publications in the IARC monograph on CNTs, the current database represents a significant increase as there is only an overlap of 8 publications. However, the results come mainly from cell cultures and/or measurements of DNA strand breaks by the comet assay and the micronucleus assay (82 out of 97 outcomes). A meta-analysis of cell culture studies on DNA strand breaks showed a genotoxic response by MWCNT-7, less consistent effect by NM-400 and NM-402, and least consistent effect by NM-401 and NM-403. Results from other in vitro tests indicate strongest evidence of genotoxicity for MWCNT-7. There are too few observations from animal models and humans to make general conclusions about genotoxicity.
Collapse
Affiliation(s)
- Peter Møller
- Department of Public Health, Section of Environmental Health, University of Copenhagen, Øster Farimagsgade 5A, DK-1014, Copenhagen K, Denmark.
| | - Regitze Sølling Wils
- Department of Public Health, Section of Environmental Health, University of Copenhagen, Øster Farimagsgade 5A, DK-1014, Copenhagen K, Denmark; The National Research Centre for the Working Environment, Lersø Parkalle 105, DK-2100, Copenhagen Ø, Denmark
| | - Emilio Di Ianni
- The National Research Centre for the Working Environment, Lersø Parkalle 105, DK-2100, Copenhagen Ø, Denmark
| | - Claudia Andrea Torero Gutierrez
- Department of Public Health, Section of Environmental Health, University of Copenhagen, Øster Farimagsgade 5A, DK-1014, Copenhagen K, Denmark; The National Research Centre for the Working Environment, Lersø Parkalle 105, DK-2100, Copenhagen Ø, Denmark
| | - Martin Roursgaard
- Department of Public Health, Section of Environmental Health, University of Copenhagen, Øster Farimagsgade 5A, DK-1014, Copenhagen K, Denmark
| | - Nicklas Raun Jacobsen
- The National Research Centre for the Working Environment, Lersø Parkalle 105, DK-2100, Copenhagen Ø, Denmark
| |
Collapse
|
3
|
Baptista MS, Cadet J, Greer A, Thomas AH. Photosensitization Reactions of Biomolecules: Definition, Targets and Mechanisms. Photochem Photobiol 2021; 97:1456-1483. [PMID: 34133762 DOI: 10.1111/php.13470] [Citation(s) in RCA: 85] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 06/13/2021] [Indexed: 02/07/2023]
Abstract
Photosensitization reactions have been demonstrated to be largely responsible for the deleterious biological effects of UV and visible radiation, as well as for the curative actions of photomedicine. A large number of endogenous and exogenous photosensitizers, biological targets and mechanisms have been reported in the past few decades. Evolving from the original definitions of the type I and type II photosensitized oxidations, we now provide physicochemical frameworks, classifications and key examples of these mechanisms in order to organize, interpret and understand the vast information available in the literature and the new reports, which are in vigorous growth. This review surveys in an extended manner all identified photosensitization mechanisms of the major biomolecule groups such as nucleic acids, proteins, lipids bridging the gap with the subsequent biological processes. Also described are the effects of photosensitization in cells in which UVA and UVB irradiation triggers enzyme activation with the subsequent delayed generation of superoxide anion radical and nitric oxide. Definitions of photosensitized reactions are identified in biomolecules with key insights into cells and tissues.
Collapse
Affiliation(s)
| | - Jean Cadet
- Département de Médecine Nucléaire et de Radiobiologie, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Alexander Greer
- Department of Chemistry, Brooklyn College, Brooklyn, NY, USA.,Ph.D. Program in Chemistry, The Graduate Center of the City University of New York, New York, NY, USA
| | - Andrés H Thomas
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de La Plata (UNLP), CCT La Plata-CONICET, La Plata, Argentina
| |
Collapse
|
4
|
Di Mascio P, Martinez GR, Miyamoto S, Ronsein GE, Medeiros MHG, Cadet J. Singlet Molecular Oxygen Reactions with Nucleic Acids, Lipids, and Proteins. Chem Rev 2019; 119:2043-2086. [DOI: 10.1021/acs.chemrev.8b00554] [Citation(s) in RCA: 253] [Impact Index Per Article: 42.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Paolo Di Mascio
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, CP 26077, CEP 05508-000, São Paulo, SP Brazil
| | - Glaucia R. Martinez
- Departamento de Bioquímica e Biologia Molecular, Setor de Ciências Biológicas, Universidade Federal do Paraná, 81531-990 Curitiba, PR, Brazil
| | - Sayuri Miyamoto
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, CP 26077, CEP 05508-000, São Paulo, SP Brazil
| | - Graziella E. Ronsein
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, CP 26077, CEP 05508-000, São Paulo, SP Brazil
| | - Marisa H. G. Medeiros
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, CP 26077, CEP 05508-000, São Paulo, SP Brazil
| | - Jean Cadet
- Département de Médecine Nucléaire et Radiobiologie, Faculté de Médecine des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, J1H 5N4 Québec, Canada
| |
Collapse
|
5
|
Cadet J, Douki T. Formation of UV-induced DNA damage contributing to skin cancer development. Photochem Photobiol Sci 2018; 17:1816-1841. [PMID: 29405222 DOI: 10.1039/c7pp00395a] [Citation(s) in RCA: 235] [Impact Index Per Article: 33.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
UV-induced DNA damage plays a key role in the initiation phase of skin cancer. When left unrepaired or when damaged cells are not eliminated by apoptosis, DNA lesions express their mutagneic properties, leading to the activation of proto-oncogene or the inactivation of tumor suppression genes. The chemical nature and the amount of DNA damage strongly depend on the wavelength of the incident photons. The most energetic part of the solar spectrum at the Earth's surface (UVB, 280-320 nm) leads to the formation of cyclobutane pyrimidine dimers (CPDs) and pyrimidine (6-4) pyrimidone photoproducts (64PPs). Less energetic but 20-times more intense UVA (320-400 nm) also induces the formation of CPDs together with a wide variety of oxidatively generated lesions such as single strand breaks and oxidized bases. Among those, 8-oxo-7,8-dihydroguanine (8-oxoGua) is the most frequent since it can be produced by several mechanisms. Data available on the respective yield of DNA photoproducts in cells and skin show that exposure to sunlight mostly induces pyrimidine dimers, which explains the mutational signature found in skin tumors, with lower amounts of 8-oxoGua and strand breaks. The present review aims at describing the basic photochemistry of DNA and discussing the quantitative formation of the different UV-induced DNA lesions reported in the literature. Additional information on mutagenesis, repair and photoprotection is briefly provided.
Collapse
Affiliation(s)
- Jean Cadet
- Département de Médecine Nucléaire et Radiobiologie, Faculté de Médecine, 3001 12e Avenue Nord, Université de Sherbrooke, Sherbrooke, Québec JIH 5N4, Canada.
| | | |
Collapse
|
6
|
Hansen SH, Pawlowicz AJ, Kronberg L, Gützkow KB, Olsen AK, Brunborg G. Using the comet assay and lysis conditions to characterize DNA lesions from the acrylamide metabolite glycidamide. Mutagenesis 2018; 33:31-39. [PMID: 29240951 DOI: 10.1093/mutage/gex036] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The alkaline comet assay and a cell-free system were used to characterise DNA lesions induced by treatment with glycidamide (GA), a metabolite of the food contaminant acrylamide. DNA lesions induced by GA were sensitively detected when the formamidopyrimidine-DNA-glycosylase (Fpg) enzyme was included in the comet assay. We used LC-MS to characterise modified bases from GA-treated naked DNA with and without subsequent Fpg treatment. N7-GA-Guanine and N3-GA-Adenine aglycons were detected in the supernatant showing some depurination of adducted bases; treatment of naked DNA with Fpg revealed no further increase in the adduct yield nor occurrence of other adducted nucleobases. We treated human lymphocytes with GA and found large differences in DNA lesion levels detected with Fpg, depending on the duration and the pH of the lysis step. These lysis-dependent variations in GA-induced Fpg sensitive sites paralleled those observed after treatment of cells with methyl methane sulfonate (MMS). On the other hand, oxidative lesions (8-oxoGuanine) induced by a photoactive compound (Ro 12-9786) plus light, and also DNA strand breaks induced by X-rays, were detected largely independently of the lysis conditions. The results suggest that the GA-induced lesions are predominantly N7-GA-dG adducts slowly undergoing imidazole ring opening at pH 10 as in the standard lysis procedure; such structures are substrate for Fpg leading to strand breaks. The data suggest that the characteristic alkaline lysis dependence of some DNA lesions may be used to study specific types of DNA modifications. The comet assay is increasingly used in regulatory testing of chemicals; in this context, lysis-dependent variations represent a novel approach to obtain insight in the molecular nature of a genotoxic insult.
Collapse
Affiliation(s)
- Siri Helland Hansen
- Department of Molecular Biology, Norwegian Institute of Public Health, Oslo, Norway
| | | | - Leif Kronberg
- Laboratory of Organic Chemistry, Åbo Akademi University, Turku, Finland
| | - Kristine Bjerve Gützkow
- Department of Molecular Biology, Norwegian Institute of Public Health, Oslo, Norway.,Centre for Environmental Radioactivity (CERAD CoE), Ås, Norway
| | - Ann-Karin Olsen
- Department of Molecular Biology, Norwegian Institute of Public Health, Oslo, Norway.,Centre for Environmental Radioactivity (CERAD CoE), Ås, Norway
| | - Gunnar Brunborg
- Department of Molecular Biology, Norwegian Institute of Public Health, Oslo, Norway.,Centre for Environmental Radioactivity (CERAD CoE), Ås, Norway
| |
Collapse
|
7
|
Enciso JM, Gutzkow KB, Brunborg G, Olsen AK, López de Cerain A, Azqueta A. Standardisation of the in vitro comet assay: influence of lysis time and lysis solution composition on the detection of DNA damage induced by X-rays. Mutagenesis 2018; 33:25-30. [DOI: 10.1093/mutage/gex039] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Accepted: 11/23/2017] [Indexed: 11/14/2022] Open
Affiliation(s)
- José M Enciso
- Department of Pharmacology and Toxicology, University of Navarra, and IdiSNA, Navarra Institute for Health Research, Pamplona, Spain
| | - Kristine B Gutzkow
- Department of Molecular Biology, Norwegian Institute of Public Health, Oslo, Norway
- Centre for Environmental Radioactivity (CoE CERAD), Norway
| | - Gunnar Brunborg
- Department of Molecular Biology, Norwegian Institute of Public Health, Oslo, Norway
- Centre for Environmental Radioactivity (CoE CERAD), Norway
| | - Ann-Karin Olsen
- Department of Molecular Biology, Norwegian Institute of Public Health, Oslo, Norway
- Centre for Environmental Radioactivity (CoE CERAD), Norway
| | - Adela López de Cerain
- Department of Pharmacology and Toxicology, University of Navarra, and IdiSNA, Navarra Institute for Health Research, Pamplona, Spain
| | - Amaya Azqueta
- Department of Pharmacology and Toxicology, University of Navarra, and IdiSNA, Navarra Institute for Health Research, Pamplona, Spain
| |
Collapse
|
8
|
Møller P, Jantzen K, Løhr M, Andersen MH, Jensen DM, Roursgaard M, Danielsen PH, Jensen A, Loft S. Searching for assay controls for the Fpg- and hOGG1-modified comet assay. Mutagenesis 2017; 33:9-19. [DOI: 10.1093/mutage/gex015] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Accepted: 09/05/2017] [Indexed: 11/14/2022] Open
Affiliation(s)
- Peter Møller
- Department of Public Health, Section of Environmental Health, University of Copenhagen, Øster Farimagsgade, Copenhagen K, Denmark
| | - Kim Jantzen
- Department of Public Health, Section of Environmental Health, University of Copenhagen, Øster Farimagsgade, Copenhagen K, Denmark
| | - Mille Løhr
- Department of Public Health, Section of Environmental Health, University of Copenhagen, Øster Farimagsgade, Copenhagen K, Denmark
| | - Maria Helena Andersen
- Department of Public Health, Section of Environmental Health, University of Copenhagen, Øster Farimagsgade, Copenhagen K, Denmark
| | - Ditte Marie Jensen
- Department of Public Health, Section of Environmental Health, University of Copenhagen, Øster Farimagsgade, Copenhagen K, Denmark
| | - Martin Roursgaard
- Department of Public Health, Section of Environmental Health, University of Copenhagen, Øster Farimagsgade, Copenhagen K, Denmark
| | - Pernille Høgh Danielsen
- Department of Public Health, Section of Environmental Health, University of Copenhagen, Øster Farimagsgade, Copenhagen K, Denmark
| | - Annie Jensen
- Department of Public Health, Section of Environmental Health, University of Copenhagen, Øster Farimagsgade, Copenhagen K, Denmark
| | - Steffen Loft
- Department of Public Health, Section of Environmental Health, University of Copenhagen, Øster Farimagsgade, Copenhagen K, Denmark
| |
Collapse
|
9
|
Borghini A, Roursgaard M, Andreassi MG, Kermanizadeh A, Møller P. Repair activity of oxidatively damaged DNA and telomere length in human lung epithelial cells after exposure to multi-walled carbon nanotubes. Mutagenesis 2016; 32:173-180. [PMID: 27530331 DOI: 10.1093/mutage/gew036] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
One type of carbon nanotubes (CNTs) (MWCNT-7, from Mitsui) has been classified as probably carcinogenic to humans, however insufficient data does not warrant the same classification for other types of CNTs. Experimental data indicate that CNT exposure can result in oxidative stress and DNA damage in cultured cells, whereas these materials appear to induce low or no mutagenicity. Therefore, the present study aimed to investigate whether in vitro exposure of cultured airway epithelial cells (A549) to multi-walled CNTs (MWCNTs) could increase the DNA repair activity of oxidatively damaged DNA and drive the cells toward replicative senescence, assessed by attrition of telomeres. To investigate this, H2O2 and KBrO3 were used to induce DNA damage in the cells and the effect of pre-exposure to MWCNT tested for a change in repair activity inside the cells or in the extract of treated cells. The effect of MWCNT exposure on telomere length was investigated for concentration and time response. We report a significantly increased repair activity in A549 cells exposed to MWCNTs compared to non-exposed cells, suggesting that DNA repair activity may be influenced by exposure to MWCNTs. The telomere length was decreased at times longer than 24h, but this decrease was not concentration dependent. The results suggest that the seemingly low mutagenicity of CNTs in cultured cells may be associated with an increased DNA repair activity and a replicative senescence, which may counteract the manifestation of DNA lesions to mutations.
Collapse
Affiliation(s)
- Andrea Borghini
- Genetics Unit, CNR Institute of Clinical Physiology, Via G. Moruzzi 1, 56124 Pisa, Pisa, Italy.,Department of Public Health, Section of Environmental Health, University of Copenhagen, Øster Farimagsgade 5A, DK-1014 Copenhagen, Denmark
| | - Martin Roursgaard
- Department of Public Health, Section of Environmental Health, University of Copenhagen, Øster Farimagsgade 5A, DK-1014 Copenhagen, Denmark
| | - Maria Grazia Andreassi
- Genetics Unit, CNR Institute of Clinical Physiology, Via G. Moruzzi 1, 56124 Pisa, Pisa, Italy
| | - Ali Kermanizadeh
- Department of Public Health, Section of Environmental Health, University of Copenhagen, Øster Farimagsgade 5A, DK-1014 Copenhagen, Denmark
| | - Peter Møller
- Department of Public Health, Section of Environmental Health, University of Copenhagen, Øster Farimagsgade 5A, DK-1014 Copenhagen, Denmark
| |
Collapse
|
10
|
Comet assay: an essential tool in toxicological research. Arch Toxicol 2016; 90:2315-36. [DOI: 10.1007/s00204-016-1767-y] [Citation(s) in RCA: 81] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Accepted: 06/14/2016] [Indexed: 01/02/2023]
|
11
|
Ranes M, Boeing S, Wang Y, Wienholz F, Menoni H, Walker J, Encheva V, Chakravarty P, Mari PO, Stewart A, Giglia-Mari G, Snijders AP, Vermeulen W, Svejstrup JQ. A ubiquitylation site in Cockayne syndrome B required for repair of oxidative DNA damage, but not for transcription-coupled nucleotide excision repair. Nucleic Acids Res 2016; 44:5246-55. [PMID: 27060134 PMCID: PMC4914099 DOI: 10.1093/nar/gkw216] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Revised: 02/11/2016] [Accepted: 03/18/2016] [Indexed: 12/23/2022] Open
Abstract
Cockayne syndrome B (CSB), best known for its role in transcription-coupled nucleotide excision repair (TC-NER), contains a ubiquitin-binding domain (UBD), but the functional connection between protein ubiquitylation and this UBD remains unclear. Here, we show that CSB is regulated via site-specific ubiquitylation. Mass spectrometry analysis of CSB identified lysine (K) 991 as a ubiquitylation site. Intriguingly, mutation of this residue (K991R) does not affect CSB's catalytic activity or protein stability, but greatly affects genome stability, even in the absence of induced DNA damage. Moreover, cells expressing CSB K991R are sensitive to oxidative DNA damage, but proficient for TC-NER. K991 becomes ubiquitylated upon oxidative DNA damage, and while CSB K991R is recruited normally to such damage, it fails to dissociate in a timely manner, suggesting a requirement for K991 ubiquitylation in CSB activation. Interestingly, deletion of CSB's UBD gives rise to oxidative damage sensitivity as well, while CSB ΔUBD and CSB K991R affects expression of overlapping groups of genes, further indicating a functional connection. Together, these results shed new light on the regulation of CSB, with K991R representing an important separation-of-function-mutation in this multi-functional protein.
Collapse
Affiliation(s)
- Michael Ranes
- Mechanisms of Transcription Laboratory, The Francis Crick Institute, Clare Hall Laboratories, South Mimms EN6 3LD, UK
| | - Stefan Boeing
- Mechanisms of Transcription Laboratory, The Francis Crick Institute, Clare Hall Laboratories, South Mimms EN6 3LD, UK
| | - Yuming Wang
- Mechanisms of Transcription Laboratory, The Francis Crick Institute, Clare Hall Laboratories, South Mimms EN6 3LD, UK
| | - Franziska Wienholz
- Department of Genetics, Cancer Genomics Netherlands, Erasmus MC, P.O. Box 2040, 3000 CA Rotterdam, Netherlands
| | - Hervé Menoni
- Department of Genetics, Cancer Genomics Netherlands, Erasmus MC, P.O. Box 2040, 3000 CA Rotterdam, Netherlands
| | - Jane Walker
- Mechanisms of Transcription Laboratory, The Francis Crick Institute, Clare Hall Laboratories, South Mimms EN6 3LD, UK
| | - Vesela Encheva
- Protein Analysis and Proteomics Laboratory, The Francis Crick Institute, Clare Hall Laboratories, South Mimms EN6 3LD, UK
| | - Probir Chakravarty
- Bioinformatics & Biostatistics Laboratory, The Francis Crick Institute, 44 Lincoln's Inn Fields, London WC2A 3LY, UK
| | - Pierre-Olivier Mari
- Institut de Pharmacologie et de Biologie Structurale, Centre National de la Recherche Scientifique, F-31077 Toulouse, France
| | - Aengus Stewart
- Bioinformatics & Biostatistics Laboratory, The Francis Crick Institute, 44 Lincoln's Inn Fields, London WC2A 3LY, UK
| | - Giuseppina Giglia-Mari
- Institut de Pharmacologie et de Biologie Structurale, Centre National de la Recherche Scientifique, F-31077 Toulouse, France
| | - Ambrosius P Snijders
- Protein Analysis and Proteomics Laboratory, The Francis Crick Institute, Clare Hall Laboratories, South Mimms EN6 3LD, UK
| | - Wim Vermeulen
- Department of Genetics, Cancer Genomics Netherlands, Erasmus MC, P.O. Box 2040, 3000 CA Rotterdam, Netherlands
| | - Jesper Q Svejstrup
- Mechanisms of Transcription Laboratory, The Francis Crick Institute, Clare Hall Laboratories, South Mimms EN6 3LD, UK
| |
Collapse
|
12
|
Castillo DS, Campalans A, Belluscio LM, Carcagno AL, Radicella JP, Cánepa ET, Pregi N. E2F1 and E2F2 induction in response to DNA damage preserves genomic stability in neuronal cells. Cell Cycle 2016; 14:1300-14. [PMID: 25892555 DOI: 10.4161/15384101.2014.985031] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
E2F transcription factors regulate a wide range of biological processes, including the cellular response to DNA damage. In the present study, we examined whether E2F family members are transcriptionally induced following treatment with several genotoxic agents, and have a role on the cell DNA damage response. We show a novel mechanism, conserved among diverse species, in which E2F1 and E2F2, the latter specifically in neuronal cells, are transcriptionally induced after DNA damage. This upregulation leads to increased E2F1 and E2F2 protein levels as a consequence of de novo protein synthesis. Ectopic expression of these E2Fs in neuronal cells reduces the level of DNA damage following genotoxic treatment, while ablation of E2F1 and E2F2 leads to the accumulation of DNA lesions and increased apoptotic response. Cell viability and DNA repair capability in response to DNA damage induction are also reduced by the E2F1 and E2F2 deficiencies. Finally, E2F1 and E2F2 accumulate at sites of oxidative and UV-induced DNA damage, and interact with γH2AX DNA repair factor. As previously reported for E2F1, E2F2 promotes Rad51 foci formation, interacts with GCN5 acetyltransferase and induces histone acetylation following genotoxic insult. The results presented here unveil a new mechanism involving E2F1 and E2F2 in the maintenance of genomic stability in response to DNA damage in neuronal cells.
Collapse
Affiliation(s)
- Daniela S Castillo
- a Laboratorio de Biología Molecular; Departamento de Química Biológica; Facultad de Ciencias Exactas y Naturales ; Universidad de Buenos Aires ; Ciudad de Buenos Aires , Argentina
| | | | | | | | | | | | | |
Collapse
|
13
|
Micro-irradiation tools to visualize base excision repair and single-strand break repair. DNA Repair (Amst) 2015; 31:52-63. [PMID: 25996408 DOI: 10.1016/j.dnarep.2015.05.001] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Revised: 04/30/2015] [Accepted: 05/02/2015] [Indexed: 12/30/2022]
Abstract
Microscopy and micro-irradiation imaging techniques have significantly advanced our knowledge of DNA damage tolerance and the assembly of DNA repair proteins at the sites of damage. While these tools have been extensively applied to the study of nucleotide excision repair and double-strand break repair, their application to the repair of oxidatively-induced base lesions and single-strand breaks is just beginning to yield new insights. This review will focus on examining micro-irradiation techniques reported to create base lesions and single-strand breaks; these lesions are considered to be primarily addressed by proteins involved in the base excision repair (BER) pathway. By examining conditions for generating these DNA lesions and reviewing information on the assembly and dissociation of repair complexes at the induced lesion sites, we hope to promote further investigations into BER and to stimulate further development and enhancement of these techniques for the study of BER.
Collapse
|
14
|
Reynolds P, Cooper S, Lomax M, O'Neill P. Disruption of PARP1 function inhibits base excision repair of a sub-set of DNA lesions. Nucleic Acids Res 2015; 43:4028-38. [PMID: 25813046 PMCID: PMC4417162 DOI: 10.1093/nar/gkv250] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2015] [Accepted: 03/11/2015] [Indexed: 01/18/2023] Open
Abstract
The repair of endogenously induced DNA damage is essential to maintain genomic integrity. It has been shown that XRCC1 and PARP1 are involved in the repair of base lesions and SSBs, although the exact mode of action has yet to be determined. Here we show that XRCC1 is involved in the repair of base lesions and SSBs independent of the cell cycle. However, the rate of repair of damage requiring XRCC1 does reflect the damage complexity. The repair of induced DNA damage occurs by PARP1-dependent and PARP1-independent sub-pathways of BER. It is suggested that the repair of SSBs and purine base damage is by a sub-pathway of BER that requires both XRCC1 and PARP1. Repair of pyrimidine base damage may require XRCC1 but does not require PARP1 activity. Therefore, although BER of simple lesions occurs rapidly, pathway choice and the involvement of PARP1 are highly dependent on the types of lesion induced.
Collapse
Affiliation(s)
- Pamela Reynolds
- Cancer Research UK/Medical Research Council Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford, OX3 7DQ, UK
| | - Sarah Cooper
- Cancer Research UK/Medical Research Council Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford, OX3 7DQ, UK
| | - Martine Lomax
- Cancer Research UK/Medical Research Council Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford, OX3 7DQ, UK
| | - Peter O'Neill
- Cancer Research UK/Medical Research Council Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford, OX3 7DQ, UK
| |
Collapse
|
15
|
Almeida I, Pinto A, Monteiro C, Monteiro H, Belo L, Fernandes J, Bento A, Duarte T, Garrido J, Bahia M, Sousa Lobo J, Costa P. Protective effect of C. sativa leaf extract against UV mediated-DNA damage in a human keratinocyte cell line. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2015; 144:28-34. [DOI: 10.1016/j.jphotobiol.2015.01.010] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2014] [Revised: 01/05/2015] [Accepted: 01/19/2015] [Indexed: 11/30/2022]
|
16
|
Godschalk RWL, Ersson C, Stępnik M, Ferlińska M, Palus J, Teixeira JP, Costa S, Jones GDD, Higgins JA, Kain J, Möller L, Forchhammer L, Loft S, Lorenzo Y, Collins AR, van Schooten FJ, Laffon B, Valdiglesias V, Cooke M, Mistry V, Karbaschi M, Phillips DH, Sozeri O, Routledge MN, Nelson-Smith K, Riso P, Porrini M, López de Cerain A, Azqueta A, Matullo G, Allione A, Møller P. Variation of DNA damage levels in peripheral blood mononuclear cells isolated in different laboratories. Mutagenesis 2014; 29:241-9. [PMID: 24737269 DOI: 10.1093/mutage/geu012] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2024] Open
Abstract
This study investigated the levels of DNA strand breaks and formamidopyrimidine DNA glycosylase (FPG) sensitive sites, as assessed by the comet assay, in peripheral blood mononuclear cells (PBMC) from healthy women from five different countries in Europe. The laboratory in each country (referred to as 'centre') collected and cryopreserved PBMC samples from three donors, using a standardised cell isolation protocol. The samples were analysed in 13 different laboratories for DNA damage, which is measured by the comet assay. The study aim was to assess variation in DNA damage in PBMC samples that were collected in the same way and processed using the same blood isolation procedure. The inter-laboratory variation was the prominent contributor to the overall variation. The inter-laboratory coefficient of variation decreased for both DNA strand breaks (from 68 to 26%) and FPG sensitive sites (from 57 to 12%) by standardisation of the primary comet assay endpoint with calibration curve samples. The level of DNA strand breaks in the samples from two of the centres (0.56-0.61 lesions/10(6) bp) was significantly higher compared with the other three centres (0.41-0.45 lesions/10(6) bp). In contrast, there was no difference between the levels of FPG sensitive sites in PBMC samples from healthy donors in the different centres (0.41-0.52 lesion/10(6) bp).
Collapse
Affiliation(s)
- Roger W L Godschalk
- Department of Toxicology, Maastricht University, Universiteitssingel 50, Maastricht, Limburg 6200MD, the Netherlands, Department of Biosciences and Nutrition, Karolinska Institutet, Hälsovägen 7-9, Huddinge 14183, Stockholm, Sweden, Toxicology and Carcinogenesis Department, Nofer Institute of Occupational Medicine, 91-348 Łódź, Poland, Environmental Health Department, National Institute of Health, Rua Alexandre Herculano 321, Porto 4000-055, Portugal, Department of Cancer Studies and Molecular Medicine, University of Leicester, Robert Kilpatrick Clinical Sciences Building, Leicester Royal Infirmary, Leicester LE2 7LX, UK, Department of Public Health, University of Copenhagen, Section of Environmental Health, Øster Farimagsgade 5, Copenhagen K 1014, Denmark, Department of Nutrition, Faculty of Medicine, University of Oslo, PB1046 Blindern, Oslo 0316, Norway, DICOMOSA Group, Department of Psychology, Area of Psychobiology, Edificio de Servicios Centrales de Investigación, Universidade da Coruña, Campus Elviña s/n, 15071-A, Coruña, Spain, Unit of Clinical and Molecular Epidemiology, IRCCS San Raffaele Pisana, Via di Val Cannuta, 247, 00166, Rome, Italy, Oxidative Stress Group, Department Cancer Studies and Molecular Medicine, University of Leicester, Leicester LE2 7LX, UK, Analytical and Environmental Sciences Division, School of Biomedical Sciences, King's College London, Franklin-Wilkins Building, 150 Stamford Street, London SE1 9NH, UK, Leeds Institute of Genetics, Health and Therapeutics, University of Leeds, Leeds LS2 9JT, UK, Department of Food Science and Microbiology, Division of Human Nutrition, University of Milan, via Celoria 2, Milan 20133, Italy, Department Food Sciences and Toxicology, University of Navarra, C/ Irunlarrea 1, Pamplona 31008, Spain, Department of Medical Sciences, Via Santena 19, University of Turin, Turin 10126, Italy, Human Genetics Foundation (HuGeF), Via Nizza 52,Turin 10126, Italy
| | - Clara Ersson
- Department of Biosciences and Nutrition, Karolinska Institutet, Hälsovägen 7-9, Huddinge 14183, Stockholm, Sweden
| | - Maciej Stępnik
- Toxicology and Carcinogenesis Department, Nofer Institute of Occupational Medicine, 91-348 Łódź, Poland
| | - Magdalena Ferlińska
- Toxicology and Carcinogenesis Department, Nofer Institute of Occupational Medicine, 91-348 Łódź, Poland
| | - Jadwiga Palus
- Toxicology and Carcinogenesis Department, Nofer Institute of Occupational Medicine, 91-348 Łódź, Poland
| | - João Paulo Teixeira
- Environmental Health Department, National Institute of Health, Rua Alexandre Herculano 321, Porto 4000-055, Portugal
| | - Solange Costa
- Toxicology and Carcinogenesis Department, Nofer Institute of Occupational Medicine, 91-348 Łódź, Poland
| | - George D D Jones
- Department of Cancer Studies and Molecular Medicine, University of Leicester, Robert Kilpatrick Clinical Sciences Building, Leicester Royal Infirmary, Leicester LE2 7LX, UK
| | - Jennifer A Higgins
- Department of Cancer Studies and Molecular Medicine, University of Leicester, Robert Kilpatrick Clinical Sciences Building, Leicester Royal Infirmary, Leicester LE2 7LX, UK
| | - Johanna Kain
- Department of Biosciences and Nutrition, Karolinska Institutet, Hälsovägen 7-9, Huddinge 14183, Stockholm, Sweden
| | - Lennart Möller
- Department of Biosciences and Nutrition, Karolinska Institutet, Hälsovägen 7-9, Huddinge 14183, Stockholm, Sweden
| | - Lykke Forchhammer
- Department of Public Health, University of Copenhagen, Section of Environmental Health, Øster Farimagsgade 5, Copenhagen K 1014, Denmark
| | - Steffen Loft
- Department of Public Health, University of Copenhagen, Section of Environmental Health, Øster Farimagsgade 5, Copenhagen K 1014, Denmark
| | - Yolanda Lorenzo
- Department of Nutrition, Faculty of Medicine, University of Oslo, PB1046 Blindern, Oslo 0316, Norway
| | - Andrew R Collins
- Department of Nutrition, Faculty of Medicine, University of Oslo, PB1046 Blindern, Oslo 0316, Norway
| | - Frederik-Jan van Schooten
- Department of Toxicology, Maastricht University, Universiteitssingel 50, Maastricht, Limburg 6200MD, the Netherlands, Department of Biosciences and Nutrition, Karolinska Institutet, Hälsovägen 7-9, Huddinge 14183, Stockholm, Sweden, Toxicology and Carcinogenesis Department, Nofer Institute of Occupational Medicine, 91-348 Łódź, Poland, Environmental Health Department, National Institute of Health, Rua Alexandre Herculano 321, Porto 4000-055, Portugal, Department of Cancer Studies and Molecular Medicine, University of Leicester, Robert Kilpatrick Clinical Sciences Building, Leicester Royal Infirmary, Leicester LE2 7LX, UK, Department of Public Health, University of Copenhagen, Section of Environmental Health, Øster Farimagsgade 5, Copenhagen K 1014, Denmark, Department of Nutrition, Faculty of Medicine, University of Oslo, PB1046 Blindern, Oslo 0316, Norway, DICOMOSA Group, Department of Psychology, Area of Psychobiology, Edificio de Servicios Centrales de Investigación, Universidade da Coruña, Campus Elviña s/n, 15071-A, Coruña, Spain, Unit of Clinical and Molecular Epidemiology, IRCCS San Raffaele Pisana, Via di Val Cannuta, 247, 00166, Rome, Italy, Oxidative Stress Group, Department Cancer Studies and Molecular Medicine, University of Leicester, Leicester LE2 7LX, UK, Analytical and Environmental Sciences Division, School of Biomedical Sciences, King's College London, Franklin-Wilkins Building, 150 Stamford Street, London SE1 9NH, UK, Leeds Institute of Genetics, Health and Therapeutics, University of Leeds, Leeds LS2 9JT, UK, Department of Food Science and Microbiology, Division of Human Nutrition, University of Milan, via Celoria 2, Milan 20133, Italy, Department Food Sciences and Toxicology, University of Navarra, C/ Irunlarrea 1, Pamplona 31008, Spain, Department of Medical Sciences, Via Santena 19, University of Turin, Turin 10126, Italy, Human Genetics Foundation (HuGeF), Via Nizza 52,Turin 10126, Italy
| | - Blanca Laffon
- DICOMOSA Group, Department of Psychology, Area of Psychobiology, Edificio de Servicios Centrales de Investigación, Universidade da Coruña, Campus Elviña s/n, 15071-A, Coruña, Spain
| | - Vanessa Valdiglesias
- DICOMOSA Group, Department of Psychology, Area of Psychobiology, Edificio de Servicios Centrales de Investigación, Universidade da Coruña, Campus Elviña s/n, 15071-A, Coruña, Spain, Unit of Clinical and Molecular Epidemiology, IRCCS San Raffaele Pisana, Via di Val Cannuta, 247, 00166, Rome, Italy
| | - Marcus Cooke
- Oxidative Stress Group, Department Cancer Studies and Molecular Medicine, University of Leicester, Leicester LE2 7LX, UK
| | - Vilas Mistry
- Oxidative Stress Group, Department Cancer Studies and Molecular Medicine, University of Leicester, Leicester LE2 7LX, UK
| | - Mahsa Karbaschi
- Oxidative Stress Group, Department Cancer Studies and Molecular Medicine, University of Leicester, Leicester LE2 7LX, UK
| | - David H Phillips
- Analytical and Environmental Sciences Division, School of Biomedical Sciences, King's College London, Franklin-Wilkins Building, 150 Stamford Street, London SE1 9NH, UK
| | - Osman Sozeri
- Analytical and Environmental Sciences Division, School of Biomedical Sciences, King's College London, Franklin-Wilkins Building, 150 Stamford Street, London SE1 9NH, UK
| | - Michael N Routledge
- Leeds Institute of Genetics, Health and Therapeutics, University of Leeds, Leeds LS2 9JT, UK
| | - Kirsty Nelson-Smith
- Leeds Institute of Genetics, Health and Therapeutics, University of Leeds, Leeds LS2 9JT, UK
| | - Patrizia Riso
- Department of Food Science and Microbiology, Division of Human Nutrition, University of Milan, via Celoria 2, Milan 20133, Italy
| | - Marisa Porrini
- Department of Food Science and Microbiology, Division of Human Nutrition, University of Milan, via Celoria 2, Milan 20133, Italy
| | - Adela López de Cerain
- Department Food Sciences and Toxicology, University of Navarra, C/ Irunlarrea 1, Pamplona 31008, Spain
| | - Amaya Azqueta
- Department of Nutrition, Faculty of Medicine, University of Oslo, PB1046 Blindern, Oslo 0316, Norway, Department Food Sciences and Toxicology, University of Navarra, C/ Irunlarrea 1, Pamplona 31008, Spain
| | - Giuseppe Matullo
- Department of Medical Sciences, Via Santena 19, University of Turin, Turin 10126, Italy, Human Genetics Foundation (HuGeF), Via Nizza 52,Turin 10126, Italy
| | | | - Peter Møller
- Department of Biosciences and Nutrition, Karolinska Institutet, Hälsovägen 7-9, Huddinge 14183, Stockholm, Sweden,
| |
Collapse
|
17
|
Moritz E, Pauly K, Bravard A, Hall J, Radicella J, Epe B. hOGG1-Cys326 variant cells are hypersensitive to DNA repair inhibition by nitric oxide. Carcinogenesis 2014; 35:1426-33. [DOI: 10.1093/carcin/bgu066] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
18
|
Measuring oxidative damage to DNA and its repair with the comet assay. Biochim Biophys Acta Gen Subj 2014; 1840:794-800. [DOI: 10.1016/j.bbagen.2013.04.022] [Citation(s) in RCA: 212] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2013] [Revised: 04/11/2013] [Accepted: 04/16/2013] [Indexed: 11/22/2022]
|
19
|
Keuser B, Khobta A, Gallé K, Anderhub S, Schulz I, Pauly K, Epe B. Influences of histone deacetylase inhibitors and resveratrol on DNA repair and chromatin compaction. Mutagenesis 2013; 28:569-76. [PMID: 23814181 DOI: 10.1093/mutage/get034] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Accessibility of DNA is a prerequisite for both DNA damage and repair. Therefore, the chromatin structure is expected to have major impact on both processes, with opposite consequences for the stability of the genome. To analyse the influence of chromatin compaction on the generation and repair of various types of DNA modifications, we modulated the global chromatin structure of AS52 Chinese hamster ovary cells and HeLa cells by treatment with either histone deacetylase inhibitors or resveratrol and measured the repair kinetics of (i) pyrimidine dimers induced by ultraviolet B, (ii) oxidised purines generated by photosensitisation and (iii) single-strand breaks induced by H2O2, using an alkaline elution technique. The decrease of chromatin compaction (detected as reduced DNA accessibility to DNase I) after treatment with trichostatin A or butyrate slightly increased the damage generation but had no significant effect on the global repair rates. In contrast, incubation of AS52 cells with resveratrol at concentrations that caused significant chromatin compaction and that had only moderate influence on cell proliferation gave rise to a strong decrease of the repair rates of all three types of DNA modifications. Similar, but less pronounced effects were observed in HeLa cells. The effects of resveratrol on the repair rates were not antagonised by the sirtuin inhibitor EX-527 or by an increase of the intracellular thiol levels.
Collapse
Affiliation(s)
- Bettina Keuser
- Institute of Pharmacy and Biochemistry, University of Mainz, Staudingerweg 5, 55099 Mainz, Germany
| | | | | | | | | | | | | |
Collapse
|
20
|
Reynolds P, Botchway SW, Parker AW, O'Neill P. Spatiotemporal dynamics of DNA repair proteins following laser microbeam induced DNA damage - when is a DSB not a DSB? Mutat Res 2013; 756:14-20. [PMID: 23688615 PMCID: PMC4028083 DOI: 10.1016/j.mrgentox.2013.05.006] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2013] [Accepted: 05/02/2013] [Indexed: 12/19/2022]
Abstract
The formation of DNA lesions poses a constant threat to cellular stability. Repair of endogenously and exogenously produced lesions has therefore been extensively studied, although the spatiotemporal dynamics of the repair processes has yet to be fully understood. One of the most recent advances to study the kinetics of DNA repair has been the development of laser microbeams to induce and visualize recruitment and loss of repair proteins to base damage in live mammalian cells. However, a number of studies have produced contradictory results that are likely caused by the different laser systems used reflecting in part the wavelength dependence of the damage induced. Additionally, the repair kinetics of laser microbeam induced DNA lesions have generally lacked consideration of the structural and chemical complexity of the DNA damage sites, which are known to greatly influence their reparability. In this review, we highlight the key considerations when embarking on laser microbeam experiments and interpreting the real time data from laser microbeam irradiations. We compare the repair kinetics from live cell imaging with biochemical and direct quantitative cellular measurements for DNA repair.
Collapse
Affiliation(s)
- Pamela Reynolds
- Gray Institute for Radiation Oncology and Biology, Department of Oncology, University of Oxford, Oxford OX3 7DQ, UK
| | | | | | | |
Collapse
|
21
|
Khobta A, Epe B. Repair of oxidatively generated DNA damage in Cockayne syndrome. Mech Ageing Dev 2013; 134:253-60. [PMID: 23518175 DOI: 10.1016/j.mad.2013.03.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2012] [Revised: 02/12/2013] [Accepted: 03/01/2013] [Indexed: 11/16/2022]
Abstract
Defects in the repair of endogenously (especially oxidatively) generated DNA modifications and the resulting genetic instability can potentially explain the clinical symptoms of Cockayne syndrome (CS), a hereditary disease characterized by developmental defects and neurological degeneration. In this review, we describe the evidence for the involvement of CSA and CSB proteins, which are mutated in most of the CS patients, in the repair and processing of DNA damage induced by reactive oxygen species and the implications for the induction of cell death and mutations. Taken together, the data demonstrate that CSA and CSB, in addition to their established role in transcription-coupled nucleotide excision repair, can modulate the base excision repair (BER) of oxidized DNA bases both directly (by interaction with BER proteins) and indirectly (by modulating the expression of the DNA repair genes). Both nuclear and mitochondrial DNA repair is affected by mutations in CSA and CSB genes. However, the observed retardations of repair and the resulting accumulation of unrepaired endogenously generated DNA lesions are often mild, thus pointing to the relevance of additional roles of the CS proteins, e.g. in the mitochondrial response to oxidatively generated DNA damage and in the maintenance of gene transcription.
Collapse
Affiliation(s)
- Andriy Khobta
- Institute of Pharmacy and Biochemistry, University of Mainz, Staudingerweg 5, D-55099 Mainz, Germany.
| | | |
Collapse
|
22
|
Abstract
UV is the most abundant human carcinogen, and protection from extensive exposure to it is a widespread human health issue. The use of chemicals (sunscreens) for protection is intuitive and efficacious. However, these chemicals may become activated to reactive intermediates when absorbing energy from UV, thus producing damage themselves, which may manifest itself in phototoxic, photoallergenic or photocarcinogenic reactions in humans. The development of safe sunscreens for humans is of high interest. Similar issues have been observed for some therapeutically used principles such as PUVA therapy for psoriasis or porphyrins for phototherapy of human cancers. Photoactivation has also been reported as a side effect of various pharmaceuticals such as the antibacterial fluoroquinolones. In this context, the authors have been involved over more than 20 years in the development and refinement of assays to test for photomutagenicity as an unwanted side effect of UV-mediated activation of such chemicals for cosmetic or pharmaceutical use. The initial years of great hopes for simple mammalian cell-based assays for photomutagenicity to screen out substances of concern for human use were followed by many years of collaborative trials to achieve standardization. However, it is now realized that this topic, albeit of human safety relevance, is highly complex and subject to many artificial modifiers, especially in vitro in mammalian cell culture. Thus, it is not really suitable for being engineered into a general testing framework within cosmetic or pharmaceutical testing guidelines. Much knowledge has been generated over the years to arrive at the conclusion that yes, photomutagenicity does exist with the use of chemicals, but how to best test for it will require a sophisticated case-by-case approach. Moreover, in comparison to the properties and risks of exposure to UV itself, it remains a comparatively minor human safety risk to address. In considering risks and benefits, we should also acknowledge beneficial effects of UV on human health, including an essential role in the production of Vitamin D. Thus, the interrelationships between UV, chemicals and human health remain a fascinating topic of research.
Collapse
Affiliation(s)
- Lutz Müller
- F. Hoffmann-La Roche Ltd., Basel, Switzerland.
| | - Elmar Gocke
- F. Hoffmann-La Roche Ltd., Basel, Switzerland
| |
Collapse
|
23
|
Del Bó C, Riso P, Campolo J, Møller P, Loft S, Klimis-Zacas D, Brambilla A, Rizzolo A, Porrini M. A single portion of blueberry (Vaccinium corymbosum L) improves protection against DNA damage but not vascular function in healthy male volunteers. Nutr Res 2013; 33:220-7. [PMID: 23507228 DOI: 10.1016/j.nutres.2012.12.009] [Citation(s) in RCA: 77] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2012] [Revised: 11/22/2012] [Accepted: 12/28/2012] [Indexed: 12/24/2022]
Abstract
It has been suggested that anthocyanin-rich foods may exert antioxidant effects and improve vascular function as demonstrated mainly in vitro and in the animal model. Blueberries are rich sources of anthocyanins and we hypothesized that their intake could improve cell protection against oxidative stress and affect endothelial function in humans. The aim of the study was to investigate the effect of one portion (300 g) of blueberries on selected markers of oxidative stress and antioxidant protection (endogenous and oxidatively induced DNA damage) and of vascular function (changes in peripheral arterial tone and plasma nitric oxide levels) in male subjects. In a randomized cross-over design, separated by a wash out period ten young volunteers received one portion of blueberries ground by blender or one portion of a control jelly. Before and after consumption (at 1, 2, and 24 hours), blood samples were collected and used to evaluate anthocyanin absorption (through mass spectrometry), endogenous and H(2)O(2)-induced DNA damage in blood mononuclear cells (through the comet assay), and plasma nitric oxide concentrations (through a fluorometric assay). Peripheral arterial function was assessed by means of Endo-PAT 2000. Blueberries significantly reduced (P < .01) H(2)O(2)-induced DNA damage (-18%) 1 hour after blueberry consumption compared to control. No significant differences were observed for endogenous DNA damage, peripheral arterial function and nitric oxide levels after blueberry intake. In conclusion, one portion of blueberries seems sufficient to improve cell antioxidant defense against DNA damage, but further studies are necessary to understand their role on vascular function.
Collapse
Affiliation(s)
- Cristian Del Bó
- Università degli Studi di Milano, DeFENS, Department of Food, Environmental and Nutritional Sciences, Division of Human Nutrition, Milan, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Campalans A, Kortulewski T, Amouroux R, Menoni H, Vermeulen W, Radicella JP. Distinct spatiotemporal patterns and PARP dependence of XRCC1 recruitment to single-strand break and base excision repair. Nucleic Acids Res 2013; 41:3115-29. [PMID: 23355608 PMCID: PMC3597691 DOI: 10.1093/nar/gkt025] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Single-strand break repair (SSBR) and base excision repair (BER) of modified bases and abasic sites share several players. Among them is XRCC1, an essential scaffold protein with no enzymatic activity, required for the coordination of both pathways. XRCC1 is recruited to SSBR by PARP-1, responsible for the initial recognition of the break. The recruitment of XRCC1 to BER is still poorly understood. Here we show by using both local and global induction of oxidative DNA base damage that XRCC1 participation in BER complexes can be distinguished from that in SSBR by several criteria. We show first that XRCC1 recruitment to BER is independent of PARP. Second, unlike SSBR complexes that are assembled within minutes after global damage induction, XRCC1 is detected later in BER patches, with kinetics consistent with the repair of oxidized bases. Third, while XRCC1-containing foci associated with SSBR are formed both in eu- and heterochromatin domains, BER complexes are assembled in patches that are essentially excluded from heterochromatin and where the oxidized bases are detected.
Collapse
Affiliation(s)
- Anna Campalans
- CEA, Institute of Cellular and Molecular Radiobiology, F-96265 Fontenay aux Roses, France.
| | | | | | | | | | | |
Collapse
|
25
|
Rapid inactivation and proteasome-mediated degradation of OGG1 contribute to the synergistic effect of hyperthermia on genotoxic treatments. DNA Repair (Amst) 2013; 12:227-37. [PMID: 23332971 DOI: 10.1016/j.dnarep.2012.12.006] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2012] [Revised: 12/18/2012] [Accepted: 12/21/2012] [Indexed: 12/16/2022]
Abstract
Inhibition of DNA repair has been proposed as a mechanism underlying heat-induced sensitization of tumour cells to some anticancer treatments. Base excision repair (BER) constitutes the main pathway for the repair of DNA lesions induced by oxidizing or alkylating agents. Here, we report that mild hyperthermia, without toxic consequences per se, affects cellular DNA glycosylase activities, thus impairing BER. Exposure of cells to mild hyperthermia leads to a rapid and selective inactivation of OGG1 (8-oxoguanine DNA glycosylase) associated with the relocalisation of the protein into a detergent-resistant cellular fraction. Following its inactivation, OGG1 is ubiquitinated and directed to proteasome-mediated degradation, through a CHIP (C-terminus of HSC70-interacting protein) E3 ligase-mediated process. Moreover, the residual OGG1 accumulates in the perinuclear region leading to further depletion from the nucleus. As a consequence, HeLa cells subjected to hyperthermia and exposed to a genotoxic treatment have a reduced capacity to repair OGG1 cognate base lesions and an enhanced cell growth defect. The partial alleviation of this response by OGG1 overexpression indicates that heat-induced glycosylase inactivation contributes to the synergistic effect of hyperthermia on genotoxic treatments. Taken together, our results suggest that OGG1 inhibition contributes to heat-induced chemosensitisation of cells and could lay the basis for new anticancer therapeutic protocols that include hyperthermia.
Collapse
|
26
|
Menoni H, Hoeijmakers JHJ, Vermeulen W. Nucleotide excision repair-initiating proteins bind to oxidative DNA lesions in vivo. ACTA ACUST UNITED AC 2012; 199:1037-46. [PMID: 23253478 PMCID: PMC3529521 DOI: 10.1083/jcb.201205149] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
In vivo imaging reveals that CSB and XPC promote the repair of oxidative DNA lesions independent of the canonical nucleotide excision repair process. Base excision repair (BER) is the main repair pathway to eliminate abundant oxidative DNA lesions such as 8-oxo-7,8-dihydroguanine. Recent data suggest that the key transcription-coupled nucleotide excision repair factor (TC-NER) Cockayne syndrome group B (CSB) and the global genome NER-initiating factor XPC are implicated in the protection of cells against oxidative DNA damages. Our novel live-cell imaging approach revealed a strong and very rapid recruitment of XPC and CSB to sites of oxidative DNA lesions in living cells. The absence of detectable accumulation of downstream NER factors at the site of local oxidative DNA damage provide the first in vivo indication of the involvement of CSB and XPC in the repair of oxidative DNA lesions independent of the remainder of the NER reaction. Interestingly, CSB exhibited different and transcription-dependent kinetics in the two compartments studied (nucleolus and nucleoplasm), suggesting a direct transcription-dependent involvement of CSB in the repair of oxidative lesions associated with different RNA polymerases but not involving other NER proteins.
Collapse
Affiliation(s)
- Hervé Menoni
- Department of Genetics, Erasmus MC, 3015 GE Rotterdam, Netherlands.
| | | | | |
Collapse
|
27
|
Kain J, Karlsson HL, Moller L. DNA damage induced by micro- and nanoparticles--interaction with FPG influences the detection of DNA oxidation in the comet assay. Mutagenesis 2012; 27:491-500. [DOI: 10.1093/mutage/ges010] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
28
|
Gerloff K, Fenoglio I, Carella E, Kolling J, Albrecht C, Boots AW, Förster I, Schins RPF. Distinctive Toxicity of TiO2 Rutile/Anatase Mixed Phase Nanoparticles on Caco-2 Cells. Chem Res Toxicol 2012; 25:646-55. [DOI: 10.1021/tx200334k] [Citation(s) in RCA: 149] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Kirsten Gerloff
- Immunity, Infection and Inflammation Program, Mater
Medical Research Institute and the University of Queensland, Mater Health Services, South Brisbane, QLD, Australia
| | - Ivana Fenoglio
- Dip. di Chimica
Inorganica, Fisica e dei Materiali, Interdepartmental Centre “G.
Scansetti” for Studies on Asbestos and Other Toxic Particulates
and Interdepartmental Center for Nanostructured Interfaces and Surfaces, University of Torino, Italy
| | - Emanuele Carella
- Dip. di Chimica
Inorganica, Fisica e dei Materiali, Interdepartmental Centre “G.
Scansetti” for Studies on Asbestos and Other Toxic Particulates
and Interdepartmental Center for Nanostructured Interfaces and Surfaces, University of Torino, Italy
| | | | | | | | | | | |
Collapse
|
29
|
Abstract
DNA damage induced by photosensitization is not only responsible for the genotoxic effects of various types of drugs in the presence of light, but is also relevant for some of the adverse effects of sunlight, in particular in the UVA and visible range of the spectrum. The types of DNA modifications induced are very diverse and include pyrimidine dimers, covalent adducts, various base modifications generated by oxidation, single-strand breaks and (regular and oxidized) sites of base loss. The ratios in which the various modifications are formed (damage spectra) can be regarded as a fingerprint of the damaging mechanism. Here, we describe the damage spectra of various classes of photosensitizers in relation to the underlying damaging mechanisms. In mammalian cells irradiated with solar radiation, damage at wavelengths <400 nm is characteristic for a (not yet identified) endogenous type-I or type-II photosensitizer. In the UVA range, however, both direct DNA excitation and photosensitized damage appear to be relevant, and there are indications that other chromophore(s) are involved than in the visible range.
Collapse
Affiliation(s)
- Bernd Epe
- Institute of Pharmacy and Biochemistry, University of Mainz, Staudingerweg 5, D-55099, Mainz, Germany.
| |
Collapse
|
30
|
Ersson C, Moller L. The effects on DNA migration of altering parameters in the comet assay protocol such as agarose density, electrophoresis conditions and durations of the enzyme or the alkaline treatments. Mutagenesis 2011; 26:689-95. [DOI: 10.1093/mutage/ger034] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
31
|
Bergstrom T, Bergman J, Moller L. Vitamin A and C compounds permitted in supplements differ in their abilities to affect cell viability, DNA and the DNA nucleoside deoxyguanosine. Mutagenesis 2011; 26:735-44. [DOI: 10.1093/mutage/ger041] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
|
32
|
Jacobsen NR, White PA, Gingerich J, Møller P, Saber AT, Douglas GR, Vogel U, Wallin H. Mutation spectrum in FE1-MUTA(TM) Mouse lung epithelial cells exposed to nanoparticulate carbon black. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2011; 52:331-337. [PMID: 20963790 DOI: 10.1002/em.20629] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2010] [Revised: 07/09/2010] [Accepted: 07/28/2010] [Indexed: 05/30/2023]
Abstract
It has been shown previously that carbon black (CB), Printex 90 exposure induces cII and lacZ mutants in the FE1-Muta(TM) Mouse lung epithelial cell line and causes oxidatively damaged DNA and the production of reactive oxygen species (ROS). The purpose of this study was to determine the mutation spectrum in the cII gene of Printex 90 exposed cells. Cells exposed to CB have a substantially different mutation spectrum in the cII gene compared with vehicle exposed controls. The mutation spectra differ both in the positions (P < 0.0001) and types of the mutations (P < 0.0001). Exposure to Printex 90 increased the number of single base deletions by 2.3-fold and larger deletions by 1.9-fold. Most single base deletions were within two repetitive sequences in cII, but the large deletions were not. The mechanism behind the large deletions is not yet known. The largest increases in base substitutions were observed in G:C→T:A, G:C→C:G, and A:T→T:A transversion mutations; this is in keeping with a genetic finger print of ROS and is further substantiated by the observations that Printex 90 generates ROS and oxidatively damaged DNA.
Collapse
Affiliation(s)
- Nicklas Raun Jacobsen
- National Research Centre for the Working Environment, Lersø Parkallé 105, DK-2100 Copenhagen Ø, Denmark.
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Costa RAP, Romagna CD, Pereira JL, Souza-Pinto NC. The role of mitochondrial DNA damage in the citotoxicity of reactive oxygen species. J Bioenerg Biomembr 2011; 43:25-9. [DOI: 10.1007/s10863-011-9329-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
34
|
Ramaiah D, Eckert I, Arun KT, Weidenfeller L, Epe B. Squaraine Dyes for Photodynamic Therapy: Mechanism of Cytotoxicity and DNA Damage Induced by Halogenated Squaraine Dyes Plus Light (>600 nm)¶. Photochem Photobiol 2011. [DOI: 10.1111/j.1751-1097.2004.tb09863.x] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
35
|
Thierbach R, Drewes G, Fusser M, Voigt A, Kuhlow D, Blume U, Schulz TJ, Reiche C, Glatt H, Epe B, Steinberg P, Ristow M. The Friedreich's ataxia protein frataxin modulates DNA base excision repair in prokaryotes and mammals. Biochem J 2010; 432:165-72. [PMID: 20819074 PMCID: PMC2976068 DOI: 10.1042/bj20101116] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2010] [Revised: 08/25/2010] [Accepted: 09/06/2010] [Indexed: 11/23/2022]
Abstract
DNA-repair mechanisms enable cells to maintain their genetic information by protecting it from mutations that may cause malignant growth. Recent evidence suggests that specific DNA-repair enzymes contain ISCs (iron-sulfur clusters). The nuclearencoded protein frataxin is essential for the mitochondrial biosynthesis of ISCs. Frataxin deficiency causes a neurodegenerative disorder named Friedreich's ataxia in humans. Various types of cancer occurring at young age are associated with this disease, and hence with frataxin deficiency. Mice carrying a hepatocyte-specific disruption of the frataxin gene develop multiple liver tumours for unresolved reasons. In the present study, we show that frataxin deficiency in murine liver is associated with increased basal levels of oxidative DNA base damage. Accordingly, eukaryotic V79 fibroblasts overexpressing human frataxin show decreased basal levels of these modifications, while prokaryotic Salmonella enterica serotype Typhimurium TA104 strains transformed with human frataxin show decreased mutation rates. The repair rates of oxidative DNA base modifications in V79 cells overexpressing frataxin were significantly higher than in control cells. Lastly, cleavage activity related to the ISC-independent repair enzyme 8-oxoguanine glycosylase was found to be unaltered by frataxin overexpression. These findings indicate that frataxin modulates DNA-repair mechanisms probably due to its impact on ISC-dependent repair proteins, linking mitochondrial dysfunction to DNA repair and tumour initiation.
Collapse
Key Words
- dna base excision repair
- frataxin
- friedreich's ataxia
- iron–sulfur cluster
- oxidative stress
- tumorigenesis
- ber, base excision repair
- dmem, dulbecco's modified eagle's medium
- fpg, formamido-pyrimidine dna glycosylase
- frda, friedreich's ataxia
- hprt, hypoxanthine phosphoribosyltransferase
- isc, iron–sulfur cluster
- lb, luria–bertani
- mapk, mitogen-activated protein kinase
- mutyh, human muty homologue (escherichia coli)
- ogg1, 8-oxoguanine dna glycosylase 1
- 8-oxog, 7,8-dihydro-8-oxoguanine
- ros, reactive oxygen species
- ssb, dna single-strand break
Collapse
Affiliation(s)
- René Thierbach
- Department of Food Toxicology and Replacement/Complementary Methods to Animal Testing, University of Veterinary Medicine Hannover, Germany.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Hansen SH, Olsen AK, Søderlund EJ, Brunborg G. In vitro investigations of glycidamide-induced DNA lesions in mouse male germ cells and in mouse and human lymphocytes. Mutat Res 2009; 696:55-61. [PMID: 20026424 DOI: 10.1016/j.mrgentox.2009.12.012] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2009] [Revised: 12/06/2009] [Accepted: 12/06/2009] [Indexed: 10/20/2022]
Abstract
The industrial compound and food contaminant acrylamide (AA) is a probable human carcinogen, also known to induce male-mediated reproductive effects in animals. Most data suggest that its metabolite glycidamide (GA) is involved in the observed toxicity. We have investigated in vitro effects of AA/GA in mouse male germ cells (prior to spermatid elongation) and human and mouse peripheral blood lymphocytes, to assess inter-species and cell-type differences in susceptibility, and to explore the nature of the DNA lesion(s) as well as their potential repair. The comet assay was used in combination with the DNA-repair enzymes Fpg and hOGG1 to measure specific DNA lesions. In contrast to AA, GA induced significant levels of DNA lesions (strand breaks and alkali-labile sites) at millimolar concentrations in mouse testicular cells and human peripheral blood lymphocytes (hPBL). Using Fpg, the GA-induced DNA damage was measured at 20-50-fold higher sensitivity, in all cell types investigated. GA-induced DNA damage could not be recognised by hOGG1, suggesting that, based on the known affinities of these repair enzymes, alkylation of guanine is involved, rather than oxidation. Human lymphocytes appeared to be more susceptible to GA-induced lesions than both types of mouse cells. Mouse testicular cells and lymphocytes seemed to respond similarly to GA-induced Fpg-sensitive DNA lesions. The persistence of lesions was explored with cells from mice either proficient or deficient in Ogg1 (mouse 8-oxoguanine DNA glycosylase). Low in vitro repair of GA-induced Fpg-sensitive lesions was observed in primary male germ cells and lymphocytes from both Ogg1(+/+) and Ogg1(-/-) mice. We conclude that there may be differences between mice and humans in AA/GA-induced genotoxicity, and DNA from mouse male germ cells does not appear to be more sensitive to GA than DNA from peripheral blood lymphocytes in vitro. The usefulness of the comet assay in combination with DNA-repair enzymes is demonstrated.
Collapse
Affiliation(s)
- Siri Helland Hansen
- Norwegian Institute of Public Health, Division of Environmental Medicine, Department of Chemical Toxicology, 0403 Oslo, Norway
| | | | | | | |
Collapse
|
37
|
Johansson C, Møller P, Forchhammer L, Loft S, Godschalk RWL, Langie SAS, Lumeij S, Jones GDD, Kwok RWL, Azqueta A, Phillips DH, Sozeri O, Routledge MN, Charlton AJ, Riso P, Porrini M, Allione A, Matullo G, Palus J, Stepnik M, Collins AR, Möller L. An ECVAG trial on assessment of oxidative damage to DNA measured by the comet assay. Mutagenesis 2009; 25:125-32. [PMID: 19948595 PMCID: PMC2825342 DOI: 10.1093/mutage/gep055] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The increasing use of single cell gel electrophoresis (the comet assay) highlights its popularity as a method for detecting DNA damage, including the use of enzymes for assessment of oxidatively damaged DNA. However, comparison of DNA damage levels between laboratories can be difficult due to differences in assay protocols (e.g. lysis conditions, enzyme treatment, the duration of the alkaline treatment and electrophoresis) and in the end points used for reporting results (e.g. %DNA in tail, arbitrary units, tail moment and tail length). One way to facilitate comparisons is to convert primary comet assay end points to number of lesions/106 bp by calibration with ionizing radiation. The aim of this study was to investigate the inter-laboratory variation in assessment of oxidatively damaged DNA by the comet assay in terms of oxidized purines converted to strand breaks with formamidopyrimidine DNA glycosylase (FPG). Coded samples with DNA oxidation damage induced by treatment with different concentrations of photosensitizer (Ro 19-8022) plus light and calibration samples irradiated with ionizing radiation were distributed to the 10 participating laboratories to measure DNA damage using their own comet assay protocols. Nine of 10 laboratories reported the same ranking of the level of damage in the coded samples. The variation in assessment of oxidatively damaged DNA was largely due to differences in protocols. After conversion of the data to lesions/106 bp using laboratory-specific calibration curves, the variation between the laboratories was reduced. The contribution of the concentration of photosensitizer to the variation in net FPG-sensitive sites increased from 49 to 73%, whereas the inter-laboratory variation decreased. The participating laboratories were successful in finding a dose–response of oxidatively damaged DNA in coded samples, but there remains a need to standardize the protocols to enable direct comparisons between laboratories.
Collapse
Affiliation(s)
- Clara Johansson
- Department of Biosciences and Nutrition, Karolinska Institutet, SE-141 57 Huddinge, Sweden
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Rybanská I, Gursky J, Fasková M, Salazar EP, Kimlícková-Polakovicová E, Kleibl K, Thompson LH, Pirsel M. Newly identified CHO ERCC3/XPB mutations and phenotype characterization. Mutagenesis 2009; 25:179-85. [PMID: 19942596 DOI: 10.1093/mutage/gep059] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Nucleotide excision repair (NER) is a complex multistage process involving many interacting gene products to repair a wide range of DNA lesions. Genetic defects in NER cause human hereditary diseases including xeroderma pigmentosum (XP), Cockayne syndrome (CS), trichothiodystrophy and a combined XP/CS overlapping symptom. One key gene product associated with all these disorders is the excision repair cross-complementing 3/xeroderma pigmentosum B (ERCC3/XPB) DNA helicase, a subunit of the transcription factor IIH complex. ERCC3 is involved in initiation of basal transcription and global genome repair as well as in transcription-coupled repair (TCR). The hamster ERCC3 gene shows high degree of homology with the human ERCC3/XPB gene. We identified new mutations in the Chinese hamster ovary cell ERCC3 gene and characterized the role of hamster ERCC3 protein in DNA repair of ultraviolet (UV)-induced and oxidative DNA damage. All but one newly described mutations are located in the protein C-terminal region around the last intron-exon boundary. Due to protein truncations or frameshifts, they lack amino acid Ser751, phosphorylation of which prevents the 5' incision of the UV-induced lesion during NER. Thus, despite the various locations of the mutations, their phenotypes are similar. All ercc3 mutants are extremely sensitive to UV-C light and lack recovery of RNA synthesis (RRS), confirming a defect in TCR of UV-induced damage. Their limited global genome NER capacity averages approximately 8%. We detected modest sensitivity of ercc3 mutants to the photosensitizer Ro19-8022, which primarily introduces 8-oxoguanine lesions into DNA. Ro19-8022-induced damage interfered with RRS, and some of the ercc3 mutants had delayed kinetics. All ercc3 mutants showed efficient base excision repair (BER). Thus, the positions of the mutations have no effect on the sensitivity to, and repair of, Ro19-8022-induced DNA damage, suggesting that the ERCC3 protein is not involved in BER.
Collapse
Affiliation(s)
- Ivana Rybanská
- Laboratory of Molecular Genetics, Cancer Research Institute, Slovak Academy of Sciences, Vlárska 7, 833 91 Bratislava 37, Slovak Republic
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Azqueta A, Shaposhnikov S, Collins AR. Detection of Oxidised DNA Using DNA Repair Enzymes. THE COMET ASSAY IN TOXICOLOGY 2009. [DOI: 10.1039/9781847559746-00057] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Amaya Azqueta
- Department of Nutrition Faculty of Medicine University of Oslo PB 1046 Blindern 0316 Oslo Norway
| | - Sergey Shaposhnikov
- Department of Nutrition Faculty of Medicine University of Oslo PB 1046 Blindern 0316 Oslo Norway
| | - Andrew R. Collins
- Department of Nutrition Faculty of Medicine University of Oslo PB 1046 Blindern 0316 Oslo Norway
| |
Collapse
|
40
|
Bravard A, Vacher M, Moritz E, Vaslin L, Hall J, Epe B, Radicella JP. Oxidation status of human OGG1-S326C polymorphic variant determines cellular DNA repair capacity. Cancer Res 2009; 69:3642-9. [PMID: 19351836 DOI: 10.1158/0008-5472.can-08-3943] [Citation(s) in RCA: 124] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The hOGG1 gene encodes the DNA glycosylase that removes the mutagenic lesion 7,8-dihyro-8-oxoguanine (8-oxoG) from DNA. A frequently found polymorphism resulting in a serine to cysteine substitution at position 326 of the OGG1 protein has been associated in several molecular epidemiologic studies with cancer development. To investigate whether the variant allele encodes a protein with altered OGG1 function, we compared the 8-oxoG repair activity, both in vivo and in cell extracts, of lymphoblastoid cell lines established from individuals carrying either Ser/Ser or Cys/Cys genotypes. We show that cells homozygous for the Cys variant display increased genetic instability and reduced in vivo 8-oxoG repair rates. Consistently, their extracts have an almost 2-fold lower basal 8-oxoG DNA glycosylase activity when compared with the Ser variant. Treatment with reducing agents of either the Cys variant cells directly or of protein extracts from these cells increases the repair capacity to the level of the Ser variant, whereas it does not affect the activity in cells or extracts from the latter. Furthermore, the DNA glycosylase activity of cells carrying the Cys/Cys alleles is more sensitive to inactivation by oxidizing agents when compared with that of the Ser/Ser cells. Analysis of the redox status of the OGG1 protein in the cells confirms that the lower activity of OGG1-Cys326 is associated with the oxidation of Cys326 to form a disulfide bond. Our findings support the idea that individuals homozygous for the OGG1-Cys variant could more readily accumulate mutations under conditions of oxidative stress.
Collapse
Affiliation(s)
- Anne Bravard
- CEA, Institut de Radiobiologie Cellulaire et Moléculaire, UMR217 Centre National de la Recherche Scientifique/CEA, Fontenay aux Roses, France
| | | | | | | | | | | | | |
Collapse
|
41
|
Oxidative damage to DNA and repair induced by Norwegian wood smoke particles in human A549 and THP-1 cell lines. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2009; 674:116-22. [DOI: 10.1016/j.mrgentox.2008.10.014] [Citation(s) in RCA: 120] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2008] [Accepted: 10/29/2008] [Indexed: 11/22/2022]
|
42
|
Khobta A, Kitsera N, Speckmann B, Epe B. 8-Oxoguanine DNA glycosylase (Ogg1) causes a transcriptional inactivation of damaged DNA in the absence of functional Cockayne syndrome B (Csb) protein. DNA Repair (Amst) 2008; 8:309-17. [PMID: 19061977 DOI: 10.1016/j.dnarep.2008.11.006] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2008] [Revised: 11/03/2008] [Accepted: 11/05/2008] [Indexed: 10/21/2022]
Abstract
We have analysed the effect of oxidative guanine lesions on the expression of a transfected reporter gene in mouse embryonic fibroblasts deficient in Cockayne syndrome B protein (Csb) and/or the 8-oxoguanine DNA glycosylase (Ogg1). We used a highly sensitive flow cytometry-based approach and quantitative real-time PCR to measure the changes in gene expression caused by the presence of oxidised guanine residues generated by photosensitisation in the vector DNA. In wild-type cells, small numbers (one or three) of oxidised guanines did not affect gene expression at short times after transfections, whereas progressive reduction of the transgene expression was observed at later time points. Although Ogg1 has a major contribution to the repair of oxidised guanine bases, its absence did not have a strong effect on the gene expression. In contrast, the lack of functional Csb protein caused a pronounced inactivation of the damaged reporter gene. Most strikingly, an additional Ogg1 deficiency significantly attenuated this effect. The results indicate that the processing of oxidative guanine modifications by Ogg1 can mediate host cell inactivation rather than reactivation of the damaged genes and that this effect is strongly enhanced in the absence of Csb.
Collapse
Affiliation(s)
- Andriy Khobta
- Johannes Gutenberg University of Mainz, Institute of Pharmacy, Mainz, Germany.
| | | | | | | |
Collapse
|
43
|
Oxidative stress impairs the repair of oxidative DNA base modifications in human skin fibroblasts and melanoma cells. DNA Repair (Amst) 2008; 7:912-21. [DOI: 10.1016/j.dnarep.2008.03.002] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2008] [Revised: 03/07/2008] [Accepted: 03/08/2008] [Indexed: 02/05/2023]
|
44
|
Abstract
Phytochemicals may protect cellular DNA by direct antioxidant effect or modulation of the DNA repair activity. We investigated the repair activity towards oxidised DNA in human mononuclear blood cells (MNBC) in two placebo-controlled antioxidant intervention studies as follows: (1) well-nourished subjects who ingested 600 g fruits and vegetables, or tablets containing the equivalent amount of vitamins and minerals, for 24 d; (2) poorly nourished male smokers who ingested 500 mg vitamin C/d as slow- or plain-release formulations together with 182 mg vitamin E/d for 4 weeks. The mean baseline levels of DNA repair incisions were 65·2 (95 % CI 60·4, 70·0) and 86·1 (95 % CI 76·2, 99·9) among the male smokers and well-nourished subjects, respectively. The male smokers also had high baseline levels of oxidised guanines in MNBC. After supplementation, only the male smokers supplemented with slow-release vitamin C tablets had increased DNA repair activity (27 (95 % CI 12, 41) % higher incision activity). These subjects also benefited from the supplementation by reduced levels of oxidised guanines in MNBC. In conclusion, nutritional status, DNA repair activity and DNA damage are linked, and beneficial effects of antioxidants might only be observed among poorly nourished subjects with high levels of oxidised DNA damage and low repair activity.
Collapse
|
45
|
Wu M, Zhang Z, Che W. Suppression of a DNA base excision repair gene, hOGG1, increases bleomycin sensitivity of human lung cancer cell line. Toxicol Appl Pharmacol 2008; 228:395-402. [DOI: 10.1016/j.taap.2007.12.020] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2007] [Revised: 12/16/2007] [Accepted: 12/18/2007] [Indexed: 11/27/2022]
|
46
|
Hodges NJ, Innocent N, Dhanda S, Graham M. Cellular protection from oxidative DNA damage by over-expression of the novel globin cytoglobin in vitro. Mutagenesis 2008; 23:293-8. [DOI: 10.1093/mutage/gen013] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
|
47
|
Trapp C, McCullough AK, Epe B. The basal levels of 8-oxoG and other oxidative modifications in intact mitochondrial DNA are low even in repair-deficient (Ogg1(-/-)/Csb(-/-)) mice. Mutat Res 2007; 625:155-63. [PMID: 17675188 DOI: 10.1016/j.mrfmmm.2007.06.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2007] [Revised: 05/24/2007] [Accepted: 06/15/2007] [Indexed: 01/12/2023]
Abstract
Mitochondrial DNA (mtDNA) is assumed to be highly prone to damage by reactive oxygen species (ROS) because of its location in close proximity to the mitochondrial electron transport chain. Accordingly, mitochondrial oxidative DNA damage has been hypothesized to be responsible for various neurological diseases, ageing and cancer. Since 7,8-dihydro-8-oxoguanine (8-oxoG), one of the most frequent oxidative base modifications, is removed from the mitochondrial genome by the glycosylase OGG1, the basal levels of this lesion are expected to be highly elevated in Ogg1(-/-) mice. To investigate this hypothesis, we have used a mtDNA relaxation assay in combination with various repair enzymes (Fpg, MutY, endonuclease III, endonuclease IV) to determine the average steady-state number of oxidative DNA modifications within intact (supercoiled) mtDNA from the livers of wild-type mice and those deficient in OGG1 and/or the Cockayne syndrome B (CSB) protein for mice aged up to 23 months. The levels of all types of oxidative modifications were found to be less than 12 per million base pairs, and the difference between wild-type and repair-deficient (Ogg1(-/-)/Csb(-/-)) mice was not significant. Thus, the increase of 8-oxoG caused by the repair deficiency in intact mtDNA is not much higher than in the nuclear DNA, i.e., not more than a few modifications per million base pairs. Based on these data, it is hypothesized that the load of oxidative base modifications in mtDNA is efficiently reduced during replication even in the absence of excision repair.
Collapse
Affiliation(s)
- Christian Trapp
- Institute of Pharmacy, University of Mainz, D-55099 Mainz, Germany
| | | | | |
Collapse
|
48
|
Ramaiah D, Eckert I, Arun KT, Weidenfeller L, Epe B. Squaraine Dyes for Photodynamic Therapy: Study of Their Cytotoxicity and Genotoxicity in Bacteria and Mammalian Cells¶‡. Photochem Photobiol 2007. [DOI: 10.1562/0031-8655(2002)0760672sdfpts2.0.co2] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
49
|
Smart DJ, Chipman JK, Hodges NJ. Activity of OGG1 variants in the repair of pro-oxidant-induced 8-oxo-2'-deoxyguanosine. DNA Repair (Amst) 2006; 5:1337-45. [PMID: 16861056 DOI: 10.1016/j.dnarep.2006.06.001] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2006] [Revised: 06/01/2006] [Accepted: 06/02/2006] [Indexed: 11/17/2022]
Abstract
Cells are continuously exposed to damaging reactive oxygen species (ROS), which are produced from both endogenous and exogenous sources. 8-Oxodeoxyguanosine (8-oxodG) is an abundant base lesion formed during oxidative stress which, if not repaired, can give rise to G:C-->T:A transversions in DNA. The 8-oxoguanine DNA glycosylase-1 (OGG1)-initiated base excision repair (BER) pathway operates to remove 8-oxodG lesions. Ogg1 deletion and polymorphism may result in a hypermutator phenotype and susceptibility to oxidative pathologies including cancer. Limited and conflicting evidence exists regarding the repair capacity of a prevalent human OGG1 (hOGG1) polymorphism, the Cys326-hOGG1 variant. The formamidopyrimidine DNA glycosylase (FPG)-modified comet assay was used to investigate the ability of sodium dichromate, potassium bromate and Ro19-8022 (+light) to induce DNA damage in mogg1(-/-) null (KO) and wild-type (WT) mouse embryonic fibroblasts (MEFs) and to assess hOGG1 variant-initiated BER capacities under conditions of oxidative stress. Treatment of WT MEFs with these pro-oxidant agents induced direct DNA strand breaks in a concentration-dependent manner, whereas, identical treatment of KO MEFs produced no effect. In contrast, KO MEFs accumulated significantly more FPG-sensitive sites than WT MEFs. Expression of hOGG1 in KO MEFs restored the WT phenotype in response to all pro-oxidants tested. The results suggest OGG1-initiated BER generates direct DNA strand breaks detected by the conventional comet assay, thus it is important that researchers do not interpret these as direct damage per se but rather a reflection of the repair process. The data also indicate Cys326-hOGG1-initiated BER is transiently impaired with respect to Ser326-hOGG1 (wild-type)- and Gly326-hOGG1 (artificial)-initiated BER following pro-oxidant treatment, possibly via hOGG1 cysteine 326 oxidation. This finding suggests the homozygous cys326/cys326 genotype may be classified as a biomarker of disease susceptibility, which is in support of a growing body of epidemiological evidence.
Collapse
Affiliation(s)
- D J Smart
- School of Biosciences, The University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | | | | |
Collapse
|
50
|
Park JH, Troxel AB, Harvey RG, Penning TM. Polycyclic aromatic hydrocarbon (PAH) o-quinones produced by the aldo-keto-reductases (AKRs) generate abasic sites, oxidized pyrimidines, and 8-oxo-dGuo via reactive oxygen species. Chem Res Toxicol 2006; 19:719-28. [PMID: 16696575 PMCID: PMC2366214 DOI: 10.1021/tx0600245] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Reactive and redox-active polycyclic aromatic hydrocarbon (PAH) o-quinones produced by Aldo-Keto Reductases (AKRs) have the potential to cause depurinating adducts leading to the formation of abasic sites and oxidative base lesions. The aldehyde reactive probe (ARP) was used to detect these lesions in calf thymus DNA treated with three PAH o-quinones (BP-7,8-dione, 7,12-DMBA-3,4-dione, and BA-3,4-dione) in the absence and presence of redox-cycling conditions. In the absence of redox-cycling, a modest amount of abasic sites were detected indicating the formation of a low level of covalent o-quinone depurinating adducts (>3.2 x 10(6) dNs). In the presence of NADPH and CuCl2, the three PAH o-quinones increased the formation of abasic sites due to ROS-derived lesions destabilizing the N-glycosidic bond. The predominant source of AP sites, however, was revealed by coupling the assay with human 8-oxoguanine glycosylase (hOGG1) treatment, showing that 8-oxo-dGuo was the major lesion caused by PAH o-quinones. The levels of 8-oxo-dGuo formation were independently validated by HPLC-ECD analysis. Apyrimidinic sites were also revealed by coupling the assay with Escherichia coli (Endo III) treatment showing that oxidized pyrimidines were formed, but to a lesser extent. Different mechanisms were responsible for the formation of the oxidative lesions depending on whether Cu(II) or Fe(III) was used in the redox-cycling conditions. In the presence of Cu(II)-mediated PAH o-quinone redox-cycling, catalase completely suppressed the formation of the lesions, but mannitol and sodium benzoate were without effect. By contrast, sodium azide, which acts as a *OH and 1O2 scavenger, inhibited the formation of all oxidative lesions, suggesting that the ROS responsible was 1O2. However, in the presence of Fe(III)-mediated PAH o-quinone redox-cycling, the *OH radical scavengers and sodium azide consistently attenuated their formation, indicating that the ROS responsible was *OH.
Collapse
Affiliation(s)
- Jong-Heum Park
- Department of Pharmacology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104-6084
| | - Andrea B. Troxel
- Department of Biostatistics and Epidemiology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104-6084
| | - Ronald G. Harvey
- The Ben May Institute for Cancer Research, University of Chicago, Chicago, Illinois 60637
| | - Trevor M. Penning
- Department of Pharmacology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104-6084
| |
Collapse
|